summaryrefslogtreecommitdiff
path: root/Documentation
diff options
context:
space:
mode:
Diffstat (limited to 'Documentation')
-rw-r--r--Documentation/ABI/stable/sysfs-bus-vmbus29
-rw-r--r--Documentation/ABI/testing/configfs-usb-gadget-loopback2
-rw-r--r--Documentation/ABI/testing/configfs-usb-gadget-sourcesink2
-rw-r--r--Documentation/ABI/testing/sysfs-bus-coresight-devices-etm3x2
-rw-r--r--Documentation/ABI/testing/sysfs-bus-coresight-devices-etm4x2
-rw-r--r--Documentation/ABI/testing/sysfs-bus-iio24
-rw-r--r--Documentation/ABI/testing/sysfs-bus-iio-trigger-sysfs9
-rw-r--r--Documentation/ABI/testing/sysfs-bus-usb14
-rw-r--r--Documentation/ABI/testing/sysfs-class-power-twl403045
-rw-r--r--Documentation/ABI/testing/sysfs-driver-sunxi-sid22
-rw-r--r--Documentation/CodingStyle2
-rw-r--r--Documentation/DocBook/Makefile55
-rw-r--r--Documentation/DocBook/device-drivers.tmpl1
-rw-r--r--Documentation/DocBook/drm.tmpl2
-rw-r--r--Documentation/DocBook/iio.tmpl697
-rw-r--r--Documentation/DocBook/stylesheet.xsl1
-rw-r--r--Documentation/HOWTO28
-rw-r--r--Documentation/Intel-IOMMU.txt2
-rw-r--r--Documentation/SubmittingPatches12
-rw-r--r--Documentation/adding-syscalls.txt527
-rw-r--r--Documentation/arm/SPEAr/overview.txt2
-rw-r--r--Documentation/arm/Samsung/Bootloader-interface.txt15
-rw-r--r--Documentation/arm/keystone/Overview.txt73
-rw-r--r--Documentation/device-mapper/cache.txt6
-rw-r--r--Documentation/device-mapper/thin-provisioning.txt9
-rw-r--r--Documentation/devicetree/bindings/arm/atmel-at91.txt2
-rw-r--r--Documentation/devicetree/bindings/arm/coresight.txt1
-rw-r--r--Documentation/devicetree/bindings/arm/cpus.txt1
-rw-r--r--Documentation/devicetree/bindings/dma/apm-xgene-dma.txt2
-rw-r--r--Documentation/devicetree/bindings/drm/imx/fsl-imx-drm.txt26
-rw-r--r--Documentation/devicetree/bindings/extcon/extcon-palmas.txt5
-rw-r--r--Documentation/devicetree/bindings/hwmon/lm70.txt21
-rw-r--r--Documentation/devicetree/bindings/hwmon/ltc2978.txt12
-rw-r--r--Documentation/devicetree/bindings/iio/adc/mcp320x.txt1
-rw-r--r--Documentation/devicetree/bindings/iio/adc/vf610-adc.txt5
-rw-r--r--Documentation/devicetree/bindings/iio/magnetometer/mmc35240.txt13
-rw-r--r--Documentation/devicetree/bindings/iio/st-sensors.txt2
-rw-r--r--Documentation/devicetree/bindings/iommu/arm,smmu-v3.txt3
-rw-r--r--Documentation/devicetree/bindings/leds/common.txt27
-rw-r--r--Documentation/devicetree/bindings/leds/leds-ns2.txt9
-rw-r--r--Documentation/devicetree/bindings/mfd/rk808.txt8
-rw-r--r--Documentation/devicetree/bindings/mmc/fsl-imx-esdhc.txt2
-rw-r--r--Documentation/devicetree/bindings/nvmem/allwinner,sunxi-sid.txt (renamed from Documentation/devicetree/bindings/misc/allwinner,sunxi-sid.txt)4
-rw-r--r--Documentation/devicetree/bindings/nvmem/nvmem.txt80
-rw-r--r--Documentation/devicetree/bindings/nvmem/qfprom.txt35
-rw-r--r--Documentation/devicetree/bindings/phy/phy-lpc18xx-usb-otg.txt26
-rw-r--r--Documentation/devicetree/bindings/phy/sun4i-usb-phy.txt22
-rw-r--r--Documentation/devicetree/bindings/phy/ti-phy.txt16
-rw-r--r--Documentation/devicetree/bindings/power/qcom,coincell-charger.txt48
-rw-r--r--Documentation/devicetree/bindings/powerpc/fsl/mpc5121-psc.txt24
-rw-r--r--Documentation/devicetree/bindings/regulator/da9210.txt4
-rw-r--r--Documentation/devicetree/bindings/regulator/da9211.txt32
-rw-r--r--Documentation/devicetree/bindings/regulator/max8973-regulator.txt6
-rw-r--r--Documentation/devicetree/bindings/regulator/mt6311-regulator.txt35
-rw-r--r--Documentation/devicetree/bindings/regulator/pwm-regulator.txt65
-rw-r--r--Documentation/devicetree/bindings/regulator/qcom,spmi-regulator.txt60
-rw-r--r--Documentation/devicetree/bindings/regulator/regulator.txt1
-rw-r--r--Documentation/devicetree/bindings/serial/atmel-usart.txt3
-rw-r--r--Documentation/devicetree/bindings/serial/axis,etraxfs-uart.txt6
-rw-r--r--Documentation/devicetree/bindings/serial/omap_serial.txt3
-rw-r--r--Documentation/devicetree/bindings/sound/mt8173-max98090.txt2
-rw-r--r--Documentation/devicetree/bindings/sound/mt8173-rt5650-rt5676.txt2
-rw-r--r--Documentation/devicetree/bindings/spi/snps,dw-apb-ssi.txt2
-rw-r--r--Documentation/devicetree/bindings/spi/spi-ath79.txt6
-rw-r--r--Documentation/devicetree/bindings/spi/spi-davinci.txt2
-rw-r--r--Documentation/devicetree/bindings/spi/spi-img-spfi.txt1
-rw-r--r--Documentation/devicetree/bindings/spi/spi-mt65xx.txt51
-rw-r--r--Documentation/devicetree/bindings/spi/spi-xlp.txt39
-rw-r--r--Documentation/devicetree/bindings/staging/iio/adc/mxs-lradc.txt2
-rw-r--r--Documentation/devicetree/bindings/usb/allwinner,sun4i-a10-musb.txt29
-rw-r--r--Documentation/devicetree/bindings/usb/ci-hdrc-usb2.txt20
-rw-r--r--Documentation/devicetree/bindings/usb/generic.txt15
-rw-r--r--Documentation/devicetree/bindings/usb/msm-hsusb.txt4
-rw-r--r--Documentation/devicetree/bindings/usb/qcom,usb-8x16-phy.txt76
-rw-r--r--Documentation/email-clients.txt2
-rw-r--r--Documentation/fb/sm712fb.txt31
-rw-r--r--Documentation/filesystems/btrfs.txt16
-rw-r--r--Documentation/filesystems/debugfs.txt40
-rw-r--r--Documentation/filesystems/sysfs.txt5
-rw-r--r--Documentation/hwmon/adm127540
-rw-r--r--Documentation/hwmon/fam15h_power10
-rw-r--r--Documentation/hwmon/it8735
-rw-r--r--Documentation/hwmon/ltc2978132
-rw-r--r--Documentation/hwmon/max2075177
-rw-r--r--Documentation/hwmon/nct78023
-rw-r--r--Documentation/hwmon/nct79044
-rw-r--r--Documentation/hwmon/pmbus8
-rw-r--r--Documentation/input/alps.txt6
-rw-r--r--Documentation/ioctl/ioctl-number.txt2
-rw-r--r--Documentation/kbuild/makefiles.txt8
-rw-r--r--Documentation/kernel-doc-nano-HOWTO.txt2
-rw-r--r--Documentation/kernel-parameters.txt2
-rw-r--r--Documentation/mailbox.txt6
-rw-r--r--Documentation/men-chameleon-bus.txt163
-rw-r--r--Documentation/misc-devices/mei/mei.txt45
-rw-r--r--Documentation/networking/can.txt4
-rw-r--r--Documentation/nvmem/nvmem.txt152
-rw-r--r--Documentation/power/suspend-and-cpuhotplug.txt6
-rw-r--r--Documentation/powerpc/cxl.txt2
-rw-r--r--Documentation/powerpc/dscr.txt6
-rw-r--r--Documentation/powerpc/qe_firmware.txt2
-rw-r--r--Documentation/pps/pps.txt2
-rw-r--r--Documentation/s390/00-INDEX2
-rw-r--r--Documentation/s390/kvm.txt125
-rw-r--r--Documentation/sysctl/vm.txt10
-rwxr-xr-xDocumentation/target/tcm_mod_builder.py21
-rw-r--r--Documentation/trace/coresight.txt4
-rw-r--r--Documentation/usb/gadget-testing.txt7
-rw-r--r--Documentation/usb/power-management.txt15
-rw-r--r--Documentation/virtual/kvm/api.txt5
-rw-r--r--Documentation/x86/kernel-stacks2
111 files changed, 3053 insertions, 393 deletions
diff --git a/Documentation/ABI/stable/sysfs-bus-vmbus b/Documentation/ABI/stable/sysfs-bus-vmbus
new file mode 100644
index 000000000000..636e938d5e33
--- /dev/null
+++ b/Documentation/ABI/stable/sysfs-bus-vmbus
@@ -0,0 +1,29 @@
+What: /sys/bus/vmbus/devices/vmbus_*/id
+Date: Jul 2009
+KernelVersion: 2.6.31
+Contact: K. Y. Srinivasan <kys@microsoft.com>
+Description: The VMBus child_relid of the device's primary channel
+Users: tools/hv/lsvmbus
+
+What: /sys/bus/vmbus/devices/vmbus_*/class_id
+Date: Jul 2009
+KernelVersion: 2.6.31
+Contact: K. Y. Srinivasan <kys@microsoft.com>
+Description: The VMBus interface type GUID of the device
+Users: tools/hv/lsvmbus
+
+What: /sys/bus/vmbus/devices/vmbus_*/device_id
+Date: Jul 2009
+KernelVersion: 2.6.31
+Contact: K. Y. Srinivasan <kys@microsoft.com>
+Description: The VMBus interface instance GUID of the device
+Users: tools/hv/lsvmbus
+
+What: /sys/bus/vmbus/devices/vmbus_*/channel_vp_mapping
+Date: Jul 2015
+KernelVersion: 4.2.0
+Contact: K. Y. Srinivasan <kys@microsoft.com>
+Description: The mapping of which primary/sub channels are bound to which
+ Virtual Processors.
+ Format: <channel's child_relid:the bound cpu's number>
+Users: tools/hv/lsvmbus
diff --git a/Documentation/ABI/testing/configfs-usb-gadget-loopback b/Documentation/ABI/testing/configfs-usb-gadget-loopback
index 9aae5bfb9908..06beefbcf061 100644
--- a/Documentation/ABI/testing/configfs-usb-gadget-loopback
+++ b/Documentation/ABI/testing/configfs-usb-gadget-loopback
@@ -5,4 +5,4 @@ Description:
The attributes:
qlen - depth of loopback queue
- bulk_buflen - buffer length
+ buflen - buffer length
diff --git a/Documentation/ABI/testing/configfs-usb-gadget-sourcesink b/Documentation/ABI/testing/configfs-usb-gadget-sourcesink
index 29477c319f61..bc7ff731aa0c 100644
--- a/Documentation/ABI/testing/configfs-usb-gadget-sourcesink
+++ b/Documentation/ABI/testing/configfs-usb-gadget-sourcesink
@@ -9,4 +9,4 @@ Description:
isoc_maxpacket - 0 - 1023 (fs), 0 - 1024 (hs/ss)
isoc_mult - 0..2 (hs/ss only)
isoc_maxburst - 0..15 (ss only)
- qlen - buffer length
+ buflen - buffer length
diff --git a/Documentation/ABI/testing/sysfs-bus-coresight-devices-etm3x b/Documentation/ABI/testing/sysfs-bus-coresight-devices-etm3x
index b4d0b99afffb..d72ca1736ba4 100644
--- a/Documentation/ABI/testing/sysfs-bus-coresight-devices-etm3x
+++ b/Documentation/ABI/testing/sysfs-bus-coresight-devices-etm3x
@@ -112,7 +112,7 @@ KernelVersion: 3.19
Contact: Mathieu Poirier <mathieu.poirier@linaro.org>
Description: (RW) Mask to apply to all the context ID comparator.
-What: /sys/bus/coresight/devices/<memory_map>.[etm|ptm]/ctxid_val
+What: /sys/bus/coresight/devices/<memory_map>.[etm|ptm]/ctxid_pid
Date: November 2014
KernelVersion: 3.19
Contact: Mathieu Poirier <mathieu.poirier@linaro.org>
diff --git a/Documentation/ABI/testing/sysfs-bus-coresight-devices-etm4x b/Documentation/ABI/testing/sysfs-bus-coresight-devices-etm4x
index 2fe2e3dae487..2355ed8ae31f 100644
--- a/Documentation/ABI/testing/sysfs-bus-coresight-devices-etm4x
+++ b/Documentation/ABI/testing/sysfs-bus-coresight-devices-etm4x
@@ -249,7 +249,7 @@ KernelVersion: 4.01
Contact: Mathieu Poirier <mathieu.poirier@linaro.org>
Description: (RW) Select which context ID comparator to work with.
-What: /sys/bus/coresight/devices/<memory_map>.etm/ctxid_val
+What: /sys/bus/coresight/devices/<memory_map>.etm/ctxid_pid
Date: April 2015
KernelVersion: 4.01
Contact: Mathieu Poirier <mathieu.poirier@linaro.org>
diff --git a/Documentation/ABI/testing/sysfs-bus-iio b/Documentation/ABI/testing/sysfs-bus-iio
index bbed111c31b4..42d360fe66a5 100644
--- a/Documentation/ABI/testing/sysfs-bus-iio
+++ b/Documentation/ABI/testing/sysfs-bus-iio
@@ -413,6 +413,11 @@ Description:
to compute the calories burnt by the user.
What: /sys/bus/iio/devices/iio:deviceX/in_accel_scale_available
+What: /sys/.../iio:deviceX/in_anglvel_scale_available
+What: /sys/.../iio:deviceX/in_magn_scale_available
+What: /sys/.../iio:deviceX/in_illuminance_scale_available
+What: /sys/.../iio:deviceX/in_intensity_scale_available
+What: /sys/.../iio:deviceX/in_proximity_scale_available
What: /sys/.../iio:deviceX/in_voltageX_scale_available
What: /sys/.../iio:deviceX/in_voltage-voltage_scale_available
What: /sys/.../iio:deviceX/out_voltageX_scale_available
@@ -488,7 +493,7 @@ Contact: linux-iio@vger.kernel.org
Description:
Specifies the output powerdown mode.
DAC output stage is disconnected from the amplifier and
- 1kohm_to_gnd: connected to ground via an 1kOhm resistor,
+ 1kohm_to_gnd: connected to ground via an 1kOhm resistor,
6kohm_to_gnd: connected to ground via a 6kOhm resistor,
20kohm_to_gnd: connected to ground via a 20kOhm resistor,
100kohm_to_gnd: connected to ground via an 100kOhm resistor,
@@ -498,9 +503,9 @@ Description:
outX_powerdown_mode_available. If Y is not present the
mode is shared across all outputs.
-What: /sys/.../iio:deviceX/out_votlageY_powerdown_mode_available
+What: /sys/.../iio:deviceX/out_voltageY_powerdown_mode_available
What: /sys/.../iio:deviceX/out_voltage_powerdown_mode_available
-What: /sys/.../iio:deviceX/out_altvotlageY_powerdown_mode_available
+What: /sys/.../iio:deviceX/out_altvoltageY_powerdown_mode_available
What: /sys/.../iio:deviceX/out_altvoltage_powerdown_mode_available
KernelVersion: 2.6.38
Contact: linux-iio@vger.kernel.org
@@ -1035,13 +1040,6 @@ Contact: linux-iio@vger.kernel.org
Description:
Number of scans contained by the buffer.
-What: /sys/bus/iio/devices/iio:deviceX/buffer/bytes_per_datum
-KernelVersion: 2.6.37
-Contact: linux-iio@vger.kernel.org
-Description:
- Bytes per scan. Due to alignment fun, the scan may be larger
- than implied directly by the scan_element parameters.
-
What: /sys/bus/iio/devices/iio:deviceX/buffer/enable
KernelVersion: 2.6.35
Contact: linux-iio@vger.kernel.org
@@ -1234,10 +1232,8 @@ Description:
object is near the sensor, usually be observing
reflectivity of infrared or ultrasound emitted.
Often these sensors are unit less and as such conversion
- to SI units is not possible. Where it is, the units should
- be meters. If such a conversion is not possible, the reported
- values should behave in the same way as a distance, i.e. lower
- values indicate something is closer to the sensor.
+ to SI units is not possible. Higher proximity measurements
+ indicate closer objects, and vice versa.
What: /sys/.../iio:deviceX/in_illuminance_input
What: /sys/.../iio:deviceX/in_illuminance_raw
diff --git a/Documentation/ABI/testing/sysfs-bus-iio-trigger-sysfs b/Documentation/ABI/testing/sysfs-bus-iio-trigger-sysfs
index 5235e6c749ab..bbb039237a25 100644
--- a/Documentation/ABI/testing/sysfs-bus-iio-trigger-sysfs
+++ b/Documentation/ABI/testing/sysfs-bus-iio-trigger-sysfs
@@ -9,3 +9,12 @@ Description:
automated testing or in situations, where other trigger methods
are not applicable. For example no RTC or spare GPIOs.
X is the IIO index of the trigger.
+
+What: /sys/bus/iio/devices/triggerX/name
+KernelVersion: 2.6.39
+Contact: linux-iio@vger.kernel.org
+Description:
+ The name attribute holds a description string for the current
+ trigger. In order to associate the trigger with an IIO device
+ one should write this name string to
+ /sys/bus/iio/devices/iio:deviceY/trigger/current_trigger.
diff --git a/Documentation/ABI/testing/sysfs-bus-usb b/Documentation/ABI/testing/sysfs-bus-usb
index e5cc7633d013..864637f25bee 100644
--- a/Documentation/ABI/testing/sysfs-bus-usb
+++ b/Documentation/ABI/testing/sysfs-bus-usb
@@ -114,6 +114,20 @@ Description:
enabled for the device. Developer can write y/Y/1 or n/N/0 to
the file to enable/disable the feature.
+What: /sys/bus/usb/devices/.../power/usb3_hardware_lpm
+Date: June 2015
+Contact: Kevin Strasser <kevin.strasser@linux.intel.com>
+Description:
+ If CONFIG_PM is set and a USB 3.0 lpm-capable device is plugged
+ in to a xHCI host which supports link PM, it will check if U1
+ and U2 exit latencies have been set in the BOS descriptor; if
+ the check is is passed and the host supports USB3 hardware LPM,
+ USB3 hardware LPM will be enabled for the device and the USB
+ device directory will contain a file named
+ power/usb3_hardware_lpm. The file holds a string value (enable
+ or disable) indicating whether or not USB3 hardware LPM is
+ enabled for the device.
+
What: /sys/bus/usb/devices/.../removable
Date: February 2012
Contact: Matthew Garrett <mjg@redhat.com>
diff --git a/Documentation/ABI/testing/sysfs-class-power-twl4030 b/Documentation/ABI/testing/sysfs-class-power-twl4030
new file mode 100644
index 000000000000..be26af0f1895
--- /dev/null
+++ b/Documentation/ABI/testing/sysfs-class-power-twl4030
@@ -0,0 +1,45 @@
+What: /sys/class/power_supply/twl4030_ac/max_current
+ /sys/class/power_supply/twl4030_usb/max_current
+Description:
+ Read/Write limit on current which may
+ be drawn from the ac (Accessory Charger) or
+ USB port.
+
+ Value is in micro-Amps.
+
+ Value is set automatically to an appropriate
+ value when a cable is plugged or unplugged.
+
+ Value can the set by writing to the attribute.
+ The change will only persist until the next
+ plug event. These event are reported via udev.
+
+
+What: /sys/class/power_supply/twl4030_usb/mode
+Description:
+ Changing mode for USB port.
+ Writing to this can disable charging.
+
+ Possible values are:
+ "auto" - draw power as appropriate for detected
+ power source and battery status.
+ "off" - do not draw any power.
+ "continuous"
+ - activate mode described as "linear" in
+ TWL data sheets. This uses whatever
+ current is available and doesn't switch off
+ when voltage drops.
+
+ This is useful for unstable power sources
+ such as bicycle dynamo, but care should
+ be taken that battery is not over-charged.
+
+What: /sys/class/power_supply/twl4030_ac/mode
+Description:
+ Changing mode for 'ac' port.
+ Writing to this can disable charging.
+
+ Possible values are:
+ "auto" - draw power as appropriate for detected
+ power source and battery status.
+ "off" - do not draw any power.
diff --git a/Documentation/ABI/testing/sysfs-driver-sunxi-sid b/Documentation/ABI/testing/sysfs-driver-sunxi-sid
deleted file mode 100644
index ffb9536f6ecc..000000000000
--- a/Documentation/ABI/testing/sysfs-driver-sunxi-sid
+++ /dev/null
@@ -1,22 +0,0 @@
-What: /sys/devices/*/<our-device>/eeprom
-Date: August 2013
-Contact: Oliver Schinagl <oliver@schinagl.nl>
-Description: read-only access to the SID (Security-ID) on current
- A-series SoC's from Allwinner. Currently supports A10, A10s, A13
- and A20 CPU's. The earlier A1x series of SoCs exports 16 bytes,
- whereas the newer A20 SoC exposes 512 bytes split into sections.
- Besides the 16 bytes of SID, there's also an SJTAG area,
- HDMI-HDCP key and some custom keys. Below a quick overview, for
- details see the user manual:
- 0x000 128 bit root-key (sun[457]i)
- 0x010 128 bit boot-key (sun7i)
- 0x020 64 bit security-jtag-key (sun7i)
- 0x028 16 bit key configuration (sun7i)
- 0x02b 16 bit custom-vendor-key (sun7i)
- 0x02c 320 bit low general key (sun7i)
- 0x040 32 bit read-control access (sun7i)
- 0x064 224 bit low general key (sun7i)
- 0x080 2304 bit HDCP-key (sun7i)
- 0x1a0 768 bit high general key (sun7i)
-Users: any user space application which wants to read the SID on
- Allwinner's A-series of CPU's.
diff --git a/Documentation/CodingStyle b/Documentation/CodingStyle
index b713c35f8543..c06f817b3091 100644
--- a/Documentation/CodingStyle
+++ b/Documentation/CodingStyle
@@ -929,13 +929,11 @@ The C Programming Language, Second Edition
by Brian W. Kernighan and Dennis M. Ritchie.
Prentice Hall, Inc., 1988.
ISBN 0-13-110362-8 (paperback), 0-13-110370-9 (hardback).
-URL: http://cm.bell-labs.com/cm/cs/cbook/
The Practice of Programming
by Brian W. Kernighan and Rob Pike.
Addison-Wesley, Inc., 1999.
ISBN 0-201-61586-X.
-URL: http://cm.bell-labs.com/cm/cs/tpop/
GNU manuals - where in compliance with K&R and this text - for cpp, gcc,
gcc internals and indent, all available from http://www.gnu.org/manual/
diff --git a/Documentation/DocBook/Makefile b/Documentation/DocBook/Makefile
index b6a6a2e0dd3b..93eff64387cd 100644
--- a/Documentation/DocBook/Makefile
+++ b/Documentation/DocBook/Makefile
@@ -15,7 +15,7 @@ DOCBOOKS := z8530book.xml device-drivers.xml \
80211.xml debugobjects.xml sh.xml regulator.xml \
alsa-driver-api.xml writing-an-alsa-driver.xml \
tracepoint.xml drm.xml media_api.xml w1.xml \
- writing_musb_glue_layer.xml crypto-API.xml
+ writing_musb_glue_layer.xml crypto-API.xml iio.xml
include Documentation/DocBook/media/Makefile
@@ -56,16 +56,19 @@ htmldocs: $(HTML)
MAN := $(patsubst %.xml, %.9, $(BOOKS))
mandocs: $(MAN)
- find $(obj)/man -name '*.9' | xargs gzip -f
+ find $(obj)/man -name '*.9' | xargs gzip -nf
installmandocs: mandocs
mkdir -p /usr/local/man/man9/
- install $(obj)/man/*.9.gz /usr/local/man/man9/
+ find $(obj)/man -name '*.9.gz' -printf '%h %f\n' | \
+ sort -k 2 -k 1 | uniq -f 1 | sed -e 's: :/:' | \
+ xargs install -m 644 -t /usr/local/man/man9/
###
#External programs used
-KERNELDOC = $(srctree)/scripts/kernel-doc
-DOCPROC = $(objtree)/scripts/docproc
+KERNELDOCXMLREF = $(srctree)/scripts/kernel-doc-xml-ref
+KERNELDOC = $(srctree)/scripts/kernel-doc
+DOCPROC = $(objtree)/scripts/docproc
XMLTOFLAGS = -m $(srctree)/$(src)/stylesheet.xsl
XMLTOFLAGS += --skip-validation
@@ -89,7 +92,7 @@ define rule_docproc
) > $(dir $@).$(notdir $@).cmd
endef
-%.xml: %.tmpl $(KERNELDOC) $(DOCPROC) FORCE
+%.xml: %.tmpl $(KERNELDOC) $(DOCPROC) $(KERNELDOCXMLREF) FORCE
$(call if_changed_rule,docproc)
# Tell kbuild to always build the programs
@@ -140,7 +143,20 @@ quiet_cmd_db2html = HTML $@
echo '<a HREF="$(patsubst %.html,%,$(notdir $@))/index.html"> \
$(patsubst %.html,%,$(notdir $@))</a><p>' > $@
-%.html: %.xml
+###
+# Rules to create an aux XML and .db, and use them to re-process the DocBook XML
+# to fill internal hyperlinks
+ gen_aux_xml = :
+ quiet_gen_aux_xml = echo ' XMLREF $@'
+silent_gen_aux_xml = :
+%.aux.xml: %.xml
+ @$($(quiet)gen_aux_xml)
+ @rm -rf $@
+ @(cat $< | egrep "^<refentry id" | egrep -o "\".*\"" | cut -f 2 -d \" > $<.db)
+ @$(KERNELDOCXMLREF) -db $<.db $< > $@
+.PRECIOUS: %.aux.xml
+
+%.html: %.aux.xml
@(which xmlto > /dev/null 2>&1) || \
(echo "*** You need to install xmlto ***"; \
exit 1)
@@ -150,12 +166,12 @@ quiet_cmd_db2html = HTML $@
cp $(PNG-$(basename $(notdir $@))) $(patsubst %.html,%,$@); fi
quiet_cmd_db2man = MAN $@
- cmd_db2man = if grep -q refentry $<; then xmlto man $(XMLTOFLAGS) -o $(obj)/man $< ; fi
+ cmd_db2man = if grep -q refentry $<; then xmlto man $(XMLTOFLAGS) -o $(obj)/man/$(*F) $< ; fi
%.9 : %.xml
@(which xmlto > /dev/null 2>&1) || \
(echo "*** You need to install xmlto ***"; \
exit 1)
- $(Q)mkdir -p $(obj)/man
+ $(Q)mkdir -p $(obj)/man/$(*F)
$(call cmd,db2man)
@touch $@
@@ -209,15 +225,18 @@ dochelp:
###
# Temporary files left by various tools
clean-files := $(DOCBOOKS) \
- $(patsubst %.xml, %.dvi, $(DOCBOOKS)) \
- $(patsubst %.xml, %.aux, $(DOCBOOKS)) \
- $(patsubst %.xml, %.tex, $(DOCBOOKS)) \
- $(patsubst %.xml, %.log, $(DOCBOOKS)) \
- $(patsubst %.xml, %.out, $(DOCBOOKS)) \
- $(patsubst %.xml, %.ps, $(DOCBOOKS)) \
- $(patsubst %.xml, %.pdf, $(DOCBOOKS)) \
- $(patsubst %.xml, %.html, $(DOCBOOKS)) \
- $(patsubst %.xml, %.9, $(DOCBOOKS)) \
+ $(patsubst %.xml, %.dvi, $(DOCBOOKS)) \
+ $(patsubst %.xml, %.aux, $(DOCBOOKS)) \
+ $(patsubst %.xml, %.tex, $(DOCBOOKS)) \
+ $(patsubst %.xml, %.log, $(DOCBOOKS)) \
+ $(patsubst %.xml, %.out, $(DOCBOOKS)) \
+ $(patsubst %.xml, %.ps, $(DOCBOOKS)) \
+ $(patsubst %.xml, %.pdf, $(DOCBOOKS)) \
+ $(patsubst %.xml, %.html, $(DOCBOOKS)) \
+ $(patsubst %.xml, %.9, $(DOCBOOKS)) \
+ $(patsubst %.xml, %.aux.xml, $(DOCBOOKS)) \
+ $(patsubst %.xml, %.xml.db, $(DOCBOOKS)) \
+ $(patsubst %.xml, %.xml, $(DOCBOOKS)) \
$(index)
clean-dirs := $(patsubst %.xml,%,$(DOCBOOKS)) man
diff --git a/Documentation/DocBook/device-drivers.tmpl b/Documentation/DocBook/device-drivers.tmpl
index faf09d4a0ea8..bbc1d7ee9c76 100644
--- a/Documentation/DocBook/device-drivers.tmpl
+++ b/Documentation/DocBook/device-drivers.tmpl
@@ -66,6 +66,7 @@
!Ekernel/time/hrtimer.c
</sect1>
<sect1><title>Workqueues and Kevents</title>
+!Iinclude/linux/workqueue.h
!Ekernel/workqueue.c
</sect1>
<sect1><title>Internal Functions</title>
diff --git a/Documentation/DocBook/drm.tmpl b/Documentation/DocBook/drm.tmpl
index c0312cbd023d..2fb9a5457522 100644
--- a/Documentation/DocBook/drm.tmpl
+++ b/Documentation/DocBook/drm.tmpl
@@ -3383,7 +3383,7 @@ void intel_crt_init(struct drm_device *dev)
<td valign="top" >TBD</td>
</tr>
<tr>
- <td rowspan="2" valign="top" >omap</td>
+ <td valign="top" >omap</td>
<td valign="top" >Generic</td>
<td valign="top" >“zorder”</td>
<td valign="top" >RANGE</td>
diff --git a/Documentation/DocBook/iio.tmpl b/Documentation/DocBook/iio.tmpl
new file mode 100644
index 000000000000..06bb53de5a47
--- /dev/null
+++ b/Documentation/DocBook/iio.tmpl
@@ -0,0 +1,697 @@
+<?xml version="1.0" encoding="UTF-8"?>
+<!DOCTYPE book PUBLIC "-//OASIS//DTD DocBook XML V4.1.2//EN"
+ "http://www.oasis-open.org/docbook/xml/4.1.2/docbookx.dtd" []>
+
+<book id="iioid">
+ <bookinfo>
+ <title>Industrial I/O driver developer's guide </title>
+
+ <authorgroup>
+ <author>
+ <firstname>Daniel</firstname>
+ <surname>Baluta</surname>
+ <affiliation>
+ <address>
+ <email>daniel.baluta@intel.com</email>
+ </address>
+ </affiliation>
+ </author>
+ </authorgroup>
+
+ <copyright>
+ <year>2015</year>
+ <holder>Intel Corporation</holder>
+ </copyright>
+
+ <legalnotice>
+ <para>
+ This documentation is free software; you can redistribute
+ it and/or modify it under the terms of the GNU General Public
+ License version 2.
