diff options
Diffstat (limited to 'drivers/char/ip2/i2hw.h')
-rw-r--r-- | drivers/char/ip2/i2hw.h | 652 |
1 files changed, 0 insertions, 652 deletions
diff --git a/drivers/char/ip2/i2hw.h b/drivers/char/ip2/i2hw.h deleted file mode 100644 index c0ba6c05f0cd..000000000000 --- a/drivers/char/ip2/i2hw.h +++ /dev/null @@ -1,652 +0,0 @@ -/******************************************************************************* -* -* (c) 1999 by Computone Corporation -* -******************************************************************************** -* -* -* PACKAGE: Linux tty Device Driver for IntelliPort II family of multiport -* serial I/O controllers. -* -* DESCRIPTION: Definitions limited to properties of the hardware or the -* bootstrap firmware. As such, they are applicable regardless of -* operating system or loadware (standard or diagnostic). -* -*******************************************************************************/ -#ifndef I2HW_H -#define I2HW_H 1 -//------------------------------------------------------------------------------ -// Revision History: -// -// 23 September 1991 MAG First Draft Started...through... -// 11 October 1991 ... Continuing development... -// 6 August 1993 Added support for ISA-4 (asic) which is architected -// as an ISA-CEX with a single 4-port box. -// -// 20 December 1996 AKM Version for Linux -// -//------------------------------------------------------------------------------ -/*------------------------------------------------------------------------------ - -HARDWARE DESCRIPTION: - -Introduction: - -The IntelliPort-II and IntelliPort-IIEX products occupy a block of eight (8) -addresses in the host's I/O space. - -Some addresses are used to transfer data to/from the board, some to transfer -so-called "mailbox" messages, and some to read bit-mapped status information. -While all the products in the line are functionally similar, some use a 16-bit -data path to transfer data while others use an 8-bit path. Also, the use of -command /status/mailbox registers differs slightly between the II and IIEX -branches of the family. - -The host determines what type of board it is dealing with by reading a string of -sixteen characters from the board. These characters are always placed in the -fifo by the board's local processor whenever the board is reset (either from -power-on or under software control) and are known as the "Power-on Reset -Message." In order that this message can be read from either type of board, the -hardware registers used in reading this message are the same. Once this message -has been read by the host, then it has the information required to operate. - -General Differences between boards: - -The greatest structural difference is between the -II and -IIEX families of -product. The -II boards use the Am4701 dual 512x8 bidirectional fifo to support -the data path, mailbox registers, and status registers. This chip contains some -features which are not used in the IntelliPort-II products; a description of -these is omitted here. Because of these many features, it contains many -registers, too many to access directly within a small address space. They are -accessed by first writing a value to a "pointer" register. This value selects -the register to be accessed. The next read or write to that address accesses -the selected register rather than the pointer register. - -The -IIEX boards use a proprietary design similar to the Am4701 in function. But -because of a simpler, more streamlined design it doesn't require so many -registers. This means they can be accessed directly in single operations rather -than through a pointer register. - -Besides these differences, there are differences in whether 8-bit or 16-bit -transfers are used to move data to the board. - -The -II boards are capable only of 8-bit data transfers, while the -IIEX boards -may be configured for either 8-bit or 16-bit data transfers. If the on-board DIP -switch #8 is ON, and the card has been installed in a 16-bit slot, 16-bit -transfers are supported (and will be expected by the standard loadware). The -on-board firmware can determine the position of the switch, and whether the -board is installed in a 16-bit slot; it supplies this information to