summaryrefslogtreecommitdiff
path: root/arch/x86/kernel/tlb_uv.c
diff options
context:
space:
mode:
Diffstat (limited to 'arch/x86/kernel/tlb_uv.c')
-rw-r--r--arch/x86/kernel/tlb_uv.c736
1 files changed, 736 insertions, 0 deletions
diff --git a/arch/x86/kernel/tlb_uv.c b/arch/x86/kernel/tlb_uv.c
new file mode 100644
index 000000000000..28e7c68d9d78
--- /dev/null
+++ b/arch/x86/kernel/tlb_uv.c
@@ -0,0 +1,736 @@
+/*
+ * SGI UltraViolet TLB flush routines.
+ *
+ * (c) 2008 Cliff Wickman <cpw@sgi.com>, SGI.
+ *
+ * This code is released under the GNU General Public License version 2 or
+ * later.
+ */
+#include <linux/mc146818rtc.h>
+#include <linux/proc_fs.h>
+#include <linux/kernel.h>
+
+#include <asm/mach-bigsmp/mach_apic.h>
+#include <asm/mmu_context.h>
+#include <asm/idle.h>
+#include <asm/genapic.h>
+#include <asm/uv/uv_hub.h>
+#include <asm/uv/uv_mmrs.h>
+#include <asm/uv/uv_bau.h>
+
+struct bau_control **uv_bau_table_bases;
+static int uv_bau_retry_limit;
+static int uv_nshift; /* position of pnode (which is nasid>>1) */
+static unsigned long uv_mmask;
+
+char *status_table[] = {
+ "IDLE",
+ "ACTIVE",
+ "DESTINATION TIMEOUT",
+ "SOURCE TIMEOUT"
+};
+
+DEFINE_PER_CPU(struct ptc_stats, ptcstats);
+DEFINE_PER_CPU(struct bau_control, bau_control);
+
+/*
+ * Free a software acknowledge hardware resource by clearing its Pending
+ * bit. This will return a reply to the sender.
+ * If the message has timed out, a reply has already been sent by the
+ * hardware but the resource has not been released. In that case our
+ * clear of the Timeout bit (as well) will free the resource. No reply will
+ * be sent (the hardware will only do one reply per message).
+ */
+static void
+uv_reply_to_message(int resource,
+ struct bau_payload_queue_entry *msg,
+ struct bau_msg_status *msp)
+{
+ int fw;
+
+ fw = (1 << (resource + UV_SW_ACK_NPENDING)) | (1 << resource);
+ msg->replied_to = 1;
+ msg->sw_ack_vector = 0;
+ if (msp)
+ msp->seen_by.bits = 0;
+ uv_write_local_mmr(UVH_LB_BAU_INTD_SOFTWARE_ACKNOWLEDGE_ALIAS, fw);
+ return;
+}
+
+/*
+ * Do all the things a cpu should do for a TLB shootdown message.
+ * Other cpu's may come here at the same time for this message.
+ */
+static void
+uv_bau_process_message(struct bau_payload_queue_entry *msg,
+ int msg_slot, int sw_ack_slot)
+{
+ int cpu;
+ unsigned long this_cpu_mask;
+ struct bau_msg_status *msp;
+
+ msp = __get_cpu_var(bau_control).msg_statuses + msg_slot;
+ cpu = uv_blade_processor_id();
+ msg->number_of_cpus =
+ uv_blade_nr_online_cpus(uv_node_to_blade_id(numa_node_id()));
+ this_cpu_mask = (unsigned long)1 << cpu;
+ if (msp->seen_by.bits & this_cpu_mask)
+ return;
+ atomic_or_long(&msp->seen_by.bits, this_cpu_mask);
+
+ if (msg->replied_to == 1)
+ return;
+
+ if (msg->address == TLB_FLUSH_ALL) {
+ local_flush_tlb();
+ __get_cpu_var(ptcstats).alltlb++;
+ } else {
+ __flush_tlb_one(msg->address);
+ __get_cpu_var(ptcstats).onetlb++;
+ }
+
+ __get_cpu_var(ptcstats).requestee++;
+
+ atomic_inc_short(&msg->acknowledge_count);
+ if (msg->number_of_cpus == msg->acknowledge_count)
+ uv_reply_to_message(sw_ack_slot, msg, msp);
+ return;
+}
+
+/*
+ * Examine the payload queue on all the distribution nodes to see
+ * which messages have not been seen, and which cpu(s) have not seen them.
