diff options
Diffstat (limited to 'drivers/char/random.c')
| -rw-r--r-- | drivers/char/random.c | 349 | 
1 files changed, 8 insertions, 341 deletions
| diff --git a/drivers/char/random.c b/drivers/char/random.c index 729281961f22..c35a785005b0 100644 --- a/drivers/char/random.c +++ b/drivers/char/random.c @@ -1300,345 +1300,14 @@ ctl_table random_table[] = {  };  #endif 	/* CONFIG_SYSCTL */ -/******************************************************************** - * - * Random functions for networking - * - ********************************************************************/ - -/* - * TCP initial sequence number picking.  This uses the random number - * generator to pick an initial secret value.  This value is hashed - * along with the TCP endpoint information to provide a unique - * starting point for each pair of TCP endpoints.  This defeats - * attacks which rely on guessing the initial TCP sequence number. - * This algorithm was suggested by Steve Bellovin. - * - * Using a very strong hash was taking an appreciable amount of the total - * TCP connection establishment time, so this is a weaker hash, - * compensated for by changing the secret periodically. - */ - -/* F, G and H are basic MD4 functions: selection, majority, parity */ -#define F(x, y, z) ((z) ^ ((x) & ((y) ^ (z)))) -#define G(x, y, z) (((x) & (y)) + (((x) ^ (y)) & (z))) -#define H(x, y, z) ((x) ^ (y) ^ (z)) - -/* - * The generic round function.  The application is so specific that - * we don't bother protecting all the arguments with parens, as is generally - * good macro practice, in favor of extra legibility. - * Rotation is separate from addition to prevent recomputation - */ -#define ROUND(f, a, b, c, d, x, s)	\ -	(a += f(b, c, d) + x, a = (a << s) | (a >> (32 - s))) -#define K1 0 -#define K2 013240474631UL -#define K3 015666365641UL - -#if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE) - -static __u32 twothirdsMD4Transform(__u32 const buf[4], __u32 const in[12]) -{ -	__u32 a = buf[0], b = buf[1], c = buf[2], d = buf[3]; - -	/* Round 1 */ -	ROUND(F, a, b, c, d, in[ 0] + K1,  3); -	ROUND(F, d, a, b, c, in[ 1] + K1,  7); -	ROUND(F, c, d, a, b, in[ 2] + K1, 11); -	ROUND(F, b, c, d, a, in[ 3] + K1, 19); -	ROUND(F, a, b, c, d, in[ 4] + K1,  3); -	ROUND(F, d, a, b, c, in[ 5] + K1,  7); -	ROUND(F, c, d, a, b, in[ 6] + K1, 11); -	ROUND(F, b, c, d, a, in[ 7] + K1, 19); -	ROUND(F, a, b, c, d, in[ 8] + K1,  3); -	ROUND(F, d, a, b, c, in[ 9] + K1,  7); -	ROUND(F, c, d, a, b, in[10] + K1, 11); -	ROUND(F, b, c, d, a, in[11] + K1, 19); - -	/* Round 2 */ -	ROUND(G, a, b, c, d, in[ 1] + K2,  3); -	ROUND(G, d, a, b, c, in[ 3] + K2,  5); -	ROUND(G, c, d, a, b, in[ 5] + K2,  9); -	ROUND(G, b, c, d, a, in[ 7] + K2, 13); -	ROUND(G, a, b, c, d, in[ 9] + K2,  3); -	ROUND(G, d, a, b, c, in[11] + K2,  5); -	ROUND(G, c, d, a, b, in[ 0] + K2,  9); -	ROUND(G, b, c, d, a, in[ 2] + K2, 13); -	ROUND(G, a, b, c, d, in[ 4] + K2,  3); -	ROUND(G, d, a, b, c, in[ 6] + K2,  5); -	ROUND(G, c, d, a, b, in[ 8] + K2,  9); -	ROUND(G, b, c, d, a, in[10] + K2, 13); - -	/* Round 3 */ -	ROUND(H, a, b, c, d, in[ 3] + K3,  3); -	ROUND(H, d, a, b, c, in[ 7] + K3,  9); -	ROUND(H, c, d, a, b, in[11] + K3, 11); -	ROUND(H, b, c, d, a, in[ 2] + K3, 15); -	ROUND(H, a, b, c, d, in[ 6] + K3,  3); -	ROUND(H, d, a, b, c, in[10] + K3,  9); -	ROUND(H, c, d, a, b, in[ 1] + K3, 11); -	ROUND(H, b, c, d, a, in[ 5] + K3, 15); -	ROUND(H, a, b, c, d, in[ 9] + K3,  3); -	ROUND(H, d, a, b, c, in[ 0] + K3,  9); -	ROUND(H, c, d, a, b, in[ 4] + K3, 11); -	ROUND(H, b, c, d, a, in[ 8] + K3, 15); - -	return buf[1] + b; /* "most hashed" word */ -	/* Alternative: return sum of all words? */ -} -#endif - -#undef ROUND -#undef F -#undef G -#undef H -#undef K1 -#undef K2 -#undef K3 - -/* This should not be decreased so low that ISNs wrap too fast. */ -#define REKEY_INTERVAL (300 * HZ) -/* - * Bit layout of the tcp sequence numbers (before adding current time): - * bit 24-31: increased