the host as -part of the power-up reset message. - -The configuration switch (#8) and slot selection do not directly configure the -hardware. It is up to the on-board loadware and host-based drivers to act -according to the selected options. That is, loadware and drivers could be -written to perform 8-bit transfers regardless of the state of the DIP switch or -slot (and in a diagnostic environment might well do so). Likewise, 16-bit -transfers could be performed as long as the card is in a 16-bit slot. - -Note the slot selection and DIP switch selection are provided separately: a -board running in 8-bit mode in a 16-bit slot has a greater range of possible -interrupts to choose from; information of potential use to the host. - -All 8-bit data transfers are done in the same way, regardless of whether on a --II board or a -IIEX board. - -The host must consider two things then: 1) whether a -II or -IIEX product is -being used, and 2) whether an 8-bit or 16-bit data path is used. - -A further difference is that -II boards always have a 512-byte fifo operating in -each direction. -IIEX boards may use fifos of varying size; this size is -reported as part of the power-up message. - -I/O Map Of IntelliPort-II and IntelliPort-IIEX boards: -(Relative to the chosen base address) - -Addr R/W IntelliPort-II IntelliPort-IIEX ----- --- -------------- ---------------- -0 R/W Data Port (byte) Data Port (byte or word) -1 R/W (Not used) (MSB of word-wide data written to Data Port) -2 R Status Register Status Register -2 W Pointer Register Interrupt Mask Register -3 R/W (Not used) Mailbox Registers (6 bits: 11111100) -4,5 -- Reserved for future products -6 -- Reserved for future products -7 R Guaranteed to have no effect -7 W Hardware reset of board. - - -Rules: -All data transfers are performed using the even i/o address. If byte-wide data -transfers are being used, do INB/OUTB operations on the data port. If word-wide -transfers are used, do INW/OUTW operations. In some circumstances (such as -reading the power-up message) you will do INB from the data port, but in this -case the MSB of each word read is lost. When accessing all other unreserved -registers, use byte operations only. -------------------------------------------------------------------------------*/ - -//------------------------------------------------ -// Mandatory Includes: -//------------------------------------------------ -// -#include "ip2types.h" - -//------------------------------------------------------------------------- -// Manifests for the I/O map: -//------------------------------------------------------------------------- -// R/W: Data port (byte) for IntelliPort-II, -// R/W: Data port (byte or word) for IntelliPort-IIEX -// Incoming or outgoing data passes through a FIFO, the status of which is -// available in some of the bits in FIFO_STATUS. This (bidirectional) FIFO is -// the primary means of transferring data, commands, flow-control, and status -// information between the host and board. -// -#define FIFO_DATA 0 - -// Another way of passing information between the board and the host is -// through "mailboxes". Unlike a FIFO, a mailbox holds only a single byte of -// data. Writing data to the mailbox causes a status bit to be set, and -// potentially interrupting the intended receiver. The sender has some way to -// determine whether the data has been read yet; as soon as it has, it may send -// more. The mailboxes are handled differently on -II and -IIEX products, as -// suggested below. -//------------------------------------------------------------------------------ -// Read: Status Register for IntelliPort-II or -IIEX -// The presence of any bit set here will cause an interrupt to the host, -// provided the corresponding bit has been unmasked in the interrupt mask -// register. Furthermore, interrupts to the host are disabled globally until the -// loadware selects the irq line to use. With the exception of STN_MR, the bits -// remain set so long as the associated condition is true. -// -#define FIFO_STATUS 2 - -// Bit map of status bits which are identical for -II and -IIEX -// -#define ST_OUT_FULL 0x40 // Outbound FIFO full -#define ST_IN_EMPTY 0x20 // Inbound FIFO empty -#define