+ *
+ * Returns the number of cpu's that have not responded.
+ */
+static int
+uv_examine_destinations(struct bau_target_nodemask *distribution)
+{
+ int sender;
+ int i;
+ int j;
+ int k;
+ int count = 0;
+ struct bau_control *bau_tablesp;
+ struct bau_payload_queue_entry *msg;
+ struct bau_msg_status *msp;
+
+ sender = smp_processor_id();
+ for (i = 0; i < (sizeof(struct bau_target_nodemask) * BITSPERBYTE);
+ i++) {
+ if (bau_node_isset(i, distribution)) {
+ bau_tablesp = uv_bau_table_bases[i];
+ for (msg = bau_tablesp->va_queue_first, j = 0;
+ j < DESTINATION_PAYLOAD_QUEUE_SIZE; msg++, j++) {
+ if ((msg->sending_cpu == sender) &&
+ (!msg->replied_to)) {
+ msp = bau_tablesp->msg_statuses + j;
+ printk(KERN_DEBUG
+ "blade %d: address:%#lx %d of %d, not cpu(s): ",
+ i, msg->address,
+ msg->acknowledge_count,
+ msg->number_of_cpus);
+ for (k = 0; k < msg->number_of_cpus;
+ k++) {
+ if (!((long)1 << k & msp->
+ seen_by.bits)) {
+ count++;
+ printk("%d ", k);
+ }
+ }
+ printk("\n");
+ }
+ }
+ }
+ }
+ return count;
+}
+
+/**
+ * uv_flush_tlb_others - globally purge translation cache of a virtual
+ * address or all TLB's
+ * @cpumaskp: mask of all cpu's in which the address is to be removed
+ * @mm: mm_struct containing virtual address range
+ * @va: virtual address to be removed (or TLB_FLUSH_ALL for all TLB's on cpu)
+ *
+ * This is the entry point for initiating any UV global TLB shootdown.
+ *
+ * Purges the translation caches of all specified processors of the given
+ * virtual address, or purges all TLB's on specified processors.
+ *
+ * The caller has derived the cpumaskp from the mm_struct and has subtracted
+ * the local cpu from the mask. This function is called only if there
+ * are bits set in the mask. (e.g. flush_tlb_page())
+ *
+ * The cpumaskp is converted into a nodemask of the nodes containing
+ * the cpus.
+ */
+int
+uv_flush_tlb_others(cpumask_t *cpumaskp, struct mm_struct *mm, unsigned long va)
+{
+ int i;
+ int blade;
+ int cpu;
+ int bit;
+ int right_shift;
+ int this_blade;
+ int exams = 0;
+ int tries = 0;
+ long source_timeouts = 0;
+ long destination_timeouts = 0;
+ unsigned long index;
+ unsigned long mmr_offset;
+ unsigned long descriptor_status;
+ struct bau_activation_descriptor *bau_desc;
+ ktime_t time1, time2;
+
+ cpu = uv_blade_processor_id();
+ this_blade = uv_numa_blade_id();
+ bau_desc = __get_cpu_var(bau_control).descriptor_base;
+ bau_desc += (UV_ITEMS_PER_DESCRIPTOR * cpu);
+
+ bau_nodes_clear(&bau_desc->distribution, UV_DISTRIBUTION_SIZE);
+
+ i = 0;
+ for_each_cpu_mask(bit, *cpumaskp) {
+ blade = uv_cpu_to_blade_id(bit);
+ if (blade > (UV_DISTRIBUTION_SIZE - 1))
+ BUG();
+ if (blade == this_blade)
+ continue;
+ bau_node_set(blade, &bau_desc->distribution);
