summaryrefslogtreecommitdiff
path: root/arch/tile/mm
diff options
context:
space:
mode:
Diffstat (limited to 'arch/tile/mm')
-rw-r--r--arch/tile/mm/fault.c10
-rw-r--r--arch/tile/mm/homecache.c38
-rw-r--r--arch/tile/mm/hugetlbpage.c2
-rw-r--r--arch/tile/mm/init.c34
-rw-r--r--arch/tile/mm/migrate_32.S1
-rw-r--r--arch/tile/mm/pgtable.c183
6 files changed, 192 insertions, 76 deletions
diff --git a/arch/tile/mm/fault.c b/arch/tile/mm/fault.c
index dcebfc831cd6..51f8663bf074 100644
--- a/arch/tile/mm/fault.c
+++ b/arch/tile/mm/fault.c
@@ -290,7 +290,7 @@ static int handle_page_fault(struct pt_regs *regs,
/*
* Early on, we need to check for migrating PTE entries;
* see homecache.c. If we find a migrating PTE, we wait until
- * the backing page claims to be done migrating, then we procede.
+ * the backing page claims to be done migrating, then we proceed.
* For kernel PTEs, we rewrite the PTE and return and retry.
* Otherwise, we treat the fault like a normal "no PTE" fault,
* rather than trying to patch up the existing PTE.
@@ -655,14 +655,6 @@ struct intvec_state do_page_fault_ics(struct pt_regs *regs, int fault_num,
}
/*
- * NOTE: the one other type of access that might bring us here
- * are the memory ops in __tns_atomic_acquire/__tns_atomic_release,
- * but we don't have to check specially for them since we can
- * always safely return to the address of the fault and retry,
- * since no separate atomic locks are involved.
- */
-
- /*
* Now that we have released the atomic lock (if necessary),
* it's safe to spin if the PTE that caused the fault was migrating.
*/
diff --git a/arch/tile/mm/homecache.c b/arch/tile/mm/homecache.c
index d78df3a6ee15..cbe6f4f9eca3 100644
--- a/arch/tile/mm/homecache.c
+++ b/arch/tile/mm/homecache.c
@@ -179,23 +179,46 @@ void flush_remote(unsigned long cache_pfn, unsigned long cache_control,
panic("Unsafe to continue.");
}
+void flush_remote_page(struct page *page, int order)
+{
+ int i, pages = (1 << order);
+ for (i = 0; i < pages; ++i, ++page) {
+ void *p = kmap_atomic(page);
+ int hfh = 0;
+ int home = page_home(page);
+#if CHIP_HAS_CBOX_HOME_MAP()
+ if (home == PAGE_HOME_HASH)
+ hfh = 1;
+ else
+#endif
+ BUG_ON(home < 0 || home >= NR_CPUS);
+ finv_buffer_remote(p, PAGE_SIZE, hfh);
+ kunmap_atomic(p);
+ }
+}
+
void homecache_evict(const struct cpumask *mask)
{
flush_remote(0, HV_FLUSH_EVICT_L2, mask, 0, 0, 0, NULL, NULL, 0);
}
-/* Return a mask of the cpus whose caches currently own these pages. */
-static void homecache_mask(struct page *page, int pages,
- struct cpumask *home_mask)
+/*
+ * Return a mask of the cpus whose caches currently own these pages.
+ * The return value is whether the pages are all coherently cached
+ * (i.e. none are immutable, incoherent, or uncached).