ST_IN_MAIL 0x04 // Inbound Mailbox full - -// The following exists only on the Intelliport-IIEX, and indicates that the -// board has not read the last outgoing mailbox data yet. In the IntelliPort-II, -// the outgoing mailbox may be read back: a zero indicates the board has read -// the data. -// -#define STE_OUT_MAIL 0x80 // Outbound mailbox full (!) - -// The following bits are defined differently for -II and -IIEX boards. Code -// which relies on these bits will need to be functionally different for the two -// types of boards and should be generally avoided because of the additional -// complexity this creates: - -// Bit map of status bits only on -II - -// Fifo has been RESET (cleared when the status register is read). Note that -// this condition cannot be masked and would always interrupt the host, except -// that the hardware reset also disables interrupts globally from the board -// until re-enabled by loadware. This could also arise from the -// Am4701-supported command to reset the chip, but this command is generally not -// used here. -// -#define STN_MR 0x80 - -// See the AMD Am4701 data sheet for details on the following four bits. They -// are not presently used by Computone drivers. -// -#define STN_OUT_AF 0x10 // Outbound FIFO almost full (programmable) -#define STN_IN_AE 0x08 // Inbound FIFO almost empty (programmable) -#define STN_BD 0x02 // Inbound byte detected -#define STN_PE 0x01 // Parity/Framing condition detected - -// Bit-map of status bits only on -IIEX -// -#define STE_OUT_HF 0x10 // Outbound FIFO half full -#define STE_IN_HF 0x08 // Inbound FIFO half full -#define STE_IN_FULL 0x02 // Inbound FIFO full -#define STE_OUT_MT 0x01 // Outbound FIFO empty - -//------------------------------------------------------------------------------ - -// Intelliport-II -- Write Only: the pointer register. -// Values are written to this register to select the Am4701 internal register to -// be accessed on the next operation. -// -#define FIFO_PTR 0x02 - -// Values for the pointer register -// -#define SEL_COMMAND 0x1 // Selects the Am4701 command register - -// Some possible commands: -// -#define SEL_CMD_MR 0x80 // Am4701 command to reset the chip -#define SEL_CMD_SH 0x40 // Am4701 command to map the "other" port into the - // status register. -#define SEL_CMD_UNSH 0 // Am4701 command to "unshift": port maps into its - // own status register. -#define SEL_MASK 0x2 // Selects the Am4701 interrupt mask register. The - // interrupt mask register is bit-mapped to match - // the status register (FIFO_STATUS) except for - // STN_MR. (See above.) -#define SEL_BYTE_DET 0x3 // Selects the Am4701 byte-detect register. (Not - // normally used except in diagnostics.) -#define SEL_OUTMAIL 0x4 // Selects the outbound mailbox (R/W). Reading back - // a value of zero indicates that the mailbox has - // been read by the board and is available for more - // data./ Writing to the mailbox optionally - // interrupts the board, depending on the loadware's - // setting of its interrupt mask register. -#define SEL_AEAF 0x5 // Selects AE/AF threshold register. -#define SEL_INMAIL 0x6 // Selects the inbound mailbox (Read) - -//------------------------------------------------------------------------------ -// IntelliPort-IIEX -- Write Only: interrupt mask (and misc flags) register: -// Unlike IntelliPort-II, bit assignments do NOT match those of the status -// register. -// -#define FIFO_MASK 0x2 - -// Mailbox readback select: -// If set, reads to FIFO_MAIL will read the OUTBOUND mailbox (host to board). If -// clear (default on reset) reads to FIFO_MAIL will read the INBOUND mailbox. -// This is the normal situation. The clearing of a mailbox is determined on -// -IIEX boards by waiting for the STE_OUT_MAIL bit to clear. Readback -// capability is provided for diagnostic purposes only. -// -#define MX_OUTMAIL_RSEL 0x80 - -#define MX_IN_MAIL 0x40 // Enables interrupts when incoming mailbox goes - // full (ST_IN_MAIL set). -#define MX_IN_FULL 0x20 // Enables interrupts when incoming FIFO goes full - // (STE_IN_FULL). -#define MX_IN_MT 0x08 // Enables interrupts when incoming FIFO goes empty - // (ST_IN_MT). -#define MX_OUT_FULL 0x04 // Enables interrupts when