summaryrefslogtreecommitdiff
path: root/Documentation
diff options
context:
space:
mode:
Diffstat (limited to 'Documentation')
-rw-r--r--Documentation/vm/page_migration129
1 files changed, 129 insertions, 0 deletions
diff --git a/Documentation/vm/page_migration b/Documentation/vm/page_migration
new file mode 100644
index 000000000000..c52820fcf500
--- /dev/null
+++ b/Documentation/vm/page_migration
@@ -0,0 +1,129 @@
+Page migration
+--------------
+
+Page migration allows the moving of the physical location of pages between
+nodes in a numa system while the process is running. This means that the
+virtual addresses that the process sees do not change. However, the
+system rearranges the physical location of those pages.
+
+The main intend of page migration is to reduce the latency of memory access
+by moving pages near to the processor where the process accessing that memory
+is running.
+
+Page migration allows a process to manually relocate the node on which its
+pages are located through the MF_MOVE and MF_MOVE_ALL options while setting
+a new memory policy. The pages of process can also be relocated
+from another process using the sys_migrate_pages() function call. The
+migrate_pages function call takes two sets of nodes and moves pages of a
+process that are located on the from nodes to the destination nodes.
+
+Manual migration is very useful if for example the scheduler has relocated
+a process to a processor on a distant node. A batch scheduler or an
+administrator may detect the situation and move the pages of the process
+nearer to the new processor. At some point in the future we may have
+some mechanism in the scheduler that will automatically move the pages.
+
+Larger installations usually partition the system using cpusets into
+sections of nodes. Paul Jackson has equipped cpusets with the ability to
+move pages when a task is moved to another cpuset. This allows automatic
+control over locality of a process. If a task is moved to a new cpuset
+then also all its pages are moved with it so that the performance of the
+process does not sink dramatically (as is the case today).
+
+Page migration allows the preservation of the relative location of pages
+within a group of nodes for all migration techniques which will preserve a
+particular memory allocation pattern generated even after migrating a
+process. This is necessary in order to preserve the memory latencies.
+Processes will run with similar performance after migration.
+
+Page migration occurs in several steps. First a high level
+description for those trying to use migrate_pages() and then
+a low level description of how the low level details work.
+
+A. Use of migrate_pages()
+-------------------------
+
+1. Remove pages from the LRU.
+
+ Lists of pages to be migrated are generated by scanning over
+ pages and moving them into lists. This is done by
+ calling isolate_lru_page() or __isolate_lru_page().
+ Calling isolate_lru_page increases the references to the page
+ so that it cannot vanish under us.
+
+2. Generate a list of newly allocates page to move the contents
+ of the first list to.
+
+3. The migrate_pages() function is called which attempts
+ to do the migration. It returns the moved pages in the
+ list specified as the third parameter and the failed
+ migrations in the fourth parameter. The first parameter
+ will contain the pages that could still be retried.
+
+4. The leftover pages of various types are returned
+ to the LRU using putback_to_lru_pages() or otherwise
+ disposed of. The pages will still have the refcount as
+ increased by isolate_lru_pages()!
+
+B. Operation of migrate_pages()
+--------------------------------
+
+migrate_pages does several passes over its list of pages. A page is moved
+if all references to a page are removable at the time.
+
+Steps:
+
+1. Lock the page to be migrated
+
+2. Insure that writeback is complete.
+
+3. Make sure that the page has assigned swap cache entry if
+ it is an anonyous page. The swap cache reference is necessary
+ to preserve the information contain in the page table maps.
+
+4. Prep the new page that we want to move to. It is locked
+ and set to not being uptodate so that all accesses to the new
+ page immediately lock while we are moving references.
+
+5. All the page table references to the page are either dropped (file backed)
+ or converted to swap references (anonymous pages). This should decrease the
+ reference count.
+
+6. The radix tree lock is taken
+
+7. The refcount of the page is examined and we back out if references remain
+ otherwise we know that we are the only one referencing this page.
+
+8. The radix tree is checked and if it does not contain the pointer to this
+ page then we back out.
+
+9. The mapping is checked. If the mapping is gone then a truncate action may
+ be in progress and we back out.
+
+10. The new page is prepped with some settings from the old page so that accesses
+ to the new page will be discovered to have the correct settings.
+
+11. The radix tree is changed to point to the new page.
+
+12. The reference count of the old page is dropped because the reference has now
+ been removed.
+
+13. The radix tree lock is dropped.
+
+14. The page contents are copied to the new page.
+
+15. The remaining page flags are copied to the new page.
+
+16. The old page flags are cleared to indicate that the page does
+ not use any information anymore.
+
+17. Queued up writeback on the new page is triggered.
+
+18. If swap pte's were generated for the page then remove them again.
+
+19. The locks are dropped from the old and new page.
+
+20. The new page is moved to the LRU.
+
+Christoph Lameter, December 19, 2005.
+