after every key exchange - * bit 0-23: hash(source,dest) - * - * The implementation is similar to the algorithm described - * in the Appendix of RFC 1185, except that - * - it uses a 1 MHz clock instead of a 250 kHz clock - * - it performs a rekey every 5 minutes, which is equivalent - * 	to a (source,dest) tulple dependent forward jump of the - * 	clock by 0..2^(HASH_BITS+1) - * - * Thus the average ISN wraparound time is 68 minutes instead of - * 4.55 hours. - * - * SMP cleanup and lock avoidance with poor man's RCU. - * 			Manfred Spraul <manfred@colorfullife.com> - * - */ -#define COUNT_BITS 8 -#define COUNT_MASK ((1 << COUNT_BITS) - 1) -#define HASH_BITS 24 -#define HASH_MASK ((1 << HASH_BITS) - 1) +static u32 random_int_secret[MD5_MESSAGE_BYTES / 4] ____cacheline_aligned; -static struct keydata { -	__u32 count; /* already shifted to the final position */ -	__u32 secret[12]; -} ____cacheline_aligned ip_keydata[2]; - -static unsigned int ip_cnt; - -static void rekey_seq_generator(struct work_struct *work); - -static DECLARE_DELAYED_WORK(rekey_work, rekey_seq_generator); - -/* - * Lock avoidance: - * The ISN generation runs lockless - it's just a hash over random data. - * State changes happen every 5 minutes when the random key is replaced. - * Synchronization is performed by having two copies of the hash function - * state and rekey_seq_generator always updates the inactive copy. - * The copy is then activated by updating ip_cnt. - * The implementation breaks down if someone blocks the thread - * that processes SYN requests for more than 5 minutes. Should never - * happen, and even if that happens only a not perfectly compliant - * ISN is generated, nothing fatal. - */ -static void rekey_seq_generator(struct work_struct *work) +static int __init random_int_secret_init(void)  { -	struct keydata *keyptr = &ip_keydata[1 ^ (ip_cnt & 1)]; - -	get_random_bytes(keyptr->secret, sizeof(keyptr->secret)); -	keyptr->count = (ip_cnt & COUNT_MASK) << HASH_BITS; -	smp_wmb(); -	ip_cnt++; -	schedule_delayed_work(&rekey_work, -			      round_jiffies_relative(REKEY_INTERVAL)); -} - -static inline struct keydata *get_keyptr(void) -{ -	struct keydata *keyptr = &ip_keydata[ip_cnt & 1]; - -	smp_rmb(); - -	return keyptr; -} - -static __init int seqgen_init(void) -{ -	rekey_seq_generator(NULL); +	get_random_bytes(random_int_secret, sizeof(random_int_secret));  	return 0;  } -late_initcall(seqgen_init); - -#if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE) -__u32 secure_tcpv6_sequence_number(__be32 *saddr, __be32 *daddr, -				   __be16 sport, __be16 dport) -{ -	__u32 seq; -	__u32 hash[12]; -	struct keydata *keyptr = get_keyptr(); - -	/* The procedure is the same as for IPv4, but addresses are longer. -	 * Thus we must use twothirdsMD4Transform. -	 */ - -	memcpy(hash, saddr, 16); -	hash[4] = ((__force u16)sport << 16) + (__force u16)dport; -	memcpy(&hash[5], keyptr->secret, sizeof(__u32) * 7); - -	seq = twothirdsMD4Transform((const __u32 *)daddr, hash) & HASH_MASK; -	seq += keyptr->count; - -	seq += ktime_to_ns(ktime_get_real()); - -	return seq; -} -EXPORT_SYMBOL(secure_tcpv6_sequence_number); -#endif - -/*  The code below is shamelessly stolen from secure_tcp_sequence_number(). - *  All blames to Andrey V. Savochkin <saw@msu.ru>. - */ -__u32 secure_ip_id(__be32 daddr) -{ -	struct keydata *keyptr; -	__u32 hash[4]; - -	keyptr = get_keyptr(); - -	/* -	 *  Pick a unique starting offset for each IP destination. -	 *  The dest ip address is placed in the starting vector, -	 *  which is then hashed with random data. -	 */ -	hash[0] = (__force __u32)daddr; -	hash[1] = keyptr->secret[9]; -	hash[2] = keyptr->secret[10]; -	hash[3] = keyptr->secret[11]; - -	return half_md4_transform(hash, keyptr->secret); -} - -__u32 secure_ipv6_id(const __be32 daddr[4]) -{ -	const struct keydata *keyptr; -	__u32 hash[4]; - -	keyptr = get_keyptr(); - -	hash[0] = (__force __u32)daddr[0]; -	hash[1] = (__force __u32)daddr[1]; -	