outgoing FIFO goes full - // (ST_OUT_FULL). -#define MX_OUT_MT 0x01 // Enables interrupts when outgoing FIFO goes empty - // (STE_OUT_MT). - -// Any remaining bits are reserved, and should be written to ZERO for -// compatibility with future Computone products. - -//------------------------------------------------------------------------------ -// IntelliPort-IIEX: -- These are only 6-bit mailboxes !!! -- 11111100 (low two -// bits always read back 0). -// Read: One of the mailboxes, usually Inbound. -// Inbound Mailbox (MX_OUTMAIL_RSEL = 0) -// Outbound Mailbox (MX_OUTMAIL_RSEL = 1) -// Write: Outbound Mailbox -// For the IntelliPort-II boards, the outbound mailbox is read back to determine -// whether the board has read the data (0 --> data has been read). For the -// IntelliPort-IIEX, this is done by reading a status register. To determine -// whether mailbox is available for more outbound data, use the STE_OUT_MAIL bit -// in FIFO_STATUS. Moreover, although the Outbound Mailbox can be read back by -// setting MX_OUTMAIL_RSEL, it is NOT cleared when the board reads it, as is the -// case with the -II boards. For this reason, FIFO_MAIL is normally used to read -// the inbound FIFO, and MX_OUTMAIL_RSEL kept clear. (See above for -// MX_OUTMAIL_RSEL description.) -// -#define FIFO_MAIL 0x3 - -//------------------------------------------------------------------------------ -// WRITE ONLY: Resets the board. (Data doesn't matter). -// -#define FIFO_RESET 0x7 - -//------------------------------------------------------------------------------ -// READ ONLY: Will have no effect. (Data is undefined.) -// Actually, there will be an effect, in that the operation is sure to generate -// a bus cycle: viz., an I/O byte Read. This fact can be used to enforce short -// delays when no comparable time constant is available. -// -#define FIFO_NOP 0x7 - -//------------------------------------------------------------------------------ -// RESET & POWER-ON RESET MESSAGE -/*------------------------------------------------------------------------------ -RESET: - -The IntelliPort-II and -IIEX boards are reset in three ways: Power-up, channel -reset, and via a write to the reset register described above. For products using -the ISA bus, these three sources of reset are equvalent. For MCA and EISA buses, -the Power-up and channel reset sources cause additional hardware initialization -which should only occur at system startup time. - -The third type of reset, called a "command reset", is done by writing any data -to the FIFO_RESET address described above. This resets the on-board processor, -FIFO, UARTS, and associated hardware. - -This passes control of the board to the bootstrap firmware, which performs a -Power-On Self Test and which detects its current configuration. For example, --IIEX products determine the size of FIFO which has been installed, and the -number and type of expansion boxes attached. - -This and other information is then written to the FIFO in a 16-byte data block -to be read by the host. This block is guaranteed to be present within two (2) -seconds of having received the command reset. The firmware is now ready to -receive loadware from the host. - -It is good practice to perform a command reset to the board explicitly as part -of your software initialization. This allows your code to properly restart from -a soft boot. (Many systems do not issue channel reset on soft boot). - -Because of a hardware reset problem on some of the Cirrus Logic 1400's which are -used on the product, it is recommended that you reset the board twice, separated -by an approximately 50 milliseconds delay. (VERY approximately: probably ok to -be off by a factor of five. The important point is that the first command reset -in fact generates a reset pulse on the board. This pulse is guaranteed to last -less than 10 milliseconds. The additional delay ensures the 1400 has had the -chance to respond sufficiently to the first reset. Why not a longer delay? Much -more than 50 milliseconds gets to be noticable, but the board would still work. - -Once all 16 bytes of the Power-on Reset Message have been read, the bootstrap -firmware is ready to receive loadware. - -Note on Power-on Reset