+ */
+static int homecache_mask(struct page *page, int pages,
+ struct cpumask *home_mask)
{
int i;
+ int cached_coherently = 1;
cpumask_clear(home_mask);
for (i = 0; i < pages; ++i) {
int home = page_home(&page[i]);
if (home == PAGE_HOME_IMMUTABLE ||
home == PAGE_HOME_INCOHERENT) {
cpumask_copy(home_mask, cpu_possible_mask);
- return;
+ return 0;
}
#if CHIP_HAS_CBOX_HOME_MAP()
if (home == PAGE_HOME_HASH) {
@@ -203,11 +226,14 @@ static void homecache_mask(struct page *page, int pages,
continue;
}
#endif
- if (home == PAGE_HOME_UNCACHED)
+ if (home == PAGE_HOME_UNCACHED) {
+ cached_coherently = 0;
continue;
+ }
BUG_ON(home < 0 || home >= NR_CPUS);
cpumask_set_cpu(home, home_mask);
}
+ return cached_coherently;
}
/*
@@ -386,7 +412,7 @@ void homecache_change_page_home(struct page *page, int order, int home)
pte_t *ptep = virt_to_pte(NULL, kva);
pte_t pteval = *ptep;
BUG_ON(!pte_present(pteval) || pte_huge(pteval));
- *ptep = pte_set_home(pteval, home);
+ __set_pte(ptep, pte_set_home(pteval, home));
}
}
diff --git a/arch/tile/mm/hugetlbpage.c b/arch/tile/mm/hugetlbpage.c
index 201a582c4137..42cfcba4e1ef 100644
--- a/arch/tile/mm/hugetlbpage.c
+++ b/arch/tile/mm/hugetlbpage.c
@@ -219,7 +219,7 @@ try_again:
if (mm->free_area_cache < len)
goto fail;
- /* either no address requested or cant fit in requested address hole */
+ /* either no address requested or can't fit in requested address hole */
addr = (mm->free_area_cache - len) & huge_page_mask(h);
do {
/*
diff --git a/arch/tile/mm/init.c b/arch/tile/mm/init.c
index 0b9ce69b0ee5..d6e87fda2fb2 100644
--- a/arch/tile/mm/init.c
+++ b/arch/tile/mm/init.c
@@ -53,22 +53,11 @@
#include "migrate.h"
-/*
- * We could set FORCE_MAX_ZONEORDER to "(HPAGE_SHIFT - PAGE_SHIFT + 1)"
- * in the Tile Kconfig, but this generates configure warnings.
- * Do it here and force people to get it right to compile this file.
- * The problem is that with 4KB small pages and 16MB huge pages,
- * the default value doesn't allow us to group enough small pages
- * together to make up a huge page.
- */
-#if CONFIG_FORCE_MAX_ZONEORDER < HPAGE_SHIFT - PAGE_SHIFT + 1
-# error "Change FORCE_MAX_ZONEORDER in arch/tile/Kconfig to match page size"
-#endif
-
#define clear_pgd(pmdptr) (*(pmdptr) = hv_pte(0))
#ifndef __tilegx__
unsigned long VMALLOC_RESERVE = CONFIG_VMALLOC_RESERVE;
+EXPORT_SYMBOL(VMALLOC_RESERVE);
#endif
DEFINE_PER_CPU(struct mmu_gather, mmu_gathers);
@@ -445,7 +434,7 @@ static pmd_t *__init get_pmd(pgd_t pgtables[], unsigned long va)
/* Temporary page table we use for staging. */
static pgd_t pgtables[PTRS_PER_PGD]
- __attribute__((section(".init.page")));
+ __attribute__((aligned(HV_PAGE_TABLE_ALIGN)));
/*
* This maps the physical memory to kernel virtual address space, a total
@@ -653,6 +642,17 @@ static void __init kernel_physical_mapping_init(pgd_t *pgd_base)
memcpy(pgd_base, pgtables, sizeof(pgtables));
__install_page_table(pgd_base, __get_cpu_var(current_asid),
swapper_pgprot);
+
+ /*
+ * We just read swapper_pgprot and thus brought it into the cache,
+ * with its new home & caching mode. When we start the other CPUs,
+ * they're going to reference swapper_pgprot via their initial fake
+ * VA-is-PA mappings, which cache everything locally. At that
+ * time, if it's in our cache with a conflicting home, the
+ * simulator's coherence checker will complain. So, flush it out
+ * of our cache; we're not going to ever use it again anyway.