+ /* leave the bits for the remote cpu's in the mask until
+ success; on failure we fall back to the IPI method */
+ i++;
+ }
+ if (i == 0)
+ goto none_to_flush;
+ __get_cpu_var(ptcstats).requestor++;
+ __get_cpu_var(ptcstats).ntargeted += i;
+
+ bau_desc->payload.address = va;
+ bau_desc->payload.sending_cpu = smp_processor_id();
+
+ if (cpu < UV_CPUS_PER_ACT_STATUS) {
+ mmr_offset = UVH_LB_BAU_SB_ACTIVATION_STATUS_0;
+ right_shift = cpu * UV_ACT_STATUS_SIZE;
+ } else {
+ mmr_offset = UVH_LB_BAU_SB_ACTIVATION_STATUS_1;
+ right_shift =
+ ((cpu - UV_CPUS_PER_ACT_STATUS) * UV_ACT_STATUS_SIZE);
+ }
+ time1 = ktime_get();
+
+retry:
+ tries++;
+ index = ((unsigned long)
+ 1 << UVH_LB_BAU_SB_ACTIVATION_CONTROL_PUSH_SHFT) | cpu;
+ uv_write_local_mmr(UVH_LB_BAU_SB_ACTIVATION_CONTROL, index);
+
+ while ((descriptor_status = (((unsigned long)
+ uv_read_local_mmr(mmr_offset) >>
+ right_shift) & UV_ACT_STATUS_MASK)) !=
+ DESC_STATUS_IDLE) {
+ if (descriptor_status == DESC_STATUS_SOURCE_TIMEOUT) {
+ source_timeouts++;
+ if (source_timeouts > SOURCE_TIMEOUT_LIMIT)
+ source_timeouts = 0;
+ __get_cpu_var(ptcstats).s_retry++;
+ goto retry;
+ }
+ /* spin here looking for progress at the destinations */
+ if (descriptor_status == DESC_STATUS_DESTINATION_TIMEOUT) {
+ destination_timeouts++;
+ if (destination_timeouts > DESTINATION_TIMEOUT_LIMIT) {
+ /* returns # of cpus not responding */
+ if (uv_examine_destinations
+ (&bau_desc->distribution) == 0) {
+ __get_cpu_var(ptcstats).d_retry++;
+ goto retry;
+ }
+ exams++;
+ if (exams >= uv_bau_retry_limit) {
+ printk(KERN_DEBUG
+ "uv_flush_tlb_others");
+ printk("giving up on cpu %d\n",
+ smp_processor_id());
+ goto unsuccessful;
+ }
+ /* delays can hang up the simulator
+ udelay(1000);
+ */
+ destination_timeouts = 0;
+ }
+ }
+ }
+ if (tries > 1)
+ __get_cpu_var(ptcstats).retriesok++;
+ /* on success, clear the remote cpu's from the mask so we don't
+ use the IPI method of shootdown on them */
+ for_each_cpu_mask(bit, *cpumaskp) {
+ blade = uv_cpu_to_blade_id(bit);
+ if (blade == this_blade)
+ continue;
+ cpu_clear(bit, *cpumaskp);
+ }
+
+unsuccessful:
+ time2 = ktime_get();
+ __get_cpu_var(ptcstats).sflush_ns += (time2.tv64 - time1.tv64);
+
+none_to_flush:
+ if (cpus_empty(*cpumaskp))
+ return 1;
+
+ /* Cause the caller to do an IPI-style TLB shootdown on
+ the cpu's still in the mask */
+ __get_cpu_var(ptcstats).ptc_i++;
+ return 0;
+}
+
+/*
+ * The BAU message interrupt comes here. (registered by set_intr_gate)
+ * See entry_64.S
+ *
+ * We received a broadcast assist message.
+ *
+ * Interrupts may have been disabled; this interrupt could represent
+ * the receipt of several messages.
+ *
+ * All cores/threads on this node get this interrupt.
+ * The last one to see it does the s/w ack.