+ </para>
+ </legalnotice>
+ </bookinfo>
+
+ <toc></toc>
+
+ <chapter id="intro">
+ <title>Introduction</title>
+ <para>
+ The main purpose of the Industrial I/O subsystem (IIO) is to provide
+ support for devices that in some sense perform either analog-to-digital
+ conversion (ADC) or digital-to-analog conversion (DAC) or both. The aim
+ is to fill the gap between the somewhat similar hwmon and input
+ subsystems.
+ Hwmon is directed at low sample rate sensors used to monitor and
+ control the system itself, like fan speed control or temperature
+ measurement. Input is, as its name suggests, focused on human interaction
+ input devices (keyboard, mouse, touchscreen). In some cases there is
+ considerable overlap between these and IIO.
+ </para>
+ <para>
+ Devices that fall into this category include:
+ <itemizedlist>
+ <listitem>
+ analog to digital converters (ADCs)
+ </listitem>
+ <listitem>
+ accelerometers
+ </listitem>
+ <listitem>
+ capacitance to digital converters (CDCs)
+ </listitem>
+ <listitem>
+ digital to analog converters (DACs)
+ </listitem>
+ <listitem>
+ gyroscopes
+ </listitem>
+ <listitem>
+ inertial measurement units (IMUs)
+ </listitem>
+ <listitem>
+ color and light sensors
+ </listitem>
+ <listitem>
+ magnetometers
+ </listitem>
+ <listitem>
+ pressure sensors
+ </listitem>
+ <listitem>
+ proximity sensors
+ </listitem>
+ <listitem>
+ temperature sensors
+ </listitem>
+ </itemizedlist>
+ Usually these sensors are connected via SPI or I2C. A common use case of the
+ sensors devices is to have combined functionality (e.g. light plus proximity
+ sensor).
+ </para>
+ </chapter>
+ <chapter id='iiosubsys'>
+ <title>Industrial I/O core</title>
+ <para>
+ The Industrial I/O core offers:
+ <itemizedlist>
+ <listitem>
+ a unified framework for writing drivers for many different types of
+ embedded sensors.
+ </listitem>
+ <listitem>
+ a standard interface to user space applications manipulating sensors.
+ </listitem>
+ </itemizedlist>
+ The implementation can be found under <filename>
+ drivers/iio/industrialio-*</filename>
+ </para>
+ <sect1 id="iiodevice">
+ <title> Industrial I/O devices </title>
+
+!Finclude/linux/iio/iio.h iio_dev
+!Fdrivers/iio/industrialio-core.c iio_device_alloc
+!Fdrivers/iio/industrialio-core.c iio_device_free
+!Fdrivers/iio/industrialio-core.c iio_device_register
+!Fdrivers/iio/industrialio-core.c iio_device_unregister
+
+ <para>
+ An IIO device usually corresponds to a single hardware sensor and it
+ provides all the information needed by a driver handling a device.
+ Let's first have a look at the functionality embedded in an IIO
+ device then we will show how a device driver makes use of an IIO
+ device.
+ </para>
+ <para>
+ There are two ways for a user space application to interact
+ with an IIO driver.
+ <itemizedlist>
+ <listitem>
+ <filename>/sys/bus/iio/iio:deviceX/</filename>, this
+ represents a hardware sensor and groups together the data
+ channels of the same chip.
+ </listitem>
+ <listitem>
+ <filename>/dev/iio:deviceX</filename>, character device node
+ interface used for buffered data transfer and for events information
+ retrieval.
+ </listitem>
+ </itemizedlist>
+ </para>
+ A typical IIO driver will register itself as an I2C or SPI driver and will
+ create two routines, <function> probe </function> and <function> remove
+ </function>. At <function>probe</function>:
+ <itemizedlist>
+ <listitem>call <function>iio_device_alloc</function>, which allocates memory
+ for an IIO device.
+ </listitem>
+ <listitem> initialize IIO device fields with driver specific information
+ (e.g. device name, device channels).
+ </listitem>
+ <listitem>call <function> iio_device_register</function>, this registers the
+ device with the IIO core. After this call the device is ready to accept
+ requests from user space applications.
+ </listitem>
+ </itemizedlist>
+ At <function>remove</function>, we free the resources allocated in
+ <function>probe</function> in reverse order:
+ <itemizedlist>
+ <listitem><function>iio_device_unregister</function>, unregister the device
+ from the IIO core.
+ </listitem>
+ <listitem><function>iio_device_free</function>, free the memory allocated
+ for the IIO device.
+ </listitem>
+ </itemizedlist>
+
+ <sect2 id="iioattr"> <title> IIO device sysfs interface </title>
+ <para>
+ Attributes are sysfs files used to expose chip info and also allowing
+ applications to set various configuration parameters. For device
+ with index X, attributes can be found under
+ <filename>/sys/bus/iio/iio:deviceX/ </filename> directory.
+ Common attributes are:
+ <itemizedlist>
+ <listitem><filename>name</filename>, description of the physical
+ chip.
+ </listitem>
+ <listitem><filename>dev</filename>, shows the major:minor pair
+ associated with <filename>/dev/iio:deviceX</filename> node.
+ </listitem>
+ <listitem><filename>sampling_frequency_available</filename>,
+ available discrete set of sampling frequency values for
+ device.
+ </listitem>
+ </itemizedlist>
+ Available standard attributes for IIO devices are described in the
+ <filename>Documentation/ABI/testing/sysfs-bus-iio </filename> file
+ in the Linux kernel sources.
+ </para>
+ </sect2>
+ <sect2 id="iiochannel"> <title> IIO device channels </title>
+!Finclude/linux/iio/iio.h iio_chan_spec structure.
+ <para>
+ An IIO device channel is a representation of a data channel. An
+ IIO device can have one or multiple channels. For example:
+ <itemizedlist>
+ <listitem>
+ a thermometer sensor has one channel representing the
+ temperature measurement.
+ </listitem>
+ <listitem>
+ a light sensor with two channels indicating the measurements in
+ the visible and infrared spectrum.
+ </listitem>
+ <listitem>
+ an accelerometer can have up to 3 channels representing
+ acceleration on X, Y and Z axes.
+ </listitem>
+ </itemizedlist>
+ An IIO channel is described by the <type> struct iio_chan_spec
+ </type>. A thermometer driver for the temperature sensor in the
+ example above would have to describe its channel as follows:
+ <programlisting>
+ static const struct iio_chan_spec temp_channel[] = {
+ {
+ .type = IIO_TEMP,
+ .info_mask_separate = BIT(IIO_CHAN_INFO_PROCESSED),
+ },
+ };
+
+ </programlisting>
+ Channel sysfs attributes exposed to userspace are specified in
+ the form of <emphasis>bitmasks</emphasis>. Depending on their
+ shared info, attributes can be set in one of the following masks:
+ <itemizedlist>
+ <listitem><emphasis>info_mask_separate</emphasis>, attributes will
+ be specific to this channel</listitem>
+ <listitem><emphasis>info_mask_shared_by_type</emphasis>,
+ attributes are shared by all channels of the same type</listitem>
+ <listitem><emphasis>info_mask_shared_by_dir</emphasis>, attributes
+ are shared by all channels of the same direction </listitem>
+ <listitem><emphasis>info_mask_shared_by_all</emphasis>,
+ attributes are shared by all channels</listitem>
+ </itemizedlist>
+ When there are multiple data channels per channel type we have two
+ ways to distinguish between them:
+ <itemizedlist>
+ <listitem> set <emphasis> .modified</emphasis> field of <type>
+ iio_chan_spec</type> to 1. Modifiers are specified using
+ <emphasis>.channel2</emphasis> field of the same
+ <type>iio_chan_spec</type> structure and are used to indicate a
+ physically unique characteristic of the channel such as its direction
+ or spectral response. For example, a light sensor can have two channels,
+ one for infrared light and one for both infrared and visible light.
+ </listitem>
+ <listitem> set <emphasis>.indexed </emphasis> field of
+ <type>iio_chan_spec</type> to 1. In this case the channel is
+ simply another instance with an index specified by the
+ <emphasis>.channel</emphasis> field.
+ </listitem>
+ </itemizedlist>
+ Here is how we can make use of the channel's modifiers:
+ <programlisting>
+ static const struct iio_chan_spec light_channels[] = {
+ {
+ .type = IIO_INTENSITY,
+ .modified = 1,
+ .channel2 = IIO_MOD_LIGHT_IR,
+ .info_mask_separate = BIT(IIO_CHAN_INFO_RAW),
+ .info_mask_shared = BIT(IIO_CHAN_INFO_SAMP_FREQ),
+ },
+ {
+ .type = IIO_INTENSITY,
+ .modified = 1,
+ .channel2 = IIO_MOD_LIGHT_BOTH,
+ .info_mask_separate = BIT(IIO_CHAN_INFO_RAW),
+ .info_mask_shared = BIT(IIO_CHAN_INFO_SAMP_FREQ),
+ },
+ {
+ .type = IIO_LIGHT,
+ .info_mask_separate = BIT(IIO_CHAN_INFO_PROCESSED),
+ .info_mask_shared = BIT(IIO_CHAN_INFO_SAMP_FREQ),
+ },
+
+ }
+ </programlisting>
+ This channel's definition will generate two separate sysfs files
+ for raw data retrieval:
+ <itemizedlist>
+ <listitem>
+ <filename>/sys/bus/iio/iio:deviceX/in_intensity_ir_raw</filename>
+ </listitem>
+ <listitem>
+ <filename>/sys/bus/iio/iio:deviceX/in_intensity_both_raw</filename>
+ </listitem>
+ </itemizedlist>
+ one file for processed data:
+ <itemizedlist>
+ <listitem>
+ <filename>/sys/bus/iio/iio:deviceX/in_illuminance_input
+ </filename>
+ </listitem>
+ </itemizedlist>
+ and one shared sysfs file for sampling frequency:
+ <itemizedlist>
+ <listitem>
+ <filename>/sys/bus/iio/iio:deviceX/sampling_frequency.
+ </filename>
+ </listitem>
+ </itemizedlist>
+ </para>
+ <para>
+ Here is how we can make use of the channel's indexing:
+ <programlisting>
+ static const struct iio_chan_spec light_channels[] = {
+ {
+ .type = IIO_VOLTAGE,
+ .indexed = 1,
+ .channel = 0,
+ .info_mask_separate = BIT(IIO_CHAN_INFO_RAW),
+ },
+ {
+ .type = IIO_VOLTAGE,
+ .indexed = 1,
+ .channel = 1,
+ .info_mask_separate = BIT(IIO_CHAN_INFO_RAW),
+ },
+ }
+ </programlisting>
+ This will generate two separate attributes files for raw data
+ retrieval:
+ <itemizedlist>
+ <listitem>
+ <filename>/sys/bus/iio/devices/iio:deviceX/in_voltage0_raw</filename>,
+ representing voltage measurement for channel 0.
+ </listitem>
+ <listitem>
+ <filename>/sys/bus/iio/devices/iio:deviceX/in_voltage1_raw</filename>,
+ representing voltage measurement for channel 1.
+ </listitem>
+ </itemizedlist>
+ </para>
+ </sect2>
+ </sect1>
+
+ <sect1 id="iiobuffer"> <title> Industrial I/O buffers </title>
+!Finclude/linux/iio/buffer.h iio_buffer
+!Edrivers/iio/industrialio-buffer.c
+
+ <para>
+ The Industrial I/O core offers a way for continuous data capture
+ based on a trigger source. Multiple data channels can be read at once
+ from <filename>/dev/iio:deviceX</filename> character device node,
+ thus reducing the CPU load.
+ </para>
+
+ <sect2 id="iiobuffersysfs">
+ <title>IIO buffer sysfs interface </title>
+ <para>
+ An IIO buffer has an associated attributes directory under <filename>
+ /sys/bus/iio/iio:deviceX/buffer/</filename>. Here are the existing
+ attributes:
+ <itemizedlist>
+ <listitem>
+ <emphasis>length</emphasis>, the total number of data samples
+ (capacity) that can be stored by the buffer.
+ </listitem>
+ <listitem>
+ <emphasis>enable</emphasis>, activate buffer capture.
+ </listitem>
+ </itemizedlist>
+
+ </para>
+ </sect2>
+ <sect2 id="iiobuffersetup"> <title> IIO buffer setup </title>
+ <para>The meta information associated with a channel reading
+ placed in a buffer is called a <emphasis> scan element </emphasis>.
+ The important bits configuring scan elements are exposed to
+ userspace applications via the <filename>
+ /sys/bus/iio/iio:deviceX/scan_elements/</filename> directory. This
+ file contains attributes of the following form:
+ <itemizedlist>
+ <listitem><emphasis>enable</emphasis>, used for enabling a channel.
+ If and only if its attribute is non zero, then a triggered capture
+ will contain data samples for this channel.
+ </listitem>
+ <listitem><emphasis>type</emphasis>, description of the scan element
+ data storage within the buffer and hence the form in which it is
+ read from user space. Format is <emphasis>
+ [be|le]:[s|u]bits/storagebitsXrepeat[>>shift] </emphasis>.
+ <itemizedlist>
+ <listitem> <emphasis>be</emphasis> or <emphasis>le</emphasis>, specifies
+ big or little endian.
+ </listitem>
+ <listitem>
+ <emphasis>s </emphasis>or <emphasis>u</emphasis>, specifies if
+ signed (2's complement) or unsigned.
+ </listitem>
+ <listitem><emphasis>bits</emphasis>, is the number of valid data
+ bits.
+ </listitem>
+ <listitem><emphasis>storagebits</emphasis>, is the number of bits
+ (after padding) that it occupies in the buffer.
+ </listitem>
+ <listitem>
+ <emphasis>shift</emphasis>, if specified, is the shift that needs
+ to be applied prior to masking out unused bits.
+ </listitem>
+ <listitem>
+ <emphasis>repeat</emphasis>, specifies the number of bits/storagebits
+ repetitions. When the repeat element is 0 or 1, then the repeat
+ value is omitted.
+ </listitem>
+ </itemizedlist>
+ </listitem>
+ </itemizedlist>
+ For example, a driver for a 3-axis accelerometer with 12 bit
+ resolution where data is stored in two 8-bits registers as
+ follows:
+ <programlisting>
+ 7 6 5 4 3 2 1 0
+ +---+---+---+---+---+---+---+---+
+ |D3 |D2 |D1 |D0 | X | X | X | X | (LOW byte, address 0x06)
+ +---+---+---+---+---+---+---+---+
+
+ 7 6 5 4 3 2 1 0
+ +---+---+---+---+---+---+---+---+
+ |D11|D10|D9 |D8 |D7 |D6 |D5 |D4 | (HIGH byte, address 0x07)
+ +---+---+---+---+---+---+---+---+
+ </programlisting>
+
+ will have the following scan element type for each axis:
+ <programlisting>
+ $ cat /sys/bus/iio/devices/iio:device0/scan_elements/in_accel_y_type
+ le:s12/16>>4
+ </programlisting>
+ A user space application will interpret data samples read from the
+ buffer as two byte little endian signed data, that needs a 4 bits
+ right shift before masking out the 12 valid bits of data.
+ </para>
+ <para>
+ For implementing buffer support a driver should initialize the following
+ fields in <type>iio_chan_spec</type> definition:
+ <programlisting>
+ struct iio_chan_spec {
+ /* other members */
+ int scan_index
+ struct {
+ char sign;
+ u8 realbits;
+ u8 storagebits;
+ u8 shift;
+ u8 repeat;
+ enum iio_endian endianness;
+ } scan_type;
+ };
+ </programlisting>
+ The driver implementing the accelerometer described above will
+ have the following channel definition:
+ <programlisting>
+ struct struct iio_chan_spec accel_channels[] = {
+ {
+ .type = IIO_ACCEL,
+ .modified = 1,
+ .channel2 = IIO_MOD_X,
+ /* other stuff here */
+ .scan_index = 0,
+ .scan_type = {
+ .sign = 's',
+ .realbits = 12,
+ .storgebits = 16,
+ .shift = 4,
+ .endianness = IIO_LE,
+ },
+ }
+ /* similar for Y (with channel2 = IIO_MOD_Y, scan_index = 1)
+ * and Z (with channel2 = IIO_MOD_Z, scan_index = 2) axis
+ */
+ }
+ </programlisting>
+ </para>
+ <para>
+ Here <emphasis> scan_index </emphasis> defines the order in which
+ the enabled channels are placed inside the buffer. Channels with a lower
+ scan_index will be placed before channels with a higher index. Each
+ channel needs to have a unique scan_index.
+ </para>
+ <para>
+ Setting scan_index to -1 can be used to indicate that the specific
+ channel does not support buffered capture. In this case no entries will
+ be created for the channel in the scan_elements directory.
+ </para>
+ </sect2>
+ </sect1>
+
+ <sect1 id="iiotrigger"> <title> Industrial I/O triggers </title>
+!Finclude/linux/iio/trigger.h iio_trigger
+!Edrivers/iio/industrialio-trigger.c
+ <para>
+ In many situations it is useful for a driver to be able to
+ capture data based on some external event (trigger) as opposed
+ to periodically polling for data. An IIO trigger can be provided
+ by a device driver that also has an IIO device based on hardware
+ generated events (e.g. data ready or threshold exceeded) or
+ provided by a separate driver from an independent interrupt
+ source (e.g. GPIO line connected to some external system, timer
+ interrupt or user space writing a specific file in sysfs). A
+ trigger may initiate data capture for a number of sensors and
+ also it may be completely unrelated to the sensor itself.
+ </para>
+
+ <sect2 id="iiotrigsysfs"> <title> IIO trigger sysfs interface </title>
+ There are two locations in sysfs related to triggers:
+ <itemizedlist>
+ <listitem><filename>/sys/bus/iio/devices/triggerY</filename>,
+ this file is created once an IIO trigger is registered with
+ the IIO core and corresponds to trigger with index Y. Because
+ triggers can be very different depending on type there are few
+ standard attributes that we can describe here:
+ <itemizedlist>
+ <listitem>
+ <emphasis>name</emphasis>, trigger name that can be later
+ used for association with a device.
+ </listitem>
+ <listitem>
+ <emphasis>sampling_frequency</emphasis>, some timer based
+ triggers use this attribute to specify the frequency for
+ trigger calls.
+ </listitem>
+ </itemizedlist>
+ </listitem>
+ <listitem>
+ <filename>/sys/bus/iio/devices/iio:deviceX/trigger/</filename>, this
+ directory is created once the device supports a triggered
+ buffer. We can associate a trigger with our device by writing
+ the trigger's name in the <filename>current_trigger</filename> file.
+ </listitem>
+ </itemizedlist>
+ </sect2>
+
+ <sect2 id="iiotrigattr"> <title> IIO trigger setup</title>
+
+ <para>
+ Let's see a simple example of how to setup a trigger to be used
+ by a driver.
+
+ <programlisting>
+ struct iio_trigger_ops trigger_ops = {
+ .set_trigger_state = sample_trigger_state,
+ .validate_device = sample_validate_device,
+ }
+
+ struct iio_trigger *trig;
+
+ /* first, allocate memory for our trigger */
+ trig = iio_trigger_alloc(dev, "trig-%s-%d", name, idx);
+
+ /* setup trigger operations field */
+ trig->ops = &amp;trigger_ops;
+
+ /* now register the trigger with the IIO core */
+ iio_trigger_register(trig);
+ </programlisting>
+ </para>
+ </sect2>
+
+ <sect2 id="iiotrigsetup"> <title> IIO trigger ops</title>
+!Finclude/linux/iio/trigger.h iio_trigger_ops
+ <para>
+ Notice that a trigger has a set of operations attached:
+ <itemizedlist>
+ <listitem>
+ <function>set_trigger_state</function>, switch the trigger on/off
+ on demand.
+ </listitem>
+ <listitem>
+ <function>validate_device</function>, function to validate the
+ device when the current trigger gets changed.
+ </listitem>
+ </itemizedlist>
+ </para>
+ </sect2>
+ </sect1>
+ <sect1 id="iiotriggered_buffer">
+ <title> Industrial I/O triggered buffers </title>
+ <para>
+ Now that we know what buffers and triggers are let's see how they
+ work together.
+ </para>
+ <sect2 id="iiotrigbufsetup"> <title> IIO triggered buffer setup</title>
+!Edrivers/iio/industrialio-triggered-buffer.c
+!Finclude/linux/iio/iio.h iio_buffer_setup_ops
+
+
+ <para>
+ A typical triggered buffer setup looks like this:
+ <programlisting>
+ const struct iio_buffer_setup_ops sensor_buffer_setup_ops = {
+ .preenable = sensor_buffer_preenable,
+ .postenable = sensor_buffer_postenable,
+ .postdisable = sensor_buffer_postdisable,
+ .predisable = sensor_buffer_predisable,
+ };
+
+ irqreturn_t sensor_iio_pollfunc(int irq, void *p)
+ {
+ pf->timestamp = iio_get_time_ns();
+ return IRQ_WAKE_THREAD;
+ }
+
+ irqreturn_t sensor_trigger_handler(int irq, void *p)
+ {
+ u16 buf[8];
+ int i = 0;
+
+ /* read data for each active channel */
+ for_each_set_bit(bit, active_scan_mask, masklength)
+ buf[i++] = sensor_get_data(bit)
+
+ iio_push_to_buffers_with_timestamp(indio_dev, buf, timestamp);
+
+ iio_trigger_notify_done(trigger);
+ return IRQ_HANDLED;
+ }
+
+ /* setup triggered buffer, usually in probe function */
+ iio_triggered_buffer_setup(indio_dev, sensor_iio_polfunc,
+ sensor_trigger_handler,
+ sensor_buffer_setup_ops);
+ </programlisting>
+ </para>
+ The important things to notice here are:
+ <itemizedlist>
+ <listitem><function> iio_buffer_setup_ops</function>, the buffer setup
+ functions to be called at predefined points in the buffer configuration
+ sequence (e.g. before enable, after disable). If not specified, the
+ IIO core uses the default <type>iio_triggered_buffer_setup_ops</type>.
+ </listitem>
+ <listitem><function>sensor_iio_pollfunc</function>, the function that
+ will be used as top half of poll function. It should do as little
+ processing as possible, because it runs in interrupt context. The most
+ common operation is recording of the current timestamp and for this reason
+ one can use the IIO core defined <function>iio_pollfunc_store_time
+ </function> function.
+ </listitem>
+ <listitem><function>sensor_trigger_handler</function>, the function that
+ will be used as bottom half of the poll function. This runs in the
+ context of a kernel thread and all the processing takes place here.
+ It usually reads data from the device and stores it in the internal
+ buffer together with the timestamp recorded in the top half.
+ </listitem>
+ </itemizedlist>
+ </sect2>
+ </sect1>
+ </chapter>
+ <chapter id='iioresources'>
+ <title> Resources </title>
+ IIO core may change during time so the best documentation to read is the
+ source code. There are several locations where you should look:
+ <itemizedlist>
+ <listitem>
+ <filename>drivers/iio/</filename>, contains the IIO core plus
+ and directories for each sensor type (e.g. accel, magnetometer,
+ etc.)
+ </listitem>
+ <listitem>
+ <filename>include/linux/iio/</filename>, contains the header
+ files, nice to read for the internal kernel interfaces.
+ </listitem>
+ <listitem>
+ <filename>include/uapi/linux/iio/</filename>, contains files to be
+ used by user space applications.
+ </listitem>
+ <listitem>
+ <filename>tools/iio/</filename>, contains tools for rapidly
+ testing buffers, events and device creation.
+ </listitem>
+ <listitem>
+ <filename>drivers/staging/iio/</filename>, contains code for some
+ drivers or experimental features that are not yet mature enough
+ to be moved out.
+ </listitem>
+ </itemizedlist>
+ <para>
+ Besides the code, there are some good online documentation sources:
+ <itemizedlist>
+ <listitem>
+ <ulink url="http://marc.info/?l=linux-iio"> Industrial I/O mailing
+ list </ulink>
+ </listitem>
+ <listitem>
+ <ulink url="http://wiki.analog.com/software/linux/docs/iio/iio">
+ Analog Device IIO wiki page </ulink>
+ </listitem>
+ <listitem>
+ <ulink url="https://fosdem.org/2015/schedule/event/iiosdr/">
+ Using the Linux IIO framework for SDR, Lars-Peter Clausen's
+ presentation at FOSDEM </ulink>
+ </listitem>
+ </itemizedlist>
+ </para>
+ </chapter>
+</book>
+
+<!--
+vim: softtabstop=2:shiftwidth=2:expandtab:textwidth=72
+-->
diff --git a/Documentation/DocBook/stylesheet.xsl b/Documentation/DocBook/stylesheet.xsl
index 85b25275196f..3bf4ecf3d760 100644
--- a/Documentation/DocBook/stylesheet.xsl
+++ b/Documentation/DocBook/stylesheet.xsl
@@ -5,6 +5,7 @@
<param name="funcsynopsis.tabular.threshold">80</param>
<param name="callout.graphics">0</param>
<!-- <param name="paper.type">A4</param> -->
+<param name="generate.consistent.ids">1</param>
<param name="generate.section.toc.level">2</param>
<param name="use.id.as.filename">1</param>
</stylesheet>
diff --git a/Documentation/HOWTO b/Documentation/HOWTO
index 93aa8604630e..21152d397b88 100644
--- a/Documentation/HOWTO
+++ b/Documentation/HOWTO
@@ -218,16 +218,16 @@ The development process
Linux kernel development process currently consists of a few different
main kernel "branches" and lots of different subsystem-specific kernel
branches. These different branches are:
- - main 3.x kernel tree
- - 3.x.y -stable kernel tree
- - 3.x -git kernel patches
+ - main 4.x kernel tree
+ - 4.x.y -stable kernel tree
+ - 4.x -git kernel patches
- subsystem specific kernel trees and patches
- - the 3.x -next kernel tree for integration tests
+ - the 4.x -next kernel tree for integration tests
-3.x kernel tree
+4.x kernel tree
-----------------
-3.x kernels are maintained by Linus Torvalds, and can be found on
-kernel.org in the pub/linux/kernel/v3.x/ directory. Its development
+4.x kernels are maintained by Linus Torvalds, and can be found on
+kernel.org in the pub/linux/kernel/v4.x/ directory. Its development
process is as follows:
- As soon as a new kernel is released a two weeks window is open,
during this period of time maintainers can submit big diffs to
@@ -262,20 +262,20 @@ mailing list about kernel releases:
released according to perceived bug status, not according to a
preconceived timeline."
-3.x.y -stable kernel tree
+4.x.y -stable kernel tree
---------------------------
Kernels with 3-part versions are -stable kernels. They contain
relatively small and critical fixes for security problems or significant
-regressions discovered in a given 3.x kernel.