hash[2] = (__force __u32)daddr[2]; -	hash[3] = (__force __u32)daddr[3]; - -	return half_md4_transform(hash, keyptr->secret); -} - -#ifdef CONFIG_INET - -__u32 secure_tcp_sequence_number(__be32 saddr, __be32 daddr, -				 __be16 sport, __be16 dport) -{ -	__u32 seq; -	__u32 hash[4]; -	struct keydata *keyptr = get_keyptr(); - -	/* -	 *  Pick a unique starting offset for each TCP connection endpoints -	 *  (saddr, daddr, sport, dport). -	 *  Note that the words are placed into the starting vector, which is -	 *  then mixed with a partial MD4 over random data. -	 */ -	hash[0] = (__force u32)saddr; -	hash[1] = (__force u32)daddr; -	hash[2] = ((__force u16)sport << 16) + (__force u16)dport; -	hash[3] = keyptr->secret[11]; - -	seq = half_md4_transform(hash, keyptr->secret) & HASH_MASK; -	seq += keyptr->count; -	/* -	 *	As close as possible to RFC 793, which -	 *	suggests using a 250 kHz clock. -	 *	Further reading shows this assumes 2 Mb/s networks. -	 *	For 10 Mb/s Ethernet, a 1 MHz clock is appropriate. -	 *	For 10 Gb/s Ethernet, a 1 GHz clock should be ok, but -	 *	we also need to limit the resolution so that the u32 seq -	 *	overlaps less than one time per MSL (2 minutes). -	 *	Choosing a clock of 64 ns period is OK. (period of 274 s) -	 */ -	seq += ktime_to_ns(ktime_get_real()) >> 6; - -	return seq; -} - -/* Generate secure starting point for ephemeral IPV4 transport port search */ -u32 secure_ipv4_port_ephemeral(__be32 saddr, __be32 daddr, __be16 dport) -{ -	struct keydata *keyptr = get_keyptr(); -	u32 hash[4]; - -	/* -	 *  Pick a unique starting offset for each ephemeral port search -	 *  (saddr, daddr, dport) and 48bits of random data. -	 */ -	hash[0] = (__force u32)saddr; -	hash[1] = (__force u32)daddr; -	hash[2] = (__force u32)dport ^ keyptr->secret[10]; -	hash[3] = keyptr->secret[11]; - -	return half_md4_transform(hash, keyptr->secret); -} -EXPORT_SYMBOL_GPL(secure_ipv4_port_ephemeral); - -#if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE) -u32 secure_ipv6_port_ephemeral(const __be32 *saddr, const __be32 *daddr, -			       __be16 dport) -{ -	struct keydata *keyptr = get_keyptr(); -	u32 hash[12]; - -	memcpy(hash, saddr, 16); -	hash[4] = (__force u32)dport; -	memcpy(&hash[5], keyptr->secret, sizeof(__u32) * 7); - -	return twothirdsMD4Transform((const __u32 *)daddr, hash); -} -#endif - -#if defined(CONFIG_IP_DCCP) || defined(CONFIG_IP_DCCP_MODULE) -/* Similar to secure_tcp_sequence_number but generate a 48 bit value - * bit's 32-47 increase every key exchange - *       0-31  hash(source, dest) - */ -u64 secure_dccp_sequence_number(__be32 saddr, __be32 daddr, -				__be16 sport, __be16 dport) -{ -	u64 seq; -	__u32 hash[4]; -	struct keydata *keyptr = get_keyptr(); - -	hash[0] = (__force u32)saddr; -	hash[1] = (__force u32)daddr; -	hash[2] = ((__force u16)sport << 16) + (__force u16)dport; -	hash[3] = keyptr->secret[11]; - -	seq = half_md4_transform(hash, keyptr->secret); -	seq |= ((u64)keyptr->count) << (32 - HASH_BITS); - -	seq += ktime_to_ns(ktime_get_real()); -	seq &= (1ull << 48) - 1; - -	return seq; -} -EXPORT_SYMBOL(secure_dccp_sequence_number); -#endif - -#endif /* CONFIG_INET */ - +late_initcall(random_int_secret_init);  /*   * Get a random word for internal kernel use only. Similar to urandom but @@ -1646,17 +1315,15 @@ EXPORT_SYMBOL(secure_dccp_sequence_number);   * value is not cryptographically secure but for several uses the cost of   * depleting entropy is too high   */ -DEFINE_PER_CPU(__u32 [4], get_random_int_hash); +DEFINE_PER_CPU(__u32 [MD5_DIGEST_WORDS], get_random_int_hash);  unsigned int get_random_int(void)  { -	struct keydata *keyptr;  	__u32 *hash = get_cpu_var(get_random_int_hash); -	int ret; +	unsigned int ret; -	keyptr = get_keyptr();  	hash[0] += current->pid + jiffies + get_cycles(); - -	ret = half_md4_transform(hash, keyptr->secret); +	md5_transform(hash, random_int_secret); +	ret = hash[0];  	put_cpu_var(get_random_int_hash);  	return ret; | 