+ * (the resource will not be freed until noninterruptable cpus see this
+ * interrupt; hardware will timeout the s/w ack and reply ERROR)
+ */
+void
+uv_bau_message_interrupt(struct pt_regs *regs)
+{
+ struct bau_payload_queue_entry *pqp;
+ struct bau_payload_queue_entry *msg;
+ struct pt_regs *old_regs = set_irq_regs(regs);
+ ktime_t time1, time2;
+ int msg_slot;
+ int sw_ack_slot;
+ int fw;
+ int count = 0;
+ unsigned long local_pnode;
+
+ ack_APIC_irq();
+ exit_idle();
+ irq_enter();
+
+ time1 = ktime_get();
+
+ local_pnode = uv_blade_to_pnode(uv_numa_blade_id());
+
+ pqp = __get_cpu_var(bau_control).va_queue_first;
+ msg = __get_cpu_var(bau_control).bau_msg_head;
+ while (msg->sw_ack_vector) {
+ count++;
+ fw = msg->sw_ack_vector;
+ msg_slot = msg - pqp;
+ sw_ack_slot = ffs(fw) - 1;
+
+ uv_bau_process_message(msg, msg_slot, sw_ack_slot);
+
+ msg++;
+ if (msg > __get_cpu_var(bau_control).va_queue_last)
+ msg = __get_cpu_var(bau_control).va_queue_first;
+ __get_cpu_var(bau_control).bau_msg_head = msg;
+ }
+ if (!count)
+ __get_cpu_var(ptcstats).nomsg++;
+ else if (count > 1)
+ __get_cpu_var(ptcstats).multmsg++;
+
+ time2 = ktime_get();
+ __get_cpu_var(ptcstats).dflush_ns += (time2.tv64 - time1.tv64);
+
+ irq_exit();
+ set_irq_regs(old_regs);
+ return;
+}
+
+static void
+uv_enable_timeouts(void)
+{
+ int i;
+ int blade;
+ int last_blade;
+ int pnode;
+ int cur_cpu = 0;
+ unsigned long apicid;
+
+ /* better if we had each_online_blade */
+ last_blade = -1;
+ for_each_online_node(i) {
+ blade = uv_node_to_blade_id(i);
+ if (blade == last_blade)
+ continue;
+ last_blade = blade;
+ apicid = per_cpu(x86_cpu_to_apicid, cur_cpu);
+ pnode = uv_blade_to_pnode(blade);
+ cur_cpu += uv_blade_nr_possible_cpus(i);
+ }
+ return;
+}
+
+static void *
+uv_ptc_seq_start(struct seq_file *file, loff_t *offset)
+{
+ if (*offset < num_possible_cpus())
+ return offset;
+ return NULL;
+}
+
+static void *
+uv_ptc_seq_next(struct seq_file *file, void *data, loff_t *offset)
+{
+ (*offset)++;
+ if (*offset < num_possible_cpus())
+ return offset;
+ return NULL;
+}
+
+static void
+uv_ptc_seq_stop(struct seq_file *file, void *data)
+{
+}
+
+/*
+ * Display the statistics thru /proc
+ * data points to the cpu number
+ */
+static int
+uv_ptc_seq_show(struct seq_file *file, void *data)
+{
+ struct ptc_stats *stat;
+ int cpu;
+
+ cpu = *(loff_t *)data;
+
+ if (!cpu) {
+ seq_printf(file,
+ "# cpu requestor requestee one all sretry dretry ptc_i ");
+ seq_printf(file,
+ "sw_ack sflush_us dflush_us sok dnomsg dmult starget\n");
+ }
+ if (cpu < num_possible_cpus() && cpu_online(cpu)) {
+ stat = &per_cpu(ptcstats, cpu);
+ seq_printf(file, "cpu %d %ld %ld %ld %ld %ld %ld %ld ",
+ cpu, stat->requestor,
+ stat->requestee, stat->onetlb, stat->alltlb,