+regressions discovered in a given 4.x kernel.
This is the recommended branch for users who want the most recent stable
kernel and are not interested in helping test development/experimental
versions.
-If no 3.x.y kernel is available, then the highest numbered 3.x
+If no 4.x.y kernel is available, then the highest numbered 4.x
kernel is the current stable kernel.
-3.x.y are maintained by the "stable" team <stable@vger.kernel.org>, and
+4.x.y are maintained by the "stable" team <stable@vger.kernel.org>, and
are released as needs dictate. The normal release period is approximately
two weeks, but it can be longer if there are no pressing problems. A
security-related problem, instead, can cause a release to happen almost
@@ -285,7 +285,7 @@ The file Documentation/stable_kernel_rules.txt in the kernel tree
documents what kinds of changes are acceptable for the -stable tree, and
how the release process works.
-3.x -git patches
+4.x -git patches
------------------
These are daily snapshots of Linus' kernel tree which are managed in a
git repository (hence the name.) These patches are usually released
@@ -317,9 +317,9 @@ revisions to it, and maintainers can mark patches as under review,
accepted, or rejected. Most of these patchwork sites are listed at
http://patchwork.kernel.org/.
-3.x -next kernel tree for integration tests
+4.x -next kernel tree for integration tests
---------------------------------------------
-Before updates from subsystem trees are merged into the mainline 3.x
+Before updates from subsystem trees are merged into the mainline 4.x
tree, they need to be integration-tested. For this purpose, a special
testing repository exists into which virtually all subsystem trees are
pulled on an almost daily basis:
diff --git a/Documentation/Intel-IOMMU.txt b/Documentation/Intel-IOMMU.txt
index cf9431db8731..7b57fc087088 100644
--- a/Documentation/Intel-IOMMU.txt
+++ b/Documentation/Intel-IOMMU.txt
@@ -10,7 +10,7 @@ This guide gives a quick cheat sheet for some basic understanding.
Some Keywords
DMAR - DMA remapping
-DRHD - DMA Engine Reporting Structure
+DRHD - DMA Remapping Hardware Unit Definition
RMRR - Reserved memory Region Reporting Structure
ZLR - Zero length reads from PCI devices
IOVA - IO Virtual address.
diff --git a/Documentation/SubmittingPatches b/Documentation/SubmittingPatches
index 27e7e5edeca8..fa596d8a3ab0 100644
--- a/Documentation/SubmittingPatches
+++ b/Documentation/SubmittingPatches
@@ -90,11 +90,11 @@ patch.
Make sure your patch does not include any extra files which do not
belong in a patch submission. Make sure to review your patch -after-
-generated it with diff(1), to ensure accuracy.
+generating it with diff(1), to ensure accuracy.
If your changes produce a lot of deltas, you need to split them into
individual patches which modify things in logical stages; see section
-#3. This will facilitate easier reviewing by other kernel developers,
+#3. This will facilitate review by other kernel developers,
very important if you want your patch accepted.
If you're using git, "git rebase -i" can help you with this process. If
@@ -267,7 +267,7 @@ You should always copy the appropriate subsystem maintainer(s) on any patch
to code that they maintain; look through the MAINTAINERS file and the
source code revision history to see who those maintainers are. The
script scripts/get_maintainer.pl can be very useful at this step. If you
-cannot find a maintainer for the subsystem your are working on, Andrew
+cannot find a maintainer for the subsystem you are working on, Andrew
Morton (akpm@linux-foundation.org) serves as a maintainer of last resort.
You should also normally choose at least one mailing list to receive a copy
@@ -340,7 +340,7 @@ on the changes you are submitting. It is important for a kernel
developer to be able to "quote" your changes, using standard e-mail
tools, so that they may comment on specific portions of your code.
-For this reason, all patches should be submitting e-mail "inline".
+For this reason, all patches should be submitted by e-mail "inline".
WARNING: Be wary of your editor's word-wrap corrupting your patch,
if you choose to cut-n-paste your patch.
@@ -739,7 +739,7 @@ interest on a single line; it should look something like:
git://jdelvare.pck.nerim.net/jdelvare-2.6 i2c-for-linus
- to get these changes:"
+ to get these changes:
A pull request should also include an overall message saying what will be
included in the request, a "git shortlog" listing of the patches
@@ -796,7 +796,7 @@ NO!!!! No more huge patch bombs to linux-kernel@vger.kernel.org people!
<https://lkml.org/lkml/2005/7/11/336>
Kernel Documentation/CodingStyle:
- <http://users.sosdg.org/~qiyong/lxr/source/Documentation/CodingStyle>
+ <Documentation/CodingStyle>
Linus Torvalds's mail on the canonical patch format:
<http://lkml.org/lkml/2005/4/7/183>
diff --git a/Documentation/adding-syscalls.txt b/Documentation/adding-syscalls.txt
new file mode 100644
index 000000000000..cc2d4ac4f404
--- /dev/null
+++ b/Documentation/adding-syscalls.txt
@@ -0,0 +1,527 @@
+Adding a New System Call
+========================
+
+This document describes what's involved in adding a new system call to the
+Linux kernel, over and above the normal submission advice in
+Documentation/SubmittingPatches.
+
+
+System Call Alternatives
+------------------------
+
+The first thing to consider when adding a new system call is whether one of
+the alternatives might be suitable instead. Although system calls are the
+most traditional and most obvious interaction points between userspace and the
+kernel, there are other possibilities -- choose what fits best for your
+interface.
+
+ - If the operations involved can be made to look like a filesystem-like
+ object, it may make more sense to create a new filesystem or device. This
+ also makes it easier to encapsulate the new functionality in a kernel module
+ rather than requiring it to be built into the main kernel.
+ - If the new functionality involves operations where the kernel notifies
+ userspace that something has happened, then returning a new file
+ descriptor for the relevant object allows userspace to use
+ poll/select/epoll to receive that notification.
+ - However, operations that don't map to read(2)/write(2)-like operations
+ have to be implemented as ioctl(2) requests, which can lead to a
+ somewhat opaque API.
+ - If you're just exposing runtime system information, a new node in sysfs
+ (see Documentation/filesystems/sysfs.txt) or the /proc filesystem may be
+ more appropriate. However, access to these mechanisms requires that the
+ relevant filesystem is mounted, which might not always be the case (e.g.
+ in a namespaced/sandboxed/chrooted environment). Avoid adding any API to
+ debugfs, as this is not considered a 'production' interface to userspace.
+ - If the operation is specific to a particular file or file descriptor, then
+ an additional fcntl(2) command option may be more appropriate. However,
+ fcntl(2) is a multiplexing system call that hides a lot of complexity, so
+ this option is best for when the new function is closely analogous to
+ existing fcntl(2) functionality, or the new functionality is very simple
+ (for example, getting/setting a simple flag related to a file descriptor).
+ - If the operation is specific to a particular task or process, then an
+ additional prctl(2) command option may be more appropriate. As with
+ fcntl(2), this system call is a complicated multiplexor so is best reserved
+ for near-analogs of existing prctl() commands or getting/setting a simple
+ flag related to a process.
+
+
+Designing the API: Planning for Extension
+-----------------------------------------
+
+A new system call forms part of the API of the kernel, and has to be supported
+indefinitely. As such, it's a very good idea to explicitly discuss the
+interface on the kernel mailing list, and it's important to plan for future
+extensions of the interface.
+
+(The syscall table is littered with historical examples where this wasn't done,
+together with the corresponding follow-up system calls -- eventfd/eventfd2,
+dup2/dup3, inotify_init/inotify_init1, pipe/pipe2, renameat/renameat2 -- so
+learn from the history of the kernel and plan for extensions from the start.)
+
+For simpler system calls that only take a couple of arguments, the preferred
+way to allow for future extensibility is to include a flags argument to the
+system call. To make sure that userspace programs can safely use flags
+between kernel versions, check whether the flags value holds any unknown
+flags, and reject the system call (with EINVAL) if it does:
+
+ if (flags & ~(THING_FLAG1 | THING_FLAG2 | THING_FLAG3))
+ return -EINVAL;
+
+(If no flags values are used yet, check that the flags argument is zero.)
+
+For more sophisticated system calls that involve a larger number of arguments,
+it's preferred to encapsulate the majority of the arguments into a structure
+that is passed in by pointer. Such a structure can cope with future extension
+by including a size argument in the structure:
+
+ struct xyzzy_params {
+ u32 size; /* userspace sets p->size = sizeof(struct xyzzy_params) */
+ u32 param_1;
+ u64 param_2;
+ u64 param_3;
+ };
+
+As long as any subsequently added field, say param_4, is designed so that a
+zero value gives the previous behaviour, then this allows both directions of
+version mismatch:
+
+ - To cope with a later userspace program calling an older kernel, the kernel
+ code should check that any memory beyond the size of the structure that it
+ expects is zero (effectively checking that param_4 == 0).
+ - To cope with an older userspace program calling a newer kernel, the kernel
+ code can zero-extend a smaller instance of the structure (effectively
+ setting param_4 = 0).
+
+See perf_event_open(2) and the perf_copy_attr() function (in
+kernel/events/core.c) for an example of this approach.
+
+
+Designing the API: Other Considerations
+---------------------------------------
+
+If your new system call allows userspace to refer to a kernel object, it
+should use a file descriptor as the handle for that object -- don't invent a
+new type of userspace object handle when the kernel already has mechanisms and
+well-defined semantics for using file descriptors.
+
+If your new xyzzy(2) system call does return a new file descriptor, then the
+flags argument should include a value that is equivalent to setting O_CLOEXEC
+on the new FD. This makes it possible for userspace to close the timing
+window between xyzzy() and calling fcntl(fd, F_SETFD, FD_CLOEXEC), where an
+unexpected fork() and execve() in another thread could leak a descriptor to
+the exec'ed program. (However, resist the temptation to re-use the actual value
+of the O_CLOEXEC constant, as it is architecture-specific and is part of a
+numbering space of O_* flags that is fairly full.)
+
+If your system call returns a new file descriptor, you should also consider
+what it means to use the poll(2) family of system calls on that file
+descriptor. Making a file descriptor ready for reading or writing is the
+normal way for the kernel to indicate to userspace that an event has
+occurred on the corresponding kernel object.
+
+If your new xyzzy(2) system call involves a filename argument:
+
+ int sys_xyzzy(const char __user *path, ..., unsigned int flags);
+
+you should also consider whether an xyzzyat(2) version is more appropriate:
+
+ int sys_xyzzyat(int dfd, const char __user *path, ..., unsigned int flags);
+
+This allows more flexibility for how userspace specifies the file in question;
+in particular it allows userspace to request the functionality for an
+already-opened file descriptor using the AT_EMPTY_PATH flag, effectively giving
+an fxyzzy(3) operation for free:
+
+ - xyzzyat(AT_FDCWD, path, ..., 0) is equivalent to xyzzy(path,...)
+ - xyzzyat(fd, "", ..., AT_EMPTY_PATH) is equivalent to fxyzzy(fd, ...)
+
+(For more details on the rationale of the *at() calls, see the openat(2) man
+page; for an example of AT_EMPTY_PATH, see the statat(2) man page.)
+
+If your new xyzzy(2) system call involves a parameter describing an offset
+within a file, make its type loff_t so that 64-bit offsets can be supported
+even on 32-bit architectures.
+
+If your new xyzzy(2) system call involves privileged functionality, it needs
+to be governed by the appropriate Linux capability bit (checked with a call to
+capable()), as described in the capabilities(7) man page. Choose an existing
+capability bit that governs related functionality, but try to avoid combining
+lots of only vaguely related functions together under the same bit, as this
+goes against capabilities' purpose of splitting the power of root. In
+particular, avoid adding new uses of the already overly-general CAP_SYS_ADMIN
+capability.
+
+If your new xyzzy(2) system call manipulates a process other than the calling
+process, it should be restricted (using a call to ptrace_may_access()) so that
+only a calling process with the same permissions as the target process, or
+with the necessary capabilities, can manipulate the target process.
+
+Finally, be aware that some non-x86 architectures have an easier time if
+system call parameters that are explicitly 64-bit fall on odd-numbered
+arguments (i.e. parameter 1, 3, 5), to allow use of contiguous pairs of 32-bit
+registers. (This concern does not apply if the arguments are part of a
+structure that's passed in by pointer.)
+
+
+Proposing the API
+-----------------
+
+To make new system calls easy to review, it's best to divide up the patchset
+into separate chunks. These should include at least the following items as
+distinct commits (each of which is described further below):
+
+ - The core implementation of the system call, together with prototypes,
+ generic numbering, Kconfig changes and fallback stub implementation.
+ - Wiring up of the new system call for one particular architecture, usually
+ x86 (including all of x86_64, x86_32 and x32).
+ - A demonstration of the use of the new system call in userspace via a
+ selftest in tools/testing/selftests/.
+ - A draft man-page for the new system call, either as plain text in the
+ cover letter, or as a patch to the (separate) man-pages repository.
+
+New system call proposals, like any change to the kernel's API, should always
+be cc'ed to linux-api@vger.kernel.org.
+
+
+Generic System Call Implementation
+----------------------------------
+
+The main entry point for your new xyzzy(2) system call will be called
+sys_xyzzy(), but you add this entry point with the appropriate
+SYSCALL_DEFINEn() macro rather than explicitly. The 'n' indicates the number
+of arguments to the system call, and the macro takes the system call name
+followed by the (type, name) pairs for the parameters as arguments. Using
+this macro allows metadata about the new system call to be made available for
+other tools.
+
+The new entry point also needs a corresponding function prototype, in
+include/linux/syscalls.h, marked as asmlinkage to match the way that system
+calls are invoked:
+
+ asmlinkage long sys_xyzzy(...);
+
+Some architectures (e.g. x86) have their own architecture-specific syscall
+tables, but several other architectures share a generic syscall table. Add your
+new system call to the generic list by adding an entry to the list in
+include/uapi/asm-generic/unistd.h:
+
+ #define __NR_xyzzy 292
+ __SYSCALL(__NR_xyzzy, sys_xyzzy)
+
+Also update the __NR_syscalls count to reflect the additional system call, and
+note that if multiple new system calls are added in the same merge window,
+your new syscall number may get adjusted to resolve conflicts.
+
+The file kernel/sys_ni.c provides a fallback stub implementation of each system
+call, returning -ENOSYS. Add your new system call here too:
+
+ cond_syscall(sys_xyzzy);
+
+Your new kernel functionality, and the system call that controls it, should
+normally be optional, so add a CONFIG option (typically to init/Kconfig) for
+it. As usual for new CONFIG options:
+
+ - Include a description of the new functionality and system call controlled
+ by the option.
+ - Make the option depend on EXPERT if it should be hidden from normal users.
+ - Make any new source files implementing the function dependent on the CONFIG
+ option in the Makefile (e.g. "obj-$(CONFIG_XYZZY_SYSCALL) += xyzzy.c").
+ - Double check that the kernel still builds with the new CONFIG option turned
+ off.
+
+To summarize, you need a commit that includes:
+
+ - CONFIG option for the new function, normally in init/Kconfig
+ - SYSCALL_DEFINEn(xyzzy, ...) for the entry point
+ - corresponding prototype in include/linux/syscalls.h
+ - generic table entry in include/uapi/asm-generic/unistd.h
+ - fallback stub in kernel/sys_ni.c
+
+
+x86 System Call Implementation
+------------------------------
+
+To wire up your new system call for x86 platforms, you need to update the
+master syscall tables. Assuming your new system call isn't special in some
+way (see below), this involves a "common" entry (for x86_64 and x32) in
+arch/x86/entry/syscalls/syscall_64.tbl:
+
+ 333 common xyzzy sys_xyzzy
+
+and an "i386" entry in arch/x86/entry/syscalls/syscall_32.tbl:
+
+ 380 i386 xyzzy sys_xyzzy
+
+Again, these numbers are liable to be changed if there are conflicts in the
+relevant merge window.
+
+
+Compatibility System Calls (Generic)
+------------------------------------
+
+For most system calls the same 64-bit implementation can be invoked even when
+the userspace program is itself 32-bit; even if the system call's parameters
+include an explicit pointer, this is handled transparently.
+
+However, there are a couple of situations where a compatibility layer is
+needed to cope with size differences between 32-bit and 64-bit.
+
+The first is if the 64-bit kernel also supports 32-bit userspace programs, and
+so needs to parse areas of (__user) memory that could hold either 32-bit or
+64-bit values. In particular, this is needed whenever a system call argument
+is:
+
+ - a pointer to a pointer
+ - a pointer to a struct containing a pointer (e.g. struct iovec __user *)
+ - a pointer to a varying sized integral type (time_t, off_t, long, ...)
+ - a pointer to a struct containing a varying sized integral type.
+
+The second situation that requires a compatibility layer is if one of the
+system call's arguments has a type that is explicitly 64-bit even on a 32-bit
+architecture, for example loff_t or __u64. In this case, a value that arrives
+at a 64-bit kernel from a 32-bit application will be split into two 32-bit
+values, which then need to be re-assembled in the compatibility layer.
+
+(Note that a system call argument that's a pointer to an explicit 64-bit type
+does *not* need a compatibility layer; for example, splice(2)'s arguments of
+type loff_t __user * do not trigger the need for a compat_ system call.)
+
+The compatibility version of the system call is called compat_sys_xyzzy(), and
+is added with the COMPAT_SYSCALL_DEFINEn() macro, analogously to
+SYSCALL_DEFINEn. This version of the implementation runs as part of a 64-bit
+kernel, but expects to receive 32-bit parameter values and does whatever is
+needed to deal with them. (Typically, the compat_sys_ version converts the
+values to 64-bit versions and either calls on to the sys_ version, or both of
+them call a common inner implementation function.)
+
+The compat entry point also needs a corresponding function prototype, in
+include/linux/compat.h, marked as asmlinkage to match the way that system
+calls are invoked:
+
+ asmlinkage long compat_sys_xyzzy(...);
+
+If the system call involves a structure that is laid out differently on 32-bit
+and 64-bit systems, say struct xyzzy_args, then the include/linux/compat.h
+header file should also include a compat version of the structure (struct
+compat_xyzzy_args) where each variable-size field has the appropriate compat_
+type that corresponds to the type in struct xyzzy_args. The
+compat_sys_xyzzy() routine can then use this compat_ structure to parse the
+arguments from a 32-bit invocation.
+
+For example, if there are fields:
+
+ struct xyzzy_args {
+ const char __user *ptr;
+ __kernel_long_t varying_val;
+ u64 fixed_val;
+ /* ... */
+ };
+
+in struct xyzzy_args, then struct compat_xyzzy_args would have:
+
+ struct compat_xyzzy_args {
+ compat_uptr_t ptr;
+ compat_long_t varying_val;
+ u64 fixed_val;
+ /* ... */
+ };
+
+The generic system call list also needs adjusting to allow for the compat
+version; the entry in include/uapi/asm-generic/unistd.h should use
+__SC_COMP rather than __SYSCALL:
+
+ #define __NR_xyzzy 292
+ __SC_COMP(__NR_xyzzy, sys_xyzzy, compat_sys_xyzzy)
+
+To summarize, you need:
+
+ - a COMPAT_SYSCALL_DEFINEn(xyzzy, ...) for the compat entry point
+ - corresponding prototype in include/linux/compat.h
+ - (if needed) 32-bit mapping struct in include/linux/compat.h
+ - instance of __SC_COMP not __SYSCALL in include/uapi/asm-generic/unistd.h
+
+
+Compatibility System Calls (x86)
+--------------------------------
+
+To wire up the x86 architecture of a system call with a compatibility version,
+the entries in the syscall tables need to be adjusted.
+
+First, the entry in arch/x86/entry/syscalls/syscall_32.tbl gets an extra
+column to indicate that a 32-bit userspace program running on a 64-bit kernel
+should hit the compat entry point:
+
+ 380 i386 xyzzy sys_xyzzy compat_sys_xyzzy
+
+Second, you need to figure out what should happen for the x32 ABI version of
+the new system call. There's a choice here: the layout of the arguments
+should either match the 64-bit version or the 32-bit version.
+
+If there's a pointer-to-a-pointer involved, the decision is easy: x32 is
+ILP32, so the layout should match the 32-bit version, and the entry in
+arch/x86/entry/syscalls/syscall_64.tbl is split so that x32 programs hit the
+compatibility wrapper:
+
+ 333 64 xyzzy sys_xyzzy
+ ...
+ 555 x32 xyzzy compat_sys_xyzzy
+
+If no pointers are involved, then it is preferable to re-use the 64-bit system
+call for the x32 ABI (and consequently the entry in
+arch/x86/entry/syscalls/syscall_64.tbl is unchanged).
+
+In either case, you should check that the types involved in your argument
+layout do indeed map exactly from x32 (-mx32) to either the 32-bit (-m32) or
+64-bit (-m64) equivalents.
+
+
+System Calls Returning Elsewhere
+--------------------------------
+
+For most system calls, once the system call is complete the user program
+continues exactly where it left off -- at the next instruction, with the
+stack the same and most of the registers the same as before the system call,
+and with the same virtual memory space.
+
+However, a few system calls do things differently. They might return to a
+different location (rt_sigreturn) or change the memory space (fork/vfork/clone)
+or even architecture (execve/execveat) of the program.
+
+To allow for this, the kernel implementation of the system call may need to
+save and restore additional registers to the kernel stack, allowing complete
+control of where and how execution continues after the system call.
+
+This is arch-specific, but typically involves defining assembly entry points
+that save/restore additional registers and invoke the real system call entry
+point.
+
+For x86_64, this is implemented as a stub_xyzzy entry point in
+arch/x86/entry/entry_64.S, and the entry in the syscall table
+(arch/x86/entry/syscalls/syscall_64.tbl) is adjusted to match:
+
+ 333 common xyzzy stub_xyzzy
+
+The equivalent for 32-bit programs running on a 64-bit kernel is normally
+called stub32_xyzzy and implemented in arch/x86/entry/entry_64_compat.S,
+with the corresponding syscall table adjustment in
+arch/x86/entry/syscalls/syscall_32.tbl:
+
+ 380 i386 xyzzy sys_xyzzy stub32_xyzzy
+
+If the system call needs a compatibility layer (as in the previous section)
+then the stub32_ version needs to call on to the compat_sys_ version of the
+system call rather than the native 64-bit version. Also, if the x32 ABI
+implementation is not common with the x86_64 version, then its syscall
+table will also need to invoke a stub that calls on to the compat_sys_
+version.
+
+For completeness, it's also nice to set up a mapping so that user-mode Linux
+still works -- its syscall table will reference stub_xyzzy, but the UML build
+doesn't include arch/x86/entry/entry_64.S implementation (because UML
+simulates registers etc). Fixing this is as simple as adding a #define to
+arch/x86/um/sys_call_table_64.c:
+
+ #define stub_xyzzy sys_xyzzy
+
+
+Other Details
+-------------
+
+Most of the kernel treats system calls in a generic way, but there is the
+occasional exception that may need updating for your particular system call.
+
+The audit subsystem is one such special case; it includes (arch-specific)
+functions that classify some special types of system call -- specifically
+file open (open/openat), program execution (execve/exeveat) or socket
+multiplexor (socketcall) operations. If your new system call is analogous to
+one of these, then the audit system should be updated.
+
+More generally, if there is an existing system call that is analogous to your
+new system call, it's worth doing a kernel-wide grep for the existing system
+call to check there are no other special cases.
+
+
+Testing
+-------
+
+A new system call should obviously be tested; it is also useful to provide
+reviewers with a demonstration of how user space programs will use the system
+call. A good way to combine these aims is to include a simple self-test
+program in a new directory under tools/testing/selftests/.
+
+For a new system call, there will obviously be no libc wrapper function and so
+the test will need to invoke it using syscall(); also, if the system call
+involves a new userspace-visible structure, the corresponding header will need
+to be installed to compile the test.
+
+Make sure the selftest runs successfully on all supported architectures. For
+example, check that it works when compiled as an x86_64 (-m64), x86_32 (-m32)
+and x32 (-mx32) ABI program.
+
+For more extensive and thorough testing of new functionality, you should also
+consider adding tests to the Linux Test Project, or to the xfstests project
+for filesystem-related changes.
+ - https://linux-test-project.github.io/
+ - git://git.kernel.org/pub/scm/fs/xfs/xfstests-dev.git
+
+
+Man Page
+--------
+
+All new system calls should come with a complete man page, ideally using groff
+markup, but plain text will do. If groff is used, it's helpful to include a
+pre-rendered ASCII version of the man page in the cover email for the
+patchset, for the convenience of reviewers.
+
+The man page should be cc'ed to linux-man@vger.kernel.org
+For more details, see https://www.kernel.org/doc/man-pages/patches.html
+
+References and Sources
+----------------------
+
+ - LWN article from Michael Kerrisk on use of flags argument in system calls:
+ https://lwn.net/Articles/585415/
+ - LWN article from Michael Kerrisk on how to handle unknown flags in a system
+ call: https://lwn.net/Articles/588444/
+ - LWN article from Jake Edge describing constraints on 64-bit system call
+ arguments: https://lwn.net/Articles/311630/
+ - Pair of LWN articles from David Drysdale that describe the system call
+ implementation paths in detail for v3.14:
+ - https://lwn.net/Articles/604287/
+ - https://lwn.net/Articles/604515/
+ - Architecture-specific requirements for system calls are discussed in the
+ syscall(2) man-page:
+ http://man7.org/linux/man-pages/man2/syscall.2.html#NOTES
+ - Collated emails from Linus Torvalds discussing the problems with ioctl():
+ http://yarchive.net/comp/linux/ioctl.html
+ - "How to not invent kernel interfaces", Arnd Bergmann,
+ http://www.ukuug.org/events/linux2007/2007/papers/Bergmann.pdf
+ - LWN article from Michael Kerrisk on avoiding new uses of CAP_SYS_ADMIN:
+ https://lwn.net/Articles/486306/
+ - Recommendation from Andrew Morton that all related information for a new
+ system call should come in the same email thread:
+ https://lkml.org/lkml/2014/7/24/641
+ - Recommendation from Michael Kerrisk that a new system call should come with
+ a man page: https://lkml.org/lkml/2014/6/13/309
+ - Suggestion from Thomas Gleixner that x86 wire-up should be in a separate
+ commit: https://lkml.org/lkml/2014/11/19/254
+ - Suggestion from Greg Kroah-Hartman that it's good for new system calls to
+ come with a man-page & selftest: https://lkml.org/lkml/2014/3/19/710
+ - Discussion from Michael Kerrisk of new system call vs. prctl(2) extension:
+ https://lkml.org/lkml/2014/6/3/411
+ - Suggestion from Ingo Molnar that system calls that involve multiple
+ arguments should encapsulate those arguments in a struct, which includes a
+ size field for future extensibility: https://lkml.org/lkml/2015/7/30/117
+ - Numbering oddities arising from (re-)use of O_* numbering space flags:
+ - commit 75069f2b5bfb ("vfs: renumber FMODE_NONOTIFY and add to uniqueness
+ check")
+ - commit 12ed2e36c98a ("fanotify: FMODE_NONOTIFY and __O_SYNC in sparc
+ conflict")
+ - commit bb458c644a59 ("Safer ABI for O_TMPFILE")
+ - Discussion from Matthew Wilcox about restrictions on 64-bit arguments:
+ https://lkml.org/lkml/2008/12/12/187
+ - Recommendation from Greg Kroah-Hartman that unknown flags should be
+ policed: https://lkml.org/lkml/2014/7/17/577
+ - Recommendation from Linus Torvalds that x32 system calls should prefer
+ compatibility with 64-bit versions rather than 32-bit versions:
+ https://lkml.org/lkml/2011/8/31/244
diff --git a/Documentation/arm/SPEAr/overview.txt b/Documentation/arm/SPEAr/overview.txt
index 65610bf52ebf..1b049be6c84f 100644
--- a/Documentation/arm/SPEAr/overview.txt
+++ b/Documentation/arm/SPEAr/overview.txt
@@ -60,4 +60,4 @@ Introduction
Document Author
---------------
- Viresh Kumar <viresh.linux@gmail.com>, (c) 2010-2012 ST Microelectronics
+ Viresh Kumar <vireshk@kernel.org>, (c) 2010-2012 ST Microelectronics
diff --git a/Documentation/arm/Samsung/Bootloader-interface.txt b/Documentation/arm/Samsung/Bootloader-interface.txt
index b96ead9a6919..df8d4fb85939 100644
--- a/Documentation/arm/Samsung/Bootloader-interface.txt
+++ b/Documentation/arm/Samsung/Bootloader-interface.txt
@@ -15,6 +15,7 @@ executing kernel.