+ */
+ __insn_finv(&swapper_pgprot);
}
/*
@@ -950,11 +950,7 @@ struct kmem_cache *pgd_cache;
void __init pgtable_cache_init(void)
{
- pgd_cache = kmem_cache_create("pgd",
- PTRS_PER_PGD*sizeof(pgd_t),
- PTRS_PER_PGD*sizeof(pgd_t),
- 0,
- NULL);
+ pgd_cache = kmem_cache_create("pgd", SIZEOF_PGD, SIZEOF_PGD, 0, NULL);
if (!pgd_cache)
panic("pgtable_cache_init(): Cannot create pgd cache");
}
@@ -989,7 +985,7 @@ static long __write_once initfree = 1;
static int __init set_initfree(char *str)
{
long val;
- if (strict_strtol(str, 0, &val)) {
+ if (strict_strtol(str, 0, &val) == 0) {
initfree = val;
pr_info("initfree: %s free init pages\n",
initfree ? "will" : "won't");
diff --git a/arch/tile/mm/migrate_32.S b/arch/tile/mm/migrate_32.S
index f738765cd1e6..ac01a7cdf77f 100644
--- a/arch/tile/mm/migrate_32.S
+++ b/arch/tile/mm/migrate_32.S
@@ -18,6 +18,7 @@
#include <linux/linkage.h>
#include <linux/threads.h>
#include <asm/page.h>
+#include <asm/thread_info.h>
#include <asm/types.h>
#include <asm/asm-offsets.h>
#include <hv/hypervisor.h>
diff --git a/arch/tile/mm/pgtable.c b/arch/tile/mm/pgtable.c
index 1f5430c53d0d..de7d8e21e01d 100644
--- a/arch/tile/mm/pgtable.c
+++ b/arch/tile/mm/pgtable.c
@@ -41,7 +41,7 @@
* The normal show_free_areas() is too verbose on Tile, with dozens
* of processors and often four NUMA zones each with high and lowmem.
*/
-void show_mem(void)
+void show_mem(unsigned int filter)
{
struct zone *zone;
@@ -142,6 +142,76 @@ pte_t *_pte_offset_map(pmd_t *dir, unsigned long address)
}
#endif
+/**
+ * shatter_huge_page() - ensure a given address is mapped by a small page.
+ *
+ * This function converts a huge PTE mapping kernel LOWMEM into a bunch
+ * of small PTEs with the same caching. No cache flush required, but we
+ * must do a global TLB flush.
+ *
+ * Any caller that wishes to modify a kernel mapping that might
+ * have been made with a huge page should call this function,
+ * since doing so properly avoids race conditions with installing the
+ * newly-shattered page and then flushing all the TLB entries.
+ *
+ * @addr: Address at which to shatter any existing huge page.
+ */
+void shatter_huge_page(unsigned long addr)
+{
+ pgd_t *pgd;
+ pud_t *pud;
+ pmd_t *pmd;
+ unsigned long flags = 0; /* happy compiler */
+#ifdef __PAGETABLE_PMD_FOLDED
+ struct list_head *pos;
+#endif
+
+ /* Get a pointer to the pmd entry that we need to change. */
+ addr &= HPAGE_MASK;
+ BUG_ON(pgd_addr_invalid(addr));
+ BUG_ON(addr < PAGE_OFFSET); /* only for kernel LOWMEM */
+ pgd = swapper_pg_dir + pgd_index(addr);
+ pud = pud_offset(pgd, addr);
+ BUG_ON(!pud_present(*pud));
+ pmd = pmd_offset(pud, addr);
+ BUG_ON(!pmd_present(*pmd));
+ if (!pmd_huge_page(*pmd))
+ return;
+
+ /*
+ * Grab the pgd_lock, since we may need it to walk the pgd_list,
+ * and since we need some kind of lock here to avoid races.