+ stat->s_retry, stat->d_retry, stat->ptc_i);
+ seq_printf(file, "%lx %ld %ld %ld %ld %ld %ld\n",
+ uv_read_global_mmr64(uv_blade_to_pnode
+ (uv_cpu_to_blade_id(cpu)),
+ UVH_LB_BAU_INTD_SOFTWARE_ACKNOWLEDGE),
+ stat->sflush_ns / 1000, stat->dflush_ns / 1000,
+ stat->retriesok, stat->nomsg,
+ stat->multmsg, stat->ntargeted);
+ }
+
+ return 0;
+}
+
+/*
+ * 0: display meaning of the statistics
+ * >0: retry limit
+ */
+static ssize_t
+uv_ptc_proc_write(struct file *file, const char __user *user,
+ size_t count, loff_t *data)
+{
+ long newmode;
+ char optstr[64];
+
+ if (copy_from_user(optstr, user, count))
+ return -EFAULT;
+ optstr[count - 1] = '\0';
+ if (strict_strtoul(optstr, 10, &newmode) < 0) {
+ printk(KERN_DEBUG "%s is invalid\n", optstr);
+ return -EINVAL;
+ }
+
+ if (newmode == 0) {
+ printk(KERN_DEBUG "# cpu: cpu number\n");
+ printk(KERN_DEBUG
+ "requestor: times this cpu was the flush requestor\n");
+ printk(KERN_DEBUG
+ "requestee: times this cpu was requested to flush its TLBs\n");
+ printk(KERN_DEBUG
+ "one: times requested to flush a single address\n");
+ printk(KERN_DEBUG
+ "all: times requested to flush all TLB's\n");
+ printk(KERN_DEBUG
+ "sretry: number of retries of source-side timeouts\n");
+ printk(KERN_DEBUG
+ "dretry: number of retries of destination-side timeouts\n");
+ printk(KERN_DEBUG
+ "ptc_i: times UV fell through to IPI-style flushes\n");
+ printk(KERN_DEBUG
+ "sw_ack: image of UVH_LB_BAU_INTD_SOFTWARE_ACKNOWLEDGE\n");
+ printk(KERN_DEBUG
+ "sflush_us: microseconds spent in uv_flush_tlb_others()\n");
+ printk(KERN_DEBUG
+ "dflush_us: microseconds spent in handling flush requests\n");
+ printk(KERN_DEBUG "sok: successes on retry\n");
+ printk(KERN_DEBUG "dnomsg: interrupts with no message\n");
+ printk(KERN_DEBUG
+ "dmult: interrupts with multiple messages\n");
+ printk(KERN_DEBUG "starget: nodes targeted\n");
+ } else {
+ uv_bau_retry_limit = newmode;
+ printk(KERN_DEBUG "timeout retry limit:%d\n",
+ uv_bau_retry_limit);
+ }
+
+ return count;
+}
+
+static const struct seq_operations uv_ptc_seq_ops = {
+ .start = uv_ptc_seq_start,
+ .next = uv_ptc_seq_next,
+ .stop = uv_ptc_seq_stop,
+ .show = uv_ptc_seq_show
+};
+
+static int
+uv_ptc_proc_open(struct inode *inode, struct file *file)
+{
+ return seq_open(file, &uv_ptc_seq_ops);
+}
+
+static const struct file_operations proc_uv_ptc_operations = {
+ .open = uv_ptc_proc_open,
+ .read = seq_read,
+ .write = uv_ptc_proc_write,
+ .llseek = seq_lseek,
+ .release = seq_release,
+};
+
+static struct proc_dir_entry *proc_uv_ptc;
+
+static int __init
+uv_ptc_init(void)
+{
+ static struct proc_dir_entry *sgi_proc_dir;
+
+ sgi_proc_dir = NULL;
+
+ if (!is_uv_system())
+ return 0;
+