1. Non-Secure mode
+
Address: sysram_ns_base_addr
Offset Value Purpose
=============================================================================
@@ -28,6 +29,7 @@ Offset Value Purpose
2. Secure mode
+
Address: sysram_base_addr
Offset Value Purpose
=============================================================================
@@ -40,14 +42,25 @@ Offset Value Purpose
Address: pmu_base_addr
Offset Value Purpose
=============================================================================
-0x0800 exynos_cpu_resume AFTR
+0x0800 exynos_cpu_resume AFTR, suspend
+0x0800 mcpm_entry_point (Exynos542x with MCPM) AFTR, suspend
+0x0804 0xfcba0d10 (Magic cookie) AFTR
+0x0804 0x00000bad (Magic cookie) System suspend
0x0814 exynos4_secondary_startup (Exynos4210 r1.1) Secondary CPU boot
0x0818 0xfcba0d10 (Magic cookie, Exynos4210 r1.1) AFTR
0x081C exynos_cpu_resume (Exynos4210 r1.1) AFTR
3. Other (regardless of secure/non-secure mode)
+
Address: pmu_base_addr
Offset Value Purpose
=============================================================================
0x0908 Non-zero (only Exynos3250) Secondary CPU boot up indicator
+
+
+4. Glossary
+
+AFTR - ARM Off Top Running, a low power mode, Cortex cores and many other
+modules are power gated, except the TOP modules
+MCPM - Multi-Cluster Power Management
diff --git a/Documentation/arm/keystone/Overview.txt b/Documentation/arm/keystone/Overview.txt
new file mode 100644
index 000000000000..f17bc4c9dff9
--- /dev/null
+++ b/Documentation/arm/keystone/Overview.txt
@@ -0,0 +1,73 @@
+ TI Keystone Linux Overview
+ --------------------------
+
+Introduction
+------------
+Keystone range of SoCs are based on ARM Cortex-A15 MPCore Processors
+and c66x DSP cores. This document describes essential information required
+for users to run Linux on Keystone based EVMs from Texas Instruments.
+
+Following SoCs & EVMs are currently supported:-
+
+------------ K2HK SoC and EVM --------------------------------------------------
+
+a.k.a Keystone 2 Hawking/Kepler SoC
+TCI6636K2H & TCI6636K2K: See documentation at
+ http://www.ti.com/product/tci6638k2k
+ http://www.ti.com/product/tci6638k2h
+
+EVM:
+http://www.advantech.com/Support/TI-EVM/EVMK2HX_sd.aspx
+
+------------ K2E SoC and EVM ---------------------------------------------------
+
+a.k.a Keystone 2 Edison SoC
+K2E - 66AK2E05: See documentation at
+ http://www.ti.com/product/66AK2E05/technicaldocuments
+
+EVM:
+https://www.einfochips.com/index.php/partnerships/texas-instruments/k2e-evm.html
+
+------------ K2L SoC and EVM ---------------------------------------------------
+
+a.k.a Keystone 2 Lamarr SoC
+K2L - TCI6630K2L: See documentation at
+ http://www.ti.com/product/TCI6630K2L/technicaldocuments
+EVM:
+https://www.einfochips.com/index.php/partnerships/texas-instruments/k2l-evm.html
+
+Configuration
+-------------
+
+All of the K2 SoCs/EVMs share a common defconfig, keystone_defconfig and same
+image is used to boot on individual EVMs. The platform configuration is
+specified through DTS. Following are the DTS used:-
+ K2HK EVM : k2hk-evm.dts
+ K2E EVM : k2e-evm.dts
+ K2L EVM : k2l-evm.dts
+
+The device tree documentation for the keystone machines are located at
+ Documentation/devicetree/bindings/arm/keystone/keystone.txt
+
+Known issues & workaround
+-------------------------
+
+Some of the device drivers used on keystone are re-used from that from
+DaVinci and other TI SoCs. These device drivers may use clock APIs directly.
+Some of the keystone specific drivers such as netcp uses run time power
+management API instead to enable clock. As this API has limitations on
+keystone, following workaround is needed to boot Linux.
+
+ Add 'clk_ignore_unused' to the bootargs env variable in u-boot. Otherwise
+ clock frameworks will try to disable clocks that are unused and disable
+ the hardware. This is because netcp related power domain and clock
+ domains are enabled in u-boot as run time power management API currently
+ doesn't enable clocks for netcp due to a limitation. This workaround is
+ expected to be removed in the future when proper API support becomes
+ available. Until then, this work around is needed.
+
+
+Document Author
+---------------
+Murali Karicheri <m-karicheri2@ti.com>
+Copyright 2015 Texas Instruments
diff --git a/Documentation/device-mapper/cache.txt b/Documentation/device-mapper/cache.txt
index 82960cffbad3..785eab87aa71 100644
--- a/Documentation/device-mapper/cache.txt
+++ b/Documentation/device-mapper/cache.txt
@@ -258,6 +258,12 @@ cache metadata mode : ro if read-only, rw if read-write
no further I/O will be permitted and the status will just
contain the string 'Fail'. The userspace recovery tools
should then be used.
+needs_check : 'needs_check' if set, '-' if not set
+ A metadata operation has failed, resulting in the needs_check
+ flag being set in the metadata's superblock. The metadata
+ device must be deactivated and checked/repaired before the
+ cache can be made fully operational again. '-' indicates
+ needs_check is not set.
Messages
--------
diff --git a/Documentation/device-mapper/thin-provisioning.txt b/Documentation/device-mapper/thin-provisioning.txt
index 4f67578b2954..1699a55b7b70 100644
--- a/Documentation/device-mapper/thin-provisioning.txt
+++ b/Documentation/device-mapper/thin-provisioning.txt
@@ -296,7 +296,7 @@ ii) Status
underlying device. When this is enabled when loading the table,
it can get disabled if the underlying device doesn't support it.
- ro|rw
+ ro|rw|out_of_data_space
If the pool encounters certain types of device failures it will
drop into a read-only metadata mode in which no changes to
the pool metadata (like allocating new blocks) are permitted.
@@ -314,6 +314,13 @@ ii) Status
module parameter can be used to change this timeout -- it
defaults to 60 seconds but may be disabled using a value of 0.
+ needs_check
+ A metadata operation has failed, resulting in the needs_check
+ flag being set in the metadata's superblock. The metadata
+ device must be deactivated and checked/repaired before the
+ thin-pool can be made fully operational again. '-' indicates
+ needs_check is not set.
+
iii) Messages
create_thin <dev id>
diff --git a/Documentation/devicetree/bindings/arm/atmel-at91.txt b/Documentation/devicetree/bindings/arm/atmel-at91.txt
index 424ac8cbfa08..dd998b9c0433 100644
--- a/Documentation/devicetree/bindings/arm/atmel-at91.txt
+++ b/Documentation/devicetree/bindings/arm/atmel-at91.txt
@@ -87,7 +87,7 @@ One interrupt per TC channel in a TC block:
RSTC Reset Controller required properties:
- compatible: Should be "atmel,<chip>-rstc".
- <chip> can be "at91sam9260" or "at91sam9g45"
+ <chip> can be "at91sam9260" or "at91sam9g45" or "sama5d3"
- reg: Should contain registers location and length
Example:
diff --git a/Documentation/devicetree/bindings/arm/coresight.txt b/Documentation/devicetree/bindings/arm/coresight.txt
index 65a6db2271a2..62938eb9697f 100644
--- a/Documentation/devicetree/bindings/arm/coresight.txt
+++ b/Documentation/devicetree/bindings/arm/coresight.txt
@@ -17,6 +17,7 @@ its hardware characteristcs.
- "arm,coresight-tmc", "arm,primecell";
- "arm,coresight-funnel", "arm,primecell";
- "arm,coresight-etm3x", "arm,primecell";
+ - "arm,coresight-etm4x", "arm,primecell";
- "qcom,coresight-replicator1x", "arm,primecell";
* reg: physical base address and length of the register
diff --git a/Documentation/devicetree/bindings/arm/cpus.txt b/Documentation/devicetree/bindings/arm/cpus.txt
index d6b794cef0b8..91e6e5c478d0 100644
--- a/Documentation/devicetree/bindings/arm/cpus.txt
+++ b/Documentation/devicetree/bindings/arm/cpus.txt
@@ -199,6 +199,7 @@ nodes to be present and contain the properties described below.
"qcom,kpss-acc-v1"
"qcom,kpss-acc-v2"
"rockchip,rk3066-smp"
+ "ste,dbx500-smp"
- cpu-release-addr
Usage: required for systems that have an "enable-method"
diff --git a/Documentation/devicetree/bindings/dma/apm-xgene-dma.txt b/Documentation/devicetree/bindings/dma/apm-xgene-dma.txt
index d3058768b23d..c53e0b08032f 100644
--- a/Documentation/devicetree/bindings/dma/apm-xgene-dma.txt
+++ b/Documentation/devicetree/bindings/dma/apm-xgene-dma.txt
@@ -35,7 +35,7 @@ Example:
device_type = "dma";
reg = <0x0 0x1f270000 0x0 0x10000>,
<0x0 0x1f200000 0x0 0x10000>,
- <0x0 0x1b008000 0x0 0x2000>,
+ <0x0 0x1b000000 0x0 0x400000>,
<0x0 0x1054a000 0x0 0x100>;
interrupts = <0x0 0x82 0x4>,
<0x0 0xb8 0x4>,
diff --git a/Documentation/devicetree/bindings/drm/imx/fsl-imx-drm.txt b/Documentation/devicetree/bindings/drm/imx/fsl-imx-drm.txt
index e75f0e549fff..971c3eedb1c7 100644
--- a/Documentation/devicetree/bindings/drm/imx/fsl-imx-drm.txt
+++ b/Documentation/devicetree/bindings/drm/imx/fsl-imx-drm.txt
@@ -65,8 +65,10 @@ Optional properties:
- edid: verbatim EDID data block describing attached display.
- ddc: phandle describing the i2c bus handling the display data
channel
-- port: A port node with endpoint definitions as defined in
+- port@[0-1]: Port nodes with endpoint definitions as defined in
Documentation/devicetree/bindings/media/video-interfaces.txt.
+ Port 0 is the input port connected to the IPU display interface,
+ port 1 is the output port connected to a panel.
example:
@@ -75,9 +77,29 @@ display@di0 {
edid = [edid-data];
interface-pix-fmt = "rgb24";
- port {
+ port@0 {
+ reg = <0>;
+
display_in: endpoint {
remote-endpoint = <&ipu_di0_disp0>;
};
};
+
+ port@1 {
+ reg = <1>;
+
+ display_out: endpoint {
+ remote-endpoint = <&panel_in>;
+ };
+ };
+};
+
+panel {
+ ...
+
+ port {
+ panel_in: endpoint {
+ remote-endpoint = <&display_out>;
+ };
+ };
};
diff --git a/Documentation/devicetree/bindings/extcon/extcon-palmas.txt b/Documentation/devicetree/bindings/extcon/extcon-palmas.txt
index 45414bbcd945..f61d5af44a27 100644
--- a/Documentation/devicetree/bindings/extcon/extcon-palmas.txt
+++ b/Documentation/devicetree/bindings/extcon/extcon-palmas.txt
@@ -10,8 +10,11 @@ Required Properties:
Optional Properties:
- ti,wakeup : To enable the wakeup comparator in probe
- - ti,enable-id-detection: Perform ID detection.
+ - ti,enable-id-detection: Perform ID detection. If id-gpio is specified
+ it performs id-detection using GPIO else using OTG core.
- ti,enable-vbus-detection: Perform VBUS detection.
+ - id-gpio: gpio for GPIO ID detection. See gpio binding.
+ - debounce-delay-ms: debounce delay for GPIO ID pin in milliseconds.
palmas-usb {
compatible = "ti,twl6035-usb", "ti,palmas-usb";
diff --git a/Documentation/devicetree/bindings/hwmon/lm70.txt b/Documentation/devicetree/bindings/hwmon/lm70.txt
new file mode 100644
index 000000000000..e7fd921aa4f1
--- /dev/null
+++ b/Documentation/devicetree/bindings/hwmon/lm70.txt
@@ -0,0 +1,21 @@
+* LM70/TMP121/LM71/LM74 thermometer.
+
+Required properties:
+- compatible: one of
+ "ti,lm70"
+ "ti,tmp121"
+ "ti,lm71"
+ "ti,lm74"
+
+See Documentation/devicetree/bindings/spi/spi-bus.txt for more required and
+optional properties.
+
+Example:
+
+spi_master {
+ temperature-sensor@0 {
+ compatible = "ti,lm70";
+ reg = <0>;
+ spi-max-frequency = <1000000>;
+ };
+};
diff --git a/Documentation/devicetree/bindings/hwmon/ltc2978.txt b/Documentation/devicetree/bindings/hwmon/ltc2978.txt
index ed2f09dc2483..a7afbf60bb9c 100644
--- a/Documentation/devicetree/bindings/hwmon/ltc2978.txt
+++ b/Documentation/devicetree/bindings/hwmon/ltc2978.txt
@@ -3,10 +3,16 @@ ltc2978
Required properties:
- compatible: should contain one of:
* "lltc,ltc2974"
+ * "lltc,ltc2975"
* "lltc,ltc2977"
* "lltc,ltc2978"
+ * "lltc,ltc2980"
* "lltc,ltc3880"
+ * "lltc,ltc3882"
* "lltc,ltc3883"
+ * "lltc,ltc3886"
+ * "lltc,ltc3887"
+ * "lltc,ltm2987"
* "lltc,ltm4676"
- reg: I2C slave address
@@ -17,10 +23,10 @@ Optional properties:
standard binding for regulators; see regulator.txt.
Valid names of regulators depend on number of supplies supported per device:
- * ltc2974 : vout0 - vout3
- * ltc2977 : vout0 - vout7
+ * ltc2974, ltc2975 : vout0 - vout3
+ * ltc2977, ltc2980, ltm2987 : vout0 - vout7
* ltc2978 : vout0 - vout7
- * ltc3880 : vout0 - vout1
+ * ltc3880, ltc3882, ltc3886 : vout0 - vout1
* ltc3883 : vout0
* ltm4676 : vout0 - vout1
diff --git a/Documentation/devicetree/bindings/iio/adc/mcp320x.txt b/Documentation/devicetree/bindings/iio/adc/mcp320x.txt
index b85184391b78..2a1f3af30155 100644
--- a/Documentation/devicetree/bindings/iio/adc/mcp320x.txt
+++ b/Documentation/devicetree/bindings/iio/adc/mcp320x.txt
@@ -18,6 +18,7 @@ Required properties:
"mcp3202"
"mcp3204"
"mcp3208"
+ "mcp3301"
Examples:
diff --git a/Documentation/devicetree/bindings/iio/adc/vf610-adc.txt b/Documentation/devicetree/bindings/iio/adc/vf610-adc.txt
index 3eb40e20c143..1aad0514e647 100644
--- a/Documentation/devicetree/bindings/iio/adc/vf610-adc.txt
+++ b/Documentation/devicetree/bindings/iio/adc/vf610-adc.txt
@@ -17,6 +17,11 @@ Recommended properties:
- Frequency in normal mode (ADLPC=0, ADHSC=0)
- Frequency in high-speed mode (ADLPC=0, ADHSC=1)
- Frequency in low-power mode (ADLPC=1, ADHSC=0)
+- min-sample-time: Minimum sampling time in nanoseconds. This value has
+ to be chosen according to the conversion mode and the connected analog
+ source resistance (R_as) and capacitance (C_as). Refer the datasheet's
+ operating requirements. A safe default across a wide range of R_as and
+ C_as as well as conversion modes is 1000ns.
Example:
adc0: adc@4003b000 {
diff --git a/Documentation/devicetree/bindings/iio/magnetometer/mmc35240.txt b/Documentation/devicetree/bindings/iio/magnetometer/mmc35240.txt
new file mode 100644
index 000000000000..a01235c7fa15
--- /dev/null
+++ b/Documentation/devicetree/bindings/iio/magnetometer/mmc35240.txt
@@ -0,0 +1,13 @@
+* MEMSIC MMC35240 magnetometer sensor
+
+Required properties:
+
+ - compatible : should be "memsic,mmc35240"
+ - reg : the I2C address of the magnetometer
+
+Example:
+
+mmc35240@30 {
+ compatible = "memsic,mmc35240";
+ reg = <0x30>;
+};
diff --git a/Documentation/devicetree/bindings/iio/st-sensors.txt b/Documentation/devicetree/bindings/iio/st-sensors.txt
index 8a6be3bdf267..d3ccdb190c53 100644
--- a/Documentation/devicetree/bindings/iio/st-sensors.txt
+++ b/Documentation/devicetree/bindings/iio/st-sensors.txt
@@ -35,6 +35,7 @@ Accelerometers:
- st,lsm303dl-accel
- st,lsm303dlm-accel
- st,lsm330-accel
+- st,lsm303agr-accel
Gyroscopes:
- st,l3g4200d-gyro
@@ -46,6 +47,7 @@ Gyroscopes:
- st,lsm330-gyro
Magnetometers:
+- st,lsm303agr-magn
- st,lsm303dlh-magn
- st,lsm303dlhc-magn
- st,lsm303dlm-magn
diff --git a/Documentation/devicetree/bindings/iommu/arm,smmu-v3.txt b/Documentation/devicetree/bindings/iommu/arm,smmu-v3.txt
index c03eec116872..3443e0f838df 100644
--- a/Documentation/devicetree/bindings/iommu/arm,smmu-v3.txt
+++ b/Documentation/devicetree/bindings/iommu/arm,smmu-v3.txt
@@ -35,3 +35,6 @@ the PCIe specification.
NOTE: this only applies to the SMMU itself, not
masters connected upstream of the SMMU.
+
+- hisilicon,broken-prefetch-cmd
+ : Avoid sending CMD_PREFETCH_* commands to the SMMU.
diff --git a/Documentation/devicetree/bindings/leds/common.txt b/Documentation/devicetree/bindings/leds/common.txt
index 747c53805eec..68419843e32f 100644
--- a/Documentation/devicetree/bindings/leds/common.txt
+++ b/Documentation/devicetree/bindings/leds/common.txt
@@ -29,14 +29,23 @@ Optional properties for child nodes:
"ide-disk" - LED indicates disk activity
"timer" - LED flashes at a fixed, configurable rate
-- max-microamp : maximum intensity in microamperes of the LED
- (torch LED for flash devices)
-- flash-max-microamp : maximum intensity in microamperes of the
- flash LED; it is mandatory if the LED should
- support the flash mode
-- flash-timeout-us : timeout in microseconds after which the flash
- LED is turned off
+- led-max-microamp : Maximum LED supply current in microamperes. This property
+ can be made mandatory for the board configurations
+ introducing a risk of hardware damage in case an excessive
+ current is set.
+ For flash LED controllers with configurable current this
+ property is mandatory for the LEDs in the non-flash modes
+ (e.g. torch or indicator).
+Required properties for flash LED child nodes:
+- flash-max-microamp : Maximum flash LED supply current in microamperes.
+- flash-max-timeout-us : Maximum timeout in microseconds after which the flash
+ LED is turned off.
+
+For controllers that have no configurable current the flash-max-microamp
+property can be omitted.
+For controllers that have no configurable timeout the flash-max-timeout-us
+property can be omitted.
Examples:
@@ -49,7 +58,7 @@ system-status {
camera-flash {
label = "Flash";
led-sources = <0>, <1>;
- max-microamp = <50000>;
+ led-max-microamp = <50000>;
flash-max-microamp = <320000>;
- flash-timeout-us = <500000>;
+ flash-max-timeout-us = <500000>;
};
diff --git a/Documentation/devicetree/bindings/leds/leds-ns2.txt b/Documentation/devicetree/bindings/leds/leds-ns2.txt
index aef3aca34d2d..9f81258a5b6e 100644
--- a/Documentation/devicetree/bindings/leds/leds-ns2.txt
+++ b/Documentation/devicetree/bindings/leds/leds-ns2.txt
@@ -8,6 +8,9 @@ Each LED is represented as a sub-node of the ns2-leds device.
Required sub-node properties:
- cmd-gpio: Command LED GPIO. See OF device-tree GPIO specification.
- slow-gpio: Slow LED GPIO. See OF device-tree GPIO specification.
+- modes-map: A mapping between LED modes (off, on or SATA activity blinking) and
+ the corresponding cmd-gpio/slow-gpio values. All the GPIO values combinations
+ should be given in order to avoid having an unknown mode at driver probe time.
Optional sub-node properties:
- label: Name for this LED. If omitted, the label is taken from the node name.
@@ -15,6 +18,8 @@ Optional sub-node properties:
Example:
+#include <dt-bindings/leds/leds-ns2.h>
+
ns2-leds {
compatible = "lacie,ns2-leds";
@@ -22,5 +27,9 @@ ns2-leds {
label = "ns2:blue:sata";
slow-gpio = <&gpio0 29 0>;
cmd-gpio = <&gpio0 30 0>;
+ modes-map = <NS_V2_LED_OFF 0 1
+ NS_V2_LED_ON 1 0
+ NS_V2_LED_ON 0 0
+ NS_V2_LED_SATA 1 1>;
};
};
diff --git a/Documentation/devicetree/bindings/mfd/rk808.txt b/Documentation/devicetree/bindings/mfd/rk808.txt
index 9e6e2592e5c8..4ca6aab4273a 100644
--- a/Documentation/devicetree/bindings/mfd/rk808.txt
+++ b/Documentation/devicetree/bindings/mfd/rk808.txt
@@ -24,6 +24,10 @@ Optional properties:
- vcc10-supply: The input supply for LDO_REG6
- vcc11-supply: The input supply for LDO_REG8
- vcc12-supply: The input supply for SWITCH_REG2
+- dvs-gpios: buck1/2 can be controlled by gpio dvs, this is GPIO specifiers
+ for 2 host gpio's used for dvs. The format of the gpio specifier depends in
+ the gpio controller. If DVS GPIOs aren't present, voltage changes will happen
+ very quickly with no slow ramp time.
Regulators: All the regulators of RK808 to be instantiated shall be
listed in a child node named 'regulators'. Each regulator is represented
@@ -55,7 +59,9 @@ Example:
interrupt-parent = <&gpio0>;
interrupts = <4 IRQ_TYPE_LEVEL_LOW>;
pinctrl-names = "default";
- pinctrl-0 = <&pmic_int>;
+ pinctrl-0 = <&pmic_int &dvs_1 &dvs_2>;
+ dvs-gpios = <&gpio7 11 GPIO_ACTIVE_HIGH>,
+ <&gpio7 15 GPIO_ACTIVE_HIGH>;
reg = <0x1b>;
rockchip,system-power-controller;
wakeup-source;
diff --git a/Documentation/devicetree/bindings/mmc/fsl-imx-esdhc.txt b/Documentation/devicetree/bindings/mmc/fsl-imx-esdhc.txt
index 5d0376b8f202..211e7785f4d2 100644
--- a/Documentation/devicetree/bindings/mmc/fsl-imx-esdhc.txt
+++ b/Documentation/devicetree/bindings/mmc/fsl-imx-esdhc.txt
@@ -17,7 +17,6 @@ Required properties:
"fsl,imx6sx-usdhc"
Optional properties:
-- fsl,cd-controller : Indicate to use controller internal card detection
- fsl,wp-controller : Indicate to use controller internal write protection
- fsl,delay-line : Specify the number of delay cells for override mode.
This is used to set the clock delay for DLL(Delay Line) on override mode
@@ -35,7 +34,6 @@ esdhc@70004000 {
compatible = "fsl,imx51-esdhc";
reg = <0x70004000 0x4000>;
interrupts = <1>;
- fsl,cd-controller;
fsl,wp-controller;
};
diff --git a/Documentation/devicetree/bindings/misc/allwinner,sunxi-sid.txt b/Documentation/devicetree/bindings/nvmem/allwinner,sunxi-sid.txt
index fabdf64a5737..d543ed3f5363 100644
--- a/Documentation/devicetree/bindings/misc/allwinner,sunxi-sid.txt
+++ b/Documentation/devicetree/bindings/nvmem/allwinner,sunxi-sid.txt
@@ -4,6 +4,10 @@ Required properties:
- compatible: "allwinner,sun4i-a10-sid" or "allwinner,sun7i-a20-sid"
- reg: Should contain registers location and length
+= Data cells =
+Are child nodes of qfprom, bindings of which as described in
+bindings/nvmem/nvmem.txt
+
Example for sun4i:
sid@01c23800 {
compatible = "allwinner,sun4i-a10-sid";
diff --git a/Documentation/devicetree/bindings/nvmem/nvmem.txt b/Documentation/devicetree/bindings/nvmem/nvmem.txt
new file mode 100644
index 000000000000..b52bc11e9597
--- /dev/null
+++ b/Documentation/devicetree/bindings/nvmem/nvmem.txt
@@ -0,0 +1,80 @@
+= NVMEM(Non Volatile Memory) Data Device Tree Bindings =
+
+This binding is intended to represent the location of hardware
+configuration data stored in NVMEMs like eeprom, efuses and so on.
+
+On a significant proportion of boards, the manufacturer has stored
+some data on NVMEM, for the OS to be able to retrieve these information
+and act upon it. Obviously, the OS has to know about where to retrieve
+these data from, and where they are stored on the storage device.
+
+This document is here to document this.
+
+= Data providers =
+Contains bindings specific to provider drivers and data cells as children
+of this node.
+
+Optional properties:
+ read-only: Mark the provider as read only.
+
+= Data cells =
+These are the child nodes of the provider which contain data cell
+information like offset and size in nvmem provider.
+
+Required properties:
+reg: specifies the offset in byte within the storage device.
+
+Optional properties:
+
+bits: Is pair of bit location and number of bits, which specifies offset
+ in bit and number of bits within the address range specified by reg property.
+ Offset takes values from 0-7.
+
+For example:
+
+ /* Provider */
+ qfprom: qfprom@00700000 {
+ ...
+
+ /* Data cells */
+ tsens_calibration: calib@404 {
+ reg = <0x404 0x10>;
+ };
+
+ tsens_calibration_bckp: calib_bckp@504 {
+ reg = <0x504 0x11>;
+ bits = <6 128>
+ };
+
+ pvs_version: pvs-version@6 {
+ reg = <0x6 0x2>
+ bits = <7 2>
+ };
+
+ speed_bin: speed-bin@c{
+ reg = <0xc 0x1>;
+ bits = <2 3>;
+
+ };
+ ...
+ };
+
+= Data consumers =
+Are device nodes which consume nvmem data cells/providers.
+
+Required-properties:
+nvmem-cells: list of phandle to the nvmem data cells.
+nvmem-cell-names: names for the each nvmem-cells specified. Required if
+ nvmem-cells is used.
+
+Optional-properties:
+nvmem : list of phandles to nvmem providers.
+nvmem-names: names for the each nvmem provider. required if nvmem is used.
+
+For example:
+
+ tsens {
+ ...
+ nvmem-cells = <&tsens_calibration>;
+ nvmem-cell-names = "calibration";
+ };
diff --git a/Documentation/devicetree/bindings/nvmem/qfprom.txt b/Documentation/devicetree/bindings/nvmem/qfprom.txt
new file mode 100644
index 000000000000..4ad68b7f5c18
--- /dev/null
+++ b/Documentation/devicetree/bindings/nvmem/qfprom.txt
@@ -0,0 +1,35 @@
+= Qualcomm QFPROM device tree bindings =
+
+This binding is intended to represent QFPROM which is found in most QCOM SOCs.
+
+Required properties:
+- compatible: should be "qcom,qfprom"
+- reg: Should contain registers location and length
+
+= Data cells =
+Are child nodes of qfprom, bindings of which as described in
+bindings/nvmem/nvmem.txt
+
+Example:
+
+ qfprom: qfprom@00700000 {
+ compatible = "qcom,qfprom";
+ reg = <0x00700000 0x8000>;
+ ...
+ /* Data cells */
+ tsens_calibration: calib@404 {
+ reg = <0x4404 0x10>;
+ };
+ };
+
+
+= Data consumers =
+Are device nodes which consume nvmem data cells.
+
+For example:
+
+ tsens {
+ ...
+ nvmem-cells = <&tsens_calibration>;
+ nvmem-cell-names = "calibration";
+ };
diff --git a/Documentation/devicetree/bindings/phy/phy-lpc18xx-usb-otg.txt b/Documentation/devicetree/bindings/phy/phy-lpc18xx-usb-otg.txt
new file mode 100644
index 000000000000..bd61b467e30a
--- /dev/null
+++ b/Documentation/devicetree/bindings/phy/phy-lpc18xx-usb-otg.txt
@@ -0,0 +1,26 @@
+NXP LPC18xx/43xx internal USB OTG PHY binding
+---------------------------------------------
+
+This file contains documentation for the internal USB OTG PHY found
+in NXP LPC18xx and LPC43xx SoCs.
+
+Required properties:
+- compatible : must be "nxp,lpc1850-usb-otg-phy"
+- clocks : must be exactly one entry
+See: Documentation/devicetree/bindings/clock/clock-bindings.txt
+- #phy-cells : must be 0 for this phy
+See: Documentation/devicetree/bindings/phy/phy-bindings.txt
+
+The phy node must be a child of the creg syscon node.