+ */
+ spin_lock_irqsave(&pgd_lock, flags);
+ if (!pmd_huge_page(*pmd)) {
+ /* Lost the race to convert the huge page. */
+ spin_unlock_irqrestore(&pgd_lock, flags);
+ return;
+ }
+
+ /* Shatter the huge page into the preallocated L2 page table. */
+ pmd_populate_kernel(&init_mm, pmd,
+ get_prealloc_pte(pte_pfn(*(pte_t *)pmd)));
+
+#ifdef __PAGETABLE_PMD_FOLDED
+ /* Walk every pgd on the system and update the pmd there. */
+ list_for_each(pos, &pgd_list) {
+ pmd_t *copy_pmd;
+ pgd = list_to_pgd(pos) + pgd_index(addr);
+ pud = pud_offset(pgd, addr);
+ copy_pmd = pmd_offset(pud, addr);
+ __set_pmd(copy_pmd, *pmd);
+ }
+#endif
+
+ /* Tell every cpu to notice the change. */
+ flush_remote(0, 0, NULL, addr, HPAGE_SIZE, HPAGE_SIZE,
+ cpu_possible_mask, NULL, 0);
+
+ /* Hold the lock until the TLB flush is finished to avoid races. */
+ spin_unlock_irqrestore(&pgd_lock, flags);
+}
+
/*
* List of all pgd's needed so it can invalidate entries in both cached
* and uncached pgd's. This is essentially codepath-based locking
@@ -184,9 +254,9 @@ static void pgd_ctor(pgd_t *pgd)
BUG_ON(((u64 *)swapper_pg_dir)[pgd_index(MEM_USER_INTRPT)] != 0);
#endif
- clone_pgd_range(pgd + KERNEL_PGD_INDEX_START,
- swapper_pg_dir + KERNEL_PGD_INDEX_START,
- KERNEL_PGD_PTRS);
+ memcpy(pgd + KERNEL_PGD_INDEX_START,
+ swapper_pg_dir + KERNEL_PGD_INDEX_START,
+ KERNEL_PGD_PTRS * sizeof(pgd_t));
pgd_list_add(pgd);
spin_unlock_irqrestore(&pgd_lock, flags);
@@ -220,8 +290,11 @@ void pgd_free(struct mm_struct *mm, pgd_t *pgd)
struct page *pte_alloc_one(struct mm_struct *mm, unsigned long address)
{
- gfp_t flags = GFP_KERNEL|__GFP_REPEAT|__GFP_ZERO|__GFP_COMP;
+ gfp_t flags = GFP_KERNEL|__GFP_REPEAT|__GFP_ZERO;
struct page *p;
+#if L2_USER_PGTABLE_ORDER > 0
+ int i;
+#endif
#ifdef CONFIG_HIGHPTE
flags |= __GFP_HIGHMEM;
@@ -231,6 +304,18 @@ struct page *pte_alloc_one(struct mm_struct *mm, unsigned long address)
if (p == NULL)
return NULL;
+#if L2_USER_PGTABLE_ORDER > 0
+ /*
+ * Make every page have a page_count() of one, not just the first.
+ * We don't use __GFP_COMP since it doesn't look like it works
+ * correctly with tlb_remove_page().