+ sgi_proc_dir = proc_mkdir("sgi_uv", NULL);
+ if (!sgi_proc_dir)
+ return -EINVAL;
+
+ proc_uv_ptc = create_proc_entry(UV_PTC_BASENAME, 0444, NULL);
+ if (!proc_uv_ptc) {
+ printk(KERN_ERR "unable to create %s proc entry\n",
+ UV_PTC_BASENAME);
+ return -EINVAL;
+ }
+ proc_uv_ptc->proc_fops = &proc_uv_ptc_operations;
+ return 0;
+}
+
+static void __exit
+uv_ptc_exit(void)
+{
+ remove_proc_entry(UV_PTC_BASENAME, NULL);
+}
+
+module_init(uv_ptc_init);
+module_exit(uv_ptc_exit);
+
+/*
+ * Initialization of BAU-related structures
+ */
+int __init
+uv_bau_init(void)
+{
+ int i;
+ int j;
+ int blade;
+ int nblades;
+ int *ip;
+ int pnode;
+ int last_blade;
+ int cur_cpu = 0;
+ unsigned long pa;
+ unsigned long n;
+ unsigned long m;
+ unsigned long mmr_image;
+ unsigned long apicid;
+ char *cp;
+ struct bau_control *bau_tablesp;
+ struct bau_activation_descriptor *adp, *ad2;
+ struct bau_payload_queue_entry *pqp;
+ struct bau_msg_status *msp;
+ struct bau_control *bcp;
+
+ if (!is_uv_system())
+ return 0;
+
+ uv_bau_retry_limit = 1;
+
+ if ((sizeof(struct bau_local_cpumask) * BITSPERBYTE) <
+ MAX_CPUS_PER_NODE) {
+ printk(KERN_ERR
+ "uv_bau_init: bau_local_cpumask.bits too small\n");
+ BUG();
+ }
+
+ uv_nshift = uv_hub_info->n_val;
+ uv_mmask = ((unsigned long)1 << uv_hub_info->n_val) - 1;
+ nblades = 0;
+ last_blade = -1;
+ for_each_online_node(i) {
+ blade = uv_node_to_blade_id(i);
+ if (blade == last_blade)
+ continue;
+ last_blade = blade;
+ nblades++;
+ }
+
+ uv_bau_table_bases = (struct bau_control **)
+ kmalloc(nblades * sizeof(struct bau_control *), GFP_KERNEL);
+ if (!uv_bau_table_bases)
+ BUG();
+
+ /* better if we had each_online_blade */
+ last_blade = -1;
+ for_each_online_node(i) {
+ blade = uv_node_to_blade_id(i);
+ if (blade == last_blade)
+ continue;
+ last_blade = blade;
+
+ bau_tablesp =
+ kmalloc_node(sizeof(struct bau_control), GFP_KERNEL, i);
+ if (!bau_tablesp)
+ BUG();
+
+ bau_tablesp->msg_statuses =
+ kmalloc_node(sizeof(struct bau_msg_status) *
+ DESTINATION_PAYLOAD_QUEUE_SIZE, GFP_KERNEL, i);
+ if (!bau_tablesp->msg_statuses)
+ BUG();
+ for (j = 0, msp = bau_tablesp->msg_statuses;
+ j < DESTINATION_PAYLOAD_QUEUE_SIZE; j++, msp++) {
+ bau_cpubits_clear(&msp->seen_by, (int)
+ uv_blade_nr_possible_cpus(blade));
+ }
+
+ bau_tablesp->watching =
+ kmalloc_node(sizeof(int) * DESTINATION_NUM_RESOURCES,
+ GFP_KERNEL, i);
+ if (!bau_tablesp->watching)
+ BUG();
+ for (j = 0, ip = bau_tablesp->watching;
+ j < DESTINATION_PAYLOAD_QUEUE_SIZE; j++, ip++) {
+ *ip = 0;
+ }
+
+ uv_bau_table_bases[i] = bau_tablesp;
+
+ pnode = uv_blade_to_pnode(blade);
+
+ if (sizeof(struct bau_activation_descriptor) != 64)
+ BUG();
+
+ adp = (struct bau_activation_descriptor *)
+ kmalloc_node(16384, GFP_KERNEL, i);