+
+Example:
+creg: syscon@40043000 {
+ compatible = "nxp,lpc1850-creg", "syscon", "simple-mfd";
+ reg = <0x40043000 0x1000>;
+
+ usb0_otg_phy: phy@004 {
+ compatible = "nxp,lpc1850-usb-otg-phy";
+ clocks = <&ccu1 CLK_USB0>;
+ #phy-cells = <0>;
+ };
+};
diff --git a/Documentation/devicetree/bindings/phy/sun4i-usb-phy.txt b/Documentation/devicetree/bindings/phy/sun4i-usb-phy.txt
index 16528b9eb561..0cebf7454517 100644
--- a/Documentation/devicetree/bindings/phy/sun4i-usb-phy.txt
+++ b/Documentation/devicetree/bindings/phy/sun4i-usb-phy.txt
@@ -7,6 +7,8 @@ Required properties:
* allwinner,sun5i-a13-usb-phy
* allwinner,sun6i-a31-usb-phy
* allwinner,sun7i-a20-usb-phy
+ * allwinner,sun8i-a23-usb-phy
+ * allwinner,sun8i-a33-usb-phy
- reg : a list of offset + length pairs
- reg-names :
* "phy_ctrl"
@@ -17,12 +19,21 @@ Required properties:
- clock-names :
* "usb_phy" for sun4i, sun5i or sun7i
* "usb0_phy", "usb1_phy" and "usb2_phy" for sun6i
+ * "usb0_phy", "usb1_phy" for sun8i
- resets : a list of phandle + reset specifier pairs
- reset-names :
* "usb0_reset"
* "usb1_reset"
* "usb2_reset" for sun4i, sun6i or sun7i
+Optional properties:
+- usb0_id_det-gpios : gpio phandle for reading the otg id pin value
+- usb0_vbus_det-gpios : gpio phandle for detecting the presence of usb0 vbus
+- usb0_vbus_power-supply: power-supply phandle for usb0 vbus presence detect
+- usb0_vbus-supply : regulator phandle for controller usb0 vbus
+- usb1_vbus-supply : regulator phandle for controller usb1 vbus
+- usb2_vbus-supply : regulator phandle for controller usb2 vbus
+
Example:
usbphy: phy@0x01c13400 {
#phy-cells = <1>;
@@ -32,6 +43,13 @@ Example:
reg-names = "phy_ctrl", "pmu1", "pmu2";
clocks = <&usb_clk 8>;
clock-names = "usb_phy";
- resets = <&usb_clk 1>, <&usb_clk 2>;
- reset-names = "usb1_reset", "usb2_reset";
+ resets = <&usb_clk 0>, <&usb_clk 1>, <&usb_clk 2>;
+ reset-names = "usb0_reset", "usb1_reset", "usb2_reset";
+ pinctrl-names = "default";
+ pinctrl-0 = <&usb0_id_detect_pin>, <&usb0_vbus_detect_pin>;
+ usb0_id_det-gpios = <&pio 7 19 GPIO_ACTIVE_HIGH>; /* PH19 */
+ usb0_vbus_det-gpios = <&pio 7 22 GPIO_ACTIVE_HIGH>; /* PH22 */
+ usb0_vbus-supply = <&reg_usb0_vbus>;
+ usb1_vbus-supply = <&reg_usb1_vbus>;
+ usb2_vbus-supply = <&reg_usb2_vbus>;
};
diff --git a/Documentation/devicetree/bindings/phy/ti-phy.txt b/Documentation/devicetree/bindings/phy/ti-phy.txt
index 305e3df3d9b1..9cf9446eaf2e 100644
--- a/Documentation/devicetree/bindings/phy/ti-phy.txt
+++ b/Documentation/devicetree/bindings/phy/ti-phy.txt
@@ -82,6 +82,9 @@ Optional properties:
- id: If there are multiple instance of the same type, in order to
differentiate between each instance "id" can be used (e.g., multi-lane PCIe
PHY). If "id" is not provided, it is set to default value of '1'.
+ - syscon-pllreset: Handle to system control region that contains the
+ CTRL_CORE_SMA_SW_0 register and register offset to the CTRL_CORE_SMA_SW_0
+ register that contains the SATA_PLL_SOFT_RESET bit. Only valid for sata_phy.
This is usually a subnode of ocp2scp to which it is connected.
@@ -100,3 +103,16 @@ usb3phy@4a084400 {
"sysclk",
"refclk";
};
+
+sata_phy: phy@4A096000 {
+ compatible = "ti,phy-pipe3-sata";
+ reg = <0x4A096000 0x80>, /* phy_rx */
+ <0x4A096400 0x64>, /* phy_tx */
+ <0x4A096800 0x40>; /* pll_ctrl */
+ reg-names = "phy_rx", "phy_tx", "pll_ctrl";
+ ctrl-module = <&omap_control_sata>;
+ clocks = <&sys_clkin1>, <&sata_ref_clk>;
+ clock-names = "sysclk", "refclk";
+ syscon-pllreset = <&scm_conf 0x3fc>;
+ #phy-cells = <0>;
+};
diff --git a/Documentation/devicetree/bindings/power/qcom,coincell-charger.txt b/Documentation/devicetree/bindings/power/qcom,coincell-charger.txt
new file mode 100644
index 000000000000..0e6d8754e7ec
--- /dev/null
+++ b/Documentation/devicetree/bindings/power/qcom,coincell-charger.txt
@@ -0,0 +1,48 @@
+Qualcomm Coincell Charger:
+
+The hardware block controls charging for a coincell or capacitor that is
+used to provide power backup for certain features of the power management
+IC (PMIC)
+
+- compatible:
+ Usage: required
+ Value type: <string>
+ Definition: must be: "qcom,pm8941-coincell"
+
+- reg:
+ Usage: required
+ Value type: <u32>
+ Definition: base address of the coincell charger registers
+
+- qcom,rset-ohms:
+ Usage: required
+ Value type: <u32>
+ Definition: resistance (in ohms) for current-limiting resistor
+ must be one of: 800, 1200, 1700, 2100
+
+- qcom,vset-millivolts:
+ Usage: required
+ Value type: <u32>
+ Definition: voltage (in millivolts) to apply for charging
+ must be one of: 2500, 3000, 3100, 3200
+
+- qcom,charger-disable:
+ Usage: optional
+ Value type: <boolean>
+ Definition: definining this property disables charging
+
+This charger is a sub-node of one of the 8941 PMIC blocks, and is specified
+as a child node in DTS of that node. See ../mfd/qcom,spmi-pmic.txt and
+../mfd/qcom-pm8xxx.txt
+
+Example:
+
+ pm8941@0 {
+ coincell@2800 {
+ compatible = "qcom,pm8941-coincell";
+ reg = <0x2800>;
+
+ qcom,rset-ohms = <2100>;
+ qcom,vset-millivolts = <3000>;
+ };
+ };
diff --git a/Documentation/devicetree/bindings/powerpc/fsl/mpc5121-psc.txt b/Documentation/devicetree/bindings/powerpc/fsl/mpc5121-psc.txt
index 8832e8798912..647817527c88 100644
--- a/Documentation/devicetree/bindings/powerpc/fsl/mpc5121-psc.txt
+++ b/Documentation/devicetree/bindings/powerpc/fsl/mpc5121-psc.txt
@@ -6,14 +6,14 @@ PSC in UART mode
For PSC in UART mode the needed PSC serial devices
are specified by fsl,mpc5121-psc-uart nodes in the
fsl,mpc5121-immr SoC node. Additionally the PSC FIFO
-Controller node fsl,mpc5121-psc-fifo is requered there:
+Controller node fsl,mpc5121-psc-fifo is required there:
-fsl,mpc5121-psc-uart nodes
+fsl,mpc512x-psc-uart nodes
--------------------------
Required properties :
- - compatible : Should contain "fsl,mpc5121-psc-uart" and "fsl,mpc5121-psc"
- - cell-index : Index of the PSC in hardware
+ - compatible : Should contain "fsl,<soc>-psc-uart" and "fsl,<soc>-psc"
+ Supported <soc>s: mpc5121, mpc5125
- reg : Offset and length of the register set for the PSC device
- interrupts : <a b> where a is the interrupt number of the
PSC FIFO Controller and b is a field that represents an
@@ -25,12 +25,21 @@ Recommended properties :
- fsl,rx-fifo-size : the size of the RX fifo slice (a multiple of 4)
- fsl,tx-fifo-size : the size of the TX fifo slice (a multiple of 4)
+PSC in SPI mode
+---------------
-fsl,mpc5121-psc-fifo node
+Similar to the UART mode a PSC can be operated in SPI mode. The compatible used
+for that is fsl,mpc5121-psc-spi. It requires a fsl,mpc5121-psc-fifo as well.
+The required and recommended properties are identical to the
+fsl,mpc5121-psc-uart nodes, just use spi instead of uart in the compatible
+string.
+
+fsl,mpc512x-psc-fifo node
-------------------------
Required properties :
- - compatible : Should be "fsl,mpc5121-psc-fifo"
+ - compatible : Should be "fsl,<soc>-psc-fifo"
+ Supported <soc>s: mpc5121, mpc5125
- reg : Offset and length of the register set for the PSC
FIFO Controller
- interrupts : <a b> where a is the interrupt number of the
@@ -39,6 +48,9 @@ Required properties :
- interrupt-parent : the phandle for the interrupt controller that
services interrupts for this device.
+Recommended properties :
+ - clocks : specifies the clock needed to operate the fifo controller
+ - clock-names : name(s) for the clock(s) listed in clocks
Example for a board using PSC0 and PSC1 devices in serial mode:
diff --git a/Documentation/devicetree/bindings/regulator/da9210.txt b/Documentation/devicetree/bindings/regulator/da9210.txt
index 3297c53cb915..7aa9b1fa6b21 100644
--- a/Documentation/devicetree/bindings/regulator/da9210.txt
+++ b/Documentation/devicetree/bindings/regulator/da9210.txt
@@ -5,6 +5,10 @@ Required properties:
- compatible: must be "dlg,da9210"
- reg: the i2c slave address of the regulator. It should be 0x68.
+Optional properties:
+
+- interrupts: a reference to the DA9210 interrupt, if available.
+
Any standard regulator properties can be used to configure the single da9210
DCDC.
diff --git a/Documentation/devicetree/bindings/regulator/da9211.txt b/Documentation/devicetree/bindings/regulator/da9211.txt
index eb618907c7de..c620493e8dbe 100644
--- a/Documentation/devicetree/bindings/regulator/da9211.txt
+++ b/Documentation/devicetree/bindings/regulator/da9211.txt
@@ -1,7 +1,7 @@
-* Dialog Semiconductor DA9211/DA9213 Voltage Regulator
+* Dialog Semiconductor DA9211/DA9213/DA9215 Voltage Regulator
Required properties:
-- compatible: "dlg,da9211" or "dlg,da9213".
+- compatible: "dlg,da9211" or "dlg,da9213" or "dlg,da9215"
- reg: I2C slave address, usually 0x68.
- interrupts: the interrupt outputs of the controller
- regulators: A node that houses a sub-node for each regulator within the
@@ -66,3 +66,31 @@ Example 2) DA9213
};
};
};
+
+
+Example 3) DA9215
+ pmic: da9215@68 {
+ compatible = "dlg,da9215";
+ reg = <0x68>;
+ interrupts = <3 27>;
+
+ regulators {
+ BUCKA {
+ regulator-name = "VBUCKA";
+ regulator-min-microvolt = < 300000>;
+ regulator-max-microvolt = <1570000>;
+ regulator-min-microamp = <4000000>;
+ regulator-max-microamp = <7000000>;
+ enable-gpios = <&gpio 27 0>;
+ };
+ BUCKB {
+ regulator-name = "VBUCKB";
+ regulator-min-microvolt = < 300000>;
+ regulator-max-microvolt = <1570000>;
+ regulator-min-microamp = <4000000>;
+ regulator-max-microamp = <7000000>;
+ enable-gpios = <&gpio 17 0>;
+ };
+ };
+ };
+
diff --git a/Documentation/devicetree/bindings/regulator/max8973-regulator.txt b/Documentation/devicetree/bindings/regulator/max8973-regulator.txt
index 55efb24e5683..f80ea2fe27e6 100644
--- a/Documentation/devicetree/bindings/regulator/max8973-regulator.txt
+++ b/Documentation/devicetree/bindings/regulator/max8973-regulator.txt
@@ -25,6 +25,12 @@ Optional properties:
-maxim,enable-frequency-shift: boolean, enable 9% frequency shift.
-maxim,enable-bias-control: boolean, enable bias control. By enabling this
startup delay can be reduce to 20us from 220us.
+-maxim,enable-etr: boolean, enable Enhanced Transient Response.
+-maxim,enable-high-etr-sensitivity: boolean, Enhanced transient response
+ circuit is enabled and set for high sensitivity. If this
+ property is available then etr will be enable default.
+
+Enhanced transient response (ETR) will affect the configuration of CKADV.
Example:
diff --git a/Documentation/devicetree/bindings/regulator/mt6311-regulator.txt b/Documentation/devicetree/bindings/regulator/mt6311-regulator.txt
new file mode 100644
index 000000000000..02649d8b3f5a
--- /dev/null
+++ b/Documentation/devicetree/bindings/regulator/mt6311-regulator.txt
@@ -0,0 +1,35 @@
+Mediatek MT6311 Regulator Driver
+
+Required properties:
+- compatible: "mediatek,mt6311-regulator"
+- reg: I2C slave address, usually 0x6b.
+- regulators: List of regulators provided by this controller. It is named
+ to VDVFS and VBIASN.
+ The definition for each of these nodes is defined using the standard binding
+ for regulators at Documentation/devicetree/bindings/regulator/regulator.txt.
+
+The valid names for regulators are:
+BUCK:
+ VDVFS
+LDO:
+ VBIASN
+
+Example:
+ mt6311: pmic@6b {
+ compatible = "mediatek,mt6311-regulator";
+ reg = <0x6b>;
+
+ regulators {
+ mt6311_vcpu_reg: VDVFS {
+ regulator-name = "VDVFS";
+ regulator-min-microvolt = < 600000>;
+ regulator-max-microvolt = <1400000>;
+ regulator-ramp-delay = <10000>;
+ };
+ mt6311_ldo_reg: VBIASN {
+ regulator-name = "VBIASN";
+ regulator-min-microvolt = <200000>;
+ regulator-max-microvolt = <800000>;
+ };
+ };
+ };
diff --git a/Documentation/devicetree/bindings/regulator/pwm-regulator.txt b/Documentation/devicetree/bindings/regulator/pwm-regulator.txt
index ce91f61feb12..ed936f0f34f2 100644
--- a/Documentation/devicetree/bindings/regulator/pwm-regulator.txt
+++ b/Documentation/devicetree/bindings/regulator/pwm-regulator.txt
@@ -1,27 +1,68 @@
-pwm regulator bindings
+Bindings for the Generic PWM Regulator
+======================================
+
+Currently supports 2 modes of operation:
+
+Voltage Table: When in this mode, a voltage table (See below) of
+ predefined voltage <=> duty-cycle values must be
+ provided via DT. Limitations are that the regulator can
+ only operate at the voltages supplied in the table.
+ Intermediary duty-cycle values which would normally
+ allow finer grained voltage selection are ignored and
+ rendered useless. Although more control is given to
+ the user if the assumptions made in continuous-voltage
+ mode do not reign true.
+
+Continuous Voltage: This mode uses the regulator's maximum and minimum
+ supplied voltages specified in the
+ regulator-{min,max}-microvolt properties to calculate
+ appropriate duty-cycle values. This allows for a much
+ more fine grained solution when compared with
+ voltage-table mode above. This solution does make an
+ assumption that a %50 duty-cycle value will cause the
+ regulator voltage to run at half way between the
+ supplied max_uV and min_uV values.
Required properties:
-- compatible: Should be "pwm-regulator"
-- pwms: OF device-tree PWM specification (see PWM binding pwm.txt)
-- voltage-table: voltage and duty table, include 2 members in each set of
- brackets, first one is voltage(unit: uv), the next is duty(unit: percent)
+--------------------
+- compatible: Should be "pwm-regulator"
+
+- pwms: PWM specification (See: ../pwm/pwm.txt)
+
+Only required for Voltage Table Mode:
+- voltage-table: Voltage and Duty-Cycle table consisting of 2 cells
+ First cell is voltage in microvolts (uV)
+ Second cell is duty-cycle in percent (%)
+
+NB: To be clear, if voltage-table is provided, then the device will be used
+in Voltage Table Mode. If no voltage-table is provided, then the device will
+be used in Continuous Voltage Mode.
-Any property defined as part of the core regulator binding defined in
-regulator.txt can also be used.
+Any property defined as part of the core regulator binding can also be used.
+(See: ../regulator/regulator.txt)
-Example:
+Continuous Voltage Example:
pwm_regulator {
compatible = "pwm-regulator;
pwms = <&pwm1 0 8448 0>;
+ regulator-min-microvolt = <1016000>;
+ regulator-max-microvolt = <1114000>;
+ regulator-name = "vdd_logic";
+ };
+Voltage Table Example:
+ pwm_regulator {
+ compatible = "pwm-regulator;
+ pwms = <&pwm1 0 8448 0>;
+ regulator-min-microvolt = <1016000>;
+ regulator-max-microvolt = <1114000>;
+ regulator-name = "vdd_logic";
+
+ /* Voltage Duty-Cycle */
voltage-table = <1114000 0>,
<1095000 10>,
<1076000 20>,
<1056000 30>,
<1036000 40>,
<1016000 50>;
-
- regulator-min-microvolt = <1016000>;
- regulator-max-microvolt = <1114000>;
- regulator-name = "vdd_logic";
};
diff --git a/Documentation/devicetree/bindings/regulator/qcom,spmi-regulator.txt b/Documentation/devicetree/bindings/regulator/qcom,spmi-regulator.txt
index 75b4604bad07..d00bfd8624a5 100644
--- a/Documentation/devicetree/bindings/regulator/qcom,spmi-regulator.txt
+++ b/Documentation/devicetree/bindings/regulator/qcom,spmi-regulator.txt
@@ -91,13 +91,65 @@ see regulator.txt - with additional custom properties described below:
- regulator-initial-mode:
Usage: optional
Value type: <u32>
- Descrption: 1 = Set initial mode to high power mode (HPM), also referred
- to as NPM. HPM consumes more ground current than LPM, but
+ Description: 2 = Set initial mode to auto mode (automatically select
+ between HPM and LPM); not available on boost type
+ regulators.
+
+ 1 = Set initial mode to high power mode (HPM), also referred
+ to as NPM. HPM consumes more ground current than LPM, but
it can source significantly higher load current. HPM is not
available on boost type regulators. For voltage switch type
regulators, HPM implies that over current protection and
- soft start are active all the time. 0 = Set initial mode to
- low power mode (LPM).
+ soft start are active all the time.
+
+ 0 = Set initial mode to low power mode (LPM).
+
+- qcom,ocp-max-retries:
+ Usage: optional
+ Value type: <u32>
+ Description: Maximum number of times to try toggling a voltage switch
+ off and back on as a result of consecutive over current
+ events.
+
+- qcom,ocp-retry-delay:
+ Usage: optional
+ Value type: <u32>
+ Description: Time to delay in milliseconds between each voltage switch
+ toggle after an over current event takes place.
+
+- qcom,pin-ctrl-enable:
+ Usage: optional
+ Value type: <u32>
+ Description: Bit mask specifying which hardware pins should be used to
+ enable the regulator, if any; supported bits are:
+ 0 = ignore all hardware enable signals
+ BIT(0) = follow HW0_EN signal
+ BIT(1) = follow HW1_EN signal
+ BIT(2) = follow HW2_EN signal
+ BIT(3) = follow HW3_EN signal
+
+- qcom,pin-ctrl-hpm:
+ Usage: optional
+ Value type: <u32>
+ Description: Bit mask specifying which hardware pins should be used to
+ force the regulator into high power mode, if any;
+ supported bits are:
+ 0 = ignore all hardware enable signals
+ BIT(0) = follow HW0_EN signal
+ BIT(1) = follow HW1_EN signal
+ BIT(2) = follow HW2_EN signal
+ BIT(3) = follow HW3_EN signal
+ BIT(4) = follow PMIC awake state
+
+- qcom,vs-soft-start-strength:
+ Usage: optional
+ Value type: <u32>
+ Description: This property sets the soft start strength for voltage
+ switch type regulators; supported values are:
+ 0 = 0.05 uA
+ 1 = 0.25 uA
+ 2 = 0.55 uA
+ 3 = 0.75 uA
Example:
diff --git a/Documentation/devicetree/bindings/regulator/regulator.txt b/Documentation/devicetree/bindings/regulator/regulator.txt
index db88feb28c03..24bd422cecd5 100644
--- a/Documentation/devicetree/bindings/regulator/regulator.txt
+++ b/Documentation/devicetree/bindings/regulator/regulator.txt
@@ -42,6 +42,7 @@ Optional properties:
- regulator-system-load: Load in uA present on regulator that is not captured by
any consumer request.
- regulator-pull-down: Enable pull down resistor when the regulator is disabled.
+- regulator-over-current-protection: Enable over current protection.
Deprecated properties:
- regulator-compatible: If a regulator chip contains multiple
diff --git a/Documentation/devicetree/bindings/serial/atmel-usart.txt b/Documentation/devicetree/bindings/serial/atmel-usart.txt
index 90787aa2e648..e6e6142e33ac 100644
--- a/Documentation/devicetree/bindings/serial/atmel-usart.txt
+++ b/Documentation/devicetree/bindings/serial/atmel-usart.txt
@@ -22,6 +22,8 @@ Optional properties:
memory peripheral interface and USART DMA channel ID, FIFO configuration.
Refer to dma.txt and atmel-dma.txt for details.
- dma-names: "rx" for RX channel, "tx" for TX channel.
+- atmel,fifo-size: maximum number of data the RX and TX FIFOs can store for FIFO
+ capable USARTs.
<chip> compatible description:
- at91rm9200: legacy USART support
@@ -57,4 +59,5 @@ Example:
dmas = <&dma0 2 0x3>,
<&dma0 2 0x204>;
dma-names = "tx", "rx";
+ atmel,fifo-size = <32>;
};
diff --git a/Documentation/devicetree/bindings/serial/axis,etraxfs-uart.txt b/Documentation/devicetree/bindings/serial/axis,etraxfs-uart.txt
index ebcbb62c0a76..51b3c9e80ad9 100644
--- a/Documentation/devicetree/bindings/serial/axis,etraxfs-uart.txt
+++ b/Documentation/devicetree/bindings/serial/axis,etraxfs-uart.txt
@@ -6,7 +6,7 @@ Required properties:
- interrupts: device interrupt
Optional properties:
-- {dtr,dsr,ri,cd}-gpios: specify a GPIO for DTR/DSR/RI/CD
+- {dtr,dsr,rng,dcd}-gpios: specify a GPIO for DTR/DSR/RI/DCD
line respectively.
Example:
@@ -16,4 +16,8 @@ serial@b00260000 {
reg = <0xb0026000 0x1000>;
interrupts = <68>;
status = "disabled";
+ dtr-gpios = <&sysgpio 0 GPIO_ACTIVE_LOW>;
+ dsr-gpios = <&sysgpio 1 GPIO_ACTIVE_LOW>;
+ rng-gpios = <&sysgpio 2 GPIO_ACTIVE_LOW>;
+ dcd-gpios = <&sysgpio 3 GPIO_ACTIVE_LOW>;
};
diff --git a/Documentation/devicetree/bindings/serial/omap_serial.txt b/Documentation/devicetree/bindings/serial/omap_serial.txt
index 54c2a155c783..7a71b5de77d6 100644
--- a/Documentation/devicetree/bindings/serial/omap_serial.txt
+++ b/Documentation/devicetree/bindings/serial/omap_serial.txt
@@ -4,6 +4,9 @@ Required properties:
- compatible : should be "ti,omap2-uart" for OMAP2 controllers
- compatible : should be "ti,omap3-uart" for OMAP3 controllers
- compatible : should be "ti,omap4-uart" for OMAP4 controllers
+- compatible : should be "ti,am4372-uart" for AM437x controllers
+- compatible : should be "ti,am3352-uart" for AM335x controllers
+- compatible : should be "ti,dra742-uart" for DRA7x controllers
- reg : address and length of the register space
- interrupts or interrupts-extended : Should contain the uart interrupt
specifier or both the interrupt
diff --git a/Documentation/devicetree/bindings/sound/mt8173-max98090.txt b/Documentation/devicetree/bindings/sound/mt8173-max98090.txt
index 829bd26d17f8..519e97c8f1b8 100644
--- a/Documentation/devicetree/bindings/sound/mt8173-max98090.txt
+++ b/Documentation/devicetree/bindings/sound/mt8173-max98090.txt
@@ -3,11 +3,13 @@ MT8173 with MAX98090 CODEC
Required properties:
- compatible : "mediatek,mt8173-max98090"
- mediatek,audio-codec: the phandle of the MAX98090 audio codec
+- mediatek,platform: the phandle of MT8173 ASoC platform
Example:
sound {
compatible = "mediatek,mt8173-max98090";
mediatek,audio-codec = <&max98090>;
+ mediatek,platform = <&afe>;
};
diff --git a/Documentation/devicetree/bindings/sound/mt8173-rt5650-rt5676.txt b/Documentation/devicetree/bindings/sound/mt8173-rt5650-rt5676.txt
index 61e98c976bd4..f205ce9e31dd 100644
--- a/Documentation/devicetree/bindings/sound/mt8173-rt5650-rt5676.txt
+++ b/Documentation/devicetree/bindings/sound/mt8173-rt5650-rt5676.txt
@@ -3,11 +3,13 @@ MT8173 with RT5650 RT5676 CODECS
Required properties:
- compatible : "mediatek,mt8173-rt5650-rt5676"
- mediatek,audio-codec: the phandles of rt5650 and rt5676 codecs
+- mediatek,platform: the phandle of MT8173 ASoC platform
Example:
sound {
compatible = "mediatek,mt8173-rt5650-rt5676";
mediatek,audio-codec = <&rt5650 &rt5676>;
+ mediatek,platform = <&afe>;
};
diff --git a/Documentation/devicetree/bindings/spi/snps,dw-apb-ssi.txt b/Documentation/devicetree/bindings/spi/snps,dw-apb-ssi.txt
index bd99193e87b9..204b311e0400 100644
--- a/Documentation/devicetree/bindings/spi/snps,dw-apb-ssi.txt
+++ b/Documentation/devicetree/bindings/spi/snps,dw-apb-ssi.txt
@@ -10,6 +10,8 @@ Required properties:
Optional properties:
- cs-gpios : Specifies the gpio pis to be used for chipselects.
- num-cs : The number of chipselects. If omitted, this will default to 4.
+- reg-io-width : The I/O register width (in bytes) implemented by this
+ device. Supported values are 2 or 4 (the default).
Child nodes as per the generic SPI binding.
diff --git a/Documentation/devicetree/bindings/spi/spi-ath79.txt b/Documentation/devicetree/bindings/spi/spi-ath79.txt
index f1ad9c367532..9c696fa66f81 100644
--- a/Documentation/devicetree/bindings/spi/spi-ath79.txt
+++ b/Documentation/devicetree/bindings/spi/spi-ath79.txt
@@ -3,7 +3,7 @@ Binding for Qualcomm Atheros AR7xxx/AR9xxx SPI controller
Required properties:
- compatible: has to be "qca,<soc-type>-spi", "qca,ar7100-spi" as fallback.
- reg: Base address and size of the controllers memory area
-- clocks: phandle to the AHB clock.
+- clocks: phandle of the AHB clock.
- clock-names: has to be "ahb".
- #address-cells: <1>, as required by generic SPI binding.
- #size-cells: <0>, also as required by generic SPI binding.
@@ -12,9 +12,9 @@ Child nodes as per the generic SPI binding.
Example:
- spi@1F000000 {
+ spi@1f000000 {
compatible = "qca,ar9132-spi", "qca,ar7100-spi";
- reg = <0x1F000000 0x10>;
+ reg = <0x1f000000 0x10>;
clocks = <&pll 2>;
clock-names = "ahb";
diff --git a/Documentation/devicetree/bindings/spi/spi-davinci.txt b/Documentation/devicetree/bindings/spi/spi-davinci.txt
index 12ecfe9e3599..d1e914adcf6e 100644
--- a/Documentation/devicetree/bindings/spi/spi-davinci.txt
+++ b/Documentation/devicetree/bindings/spi/spi-davinci.txt
@@ -12,6 +12,8 @@ Required properties:
- compatible:
- "ti,dm6441-spi" for SPI used similar to that on DM644x SoC family
- "ti,da830-spi" for SPI used similar to that on DA8xx SoC family
+ - "ti,keystone-spi" for SPI used similar to that on Keystone2 SoC
+ family
- reg: Offset and length of SPI controller register space
- num-cs: Number of chip selects. This includes internal as well as
GPIO chip selects.
diff --git a/Documentation/devicetree/bindings/spi/spi-img-spfi.txt b/Documentation/devicetree/bindings/spi/spi-img-spfi.txt
index e02fbf18c82c..494db6012d02 100644
--- a/Documentation/devicetree/bindings/spi/spi-img-spfi.txt
+++ b/Documentation/devicetree/bindings/spi/spi-img-spfi.txt
@@ -21,6 +21,7 @@ Required properties:
Optional properties:
- img,supports-quad-mode: Should be set if the interface supports quad mode
SPI transfers.
+- spfi-max-frequency: Maximum speed supported by the spfi block.
