summaryrefslogtreecommitdiff
path: root/drivers/lguest/interrupts_and_traps.c
diff options
context:
space:
mode:
Diffstat (limited to 'drivers/lguest/interrupts_and_traps.c')
-rw-r--r--drivers/lguest/interrupts_and_traps.c149
1 files changed, 75 insertions, 74 deletions
diff --git a/drivers/lguest/interrupts_and_traps.c b/drivers/lguest/interrupts_and_traps.c
index 2b66f79c208b..32e97c1858e5 100644
--- a/drivers/lguest/interrupts_and_traps.c
+++ b/drivers/lguest/interrupts_and_traps.c
@@ -41,11 +41,11 @@ static int idt_present(u32 lo, u32 hi)
/* We need a helper to "push" a value onto the Guest's stack, since that's a
* big part of what delivering an interrupt does. */
-static void push_guest_stack(struct lguest *lg, unsigned long *gstack, u32 val)
+static void push_guest_stack(struct lg_cpu *cpu, unsigned long *gstack, u32 val)
{
/* Stack grows upwards: move stack then write value. */
*gstack -= 4;
- lgwrite(lg, *gstack, u32, val);
+ lgwrite(cpu, *gstack, u32, val);
}
/*H:210 The set_guest_interrupt() routine actually delivers the interrupt or
@@ -60,7 +60,7 @@ static void push_guest_stack(struct lguest *lg, unsigned long *gstack, u32 val)
* We set up the stack just like the CPU does for a real interrupt, so it's
* identical for the Guest (and the standard "iret" instruction will undo
* it). */
-static void set_guest_interrupt(struct lguest *lg, u32 lo, u32 hi, int has_err)
+static void set_guest_interrupt(struct lg_cpu *cpu, u32 lo, u32 hi, int has_err)
{
unsigned long gstack, origstack;
u32 eflags, ss, irq_enable;
@@ -69,59 +69,59 @@ static void set_guest_interrupt(struct lguest *lg, u32 lo, u32 hi, int has_err)
/* There are two cases for interrupts: one where the Guest is already
* in the kernel, and a more complex one where the Guest is in
* userspace. We check the privilege level to find out. */
- if ((lg->regs->ss&0x3) != GUEST_PL) {
+ if ((cpu->regs->ss&0x3) != GUEST_PL) {
/* The Guest told us their kernel stack with the SET_STACK
* hypercall: both the virtual address and the segment */
- virtstack = lg->esp1;
- ss = lg->ss1;
+ virtstack = cpu->esp1;
+ ss = cpu->ss1;
- origstack = gstack = guest_pa(lg, virtstack);
+ origstack = gstack = guest_pa(cpu, virtstack);
/* We push the old stack segment and pointer onto the new
* stack: when the Guest does an "iret" back from the interrupt
* handler the CPU will notice they're dropping privilege
* levels and expect these here. */
- push_guest_stack(lg, &gstack, lg->regs->ss);
- push_guest_stack(lg, &gstack, lg->regs->esp);
+ push_guest_stack(cpu, &gstack, cpu->regs->ss);
+ push_guest_stack(cpu, &gstack, cpu->regs->esp);
} else {
/* We're staying on the same Guest (kernel) stack. */
- virtstack = lg->regs->esp;
- ss = lg->regs->ss;
+ virtstack = cpu->regs->esp;
+ ss = cpu->regs->ss;
- origstack = gstack = guest_pa(lg, virtstack);
+ origstack = gstack = guest_pa(cpu, virtstack);
}
/* Remember that we never let the Guest actually disable interrupts, so
* the "Interrupt Flag" bit is always set. We copy that bit from the
* Guest's "irq_enabled" field into the eflags word: we saw the Guest
* copy it back in "lguest_iret". */
- eflags = lg->regs->eflags;
- if (get_user(irq_enable, &lg->lguest_data->irq_enabled) == 0
+ eflags = cpu->regs->eflags;
+ if (get_user(irq_enable, &cpu->lg->lguest_data->irq_enabled) == 0
&& !(irq_enable & X86_EFLAGS_IF))
eflags &= ~X86_EFLAGS_IF;
/* An interrupt is expected to push three things on the stack: the old
* "eflags" word, the old code segment, and the old instruction
* pointer. */
- push_guest_stack(lg, &gstack, eflags);
- push_guest_stack(lg, &gstack, lg->regs->cs);
- push_guest_stack(lg, &gstack, lg->regs->eip);
+ push_guest_stack(cpu, &gstack, eflags);
+ push_guest_stack(cpu, &gstack, cpu->regs->cs);
+ push_guest_stack(cpu, &gstack, cpu->regs->eip);
/* For the six traps which supply an error code, we push that, too. */
if (has_err)
- push_guest_stack(lg, &gstack, lg->regs->errcode);
+ push_guest_stack(cpu, &gstack, cpu->regs->errcode);
/* Now we've pushed all the old state, we change the stack, the code
* segment and the address to execute. */
- lg->regs->ss = ss;
- lg->regs->esp = virtstack + (gstack - origstack);