Message format: -The various fields have been designed with future expansion in view. -Combinations of bitfields and values have been defined which define products -which may not currently exist. This has been done to allow drivers to anticipate -the possible introduction of products in a systematic fashion. This is not -intended to suggest that each potential product is actually under consideration. -------------------------------------------------------------------------------*/ - -//---------------------------------------- -// Format of Power-on Reset Message -//---------------------------------------- - -typedef union _porStr // "por" stands for Power On Reset -{ - unsigned char c[16]; // array used when considering the message as a - // string of undifferentiated characters - - struct // Elements used when considering values - { - // The first two bytes out of the FIFO are two magic numbers. These are - // intended to establish that there is indeed a member of the - // IntelliPort-II(EX) family present. The remaining bytes may be - // expected // to be valid. When reading the Power-on Reset message, - // if the magic numbers do not match it is probably best to stop - // reading immediately. You are certainly not reading our board (unless - // hardware is faulty), and may in fact be reading some other piece of - // hardware. - - unsigned char porMagic1; // magic number: first byte == POR_MAGIC_1 - unsigned char porMagic2; // magic number: second byte == POR_MAGIC_2 - - // The Version, Revision, and Subrevision are stored as absolute numbers - // and would normally be displayed in the format V.R.S (e.g. 1.0.2) - - unsigned char porVersion; // Bootstrap firmware version number - unsigned char porRevision; // Bootstrap firmware revision number - unsigned char porSubRev; // Bootstrap firmware sub-revision number - - unsigned char porID; // Product ID: Bit-mapped according to - // conventions described below. Among other - // things, this allows us to distinguish - // IntelliPort-II boards from IntelliPort-IIEX - // boards. - - unsigned char porBus; // IntelliPort-II: Unused - // IntelliPort-IIEX: Bus Information: - // Bit-mapped below - - unsigned char porMemory; // On-board DRAM size: in 32k blocks - - // porPorts1 (and porPorts2) are used to determine the ports which are - // available to the board. For non-expandable product, a single number - // is sufficient. For expandable product, the board may be connected - // to as many as four boxes. Each box may be (so far) either a 16-port - // or an 8-port size. Whenever an 8-port box is used, the remaining 8 - // ports leave gaps between existing channels. For that reason, - // expandable products must report a MAP of available channels. Since - // each UART supports four ports, we represent each UART found by a - // single bit. Using two bytes to supply the mapping information we - // report the presense or absense of up to 16 UARTS, or 64 ports in - // steps of 4 ports. For -IIEX products, the ports are numbered - // starting at the box closest to the controller in the "chain". - - // Interpreted Differently for IntelliPort-II and -IIEX. - // -II: Number of ports (Derived actually from product ID). See - // Diag1&2 to indicate if uart was actually detected. - // -IIEX: Bit-map of UARTS found, LSB (see below for MSB of this). This - // bitmap is based on detecting the uarts themselves; - // see porFlags for information from the box i.d's. - unsigned char porPorts1; - - unsigned char porDiag1; // Results of on-board P.O.S.T, 1st byte - unsigned char porDiag2; // Results of on-board P.O.S.T, 2nd byte - unsigned char porSpeed; // Speed of local CPU: given as MHz x10 - // e.g., 16.0 MHz CPU is reported as 160 - unsigned char porFlags; // Misc information (see manifests below) - // Bit-mapped: CPU type, UART's present - - unsigned char porPorts2; // -II: Undefined - // -IIEX: Bit-map of UARTS found, MSB (see - // above for LSB) - - // IntelliPort-II: undefined - // IntelliPort-IIEX: 1 << porFifoSize gives the size, in bytes, of the - // host interface FIFO, in each direction. When running the -IIEX in - // 8-bit mode, fifo capacity is halved. The bootstrap firmware will - // have already accounted for this