Example:
diff --git a/Documentation/devicetree/bindings/spi/spi-mt65xx.txt b/Documentation/devicetree/bindings/spi/spi-mt65xx.txt
new file mode 100644
index 000000000000..dcefc438272f
--- /dev/null
+++ b/Documentation/devicetree/bindings/spi/spi-mt65xx.txt
@@ -0,0 +1,51 @@
+Binding for MTK SPI controller
+
+Required properties:
+- compatible: should be one of the following.
+ - mediatek,mt8173-spi: for mt8173 platforms
+ - mediatek,mt8135-spi: for mt8135 platforms
+ - mediatek,mt6589-spi: for mt6589 platforms
+
+- #address-cells: should be 1.
+
+- #size-cells: should be 0.
+
+- reg: Address and length of the register set for the device
+
+- interrupts: Should contain spi interrupt
+
+- clocks: phandles to input clocks.
+ The first should be <&topckgen CLK_TOP_SPI_SEL>.
+ The second should be one of the following.
+ - <&clk26m>: specify parent clock 26MHZ.
+ - <&topckgen CLK_TOP_SYSPLL3_D2>: specify parent clock 109MHZ.
+ It's the default one.
+ - <&topckgen CLK_TOP_SYSPLL4_D2>: specify parent clock 78MHZ.
+ - <&topckgen CLK_TOP_UNIVPLL2_D4>: specify parent clock 104MHZ.
+ - <&topckgen CLK_TOP_UNIVPLL1_D8>: specify parent clock 78MHZ.
+
+- clock-names: shall be "spi-clk" for the controller clock, and
+ "parent-clk" for the parent clock.
+
+Optional properties:
+- mediatek,pad-select: specify which pins group(ck/mi/mo/cs) spi
+ controller used, this value should be 0~3, only required for MT8173.
+ 0: specify GPIO69,70,71,72 for spi pins.
+ 1: specify GPIO102,103,104,105 for spi pins.
+ 2: specify GPIO128,129,130,131 for spi pins.
+ 3: specify GPIO5,6,7,8 for spi pins.
+
+Example:
+
+- SoC Specific Portion:
+spi: spi@1100a000 {
+ compatible = "mediatek,mt8173-spi";
+ #address-cells = <1>;
+ #size-cells = <0>;
+ reg = <0 0x1100a000 0 0x1000>;
+ interrupts = <GIC_SPI 110 IRQ_TYPE_LEVEL_LOW>;
+ clocks = <&topckgen CLK_TOP_SPI_SEL>, <&topckgen CLK_TOP_SYSPLL3_D2>;
+ clock-names = "spi-clk", "parent-clk";
+ mediatek,pad-select = <0>;
+ status = "disabled";
+};
diff --git a/Documentation/devicetree/bindings/spi/spi-xlp.txt b/Documentation/devicetree/bindings/spi/spi-xlp.txt
new file mode 100644
index 000000000000..40e82d51efec
--- /dev/null
+++ b/Documentation/devicetree/bindings/spi/spi-xlp.txt
@@ -0,0 +1,39 @@
+SPI Master controller for Netlogic XLP MIPS64 SOCs
+==================================================
+
+Currently this SPI controller driver is supported for the following
+Netlogic XLP SoCs:
+ XLP832, XLP316, XLP208, XLP980, XLP532
+
+Required properties:
+- compatible : Should be "netlogic,xlp832-spi".
+- #address-cells : Number of cells required to define a chip select address
+ on the SPI bus.
+- #size-cells : Should be zero.
+- reg : Should contain register location and length.
+- clocks : Phandle of the spi clock
+- interrupts : Interrupt number used by this controller.
+- interrupt-parent : Phandle of the parent interrupt controller.
+
+SPI slave nodes must be children of the SPI master node and can contain
+properties described in Documentation/devicetree/bindings/spi/spi-bus.txt.
+
+Example:
+
+ spi: xlp_spi@3a100 {
+ compatible = "netlogic,xlp832-spi";
+ #address-cells = <1>;
+ #size-cells = <0>;
+ reg = <0 0x3a100 0x100>;
+ clocks = <&spi_clk>;
+ interrupts = <34>;
+ interrupt-parent = <&pic>;
+
+ spi_nor@1 {
+ compatible = "spansion,s25sl12801";
+ #address-cells = <1>;
+ #size-cells = <1>;
+ reg = <1>; /* Chip Select */
+ spi-max-frequency = <40000000>;
+ };
+};
diff --git a/Documentation/devicetree/bindings/staging/iio/adc/mxs-lradc.txt b/Documentation/devicetree/bindings/staging/iio/adc/mxs-lradc.txt
index 307537787574..555fb117d4fa 100644
--- a/Documentation/devicetree/bindings/staging/iio/adc/mxs-lradc.txt
+++ b/Documentation/devicetree/bindings/staging/iio/adc/mxs-lradc.txt
@@ -1,4 +1,4 @@
-* Freescale i.MX28 LRADC device driver
+* Freescale MXS LRADC device driver
Required properties:
- compatible: Should be "fsl,imx23-lradc" for i.MX23 SoC and "fsl,imx28-lradc"
diff --git a/Documentation/devicetree/bindings/usb/allwinner,sun4i-a10-musb.txt b/Documentation/devicetree/bindings/usb/allwinner,sun4i-a10-musb.txt
new file mode 100644
index 000000000000..862cd7c79805
--- /dev/null
+++ b/Documentation/devicetree/bindings/usb/allwinner,sun4i-a10-musb.txt
@@ -0,0 +1,29 @@
+Allwinner sun4i A10 musb DRC/OTG controller
+-------------------------------------------
+
+Required properties:
+ - compatible : "allwinner,sun4i-a10-musb", "allwinner,sun6i-a31-musb"
+ or "allwinner,sun8i-a33-musb"
+ - reg : mmio address range of the musb controller
+ - clocks : clock specifier for the musb controller ahb gate clock
+ - reset : reset specifier for the ahb reset (A31 and newer only)
+ - interrupts : interrupt to which the musb controller is connected
+ - interrupt-names : must be "mc"
+ - phys : phy specifier for the otg phy
+ - phy-names : must be "usb"
+ - dr_mode : Dual-Role mode must be "host" or "otg"
+ - extcon : extcon specifier for the otg phy
+
+Example:
+
+ usb_otg: usb@01c13000 {
+ compatible = "allwinner,sun4i-a10-musb";
+ reg = <0x01c13000 0x0400>;
+ clocks = <&ahb_gates 0>;
+ interrupts = <38>;
+ interrupt-names = "mc";
+ phys = <&usbphy 0>;
+ phy-names = "usb";
+ extcon = <&usbphy 0>;
+ status = "disabled";
+ };
diff --git a/Documentation/devicetree/bindings/usb/ci-hdrc-usb2.txt b/Documentation/devicetree/bindings/usb/ci-hdrc-usb2.txt
index 553e2fae3a76..d71ef07bca5d 100644
--- a/Documentation/devicetree/bindings/usb/ci-hdrc-usb2.txt
+++ b/Documentation/devicetree/bindings/usb/ci-hdrc-usb2.txt
@@ -30,6 +30,21 @@ Optional properties:
argument that indicate usb controller index
- disable-over-current: (FSL only) disable over current detect
- external-vbus-divider: (FSL only) enables off-chip resistor divider for Vbus
+- itc-setting: interrupt threshold control register control, the setting
+ should be aligned with ITC bits at register USBCMD.
+- ahb-burst-config: it is vendor dependent, the required value should be
+ aligned with AHBBRST at SBUSCFG, the range is from 0x0 to 0x7. This
+ property is used to change AHB burst configuration, check the chipidea
+ spec for meaning of each value. If this property is not existed, it
+ will use the reset value.
+- tx-burst-size-dword: it is vendor dependent, the tx burst size in dword
+ (4 bytes), This register represents the maximum length of a the burst
+ in 32-bit words while moving data from system memory to the USB
+ bus, changing this value takes effect only the SBUSCFG.AHBBRST is 0.
+- rx-burst-size-dword: it is vendor dependent, the rx burst size in dword
+ (4 bytes), This register represents the maximum length of a the burst
+ in 32-bit words while moving data from the USB bus to system memory,
+ changing this value takes effect only the SBUSCFG.AHBBRST is 0.
Example:
@@ -41,4 +56,9 @@ Example:
phys = <&usb_phy0>;
phy-names = "usb-phy";
vbus-supply = <&reg_usb0_vbus>;
+ gadget-itc-setting = <0x4>; /* 4 micro-frames */
+ /* Incremental burst of unspecified length */
+ ahb-burst-config = <0x0>;
+ tx-burst-size-dword = <0x10>; /* 64 bytes */
+ rx-burst-size-dword = <0x10>;
};
diff --git a/Documentation/devicetree/bindings/usb/generic.txt b/Documentation/devicetree/bindings/usb/generic.txt
index 477d5bb5e51c..bba825711873 100644
--- a/Documentation/devicetree/bindings/usb/generic.txt
+++ b/Documentation/devicetree/bindings/usb/generic.txt
@@ -11,6 +11,19 @@ Optional properties:
"peripheral" and "otg". In case this attribute isn't
passed via DT, USB DRD controllers should default to
OTG.
+ - otg-rev: tells usb driver the release number of the OTG and EH supplement
+ with which the device and its descriptors are compliant,
+ in binary-coded decimal (i.e. 2.0 is 0200H). This
+ property is used if any real OTG features(HNP/SRP/ADP)
+ is enabled, if ADP is required, otg-rev should be
+ 0x0200 or above.
+ - hnp-disable: tells OTG controllers we want to disable OTG HNP, normally HNP
+ is the basic function of real OTG except you want it
+ to be a srp-capable only B device.
+ - srp-disable: tells OTG controllers we want to disable OTG SRP, SRP is
+ optional for OTG device.
+ - adp-disable: tells OTG controllers we want to disable OTG ADP, ADP is
+ optional for OTG device.
This is an attribute to a USB controller such as:
@@ -21,4 +34,6 @@ dwc3@4a030000 {
usb-phy = <&usb2_phy>, <&usb3,phy>;
maximum-speed = "super-speed";
dr_mode = "otg";
+ otg-rev = <0x0200>;
+ adp-disable;
};
diff --git a/Documentation/devicetree/bindings/usb/msm-hsusb.txt b/Documentation/devicetree/bindings/usb/msm-hsusb.txt
index bd8d9e753029..8654a3ec23e4 100644
--- a/Documentation/devicetree/bindings/usb/msm-hsusb.txt
+++ b/Documentation/devicetree/bindings/usb/msm-hsusb.txt
@@ -52,6 +52,10 @@ Required properties:
Optional properties:
- dr_mode: One of "host", "peripheral" or "otg". Defaults to "otg"
+- switch-gpio: A phandle + gpio-specifier pair. Some boards are using Dual
+ SPDT USB Switch, witch is cotrolled by GPIO to de/multiplex
+ D+/D- USB lines between connectors.
+
- qcom,phy-init-sequence: PHY configuration sequence values. This is related to Device
Mode Eye Diagram test. Start address at which these values will be
written is ULPI_EXT_VENDOR_SPECIFIC. Value of -1 is reserved as
diff --git a/Documentation/devicetree/bindings/usb/qcom,usb-8x16-phy.txt b/Documentation/devicetree/bindings/usb/qcom,usb-8x16-phy.txt
new file mode 100644
index 000000000000..2cb2168cef41
--- /dev/null
+++ b/Documentation/devicetree/bindings/usb/qcom,usb-8x16-phy.txt
@@ -0,0 +1,76 @@
+Qualcomm's APQ8016/MSM8916 USB transceiver controller
+
+- compatible:
+ Usage: required
+ Value type: <string>
+ Definition: Should contain "qcom,usb-8x16-phy".
+
+- reg:
+ Usage: required
+ Value type: <prop-encoded-array>
+ Definition: USB PHY base address and length of the register map
+
+- clocks:
+ Usage: required
+ Value type: <prop-encoded-array>
+ Definition: See clock-bindings.txt section "consumers". List of
+ two clock specifiers for interface and core controller
+ clocks.
+
+- clock-names:
+ Usage: required
+ Value type: <string>
+ Definition: Must contain "iface" and "core" strings.
+
+- vddcx-supply:
+ Usage: required
+ Value type: <phandle>
+ Definition: phandle to the regulator VDCCX supply node.
+
+- v1p8-supply:
+ Usage: required
+ Value type: <phandle>
+ Definition: phandle to the regulator 1.8V supply node.
+
+- v3p3-supply:
+ Usage: required
+ Value type: <phandle>
+ Definition: phandle to the regulator 3.3V supply node.
+
+- resets:
+ Usage: required
+ Value type: <prop-encoded-array>
+ Definition: See reset.txt section "consumers". PHY reset specifier.
+
+- reset-names:
+ Usage: required
+ Value type: <string>
+ Definition: Must contain "phy" string.
+
+- switch-gpio:
+ Usage: optional
+ Value type: <prop-encoded-array>
+ Definition: Some boards are using Dual SPDT USB Switch, witch is
+ controlled by GPIO to de/multiplex D+/D- USB lines
+ between connectors.
+
+Example:
+ usb_phy: phy@78d9000 {
+ compatible = "qcom,usb-8x16-phy";
+ reg = <0x78d9000 0x400>;
+
+ vddcx-supply = <&pm8916_s1_corner>;
+ v1p8-supply = <&pm8916_l7>;
+ v3p3-supply = <&pm8916_l13>;
+
+ clocks = <&gcc GCC_USB_HS_AHB_CLK>,
+ <&gcc GCC_USB_HS_SYSTEM_CLK>;
+ clock-names = "iface", "core";
+
+ resets = <&gcc GCC_USB2A_PHY_BCR>;
+ reset-names = "phy";
+
+ // D+/D- lines: 1 - Routed to HUB, 0 - Device connector
+ switch-gpio = <&pm8916_gpios 4 GPIO_ACTIVE_HIGH>;
+ };
+
diff --git a/Documentation/email-clients.txt b/Documentation/email-clients.txt
index c7d49b885559..3fa450881ecb 100644
--- a/Documentation/email-clients.txt
+++ b/Documentation/email-clients.txt
@@ -93,7 +93,7 @@ Evolution (GUI)
Some people use this successfully for patches.
When composing mail select: Preformat
- from Format->Heading->Preformatted (Ctrl-7)
+ from Format->Paragraph Style->Preformatted (Ctrl-7)
or the toolbar
Then use:
diff --git a/Documentation/fb/sm712fb.txt b/Documentation/fb/sm712fb.txt
new file mode 100644
index 000000000000..c388442edf51
--- /dev/null
+++ b/Documentation/fb/sm712fb.txt
@@ -0,0 +1,31 @@
+What is sm712fb?
+=================
+
+This is a graphics framebuffer driver for Silicon Motion SM712 based processors.
+
+How to use it?
+==============
+
+Switching modes is done using the video=sm712fb:... boot parameter.
+
+If you want, for example, enable a resolution of 1280x1024x24bpp you should
+pass to the kernel this command line: "video=sm712fb:0x31B".
+
+You should not compile-in vesafb.
+
+Currently supported video modes are:
+
+[Graphic modes]
+
+bpp | 640x480 800x600 1024x768 1280x1024
+----+--------------------------------------------
+ 8 | 0x301 0x303 0x305 0x307
+ 16 | 0x311 0x314 0x317 0x31A
+ 24 | 0x312 0x315 0x318 0x31B
+
+Missing Features
+================
+(alias TODO list)
+
+ * 2D acceleratrion
+ * dual-head support
diff --git a/Documentation/filesystems/btrfs.txt b/Documentation/filesystems/btrfs.txt
index d11cc2f8077b..c772b47e7ef0 100644
--- a/Documentation/filesystems/btrfs.txt
+++ b/Documentation/filesystems/btrfs.txt
@@ -61,7 +61,7 @@ Options with (*) are default options and will not show in the mount options.
check_int enables the integrity checker module, which examines all
block write requests to ensure on-disk consistency, at a large
- memory and CPU cost.
+ memory and CPU cost.
check_int_data includes extent data in the integrity checks, and
implies the check_int option.
@@ -113,7 +113,7 @@ Options with (*) are default options and will not show in the mount options.
Disable/enable debugging option to be more verbose in some ENOSPC conditions.
fatal_errors=<action>
- Action to take when encountering a fatal error:
+ Action to take when encountering a fatal error:
"bug" - BUG() on a fatal error. This is the default.
"panic" - panic() on a fatal error.
@@ -132,10 +132,10 @@ Options with (*) are default options and will not show in the mount options.
max_inline=<bytes>
Specify the maximum amount of space, in bytes, that can be inlined in
- a metadata B-tree leaf. The value is specified in bytes, optionally
+ a metadata B-tree leaf. The value is specified in bytes, optionally
with a K, M, or G suffix, case insensitive. In practice, this value
is limited by the root sector size, with some space unavailable due
- to leaf headers. For a 4k sectorsize, max inline data is ~3900 bytes.
+ to leaf headers. For a 4k sector size, max inline data is ~3900 bytes.
metadata_ratio=<value>
Specify that 1 metadata chunk should be allocated after every <value>
@@ -170,7 +170,7 @@ Options with (*) are default options and will not show in the mount options.
recovery
Enable autorecovery attempts if a bad tree root is found at mount time.
- Currently this scans a list of several previous tree roots and tries to
+ Currently this scans a list of several previous tree roots and tries to
use the first readable.
rescan_uuid_tree
@@ -194,7 +194,7 @@ Options with (*) are default options and will not show in the mount options.
ssd_spread
Options to control ssd allocation schemes. By default, BTRFS will
enable or disable ssd allocation heuristics depending on whether a
- rotational or nonrotational disk is in use. The ssd and nossd options
+ rotational or non-rotational disk is in use. The ssd and nossd options
can override this autodetection.
The ssd_spread mount option attempts to allocate into big chunks
@@ -216,13 +216,13 @@ Options with (*) are default options and will not show in the mount options.
This allows mounting of subvolumes which are not in the root of the mounted
filesystem.
You can use "btrfs subvolume show " to see the object ID for a subvolume.
-
+
thread_pool=<number>
The number of worker threads to allocate. The default number is equal
to the number of CPUs + 2, or 8, whichever is smaller.
user_subvol_rm_allowed
- Allow subvolumes to be deleted by a non-root user. Use with caution.
+ Allow subvolumes to be deleted by a non-root user. Use with caution.
MAILING LIST
============
diff --git a/Documentation/filesystems/debugfs.txt b/Documentation/filesystems/debugfs.txt
index 88ab81c79109..463f595733e8 100644
--- a/Documentation/filesystems/debugfs.txt
+++ b/Documentation/filesystems/debugfs.txt
@@ -51,6 +51,17 @@ operations should be provided; others can be included as needed. Again,
the return value will be a dentry pointer to the created file, NULL for
error, or ERR_PTR(-ENODEV) if debugfs support is missing.
+Create a file with an initial size, the following function can be used
+instead:
+
+ struct dentry *debugfs_create_file_size(const char *name, umode_t mode,
+ struct dentry *parent, void *data,
+ const struct file_operations *fops,
+ loff_t file_size);
+
+file_size is the initial file size. The other parameters are the same
+as the function debugfs_create_file.
+
In a number of cases, the creation of a set of file operations is not
actually necessary; the debugfs code provides a number of helper functions
for simple situations. Files containing a single integer value can be
@@ -100,6 +111,14 @@ A read on the resulting file will yield either Y (for non-zero values) or
N, followed by a newline. If written to, it will accept either upper- or
lower-case values, or 1 or 0. Any other input will be silently ignored.
+Also, atomic_t values can be placed in debugfs with:
+
+ struct dentry *debugfs_create_atomic_t(const char *name, umode_t mode,
+ struct dentry *parent, atomic_t *value)
+
+A read of this file will get atomic_t values, and a write of this file
+will set atomic_t values.
+
Another option is exporting a block of arbitrary binary data, with
this structure and function:
@@ -147,6 +166,27 @@ The "base" argument may be 0, but you may want to build the reg32 array
using __stringify, and a number of register names (macros) are actually
byte offsets over a base for the register block.
+If you want to dump an u32 array in debugfs, you can create file with:
+
+ struct dentry *debugfs_create_u32_array(const char *name, umode_t mode,
+ struct dentry *parent,
+ u32 *array, u32 elements);
+
+The "array" argument provides data, and the "elements" argument is
+the number of elements in the array. Note: Once array is created its
+size can not be changed.
+
+There is a helper function to create device related seq_file:
+
+ struct dentry *debugfs_create_devm_seqfile(struct device *dev,
+ const char *name,
+ struct dentry *parent,
+ int (*read_fn)(struct seq_file *s,
+ void *data));
+
+The "dev" argument is the device related to this debugfs file, and
+the "read_fn" is a function pointer which to be called to print the
+seq_file content.
There are a couple of other directory-oriented helper functions:
diff --git a/Documentation/filesystems/sysfs.txt b/Documentation/filesystems/sysfs.txt
index b35a64b82f9e..9494afb9476a 100644
--- a/Documentation/filesystems/sysfs.txt
+++ b/Documentation/filesystems/sysfs.txt
@@ -212,7 +212,10 @@ Other notes:
- show() methods should return the number of bytes printed into the
buffer. This is the return value of scnprintf().
-- show() should always use scnprintf().
+- show() must not use snprintf() when formatting the value to be
+ returned to user space. If you can guarantee that an overflow
+ will never happen you can use sprintf() otherwise you must use
+ scnprintf().
- store() should return the number of bytes used from the buffer. If the
entire buffer has been used, just return the count argument.
diff --git a/Documentation/hwmon/adm1275 b/Documentation/hwmon/adm1275
index 15b4a20d5062..d697229e3c18 100644
--- a/Documentation/hwmon/adm1275
+++ b/Documentation/hwmon/adm1275
@@ -14,6 +14,10 @@ Supported chips:
Prefix: 'adm1276'
Addresses scanned: -
Datasheet: www.analog.com/static/imported-files/data_sheets/ADM1276.pdf
+ * Analog Devices ADM1293/ADM1294
+ Prefix: 'adm1293', 'adm1294'
+ Addresses scanned: -
+ Datasheet: http://www.analog.com/media/en/technical-documentation/data-sheets/ADM1293_1294.pdf
Author: Guenter Roeck <linux@roeck-us.net>
@@ -22,12 +26,12 @@ Description
-----------
This driver supports hardware montoring for Analog Devices ADM1075, ADM1275,
-and ADM1276 Hot-Swap Controller and Digital Power Monitor.
+ADM1276, ADM1293, and ADM1294 Hot-Swap Controller and Digital Power Monitors.
-ADM1075, ADM1275, and ADM1276 are hot-swap controllers that allow a circuit
-board to be removed from or inserted into a live backplane. They also feature
-current and voltage readback via an integrated 12-bit analog-to-digital
-converter (ADC), accessed using a PMBus interface.
+ADM1075, ADM1275, ADM1276, ADM1293, and ADM1294 are hot-swap controllers that
+allow a circuit board to be removed from or inserted into a live backplane.
+They also feature current and voltage readback via an integrated 12
+bit analog-to-digital converter (ADC), accessed using a PMBus interface.
The driver is a client driver to the core PMBus driver. Please see
Documentation/hwmon/pmbus for details on PMBus client drivers.
@@ -58,16 +62,16 @@ Sysfs entries
The following attributes are supported. Limits are read-write, history reset
attributes are write-only, all other attributes are read-only.
-in1_label "vin1" or "vout1" depending on chip variant and
- configuration. On ADM1075, vout1 reports the voltage on
- the VAUX pin.
-in1_input Measured voltage.
-in1_min Minimum Voltage.
-in1_max Maximum voltage.
-in1_min_alarm Voltage low alarm.
-in1_max_alarm Voltage high alarm.
-in1_highest Historical maximum voltage.
-in1_reset_history Write any value to reset history.
+inX_label "vin1" or "vout1" depending on chip variant and
+ configuration. On ADM1075, ADM1293, and ADM1294,
+ vout1 reports the voltage on the VAUX pin.
+inX_input Measured voltage.
+inX_min Minimum Voltage.
+inX_max Maximum voltage.
+inX_min_alarm Voltage low alarm.
+inX_max_alarm Voltage high alarm.
+inX_highest Historical maximum voltage.
+inX_reset_history Write any value to reset history.
curr1_label "iout1"
curr1_input Measured current.
@@ -86,7 +90,9 @@ curr1_reset_history Write any value to reset history.
power1_label "pin1"
power1_input Input power.
+power1_input_lowest Lowest observed input power. ADM1293 and ADM1294 only.
+power1_input_highest Highest observed input power.
power1_reset_history Write any value to reset history.
- Power attributes are supported on ADM1075 and ADM1276
- only.
+ Power attributes are supported on ADM1075, ADM1276,
+ ADM1293, and ADM1294.
diff --git a/Documentation/hwmon/fam15h_power b/Documentation/hwmon/fam15h_power
index 80654813d04a..e2b1b69eebea 100644
--- a/Documentation/hwmon/fam15h_power
+++ b/Documentation/hwmon/fam15h_power
@@ -3,12 +3,13 @@ Kernel driver fam15h_power
Supported chips:
* AMD Family 15h Processors
+* AMD Family 16h Processors
Prefix: 'fam15h_power'
Addresses scanned: PCI space
Datasheets:
BIOS and Kernel Developer's Guide (BKDG) For AMD Family 15h Processors
- (not yet published)
+ BIOS and Kernel Developer's Guide (BKDG) For AMD Family 16h Processors
Author: Andreas Herrmann <herrmann.der.user@googlemail.com>
@@ -16,10 +17,11 @@ Description
-----------
This driver permits reading of registers providing power information
-of AMD Family 15h processors.
+of AMD Family 15h and 16h processors.
-For AMD Family 15h processors the following power values can be
-calculated using different processor northbridge function registers:
+For AMD Family 15h and 16h processors the following power values can
+be calculated using different processor northbridge function
+registers:
* BasePwrWatts: Specifies in watts the maximum amount of power
consumed by the processor for NB and logic external to the core.
diff --git a/Documentation/hwmon/it87 b/Documentation/hwmon/it87
index e87294878334..733296d65449 100644
--- a/Documentation/hwmon/it87
+++ b/Documentation/hwmon/it87
@@ -38,6 +38,10 @@ Supported chips:
Prefix: 'it8728'
Addresses scanned: from Super I/O config space (8 I/O ports)
Datasheet: Not publicly available
+ * IT8732F
+ Prefix: 'it8732'
+ Addresses scanned: from Super I/O config space (8 I/O ports)
+ Datasheet: Not publicly available
* IT8771E
Prefix: 'it8771'
Addresses scanned: from Super I/O config space (8 I/O ports)
@@ -111,9 +115,9 @@ Description
-----------
This driver implements support for the IT8603E, IT8620E, IT8623E, IT8705F,
-IT8712F, IT8716F, IT8718F, IT8720F, IT8721F, IT8726F, IT8728F, IT8758E,
-IT8771E, IT8772E, IT8781F, IT8782F, IT8783E/F, IT8786E, IT8790E, and SiS950
-chips.
+IT8712F, IT8716F, IT8718F, IT8720F, IT8721F, IT8726F, IT8728F, IT8732F,
+IT8758E, IT8771E, IT8772E, IT8781F, IT8782F, IT8783E/F, IT8786E, IT8790E, and
+SiS950 chips.
These chips are 'Super I/O chips', supporting floppy disks, infrared ports,
joysticks and other miscellaneous stuff. For hardware monitoring, they
@@ -137,10 +141,10 @@ The IT8716F, IT8718F, IT8720F, IT8721F/IT8758E and later IT8712F revisions
have support for 2 additional fans. The additional fans are supported by the
driver.
-The IT8716F, IT8718F, IT8720F, IT8721F/IT8758E, IT8781F, IT8782F, IT8783E/F,
-and late IT8712F and IT8705F also have optional 16-bit tachometer counters
-for fans 1 to 3. This is better (no more fan clock divider mess) but not
-compatible with the older chips and revisions. The 16-bit tachometer mode
+The IT8716F, IT8718F, IT8720F, IT8721F/IT8758E, IT8732F, IT8781F, IT8782F,
+IT8783E/F, and late IT8712F and IT8705F also have optional 16-bit tachometer
+counters for fans 1 to 3. This is better (no more fan clock divider mess) but
+not compatible with the older chips and revisions. The 16-bit tachometer mode
is enabled by the driver when one of the above chips is detected.
The IT8726F is just bit enhanced IT8716F with additional hardware
@@ -159,6 +163,9 @@ IT8728F. It only supports 16-bit fan mode.
The IT8790E supports up to 3 fans. 16-bit fan mode is always enabled.
+The IT8732F supports a closed-loop mode for fan control, but this is not
+currently implemented by the driver.
+
Temperatures are measured in degrees Celsius. An alarm is triggered once
when the Overtemperature Shutdown limit is crossed.
@@ -173,12 +180,14 @@ is done.
Voltage sensors (also known as IN sensors) report their values in volts. An
alarm is triggered if the voltage has crossed a programmable minimum or
maximum limit. Note that minimum in this case always means 'closest to
-zero'; this is important for negative voltage measurements. All voltage
-inputs can measure voltages between 0 and 4.08 volts, with a resolution of
-0.016 volt (except IT8603E, IT8721F/IT8758E and IT8728F: 0.012 volt.) The
-battery voltage in8 does not have limit registers.