+ */
+ for (i = 1; i < L2_USER_PGTABLE_PAGES; ++i) {
+ init_page_count(p+i);
+ inc_zone_page_state(p+i, NR_PAGETABLE);
+ }
+#endif
+
pgtable_page_ctor(p);
return p;
}
@@ -242,8 +327,15 @@ struct page *pte_alloc_one(struct mm_struct *mm, unsigned long address)
*/
void pte_free(struct mm_struct *mm, struct page *p)
{
+ int i;
+
pgtable_page_dtor(p);
- __free_pages(p, L2_USER_PGTABLE_ORDER);
+ __free_page(p);
+
+ for (i = 1; i < L2_USER_PGTABLE_PAGES; ++i) {
+ __free_page(p+i);
+ dec_zone_page_state(p+i, NR_PAGETABLE);
+ }
}
void __pte_free_tlb(struct mmu_gather *tlb, struct page *pte,
@@ -252,18 +344,11 @@ void __pte_free_tlb(struct mmu_gather *tlb, struct page *pte,
int i;
pgtable_page_dtor(pte);
- tlb->need_flush = 1;
- if (tlb_fast_mode(tlb)) {
- struct page *pte_pages[L2_USER_PGTABLE_PAGES];
- for (i = 0; i < L2_USER_PGTABLE_PAGES; ++i)
- pte_pages[i] = pte + i;
- free_pages_and_swap_cache(pte_pages, L2_USER_PGTABLE_PAGES);
- return;
- }
- for (i = 0; i < L2_USER_PGTABLE_PAGES; ++i) {
- tlb->pages[tlb->nr++] = pte + i;
- if (tlb->nr >= FREE_PTE_NR)
- tlb_flush_mmu(tlb, 0, 0);
+ tlb_remove_page(tlb, pte);
+
+ for (i = 1; i < L2_USER_PGTABLE_PAGES; ++i) {
+ tlb_remove_page(tlb, pte + i);
+ dec_zone_page_state(pte + i, NR_PAGETABLE);
}
}
@@ -346,35 +431,51 @@ int get_remote_cache_cpu(pgprot_t prot)
return x + y * smp_width;
}
-void set_pte_order(pte_t *ptep, pte_t pte, int order)
+/*
+ * Convert a kernel VA to a PA and homing information.
+ */
+int va_to_cpa_and_pte(void *va, unsigned long long *cpa, pte_t *pte)
{
- unsigned long pfn = pte_pfn(pte);
- struct page *page = pfn_to_page(pfn);
+ struct page *page = virt_to_page(va);
+ pte_t null_pte = { 0 };
- /* Update the home of a PTE if necessary */
- pte = pte_set_home(pte, page_home(page));
+ *cpa = __pa(va);
+ /* Note that this is not writing a page table, just returning a pte. */
+ *pte = pte_set_home(null_pte, page_home(page));
+
+ return 0; /* return non-zero if not hfh? */
+}
+EXPORT_SYMBOL(va_to_cpa_and_pte);
+
+void __set_pte(pte_t *ptep, pte_t pte)
+{
#ifdef __tilegx__
*ptep = pte;
#else
- /*
- * When setting a PTE, write the high bits first, then write
- * the low bits. This sets the "present" bit only after the
- * other bits are in place. If a particular PTE update
- * involves transitioning from one valid PTE to another, it
- * may be necessary to call set_pte_order() more than once,
- * transitioning via a suitable intermediate state.
- * Note that this sequence also means that if we are transitioning
- * from any migrating PTE to a non-migrating one, we will not
- * see a half-updated PTE with the migrating bit off.
- */
-#if HV_PTE_INDEX_PRESENT >= 32 || HV_PTE_INDEX_MIGRATING >= 32
-# error Must write the present and migrating bits last
-#endif
- ((u32 *)ptep)[1] = (u32)(pte_val(pte) >> 32);
- barrier();
- ((u32 *)ptep)[0] = (u32)(pte_val(pte));
-#endif
+# if HV_PTE_INDEX_PRESENT >= 32 || HV_PTE_INDEX_MIGRATING >= 32
+# error Must write the present and migrating bits last
+# endif
+ if (pte_present(pte)) {
+ ((u32 *)ptep)[1] = (u32)(pte_val(pte) >> 32);
+ barrier();
+ ((u32 *)ptep)[0] = (u32)(pte_val(pte));
+ } else {
+ ((u32 *)ptep)[0] = (u32)(pte_val(pte));
+ barrier();
+ ((u32 *)ptep)[1] = (u32)(pte_val(pte) >> 32);
+ }
+#endif /* __tilegx__ */
+}
+
+void set_pte(pte_t *ptep, pte_t pte)
+{
+ struct page *page = pfn_to_page(pte_pfn(pte));
+
+ /* Update the home of a PTE if necessary */
+ pte = pte_set_home(pte, page_home(page));
+
+ __set_pte(ptep, pte);
}
/* Can this mm load a PTE with cached_priority set? */