fact in generating this number. - unsigned char porFifoSize; - - // IntelliPort-II: undefined - // IntelliPort-IIEX: The number of boxes connected. (Presently 1-4) - unsigned char porNumBoxes; - } e; -} porStr, *porStrPtr; - -//-------------------------- -// Values for porStr fields -//-------------------------- - -//--------------------- -// porMagic1, porMagic2 -//---------------------- -// -#define POR_MAGIC_1 0x96 // The only valid value for porMagic1 -#define POR_MAGIC_2 0x35 // The only valid value for porMagic2 -#define POR_1_INDEX 0 // Byte position of POR_MAGIC_1 -#define POR_2_INDEX 1 // Ditto for POR_MAGIC_2 - -//---------------------- -// porID -//---------------------- -// -#define POR_ID_FAMILY 0xc0 // These bits indicate the general family of - // product. -#define POR_ID_FII 0x00 // Family is "IntelliPort-II" -#define POR_ID_FIIEX 0x40 // Family is "IntelliPort-IIEX" - -// These bits are reserved, presently zero. May be used at a later date to -// convey other product information. -// -#define POR_ID_RESERVED 0x3c - -#define POR_ID_SIZE 0x03 // Remaining bits indicate number of ports & - // Connector information. -#define POR_ID_II_8 0x00 // For IntelliPort-II, indicates 8-port using - // standard brick. -#define POR_ID_II_8R 0x01 // For IntelliPort-II, indicates 8-port using - // RJ11's (no CTS) -#define POR_ID_II_6 0x02 // For IntelliPort-II, indicates 6-port using - // RJ45's -#define POR_ID_II_4 0x03 // For IntelliPort-II, indicates 4-port using - // 4xRJ45 connectors -#define POR_ID_EX 0x00 // For IntelliPort-IIEX, indicates standard - // expandable controller (other values reserved) - -//---------------------- -// porBus -//---------------------- - -// IntelliPort-IIEX only: Board is installed in a 16-bit slot -// -#define POR_BUS_SLOT16 0x20 - -// IntelliPort-IIEX only: DIP switch #8 is on, selecting 16-bit host interface -// operation. -// -#define POR_BUS_DIP16 0x10 - -// Bits 0-2 indicate type of bus: This information is stored in the bootstrap -// loadware, different loadware being used on different products for different -// buses. For most situations, the drivers do not need this information; but it -// is handy in a diagnostic environment. For example, on microchannel boards, -// you would not want to try to test several interrupts, only the one for which -// you were configured. -// -#define POR_BUS_TYPE 0x07 - -// Unknown: this product doesn't know what bus it is running in. (e.g. if same -// bootstrap firmware were wanted for two different buses.) -// -#define POR_BUS_T_UNK 0 - -// Note: existing firmware for ISA-8 and MC-8 currently report the POR_BUS_T_UNK -// state, since the same bootstrap firmware is used for each. - -#define POR_BUS_T_MCA 1 // MCA BUS */ -#define POR_BUS_T_EISA 2 // EISA BUS */ -#define POR_BUS_T_ISA 3 // ISA BUS */ - -// Values 4-7 Reserved - -// Remaining bits are reserved - -//---------------------- -// porDiag1 -//---------------------- - -#define POR_BAD_MAPPER 0x80 // HW failure on P.O.S.T: Chip mapper failed - -// These two bits valid only for the IntelliPort-II -// -#define POR_BAD_UART1 0x01 // First 1400 bad -#define POR_BAD_UART2 0x02 // Second 1400 bad - -//---------------------- -// porDiag2 -//---------------------- - -#define POR_DEBUG_PORT 0x80 // debug port was detected by the P.O.S.T -#define POR_DIAG_OK 0x00 // Indicates passage: Failure codes not yet - // available. - // Other bits undefined. -//---------------------- -// porFlags -//---------------------- - -#define POR_CPU 0x03 // These bits indicate supposed CPU type -#define POR_CPU_8 0x01 // Board uses an 80188 (no such thing yet) -#define POR_CPU_6 0x02 // Board uses an 80186 (all existing products) -#define POR_CEX4 0x04 // If set, this is an ISA-CEX/4: An ISA-4 (asic) - // which is architected like an ISA-CEX connected - // to a (hitherto impossible) 4-port box. -#define POR_BOXES 0xf0 // Valid for IntelliPort-IIEX only: Map of Box - // sizes based on box I.D. -#define POR_BOX_16 0x10 // Set indicates 16-port, clear 8-port - -//------------------------------------- -// LOADWARE and DOWNLOADING CODE -//------------------------------------- - -/* -Loadware may be sent to the board in two ways: -1) It may be read from a (binary image) data file block by block as each block - is sent to the board. This is only possible when the initialization is - performed by code which can access your file system. This is most suitable - for diagnostics and appications which use the interface library directly. - -2) It may be hard-coded into your source by including a .h file (typically - supplied by Computone), which declares a data array and initializes every - element. This achieves the same result as if an entire loadware file had - been read into the array. - - This requires more data space in your program, but access to the file system - is not required. This method is more suited to driver code, which typically - is running at a level too low to access the file system directly. - -At present, loadware can only be generated at Computone. - -All Loadware begins with a header area which has a particular format. This -includes a magic number which identifies the file as being (purportedly) -loadware, CRC (for the loader), and version information. -*/ - - -//----------------------------------------------------------------------------- -// Format of loadware block -// -// This is defined as a union so we can pass a pointer to one of these items -// and (if it is the first block) pick out the version information, etc. -// -// Otherwise, to deal with this as a simple character array -//------------------------------------------------------------------------------ - -#define LOADWARE_BLOCK_SIZE 512 // Number of bytes in each block of loadware - -typedef union _loadHdrStr -{ - unsigned char c[LOADWARE_BLOCK_SIZE]; // Valid for every block - - struct // These fields are valid for only the first block of loadware. - { - unsigned char loadMagic; // Magic number: see below - unsigned char loadBlocksMore; // How many more blocks? - unsigned char loadCRC[2]; // Two CRC bytes: used by loader - unsigned char loadVersion; // Version number - unsigned char loadRevision; // Revision number - unsigned char loadSubRevision; // Sub-revision number - unsigned char loadSpares[9]; // Presently unused - unsigned char loadDates[32]; // Null-terminated string which can give - // date and time of compilation - } e; -} loadHdrStr, *loadHdrStrPtr; - -//------------------------------------ -// Defines for downloading code: -//------------------------------------ - -// The loadMagic field in the first block of the loadfile must be this, else the -// file is not valid. -// -#define MAGIC_LOADFILE 0x3c - -// How do we know the load was successful? On completion of the load, the -// bootstrap firmware returns a code to indicate whether it thought the download -// was valid and intends to execute it. These are the only possible valid codes: -// -#define LOADWARE_OK 0xc3 // Download was ok -#define LOADWARE_BAD 0x5a // Download was bad (CRC error) - -// Constants applicable to writing blocks of loadware: -// The first block of loadware might take 600 mS to load, in extreme cases. -// (Expandable board: worst case for sending startup messages to the LCD's). -// The 600mS figure is not really a calculation, but a conservative -// guess/guarantee. Usually this will be within 100 mS, like subsequent blocks. -// -#define MAX_DLOAD_START_TIME 1000 // 1000 mS -#define MAX_DLOAD_READ_TIME 100 // 100 mS - -// Firmware should respond with status (see above) within this long of host -// having sent the final block. -// -#define MAX_DLOAD_ACK_TIME 100 // 100 mS, again! - -//------------------------------------------------------ -// MAXIMUM NUMBER OF PORTS PER BOARD: -// This is fixed for now (with the expandable), but may -// be expanding according to even newer products. -//------------------------------------------------------ -// -#define ABS_MAX_BOXES 4 // Absolute most boxes per board -#define ABS_BIGGEST_BOX 16 // Absolute the most ports per box -#define ABS_MOST_PORTS (ABS_MAX_BOXES * ABS_BIGGEST_BOX) - -#define I2_OUTSW(port, addr, count) outsw((port), (addr), (((count)+1)/2)) -#define I2_OUTSB(port, addr, count) outsb((port), (addr), (((count)+1))&-2) -#define I2_INSW(port, addr, count) insw((port), (addr), (((count)+1)/2)) -#define I2_INSB(port, addr, count) insb((port), (addr), (((count)+1))&-2) - -#endif // I2HW_H - |