-
-On the IT8603E, IT8721F/IT8758E, IT8781F, IT8782F, and IT8783E/F, some
+zero'; this is important for negative voltage measurements. On most chips, all
+voltage inputs can measure voltages between 0 and 4.08 volts, with a resolution
+of 0.016 volt. IT8603E, IT8721F/IT8758E and IT8728F can measure between 0 and
+3.06 volts, with a resolution of 0.012 volt. IT8732F can measure between 0 and
+2.8 volts with a resolution of 0.0109 volt. The battery voltage in8 does not
+have limit registers.
+
+On the IT8603E, IT8721F/IT8758E, IT8732F, IT8781F, IT8782F, and IT8783E/F, some
voltage inputs are internal and scaled inside the chip:
* in3 (optional)
* in7 (optional for IT8781F, IT8782F, and IT8783E/F)
diff --git a/Documentation/hwmon/ltc2978 b/Documentation/hwmon/ltc2978
index 686c078bb0e0..9a49d3c90cd1 100644
--- a/Documentation/hwmon/ltc2978
+++ b/Documentation/hwmon/ltc2978
@@ -6,6 +6,10 @@ Supported chips:
Prefix: 'ltc2974'
Addresses scanned: -
Datasheet: http://www.linear.com/product/ltc2974
+ * Linear Technology LTC2975
+ Prefix: 'ltc2975'
+ Addresses scanned: -
+ Datasheet: http://www.linear.com/product/ltc2975
* Linear Technology LTC2977
Prefix: 'ltc2977'
Addresses scanned: -
@@ -15,14 +19,38 @@ Supported chips:
Addresses scanned: -
Datasheet: http://www.linear.com/product/ltc2978
http://www.linear.com/product/ltc2978a
+ * Linear Technology LTC2980
+ Prefix: 'ltc2980'
+ Addresses scanned: -
+ Datasheet: http://www.linear.com/product/ltc2980
* Linear Technology LTC3880
Prefix: 'ltc3880'
Addresses scanned: -
Datasheet: http://www.linear.com/product/ltc3880
+ * Linear Technology LTC3882
+ Prefix: 'ltc3882'
+ Addresses scanned: -
+ Datasheet: http://www.linear.com/product/ltc3882
* Linear Technology LTC3883
Prefix: 'ltc3883'
Addresses scanned: -
Datasheet: http://www.linear.com/product/ltc3883
+ * Linear Technology LTC3886
+ Prefix: 'ltc3886'
+ Addresses scanned: -
+ Datasheet: http://www.linear.com/product/ltc3886
+ * Linear Technology LTC3887
+ Prefix: 'ltc3887'
+ Addresses scanned: -
+ Datasheet: http://www.linear.com/product/ltc3887
+ * Linear Technology LTM2987
+ Prefix: 'ltm2987'
+ Addresses scanned: -
+ Datasheet: http://www.linear.com/product/ltm2987
+ * Linear Technology LTM4675
+ Prefix: 'ltm4675'
+ Addresses scanned: -
+ Datasheet: http://www.linear.com/product/ltm4675
* Linear Technology LTM4676
Prefix: 'ltm4676'
Addresses scanned: -
@@ -34,11 +62,20 @@ Author: Guenter Roeck <linux@roeck-us.net>
Description
-----------
-LTC2974 is a quad digital power supply manager. LTC2978 is an octal power supply
-monitor. LTC2977 is a pin compatible replacement for LTC2978. LTC3880 is a dual
-output poly-phase step-down DC/DC controller. LTC3883 is a single phase
-step-down DC/DC controller. LTM4676 is a dual 13A or single 26A uModule
-regulator.
+LTC2974 and LTC2975 are quad digital power supply managers.
+LTC2978 is an octal power supply monitor.
+LTC2977 is a pin compatible replacement for LTC2978.
+LTC2980 is a 16-channel Power System Manager, consisting of two LTC2977
+in a single die. The chip is instantiated and reported as two separate chips
+on two different I2C bus addresses.
+LTC3880, LTC3882, LTC3886, and LTC3887 are dual output poly-phase step-down
+DC/DC controllers.
+LTC3883 is a single phase step-down DC/DC controller.
+LTM2987 is a 16-channel Power System Manager with two LTC2977 plus
+additional components on a single die. The chip is instantiated and reported
+as two separate chips on two different I2C bus addresses.
+LTM4675 is a dual 9A or single 18A μModule regulator
+LTM4676 is a dual 13A or single 26A uModule regulator.
Usage Notes
@@ -61,26 +98,32 @@ in1_label "vin"
in1_input Measured input voltage.
in1_min Minimum input voltage.
in1_max Maximum input voltage.
- LTC2974, LTC2977, and LTC2978 only.
+ LTC2974, LTC2975, LTC2977, LTC2980, LTC2978, and
+ LTM2987 only.
in1_lcrit Critical minimum input voltage.
- LTC2974, LTC2977, and LTC2978 only.
+ LTC2974, LTC2975, LTC2977, LTC2980, LTC2978, and
+ LTM2987 only.
in1_crit Critical maximum input voltage.
in1_min_alarm Input voltage low alarm.
in1_max_alarm Input voltage high alarm.
- LTC2974, LTC2977, and LTC2978 only.
+ LTC2974, LTC2975, LTC2977, LTC2980, LTC2978, and
+ LTM2987 only.
in1_lcrit_alarm Input voltage critical low alarm.
- LTC2974, LTC2977, and LTC2978 only.
+ LTC2974, LTC2975, LTC2977, LTC2980, LTC2978, and
+ LTM2987 only.
in1_crit_alarm Input voltage critical high alarm.
in1_lowest Lowest input voltage.
- LTC2974, LTC2977, and LTC2978 only.
+ LTC2974, LTC2975, LTC2977, LTC2980, LTC2978, and
+ LTM2987 only.
in1_highest Highest input voltage.
in1_reset_history Reset input voltage history.
in[N]_label "vout[1-8]".
- LTC2974: N=2-5
- LTC2977: N=2-9
+ LTC2974, LTC2975: N=2-5
+ LTC2977, LTC2980, LTM2987: N=2-9
LTC2978: N=2-9
- LTC3880, LTM4676: N=2-3
+ LTC3880, LTC3882, LTC23886 LTC3887, LTM4675, LTM4676:
+ N=2-3
LTC3883: N=2
in[N]_input Measured output voltage.
in[N]_min Minimum output voltage.
@@ -91,67 +134,78 @@ in[N]_min_alarm Output voltage low alarm.
in[N]_max_alarm Output voltage high alarm.
in[N]_lcrit_alarm Output voltage critical low alarm.
in[N]_crit_alarm Output voltage critical high alarm.
-in[N]_lowest Lowest output voltage. LTC2974 and LTC2978 only.
+in[N]_lowest Lowest output voltage. LTC2974, LTC2975,
+ and LTC2978 only.
in[N]_highest Highest output voltage.
in[N]_reset_history Reset output voltage history.
temp[N]_input Measured temperature.
- On LTC2974, temp[1-4] report external temperatures,
- and temp5 reports the chip temperature.
- On LTC2977 and LTC2978, only one temperature measurement
- is supported and reports the chip temperature.
- On LTC3880 and LTM4676, temp1 and temp2 report external
- temperatures, and temp3 reports the chip temperature.
+ On LTC2974 and LTC2975, temp[1-4] report external
+ temperatures, and temp5 reports the chip temperature.
+ On LTC2977, LTC2980, LTC2978, and LTM2987, only one
+ temperature measurement is supported and reports
+ the chip temperature.
+ On LTC3880, LTC3882, LTC3887, LTM4675, and LTM4676,
+ temp1 and temp2 report external temperatures, and temp3
+ reports the chip temperature.
On LTC3883, temp1 reports an external temperature,
and temp2 reports the chip temperature.
-temp[N]_min Mimimum temperature. LTC2974, LCT2977, and LTC2978 only.
+temp[N]_min Mimimum temperature. LTC2974, LCT2977, LTM2980, LTC2978,
+ and LTM2987 only.
temp[N]_max Maximum temperature.
temp[N]_lcrit Critical low temperature.
temp[N]_crit Critical high temperature.
temp[N]_min_alarm Temperature low alarm.
- LTC2974, LTC2977, and LTC2978 only.
+ LTC2974, LTC2975, LTC2977, LTM2980, LTC2978, and
+ LTM2987 only.
temp[N]_max_alarm Temperature high alarm.
temp[N]_lcrit_alarm Temperature critical low alarm.
temp[N]_crit_alarm Temperature critical high alarm.
temp[N]_lowest Lowest measured temperature.
- LTC2974, LTC2977, and LTC2978 only.
- Not supported for chip temperature sensor on LTC2974.
+ LTC2974, LTC2975, LTC2977, LTM2980, LTC2978, and
+ LTM2987 only.
+ Not supported for chip temperature sensor on LTC2974 and
+ LTC2975.
temp[N]_highest Highest measured temperature. Not supported for chip
- temperature sensor on LTC2974.
+ temperature sensor on LTC2974 and LTC2975.
temp[N]_reset_history Reset temperature history. Not supported for chip
- temperature sensor on LTC2974.
+ temperature sensor on LTC2974 and LTC2975.
-power1_label "pin". LTC3883 only.
+power1_label "pin". LTC3883 and LTC3886 only.
power1_input Measured input power.
power[N]_label "pout[1-4]".
- LTC2974: N=1-4
- LTC2977: Not supported
+ LTC2974, LTC2975: N=1-4
+ LTC2977, LTC2980, LTM2987: Not supported
LTC2978: Not supported
- LTC3880, LTM4676: N=1-2
+ LTC3880, LTC3882, LTC3886, LTC3887, LTM4675, LTM4676:
+ N=1-2
LTC3883: N=2
power[N]_input Measured output power.
-curr1_label "iin". LTC3880, LTC3883, and LTM4676 only.
+curr1_label "iin". LTC3880, LTC3883, LTC3886, LTC3887, LTM4675,
+ and LTM4676 only.
curr1_input Measured input current.
curr1_max Maximum input current.
curr1_max_alarm Input current high alarm.
-curr1_highest Highest input current. LTC3883 only.
-curr1_reset_history Reset input current history. LTC3883 only.
+curr1_highest Highest input current. LTC3883 and LTC3886 only.
+curr1_reset_history Reset input current history. LTC3883 and LTC3886 only.
curr[N]_label "iout[1-4]".
- LTC2974: N=1-4
- LTC2977: not supported
+ LTC2974, LTC2975: N=1-4
+ LTC2977, LTC2980, LTM2987: not supported
LTC2978: not supported
- LTC3880, LTM4676: N=2-3
+ LTC3880, LTC3882, LTC3886, LTC3887, LTM4675, LTM4676:
+ N=2-3
LTC3883: N=2
curr[N]_input Measured output current.
curr[N]_max Maximum output current.
curr[N]_crit Critical high output current.
-curr[N]_lcrit Critical low output current. LTC2974 only.
+curr[N]_lcrit Critical low output current. LTC2974 and LTC2975 only.
curr[N]_max_alarm Output current high alarm.
curr[N]_crit_alarm Output current critical high alarm.
-curr[N]_lcrit_alarm Output current critical low alarm. LTC2974 only.
-curr[N]_lowest Lowest output current. LTC2974 only.
+curr[N]_lcrit_alarm Output current critical low alarm.
+ LTC2974 and LTC2975 only.
+curr[N]_lowest Lowest output current. LTC2974 and LTC2975 only.
curr[N]_highest Highest output current.
curr[N]_reset_history Reset output current history.
diff --git a/Documentation/hwmon/max20751 b/Documentation/hwmon/max20751
new file mode 100644
index 000000000000..f9fa25ebb521
--- /dev/null
+++ b/Documentation/hwmon/max20751
@@ -0,0 +1,77 @@
+Kernel driver max20751
+======================
+
+Supported chips:
+ * maxim MAX20751
+ Prefix: 'max20751'
+ Addresses scanned: -
+ Datasheet: http://datasheets.maximintegrated.com/en/ds/MAX20751.pdf
+ Application note: http://pdfserv.maximintegrated.com/en/an/AN5941.pdf
+
+Author: Guenter Roeck <linux@roeck-us.net>
+
+
+Description
+-----------
+
+This driver supports MAX20751 Multiphase Master with PMBus Interface
+and Internal Buck Converter.
+
+The driver is a client driver to the core PMBus driver.
+Please see Documentation/hwmon/pmbus for details on PMBus client drivers.
+
+
+Usage Notes
+-----------
+
+This driver does not auto-detect devices. You will have to instantiate the
+devices explicitly. Please see Documentation/i2c/instantiating-devices for
+details.
+
+
+Platform data support
+---------------------
+
+The driver supports standard PMBus driver platform data.
+
+
+Sysfs entries
+-------------
+
+The following attributes are supported.
+
+in1_label "vin1"
+in1_input Measured voltage.
+in1_min Minimum input voltage.
+in1_max Maximum input voltage.
+in1_lcrit Critical minimum input voltage.
+in1_crit Critical maximum input voltage.
+in1_min_alarm Input voltage low alarm.
+in1_lcrit_alarm Input voltage critical low alarm.
+in1_min_alarm Input voltage low alarm.
+in1_max_alarm Input voltage high alarm.
+
+in2_label "vout1"
+in2_input Measured voltage.
+in2_min Minimum output voltage.
+in2_max Maximum output voltage.
+in2_lcrit Critical minimum output voltage.
+in2_crit Critical maximum output voltage.
+in2_min_alarm Output voltage low alarm.
+in2_lcrit_alarm Output voltage critical low alarm.
+in2_min_alarm Output voltage low alarm.
+in2_max_alarm Output voltage high alarm.
+
+curr1_input Measured output current.
+curr1_label "iout1"
+curr1_max Maximum output current.
+curr1_alarm Current high alarm.
+
+temp1_input Measured temperature.
+temp1_max Maximum temperature.
+temp1_crit Critical high temperature.
+temp1_max_alarm Chip temperature high alarm.
+temp1_crit_alarm Chip temperature critical high alarm.
+
+power1_input Output power.
+power1_label "pout1"
diff --git a/Documentation/hwmon/nct7802 b/Documentation/hwmon/nct7802
index 2e00f5e344bc..5438deb6be02 100644
--- a/Documentation/hwmon/nct7802
+++ b/Documentation/hwmon/nct7802
@@ -17,8 +17,7 @@ This driver implements support for the Nuvoton NCT7802Y hardware monitoring
chip. NCT7802Y supports 6 temperature sensors, 5 voltage sensors, and 3 fan
speed sensors.
-The chip also supports intelligent fan speed control. This functionality is
-not currently supported by the driver.
+Smart Fan™ speed control is available via pwmX_auto_point attributes.
Tested Boards and BIOS Versions
-------------------------------
diff --git a/Documentation/hwmon/nct7904 b/Documentation/hwmon/nct7904
index 014f112e2a14..57fffe33ebfc 100644
--- a/Documentation/hwmon/nct7904
+++ b/Documentation/hwmon/nct7904
@@ -35,11 +35,11 @@ temp1_input Local temperature (1/1000 degree,
temp[2-9]_input CPU temperatures (1/1000 degree,
0.125 degree resolution)
-fan[1-4]_mode R/W, 0/1 for manual or SmartFan mode
+pwm[1-4]_enable R/W, 1/2 for manual or SmartFan mode
Setting SmartFan mode is supported only if it has been
previously configured by BIOS (or configuration EEPROM)
-fan[1-4]_pwm R/O in SmartFan mode, R/W in manual control mode
+pwm[1-4] R/O in SmartFan mode, R/W in manual control mode
The driver checks sensor control registers and does not export the sensors
that are not enabled. Anyway, a sensor that is enabled may actually be not
diff --git a/Documentation/hwmon/pmbus b/Documentation/hwmon/pmbus
index a3557da8f5b4..b397675e876d 100644
--- a/Documentation/hwmon/pmbus
+++ b/Documentation/hwmon/pmbus
@@ -23,11 +23,15 @@ Supported chips:
http://www.lineagepower.com/oem/pdf/PDT012A0X.pdf
http://www.lineagepower.com/oem/pdf/UDT020A0X.pdf
http://www.lineagepower.com/oem/pdf/MDT040A0X.pdf
- * Texas Instruments TPS40400
- Prefixes: 'tps40400'
+ * Texas Instruments TPS40400, TPS544B20, TPS544B25, TPS544C20, TPS544C25
+ Prefixes: 'tps40400', 'tps544b20', 'tps544b25', 'tps544c20', 'tps544c25'
Addresses scanned: -
Datasheets:
http://www.ti.com/lit/gpn/tps40400
+ http://www.ti.com/lit/gpn/tps544b20
+ http://www.ti.com/lit/gpn/tps544b25
+ http://www.ti.com/lit/gpn/tps544c20
+ http://www.ti.com/lit/gpn/tps544c25
* Generic PMBus devices
Prefix: 'pmbus'
Addresses scanned: -
diff --git a/Documentation/input/alps.txt b/Documentation/input/alps.txt
index c86f2f1ae4f6..1fec1135791d 100644
--- a/Documentation/input/alps.txt
+++ b/Documentation/input/alps.txt
@@ -119,8 +119,10 @@ ALPS Absolute Mode - Protocol Version 2
byte 5: 0 z6 z5 z4 z3 z2 z1 z0
Protocol Version 2 DualPoint devices send standard PS/2 mouse packets for
-the DualPoint Stick. For non interleaved dualpoint devices the pointingstick
-buttons get reported separately in the PSM, PSR and PSL bits.
+the DualPoint Stick. The M, R and L bits signal the combined status of both
+the pointingstick and touchpad buttons, except for Dell dualpoint devices
+where the pointingstick buttons get reported separately in the PSM, PSR
+and PSL bits.
Dualpoint device -- interleaved packet format
---------------------------------------------
diff --git a/Documentation/ioctl/ioctl-number.txt b/Documentation/ioctl/ioctl-number.txt
index 611c52267d24..141f847c7648 100644
--- a/Documentation/ioctl/ioctl-number.txt
+++ b/Documentation/ioctl/ioctl-number.txt
@@ -124,6 +124,8 @@ Code Seq#(hex) Include File Comments
'H' 00-7F linux/hiddev.h conflict!
'H' 00-0F linux/hidraw.h conflict!
'H' 01 linux/mei.h conflict!
+'H' 02 linux/mei.h conflict!
+'H' 03 linux/mei.h conflict!
'H' 00-0F sound/asound.h conflict!
'H' 20-40 sound/asound_fm.h conflict!
'H' 80-8F sound/sfnt_info.h conflict!
diff --git a/Documentation/kbuild/makefiles.txt b/Documentation/kbuild/makefiles.txt
index e63b446d973c..13f888a02a3d 100644
--- a/Documentation/kbuild/makefiles.txt
+++ b/Documentation/kbuild/makefiles.txt
@@ -952,6 +952,14 @@ When kbuild executes, the following steps are followed (roughly):
$(KBUILD_ARFLAGS) set by the top level Makefile to "D" (deterministic
mode) if this option is supported by $(AR).
+ ARCH_CPPFLAGS, ARCH_AFLAGS, ARCH_CFLAGS Overrides the kbuild defaults
+
+ These variables are appended to the KBUILD_CPPFLAGS,
+ KBUILD_AFLAGS, and KBUILD_CFLAGS, respectively, after the
+ top-level Makefile has set any other flags. This provides a
+ means for an architecture to override the defaults.
+
+
--- 6.2 Add prerequisites to archheaders:
The archheaders: rule is used to generate header files that
diff --git a/Documentation/kernel-doc-nano-HOWTO.txt b/Documentation/kernel-doc-nano-HOWTO.txt
index acbc1a3d0d91..78f69cdc9b3f 100644
--- a/Documentation/kernel-doc-nano-HOWTO.txt
+++ b/Documentation/kernel-doc-nano-HOWTO.txt
@@ -128,7 +128,7 @@ are:
special place-holders for where the extracted documentation should
go.
-- scripts/basic/docproc.c
+- scripts/docproc.c
This is a program for converting SGML template files into SGML
files. When a file is referenced it is searched for symbols
diff --git a/Documentation/kernel-parameters.txt b/Documentation/kernel-parameters.txt
index 1d6f0459cd7b..34f2afbf7c15 100644
--- a/Documentation/kernel-parameters.txt
+++ b/Documentation/kernel-parameters.txt
@@ -910,6 +910,8 @@ bytes respectively. Such letter suffixes can also be entirely omitted.
Disable PIN 1 of APIC timer
Can be useful to work around chipset bugs.
+ dis_ucode_ldr [X86] Disable the microcode loader.
+
dma_debug=off If the kernel is compiled with DMA_API_DEBUG support,
this option disables the debugging code at boot.
diff --git a/Documentation/mailbox.txt b/Documentation/mailbox.txt
index 1092ad9578da..7ed371c85204 100644
--- a/Documentation/mailbox.txt
+++ b/Documentation/mailbox.txt
@@ -51,8 +51,7 @@ struct demo_client {
*/
static void message_from_remote(struct mbox_client *cl, void *mssg)
{
- struct demo_client *dc = container_of(mbox_client,
- struct demo_client, cl);
+ struct demo_client *dc = container_of(cl, struct demo_client, cl);
if (dc->async) {
if (is_an_ack(mssg)) {
/* An ACK to our last sample sent */
@@ -68,8 +67,7 @@ static void message_from_remote(struct mbox_client *cl, void *mssg)
static void sample_sent(struct mbox_client *cl, void *mssg, int r)
{
- struct demo_client *dc = container_of(mbox_client,
- struct demo_client, cl);
+ struct demo_client *dc = container_of(cl, struct demo_client, cl);
complete(&dc->c);
}
diff --git a/Documentation/men-chameleon-bus.txt b/Documentation/men-chameleon-bus.txt
new file mode 100644
index 000000000000..30ded732027e
--- /dev/null
+++ b/Documentation/men-chameleon-bus.txt
@@ -0,0 +1,163 @@
+ MEN Chameleon Bus
+ =================
+
+Table of Contents
+=================
+1 Introduction
+ 1.1 Scope of this Document
+ 1.2 Limitations of the current implementation
+2 Architecture
+ 2.1 MEN Chameleon Bus
+ 2.2 Carrier Devices
+ 2.3 Parser
+3 Resource handling
+ 3.1 Memory Resources
+ 3.2 IRQs
+4 Writing an MCB driver
+ 4.1 The driver structure
+ 4.2 Probing and attaching
+ 4.3 Initializing the driver
+
+
+1 Introduction
+===============
+ This document describes the architecture and implementation of the MEN
+ Chameleon Bus (called MCB throughout this document).
+
+1.1 Scope of this Document
+---------------------------
+ This document is intended to be a short overview of the current
+ implementation and does by no means describe the complete possibilities of MCB
+ based devices.
+
+1.2 Limitations of the current implementation
+----------------------------------------------
+ The current implementation is limited to PCI and PCIe based carrier devices
+ that only use a single memory resource and share the PCI legacy IRQ. Not
+ implemented are:
+ - Multi-resource MCB devices like the VME Controller or M-Module carrier.
+ - MCB devices that need another MCB device, like SRAM for a DMA Controller's
+ buffer descriptors or a video controller's video memory.
+ - A per-carrier IRQ domain for carrier devices that have one (or more) IRQs
+ per MCB device like PCIe based carriers with MSI or MSI-X support.
+
+2 Architecture
+===============
+ MCB is divided into 3 functional blocks:
+ - The MEN Chameleon Bus itself,
+ - drivers for MCB Carrier Devices and
+ - the parser for the Chameleon table.
+
+2.1 MEN Chameleon Bus
+----------------------
+ The MEN Chameleon Bus is an artificial bus system that attaches to a so
+ called Chameleon FPGA device found on some hardware produced my MEN Mikro
+ Elektronik GmbH. These devices are multi-function devices implemented in a
+ single FPGA and usually attached via some sort of PCI or PCIe link. Each
+ FPGA contains a header section describing the content of the FPGA. The
+ header lists the device id, PCI BAR, offset from the beginning of the PCI
+ BAR, size in the FPGA, interrupt number and some other properties currently
+ not handled by the MCB implementation.
+
+2.2 Carrier Devices
+--------------------
+ A carrier device is just an abstraction for the real world physical bus the
+ Chameleon FPGA is attached to. Some IP Core drivers may need to interact with
+ properties of the carrier device (like querying the IRQ number of a PCI
+ device). To provide abstraction from the real hardware bus, an MCB carrier
+ device provides callback methods to translate the driver's MCB function calls
+ to hardware related function calls. For example a carrier device may
+ implement the get_irq() method which can be translated into a hardware bus
+ query for the IRQ number the device should use.
+
+2.3 Parser
+-----------
+ The parser reads the first 512 bytes of a Chameleon device and parses the
+ Chameleon table. Currently the parser only supports the Chameleon v2 variant
+ of the Chameleon table but can easily be adopted to support an older or
+ possible future variant. While parsing the table's entries new MCB devices
+ are allocated and their resources are assigned according to the resource
+ assignment in the Chameleon table. After resource assignment is finished, the
+ MCB devices are registered at the MCB and thus at the driver core of the
+ Linux kernel.
+
+3 Resource handling
+====================
+ The current implementation assigns exactly one memory and one IRQ resource
+ per MCB device. But this is likely going to change in the future.
+
+3.1 Memory Resources
+---------------------
+ Each MCB device has exactly one memory resource, which can be requested from
+ the MCB bus. This memory resource is the physical address of the MCB device
+ inside the carrier and is intended to be passed to ioremap() and friends. It
+ is already requested from the kernel by calling request_mem_region().
+
+3.2 IRQs
+---------
+ Each MCB device has exactly one IRQ resource, which can be requested from the
+ MCB bus. If a carrier device driver implements the ->get_irq() callback
+ method, the IRQ number assigned by the carrier device will be returned,
+ otherwise the IRQ number inside the Chameleon table will be returned. This
+ number is suitable to be passed to request_irq().
+
+4 Writing an MCB driver
+=======================
+
+4.1 The driver structure
+-------------------------
+ Each MCB driver has a structure to identify the device driver as well as
+ device ids which identify the IP Core inside the FPGA. The driver structure
+ also contains callback methods which get executed on driver probe and
+ removal from the system.
+
+
+ static const struct mcb_device_id foo_ids[] = {
+ { .device = 0x123 },
+ { }
+ };
+ MODULE_DEVICE_TABLE(mcb, foo_ids);
+
+ static struct mcb_driver foo_driver = {
+ driver = {
+ .name = "foo-bar",
+ .owner = THIS_MODULE,
+ },
+ .probe = foo_probe,
+ .remove = foo_remove,
+ .id_table = foo_ids,
+ };
+
+4.2 Probing and attaching
+--------------------------
+ When a driver is loaded and the MCB devices it services are found, the MCB
+ core will call the driver's probe callback method. When the driver is removed
+ from the system, the MCB core will call the driver's remove callback method.
+
+
+ static init foo_probe(struct mcb_device *mdev, const struct mcb_device_id *id);
+ static void foo_remove(struct mcb_device *mdev);
+
+4.3 Initializing the driver
+----------------------------
+ When the kernel is booted or your foo driver module is inserted, you have to
+ perform driver initialization. Usually it is enough to register your driver
+ module at the MCB core.
+
+
+ static int __init foo_init(void)
+ {
+ return mcb_register_driver(&foo_driver);
+ }
+ module_init(foo_init);
+
+ static void __exit foo_exit(void)
+ {
+ mcb_unregister_driver(&foo_driver);
+ }
+ module_exit(foo_exit);
+
+ The module_mcb_driver() macro can be used to reduce the above code.
+
+
+ module_mcb_driver(foo_driver);
diff --git a/Documentation/misc-devices/mei/mei.txt b/Documentation/misc-devices/mei/mei.txt
index 8d47501bba0a..91c1fa34f48b 100644
--- a/Documentation/misc-devices/mei/mei.txt
+++ b/Documentation/misc-devices/mei/mei.txt
@@ -96,7 +96,7 @@ A code snippet for an application communicating with Intel AMTHI client:
IOCTL
=====
-The Intel MEI Driver supports the following IOCTL command:
+The Intel MEI Driver supports the following IOCTL commands:
IOCTL_MEI_CONNECT_CLIENT Connect to firmware Feature (client).
usage:
@@ -125,6 +125,49 @@ The Intel MEI Driver supports the following IOCTL command:
data that can be sent or received. (e.g. if MTU=2K, can send
requests up to bytes 2k and received responses up to 2k bytes).
+ IOCTL_MEI_NOTIFY_SET: enable or disable event notifications
+
+ Usage:
+ uint32_t enable;
+ ioctl(fd, IOCTL_MEI_NOTIFY_SET, &enable);
+
+ Inputs:
+ uint32_t enable = 1;
+ or
+ uint32_t enable[disable] = 0;
+
+ Error returns:
+ EINVAL Wrong IOCTL Number
+ ENODEV Device is not initialized or the client not connected
+ ENOMEM Unable to allocate memory to client internal data.
