summaryrefslogtreecommitdiff
path: root/arch/x86/kernel/entry_64.S
diff options
context:
space:
mode:
Diffstat (limited to 'arch/x86/kernel/entry_64.S')
-rw-r--r--arch/x86/kernel/entry_64.S29
1 files changed, 26 insertions, 3 deletions
diff --git a/arch/x86/kernel/entry_64.S b/arch/x86/kernel/entry_64.S
index b58cfdd0bc50..7ed99df028ca 100644
--- a/arch/x86/kernel/entry_64.S
+++ b/arch/x86/kernel/entry_64.S
@@ -1847,10 +1847,25 @@ ENTRY(nmi)
/*
* Now test if the previous stack was an NMI stack. This covers
* the case where we interrupt an outer NMI after it clears
- * "NMI executing" but before IRET.
+ * "NMI executing" but before IRET. We need to be careful, though:
+ * there is one case in which RSP could point to the NMI stack
+ * despite there being no NMI active: naughty userspace controls
+ * RSP at the very beginning of the SYSCALL targets. We can
+ * pull a fast one on naughty userspace, though: we program
+ * SYSCALL to mask DF, so userspace cannot cause DF to be set
+ * if it controls the kernel's RSP. We set DF before we clear
+ * "NMI executing".
*/
lea 6*8(%rsp), %rdx
test_in_nmi rdx, 4*8(%rsp), nested_nmi, first_nmi
+
+ /* Ah, it is within the NMI stack. */
+
+ testb $(X86_EFLAGS_DF >> 8), (3*8 + 1)(%rsp)
+ jz first_nmi /* RSP was user controlled. */
+
+ /* This is a nested NMI. */
+
CFI_REMEMBER_STATE
nested_nmi:
@@ -1964,8 +1979,16 @@ nmi_restore:
/* Pop the extra iret frame at once */
RESTORE_ALL 6*8
- /* Clear "NMI executing". */
- movq $0, 5*8(%rsp)
+ /*
+ * Clear "NMI executing". Set DF first so that we can easily
+ * distinguish the remaining code between here and IRET from
+ * the SYSCALL entry and exit paths. On a native kernel, we
+ * could just inspect RIP, but, on paravirt kernels,
+ * INTERRUPT_RETURN can translate into a jump into a
+ * hypercall page.
+ */
+ std
+ movq $0, 5*8(%rsp) /* clear "NMI executing" */
/*
* INTERRUPT_RETURN reads the "iret" frame and exits the NMI