+ if (!adp)
+ BUG();
+ if ((unsigned long)adp & 0xfff)
+ BUG();
+ pa = __pa((unsigned long)adp);
+ n = pa >> uv_nshift;
+ m = pa & uv_mmask;
+
+ mmr_image = uv_read_global_mmr64(pnode,
+ UVH_LB_BAU_SB_DESCRIPTOR_BASE);
+ if (mmr_image)
+ uv_write_global_mmr64(pnode, (unsigned long)
+ UVH_LB_BAU_SB_DESCRIPTOR_BASE,
+ (n << UV_DESC_BASE_PNODE_SHIFT |
+ m));
+ for (j = 0, ad2 = adp; j < UV_ACTIVATION_DESCRIPTOR_SIZE;
+ j++, ad2++) {
+ memset(ad2, 0,
+ sizeof(struct bau_activation_descriptor));
+ ad2->header.sw_ack_flag = 1;
+ ad2->header.base_dest_nodeid =
+ uv_blade_to_pnode(uv_cpu_to_blade_id(0));
+ ad2->header.command = UV_NET_ENDPOINT_INTD;
+ ad2->header.int_both = 1;
+ /* all others need to be set to zero:
+ fairness chaining multilevel count replied_to */
+ }
+
+ pqp = (struct bau_payload_queue_entry *)
+ kmalloc_node((DESTINATION_PAYLOAD_QUEUE_SIZE + 1) *
+ sizeof(struct bau_payload_queue_entry),
+ GFP_KERNEL, i);
+ if (!pqp)
+ BUG();
+ if (sizeof(struct bau_payload_queue_entry) != 32)
+ BUG();
+ if ((unsigned long)(&((struct bau_payload_queue_entry *)0)->
+ sw_ack_vector) != 15)
+ BUG();
+
+ cp = (char *)pqp + 31;
+ pqp = (struct bau_payload_queue_entry *)
+ (((unsigned long)cp >> 5) << 5);
+ bau_tablesp->va_queue_first = pqp;
+ uv_write_global_mmr64(pnode,
+ UVH_LB_BAU_INTD_PAYLOAD_QUEUE_FIRST,
+ ((unsigned long)pnode <<
+ UV_PAYLOADQ_PNODE_SHIFT) |
+ uv_physnodeaddr(pqp));
+ uv_write_global_mmr64(pnode, UVH_LB_BAU_INTD_PAYLOAD_QUEUE_TAIL,
+ uv_physnodeaddr(pqp));
+ bau_tablesp->va_queue_last =
+ pqp + (DESTINATION_PAYLOAD_QUEUE_SIZE - 1);
+ uv_write_global_mmr64(pnode, UVH_LB_BAU_INTD_PAYLOAD_QUEUE_LAST,
+ (unsigned long)
+ uv_physnodeaddr(bau_tablesp->
+ va_queue_last));
+ memset(pqp, 0, sizeof(struct bau_payload_queue_entry) *
+ DESTINATION_PAYLOAD_QUEUE_SIZE);
+
+ /* this initialization can't be in firmware because the
+ messaging IRQ will be determined by the OS */
+ apicid = per_cpu(x86_cpu_to_apicid, cur_cpu);
+ pa = uv_read_global_mmr64(pnode, UVH_BAU_DATA_CONFIG);
+ if ((pa & 0xff) != UV_BAU_MESSAGE) {
+ uv_write_global_mmr64(pnode, UVH_BAU_DATA_CONFIG,
+ ((apicid << 32) |
+ UV_BAU_MESSAGE));
+ }
+
+ for (j = cur_cpu; j < (cur_cpu + uv_blade_nr_possible_cpus(i));
+ j++) {
+ bcp = (struct bau_control *)&per_cpu(bau_control, j);
+ bcp->bau_msg_head = bau_tablesp->va_queue_first;
+ bcp->va_queue_first = bau_tablesp->va_queue_first;
+
+ bcp->va_queue_last = bau_tablesp->va_queue_last;
+ bcp->watching = bau_tablesp->watching;
+ bcp->msg_statuses = bau_tablesp->msg_statuses;
+ bcp->descriptor_base = adp;
+ }
+ cur_cpu += uv_blade_nr_possible_cpus(i);
+ }
+
+ set_intr_gate(UV_BAU_MESSAGE, uv_bau_message_intr1);
+
+ uv_enable_timeouts();
+
+ return 0;
+}
+
+__initcall(uv_bau_init);