+ EFAULT Fatal Error (e.g. Unable to access user input data)
+ EOPNOTSUPP if the device doesn't support the feature
+
+ Notes:
+ The client must be connected in order to enable notification events
+
+
+ IOCTL_MEI_NOTIFY_GET : retrieve event
+
+ Usage:
+ uint32_t event;
+ ioctl(fd, IOCTL_MEI_NOTIFY_GET, &event);
+
+ Outputs:
+ 1 - if an event is pending
+ 0 - if there is no even pending
+
+ Error returns:
+ EINVAL Wrong IOCTL Number
+ ENODEV Device is not initialized or the client not connected
+ ENOMEM Unable to allocate memory to client internal data.
+ EFAULT Fatal Error (e.g. Unable to access user input data)
+ EOPNOTSUPP if the device doesn't support the feature
+
+ Notes:
+ The client must be connected and event notification has to be enabled
+ in order to receive an event
+
Intel ME Applications
=====================
diff --git a/Documentation/networking/can.txt b/Documentation/networking/can.txt
index b48d4a149411..fd1a1aad49a9 100644
--- a/Documentation/networking/can.txt
+++ b/Documentation/networking/can.txt
@@ -510,7 +510,7 @@ solution for a couple of reasons:
4.1.2 RAW socket option CAN_RAW_ERR_FILTER
- As described in chapter 3.4 the CAN interface driver can generate so
+ As described in chapter 3.3 the CAN interface driver can generate so
called Error Message Frames that can optionally be passed to the user
application in the same way as other CAN frames. The possible
errors are divided into different error classes that may be filtered
@@ -1152,7 +1152,7 @@ solution for a couple of reasons:
$ ip link set canX type can restart
Note that a restart will also create a CAN error message frame (see
- also chapter 3.4).
+ also chapter 3.3).
6.6 CAN FD (flexible data rate) driver support
diff --git a/Documentation/nvmem/nvmem.txt b/Documentation/nvmem/nvmem.txt
new file mode 100644
index 000000000000..dbd40d879239
--- /dev/null
+++ b/Documentation/nvmem/nvmem.txt
@@ -0,0 +1,152 @@
+ NVMEM SUBSYSTEM
+ Srinivas Kandagatla <srinivas.kandagatla@linaro.org>
+
+This document explains the NVMEM Framework along with the APIs provided,
+and how to use it.
+
+1. Introduction
+===============
+*NVMEM* is the abbreviation for Non Volatile Memory layer. It is used to
+retrieve configuration of SOC or Device specific data from non volatile
+memories like eeprom, efuses and so on.
+
+Before this framework existed, NVMEM drivers like eeprom were stored in
+drivers/misc, where they all had to duplicate pretty much the same code to
+register a sysfs file, allow in-kernel users to access the content of the
+devices they were driving, etc.
+
+This was also a problem as far as other in-kernel users were involved, since
+the solutions used were pretty much different from one driver to another, there
+was a rather big abstraction leak.
+
+This framework aims at solve these problems. It also introduces DT
+representation for consumer devices to go get the data they require (MAC
+Addresses, SoC/Revision ID, part numbers, and so on) from the NVMEMs. This
+framework is based on regmap, so that most of the abstraction available in
+regmap can be reused, across multiple types of buses.
+
+NVMEM Providers
++++++++++++++++
+
+NVMEM provider refers to an entity that implements methods to initialize, read
+and write the non-volatile memory.
+
+2. Registering/Unregistering the NVMEM provider
+===============================================
+
+A NVMEM provider can register with NVMEM core by supplying relevant
+nvmem configuration to nvmem_register(), on success core would return a valid
+nvmem_device pointer.
+
+nvmem_unregister(nvmem) is used to unregister a previously registered provider.
+
+For example, a simple qfprom case:
+
+static struct nvmem_config econfig = {
+ .name = "qfprom",
+ .owner = THIS_MODULE,
+};
+
+static int qfprom_probe(struct platform_device *pdev)
+{
+ ...
+ econfig.dev = &pdev->dev;
+ nvmem = nvmem_register(&econfig);
+ ...
+}
+
+It is mandatory that the NVMEM provider has a regmap associated with its
+struct device. Failure to do would return error code from nvmem_register().
+
+NVMEM Consumers
++++++++++++++++
+
+NVMEM consumers are the entities which make use of the NVMEM provider to
+read from and to NVMEM.
+
+3. NVMEM cell based consumer APIs
+=================================
+
+NVMEM cells are the data entries/fields in the NVMEM.
+The NVMEM framework provides 3 APIs to read/write NVMEM cells.
+
+struct nvmem_cell *nvmem_cell_get(struct device *dev, const char *name);
+struct nvmem_cell *devm_nvmem_cell_get(struct device *dev, const char *name);
+
+void nvmem_cell_put(struct nvmem_cell *cell);
+void devm_nvmem_cell_put(struct device *dev, struct nvmem_cell *cell);
+
+void *nvmem_cell_read(struct nvmem_cell *cell, ssize_t *len);
+int nvmem_cell_write(struct nvmem_cell *cell, void *buf, ssize_t len);
+
+*nvmem_cell_get() apis will get a reference to nvmem cell for a given id,
+and nvmem_cell_read/write() can then read or write to the cell.
+Once the usage of the cell is finished the consumer should call *nvmem_cell_put()
+to free all the allocation memory for the cell.
+
+4. Direct NVMEM device based consumer APIs
+==========================================
+
+In some instances it is necessary to directly read/write the NVMEM.
+To facilitate such consumers NVMEM framework provides below apis.
+
+struct nvmem_device *nvmem_device_get(struct device *dev, const char *name);
+struct nvmem_device *devm_nvmem_device_get(struct device *dev,
+ const char *name);
+void nvmem_device_put(struct nvmem_device *nvmem);
+int nvmem_device_read(struct nvmem_device *nvmem, unsigned int offset,
+ size_t bytes, void *buf);
+int nvmem_device_write(struct nvmem_device *nvmem, unsigned int offset,
+ size_t bytes, void *buf);
+int nvmem_device_cell_read(struct nvmem_device *nvmem,
+ struct nvmem_cell_info *info, void *buf);
+int nvmem_device_cell_write(struct nvmem_device *nvmem,
+ struct nvmem_cell_info *info, void *buf);
+
+Before the consumers can read/write NVMEM directly, it should get hold
+of nvmem_controller from one of the *nvmem_device_get() api.
+
+The difference between these apis and cell based apis is that these apis always
+take nvmem_device as parameter.
+
+5. Releasing a reference to the NVMEM
+=====================================
+
+When a consumers no longer needs the NVMEM, it has to release the reference
+to the NVMEM it has obtained using the APIs mentioned in the above section.
+The NVMEM framework provides 2 APIs to release a reference to the NVMEM.
+
+void nvmem_cell_put(struct nvmem_cell *cell);
+void devm_nvmem_cell_put(struct device *dev, struct nvmem_cell *cell);
+void nvmem_device_put(struct nvmem_device *nvmem);
+void devm_nvmem_device_put(struct device *dev, struct nvmem_device *nvmem);
+
+Both these APIs are used to release a reference to the NVMEM and
+devm_nvmem_cell_put and devm_nvmem_device_put destroys the devres associated
+with this NVMEM.
+
+Userspace
++++++++++
+
+6. Userspace binary interface
+==============================
+
+Userspace can read/write the raw NVMEM file located at
+/sys/bus/nvmem/devices/*/nvmem
+
+ex:
+
+hexdump /sys/bus/nvmem/devices/qfprom0/nvmem
+
+0000000 0000 0000 0000 0000 0000 0000 0000 0000
+*
+00000a0 db10 2240 0000 e000 0c00 0c00 0000 0c00
+0000000 0000 0000 0000 0000 0000 0000 0000 0000
+...
+*
+0001000
+
+7. DeviceTree Binding
+=====================
+
+See Documentation/devicetree/bindings/nvmem/nvmem.txt
diff --git a/Documentation/power/suspend-and-cpuhotplug.txt b/Documentation/power/suspend-and-cpuhotplug.txt
index 2850df3bf957..2fc909502db5 100644
--- a/Documentation/power/suspend-and-cpuhotplug.txt
+++ b/Documentation/power/suspend-and-cpuhotplug.txt
@@ -72,7 +72,7 @@ More details follow:
|
v
Disable regular cpu hotplug
- by setting cpu_hotplug_disabled=1
+ by increasing cpu_hotplug_disabled
|
v
Release cpu_add_remove_lock
@@ -89,7 +89,7 @@ Resuming back is likewise, with the counterparts being (in the order of
execution during resume):
* enable_nonboot_cpus() which involves:
| Acquire cpu_add_remove_lock
- | Reset cpu_hotplug_disabled to 0, thereby enabling regular cpu hotplug
+ | Decrease cpu_hotplug_disabled, thereby enabling regular cpu hotplug
| Call _cpu_up() [for all those cpus in the frozen_cpus mask, in a loop]
| Release cpu_add_remove_lock
v
@@ -120,7 +120,7 @@ after the entire cycle is complete (i.e., suspend + resume).
Acquire cpu_add_remove_lock
|
v
- If cpu_hotplug_disabled is 1
+ If cpu_hotplug_disabled > 0
return gracefully
|
|
diff --git a/Documentation/powerpc/cxl.txt b/Documentation/powerpc/cxl.txt
index 2a230d01cd8c..205c1b81625c 100644
--- a/Documentation/powerpc/cxl.txt
+++ b/Documentation/powerpc/cxl.txt
@@ -133,7 +133,7 @@ User API
The following file operations are supported on both slave and
master devices.
- A userspace library libcxl is avaliable here:
+ A userspace library libcxl is available here:
https://github.com/ibm-capi/libcxl
This provides a C interface to this kernel API.
diff --git a/Documentation/powerpc/dscr.txt b/Documentation/powerpc/dscr.txt
index 1ff4400c57b3..ece300c64f76 100644
--- a/Documentation/powerpc/dscr.txt
+++ b/Documentation/powerpc/dscr.txt
@@ -4,7 +4,7 @@
DSCR register in powerpc allows user to have some control of prefetch of data
stream in the processor. Please refer to the ISA documents or related manual
for more detailed information regarding how to use this DSCR to attain this
-control of the pefetches . This document here provides an overview of kernel
+control of the prefetches . This document here provides an overview of kernel
support for DSCR, related kernel objects, it's functionalities and exported
user interface.
@@ -44,7 +44,7 @@ user interface.
value into every CPU's DSCR register right away and updates the current
thread's DSCR value as well.
- Changing the CPU specif DSCR default value in the sysfs does exactly
+ Changing the CPU specific DSCR default value in the sysfs does exactly
the same thing as above but unlike the global one above, it just changes
stuff for that particular CPU instead for all the CPUs on the system.
@@ -62,7 +62,7 @@ user interface.
Accessing DSCR through user level SPR (0x03) from user space will first
create a facility unavailable exception. Inside this exception handler
- all mfspr isntruction based read attempts will get emulated and returned
+ all mfspr instruction based read attempts will get emulated and returned
where as the first mtspr instruction based write attempts will enable
the DSCR facility for the next time around (both for read and write) by
setting DSCR facility in the FSCR register.
diff --git a/Documentation/powerpc/qe_firmware.txt b/Documentation/powerpc/qe_firmware.txt
index 2031ddb33d09..e7ac24aec4ff 100644
--- a/Documentation/powerpc/qe_firmware.txt
+++ b/Documentation/powerpc/qe_firmware.txt
@@ -117,7 +117,7 @@ specific been defined. This table describes the structure.
Extended Modes
This is a double word bit array (64 bits) that defines special functionality
-which has an impact on the softwarew drivers. Each bit has its own impact
+which has an impact on the software drivers. Each bit has its own impact
and has special instructions for the s/w associated with it. This structure is
described in this table:
diff --git a/Documentation/pps/pps.txt b/Documentation/pps/pps.txt
index c508cceeee7d..7cb7264ad598 100644
--- a/Documentation/pps/pps.txt
+++ b/Documentation/pps/pps.txt
@@ -125,7 +125,7 @@ The same function may also run the defined echo function
(pps_ktimer_echo(), passing to it the "ptr" pointer) if the user
asked for that... etc..
-Please see the file drivers/pps/clients/ktimer.c for example code.
+Please see the file drivers/pps/clients/pps-ktimer.c for example code.
SYSFS support
diff --git a/Documentation/s390/00-INDEX b/Documentation/s390/00-INDEX
index 10c874ebdfe5..9189535f6cd2 100644
--- a/Documentation/s390/00-INDEX
+++ b/Documentation/s390/00-INDEX
@@ -16,8 +16,6 @@ Debugging390.txt
- hints for debugging on s390 systems.
driver-model.txt
- information on s390 devices and the driver model.
-kvm.txt
- - ioctl calls to /dev/kvm on s390.
monreader.txt
- information on accessing the z/VM monitor stream from Linux.
qeth.txt
diff --git a/Documentation/s390/kvm.txt b/Documentation/s390/kvm.txt
deleted file mode 100644
index 85f3280d7ef6..000000000000
--- a/Documentation/s390/kvm.txt
+++ /dev/null
@@ -1,125 +0,0 @@
-*** BIG FAT WARNING ***
-The kvm module is currently in EXPERIMENTAL state for s390. This means that
-the interface to the module is not yet considered to remain stable. Thus, be
-prepared that we keep breaking your userspace application and guest
-compatibility over and over again until we feel happy with the result. Make sure
-your guest kernel, your host kernel, and your userspace launcher are in a
-consistent state.
-
-This Documentation describes the unique ioctl calls to /dev/kvm, the resulting
-kvm-vm file descriptors, and the kvm-vcpu file descriptors that differ from x86.
-
-1. ioctl calls to /dev/kvm
-KVM does support the following ioctls on s390 that are common with other
-architectures and do behave the same:
-KVM_GET_API_VERSION
-KVM_CREATE_VM (*) see note
-KVM_CHECK_EXTENSION
-KVM_GET_VCPU_MMAP_SIZE
-
-Notes:
-* KVM_CREATE_VM may fail on s390, if the calling process has multiple
-threads and has not called KVM_S390_ENABLE_SIE before.
-
-In addition, on s390 the following architecture specific ioctls are supported:
-ioctl: KVM_S390_ENABLE_SIE
-args: none
-see also: include/linux/kvm.h
-This call causes the kernel to switch on PGSTE in the user page table. This
-operation is needed in order to run a virtual machine, and it requires the
-calling process to be single-threaded. Note that the first call to KVM_CREATE_VM
-will implicitly try to switch on PGSTE if the user process has not called
-KVM_S390_ENABLE_SIE before. User processes that want to launch multiple threads
-before creating a virtual machine have to call KVM_S390_ENABLE_SIE, or will
-observe an error calling KVM_CREATE_VM. Switching on PGSTE is a one-time
-operation, is not reversible, and will persist over the entire lifetime of
-the calling process. It does not have any user-visible effect other than a small
-performance penalty.
-
-2. ioctl calls to the kvm-vm file descriptor
-KVM does support the following ioctls on s390 that are common with other
-architectures and do behave the same:
-KVM_CREATE_VCPU
-KVM_SET_USER_MEMORY_REGION (*) see note
-KVM_GET_DIRTY_LOG (**) see note
-
-Notes:
-* kvm does only allow exactly one memory slot on s390, which has to start
- at guest absolute address zero and at a user address that is aligned on any
- page boundary. This hardware "limitation" allows us to have a few unique
- optimizations. The memory slot doesn't have to be filled
- with memory actually, it may contain sparse holes. That said, with different
- user memory layout this does still allow a large flexibility when
- doing the guest memory setup.
-** KVM_GET_DIRTY_LOG doesn't work properly yet. The user will receive an empty
-log. This ioctl call is only needed for guest migration, and we intend to
-implement this one in the future.
-
-In addition, on s390 the following architecture specific ioctls for the kvm-vm
-file descriptor are supported:
-ioctl: KVM_S390_INTERRUPT
-args: struct kvm_s390_interrupt *
-see also: include/linux/kvm.h
-This ioctl is used to submit a floating interrupt for a virtual machine.
-Floating interrupts may be delivered to any virtual cpu in the configuration.
-Only some interrupt types defined in include/linux/kvm.h make sense when
-submitted as floating interrupts. The following interrupts are not considered
-to be useful as floating interrupts, and a call to inject them will result in
--EINVAL error code: program interrupts and interprocessor signals. Valid
-floating interrupts are:
-KVM_S390_INT_VIRTIO
-KVM_S390_INT_SERVICE
-
-3. ioctl calls to the kvm-vcpu file descriptor
-KVM does support the following ioctls on s390 that are common with other
-architectures and do behave the same:
-KVM_RUN
-KVM_GET_REGS
-KVM_SET_REGS
-KVM_GET_SREGS
-KVM_SET_SREGS
-KVM_GET_FPU
-KVM_SET_FPU
-
-In addition, on s390 the following architecture specific ioctls for the
-kvm-vcpu file descriptor are supported:
-ioctl: KVM_S390_INTERRUPT
-args: struct kvm_s390_interrupt *
-see also: include/linux/kvm.h
-This ioctl is used to submit an interrupt for a specific virtual cpu.
-Only some interrupt types defined in include/linux/kvm.h make sense when
-submitted for a specific cpu. The following interrupts are not considered
-to be useful, and a call to inject them will result in -EINVAL error code:
-service processor calls and virtio interrupts. Valid interrupt types are:
-KVM_S390_PROGRAM_INT
-KVM_S390_SIGP_STOP
-KVM_S390_RESTART
-KVM_S390_SIGP_SET_PREFIX
-KVM_S390_INT_EMERGENCY
-
-ioctl: KVM_S390_STORE_STATUS
-args: unsigned long
-see also: include/linux/kvm.h
-This ioctl stores the state of the cpu at the guest real address given as
-argument, unless one of the following values defined in include/linux/kvm.h
-is given as argument:
-KVM_S390_STORE_STATUS_NOADDR - the CPU stores its status to the save area in
-absolute lowcore as defined by the principles of operation
-KVM_S390_STORE_STATUS_PREFIXED - the CPU stores its status to the save area in
-its prefix page just like the dump tool that comes with zipl. This is useful
-to create a system dump for use with lkcdutils or crash.
-
-ioctl: KVM_S390_SET_INITIAL_PSW
-args: struct kvm_s390_psw *
-see also: include/linux/kvm.h
-This ioctl can be used to set the processor status word (psw) of a stopped cpu
-prior to running it with KVM_RUN. Note that this call is not required to modify
-the psw during sie intercepts that fall back to userspace because struct kvm_run
-does contain the psw, and this value is evaluated during reentry of KVM_RUN
-after the intercept exit was recognized.
-
-ioctl: KVM_S390_INITIAL_RESET
-args: none
-see also: include/linux/kvm.h
-This ioctl can be used to perform an initial cpu reset as defined by the
-principles of operation. The target cpu has to be in stopped state.
diff --git a/Documentation/sysctl/vm.txt b/Documentation/sysctl/vm.txt
index 9832ec52f859..9c3f2f8054b5 100644
--- a/Documentation/sysctl/vm.txt
+++ b/Documentation/sysctl/vm.txt
@@ -225,11 +225,11 @@ with your system. To disable them, echo 4 (bit 3) into drop_caches.
extfrag_threshold
This parameter affects whether the kernel will compact memory or direct
-reclaim to satisfy a high-order allocation. /proc/extfrag_index shows what
-the fragmentation index for each order is in each zone in the system. Values
-tending towards 0 imply allocations would fail due to lack of memory,
-values towards 1000 imply failures are due to fragmentation and -1 implies
-that the allocation will succeed as long as watermarks are met.
+reclaim to satisfy a high-order allocation. The extfrag/extfrag_index file in
+debugfs shows what the fragmentation index for each order is in each zone in
+the system. Values tending towards 0 imply allocations would fail due to lack
+of memory, values towards 1000 imply failures are due to fragmentation and -1
+implies that the allocation will succeed as long as watermarks are met.
The kernel will not compact memory in a zone if the
fragmentation index is <= extfrag_threshold. The default value is 500.
diff --git a/Documentation/target/tcm_mod_builder.py b/Documentation/target/tcm_mod_builder.py
index 949de191fcdc..cda56df9b8a7 100755
--- a/Documentation/target/tcm_mod_builder.py
+++ b/Documentation/target/tcm_mod_builder.py
@@ -199,7 +199,8 @@ def tcm_mod_build_configfs(proto_ident, fabric_mod_dir_var, fabric_mod_name):
buf += "#include <linux/string.h>\n"
buf += "#include <linux/configfs.h>\n"
buf += "#include <linux/ctype.h>\n"
- buf += "#include <asm/unaligned.h>\n\n"
+ buf += "#include <asm/unaligned.h>\n"
+ buf += "#include <scsi/scsi_proto.h>\n\n"
buf += "#include <target/target_core_base.h>\n"
buf += "#include <target/target_core_fabric.h>\n"
buf += "#include <target/target_core_fabric_configfs.h>\n"
@@ -230,8 +231,14 @@ def tcm_mod_build_configfs(proto_ident, fabric_mod_dir_var, fabric_mod_name):
buf += " }\n"
buf += " tpg->" + fabric_mod_port + " = " + fabric_mod_port + ";\n"
buf += " tpg->" + fabric_mod_port + "_tpgt = tpgt;\n\n"
- buf += " ret = core_tpg_register(&" + fabric_mod_name + "_ops, wwn,\n"
- buf += " &tpg->se_tpg, SCSI_PROTOCOL_SAS);\n"
+
+ if proto_ident == "FC":
+ buf += " ret = core_tpg_register(wwn, &tpg->se_tpg, SCSI_PROTOCOL_FCP);\n"
+ elif proto_ident == "SAS":
+ buf += " ret = core_tpg_register(wwn, &tpg->se_tpg, SCSI_PROTOCOL_SAS);\n"
+ elif proto_ident == "iSCSI":
+ buf += " ret = core_tpg_register(wwn, &tpg->se_tpg, SCSI_PROTOCOL_ISCSI);\n"
+
buf += " if (ret < 0) {\n"
buf += " kfree(tpg);\n"
buf += " return NULL;\n"
@@ -292,7 +299,7 @@ def tcm_mod_build_configfs(proto_ident, fabric_mod_dir_var, fabric_mod_name):
buf += "static const struct target_core_fabric_ops " + fabric_mod_name + "_ops = {\n"
buf += " .module = THIS_MODULE,\n"
- buf += " .name = " + fabric_mod_name + ",\n"
+ buf += " .name = \"" + fabric_mod_name + "\",\n"
buf += " .get_fabric_name = " + fabric_mod_name + "_get_fabric_name,\n"
buf += " .tpg_get_wwn = " + fabric_mod_name + "_get_fabric_wwn,\n"
buf += " .tpg_get_tag = " + fabric_mod_name + "_get_tag,\n"
@@ -322,17 +329,17 @@ def tcm_mod_build_configfs(proto_ident, fabric_mod_dir_var, fabric_mod_name):
buf += " .fabric_make_tpg = " + fabric_mod_name + "_make_tpg,\n"
buf += " .fabric_drop_tpg = " + fabric_mod_name + "_drop_tpg,\n"
buf += "\n"
- buf += " .tfc_wwn_attrs = " + fabric_mod_name + "_wwn_attrs;\n"
+ buf += " .tfc_wwn_attrs = " + fabric_mod_name + "_wwn_attrs,\n"
buf += "};\n\n"
buf += "static int __init " + fabric_mod_name + "_init(void)\n"
buf += "{\n"
- buf += " return target_register_template(" + fabric_mod_name + "_ops);\n"
+ buf += " return target_register_template(&" + fabric_mod_name + "_ops);\n"
buf += "};\n\n"
buf += "static void __exit " + fabric_mod_name + "_exit(void)\n"
buf += "{\n"
- buf += " target_unregister_template(" + fabric_mod_name + "_ops);\n"
+ buf += " target_unregister_template(&" + fabric_mod_name + "_ops);\n"
buf += "};\n\n"
buf += "MODULE_DESCRIPTION(\"" + fabric_mod_name.upper() + " series fabric driver\");\n"
diff --git a/Documentation/trace/coresight.txt b/Documentation/trace/coresight.txt
index 77d14d51a670..0a5c3290e732 100644
--- a/Documentation/trace/coresight.txt
+++ b/Documentation/trace/coresight.txt
@@ -15,7 +15,7 @@ HW assisted tracing is becoming increasingly useful when dealing with systems
that have many SoCs and other components like GPU and DMA engines. ARM has
developed a HW assisted tracing solution by means of different components, each
being added to a design at synthesis time to cater to specific tracing needs.
-Compoments are generally categorised as source, link and sinks and are
+Components are generally categorised as source, link and sinks and are
(usually) discovered using the AMBA bus.
"Sources" generate a compressed stream representing the processor instruction
@@ -138,7 +138,7 @@ void coresight_unregister(struct coresight_device *csdev);
The registering function is taking a "struct coresight_device *csdev" and
register the device with the core framework. The unregister function takes
-a reference to a "strut coresight_device", obtained at registration time.
+a reference to a "struct coresight_device", obtained at registration time.
If everything goes well during the registration process the new devices will
show up under /sys/bus/coresight/devices, as showns here for a TC2 platform:
diff --git a/Documentation/usb/gadget-testing.txt b/Documentation/usb/gadget-testing.txt
index 592678009c15..b24d3ef89166 100644
--- a/Documentation/usb/gadget-testing.txt
+++ b/Documentation/usb/gadget-testing.txt
@@ -237,9 +237,7 @@ Testing the LOOPBACK function
-----------------------------
device: run the gadget
-host: test-usb
-
-http://www.linux-usb.org/usbtest/testusb.c
+host: test-usb (tools/usb/testusb.c)
8. MASS STORAGE function
========================
@@ -586,9 +584,8 @@ Testing the SOURCESINK function
-------------------------------
device: run the gadget
-host: test-usb
+host: test-usb (tools/usb/testusb.c)
-http://www.linux-usb.org/usbtest/testusb.c
16. UAC1 function
=================
diff --git a/Documentation/usb/power-management.txt b/Documentation/usb/power-management.txt
index b5f83911732a..4a15c90bc11d 100644
--- a/Documentation/usb/power-management.txt
+++ b/Documentation/usb/power-management.txt
@@ -521,10 +521,10 @@ enabling hardware LPM, the host can automatically put the device into
lower power state(L1 for usb2.0 devices, or U1/U2 for usb3.0 devices),
which state device can enter and resume very quickly.
-The user interface for controlling USB2 hardware LPM is located in the
+The user interface for controlling hardware LPM is located in the
power/ subdirectory of each USB device's sysfs directory, that is, in
/sys/bus/usb/devices/.../power/ where "..." is the device's ID. The
-relevant attribute files is usb2_hardware_lpm.
+relevant attribute files are usb2_hardware_lpm and usb3_hardware_lpm.
power/usb2_hardware_lpm
@@ -537,6 +537,17 @@ relevant attribute files is usb2_hardware_lpm.
can write y/Y/1 or n/N/0 to the file to enable/disable
USB2 hardware LPM manually. This is for test purpose mainly.
+ power/usb3_hardware_lpm
+
+ When a USB 3.0 lpm-capable device is plugged in to a
+ xHCI host which supports link PM, it will check if U1
+ and U2 exit latencies have been set in the BOS
+ descriptor; if the check is is passed and the host
+ supports USB3 hardware LPM, USB3 hardware LPM will be
+ enabled for the device and this file will be created.
+ The file holds a string value (enable or disable)
+ indicating whether or not USB3 hardware LPM is
+ enabled for the device.
USB Port Power Control
----------------------
diff --git a/Documentation/virtual/kvm/api.txt b/Documentation/virtual/kvm/api.txt
index a7926a90156f..a4ebcb712375 100644
--- a/Documentation/virtual/kvm/api.txt
+++ b/Documentation/virtual/kvm/api.txt
@@ -3277,6 +3277,7 @@ should put the acknowledged interrupt vector into the 'epr' field.
struct {
#define KVM_SYSTEM_EVENT_SHUTDOWN 1
#define KVM_SYSTEM_EVENT_RESET 2
+#define KVM_SYSTEM_EVENT_CRASH 3
__u32 type;
__u64 flags;
} system_event;
@@ -3296,6 +3297,10 @@ Valid values for 'type' are:
KVM_SYSTEM_EVENT_RESET -- the guest has requested a reset of the VM.
As with SHUTDOWN, userspace can choose to ignore the request, or
to schedule the reset to occur in the future and may call KVM_RUN again.
+ KVM_SYSTEM_EVENT_CRASH -- the guest crash occurred and the guest
+ has requested a crash condition maintenance. Userspace can choose
+ to ignore the request, or to gather VM memory core dump and/or
+ reset/shutdown of the VM.
/* Fix the size of the union. */
char padding[256];
diff --git a/Documentation/x86/kernel-stacks b/Documentation/x86/kernel-stacks
index 0f3a6c201943..9a0aa4d3a866 100644
--- a/Documentation/x86/kernel-stacks
+++ b/Documentation/x86/kernel-stacks
@@ -16,7 +16,7 @@ associated with each CPU. These stacks are only used while the kernel
is in control on that CPU; when a CPU returns to user space the
specialized stacks contain no useful data. The main CPU stacks are:
-* Interrupt stack. IRQSTACKSIZE
+* Interrupt stack. IRQ_STACK_SIZE
Used for external hardware interrupts. If this is the first external
hardware interrupt (i.e. not a nested hardware interrupt) then the