- lg->regs->cs = (__KERNEL_CS|GUEST_PL);
- lg->regs->eip = idt_address(lo, hi);
+ cpu->regs->ss = ss;
+ cpu->regs->esp = virtstack + (gstack - origstack);
+ cpu->regs->cs = (__KERNEL_CS|GUEST_PL);
+ cpu->regs->eip = idt_address(lo, hi);
/* There are two kinds of interrupt handlers: 0xE is an "interrupt
* gate" which expects interrupts to be disabled on entry. */
if (idt_type(lo, hi) == 0xE)
- if (put_user(0, &lg->lguest_data->irq_enabled))
- kill_guest(lg, "Disabling interrupts");
+ if (put_user(0, &cpu->lg->lguest_data->irq_enabled))
+ kill_guest(cpu, "Disabling interrupts");
}
/*H:205
@@ -129,23 +129,23 @@ static void set_guest_interrupt(struct lguest *lg, u32 lo, u32 hi, int has_err)
*
* maybe_do_interrupt() gets called before every entry to the Guest, to see if
* we should divert the Guest to running an interrupt handler. */
-void maybe_do_interrupt(struct lguest *lg)
+void maybe_do_interrupt(struct lg_cpu *cpu)
{
unsigned int irq;
DECLARE_BITMAP(blk, LGUEST_IRQS);
struct desc_struct *idt;
/* If the Guest hasn't even initialized yet, we can do nothing. */
- if (!lg->lguest_data)
+ if (!cpu->lg->lguest_data)
return;
/* Take our "irqs_pending" array and remove any interrupts the Guest
* wants blocked: the result ends up in "blk". */
- if (copy_from_user(&blk, lg->lguest_data->blocked_interrupts,
+ if (copy_from_user(&blk, cpu->lg->lguest_data->blocked_interrupts,
sizeof(blk)))
return;
- bitmap_andnot(blk, lg->irqs_pending, blk, LGUEST_IRQS);
+ bitmap_andnot(blk, cpu->irqs_pending, blk, LGUEST_IRQS);
/* Find the first interrupt. */
irq = find_first_bit(blk, LGUEST_IRQS);
@@ -155,19 +155,20 @@ void maybe_do_interrupt(struct lguest *lg)
/* They may be in the middle of an iret, where they asked us never to
* deliver interrupts. */
- if (lg->regs->eip >= lg->noirq_start && lg->regs->eip < lg->noirq_end)
+ if (cpu->regs->eip >= cpu->lg->noirq_start &&
+ (cpu->regs->eip < cpu->lg->noirq_end))
return;
/* If they're halted, interrupts restart them. */
- if (lg->halted) {
+ if (cpu->halted) {
/* Re-enable interrupts. */
- if (put_user(X86_EFLAGS_IF, &lg->lguest_data->irq_enabled))
- kill_guest(lg, "Re-enabling interrupts");
- lg->halted = 0;
+ if (put_user(X86_EFLAGS_IF, &cpu->lg->lguest_data->irq_enabled))
+ kill_guest(cpu, "Re-enabling interrupts");
+ cpu->halted = 0;
} else {
/* Otherwise we check if they have interrupts disabled. */
u32 irq_enabled;
- if (get_user(irq_enabled, &lg->lguest_data->irq_enabled))
+ if (get_user(irq_enabled, &cpu->lg->lguest_data->irq_enabled))
irq_enabled = 0;
if (!irq_enabled)
return;
@@ -176,15 +177,15 @@ void maybe_do_interrupt(struct lguest *lg)
/* Look at the IDT entry the Guest gave us for this interrupt. The
* first 32 (FIRST_EXTERNAL_VECTOR) entries are for traps, so we skip
* over them. */
- idt = &lg->arch.idt[FIRST_EXTERNAL_VECTOR+irq];
+ idt = &cpu->arch.idt[FIRST_EXTERNAL_VECTOR+irq];
/* If they don't have a handler (yet?), we just ignore it */
if (idt_present(idt->a, idt->b)) {
/* OK, mark it no longer pending and deliver it. */
- clear_bit(irq, lg->irqs_pending);
+ clear_bit(irq, cpu->irqs_pending);
/* set_guest_interrupt() takes the interrupt descriptor and a
* flag to say whether this interrupt pushes an error code onto
* the stack as well: virtual interrupts never do. */
- set_guest_interrupt(lg, idt->a, idt->b, 0);
+ set_guest_interrupt(cpu, idt->a, idt->b, 0);
}
/* Every time we deliver an interrupt, we update the timestamp in the
@@ -192,7 +193,7 @@ void maybe_do_interrupt(struct lguest *lg)
* did this more often, but it can actually be quite slow: doing it
* here is a compromise which means at least it gets updated every
* timer interrupt. */
- write_timestamp(lg);
+ write_timestamp(cpu);
}
/*:*/
@@ -245,19 +246,19 @@ static int has_err(unsigned int trap)
}
/* deliver_trap() returns true if it could deliver the trap. */
-int deliver_trap(struct lguest *lg, unsigned int num)
+int deliver_trap(struct lg_cpu *cpu, unsigned int num)
{
/* Trap numbers are always 8 bit, but we set an impossible trap number
* for traps inside the Switcher, so check that here. */
- if (num >= ARRAY_SIZE(lg->arch.idt))
+ if (num >= ARRAY_SIZE(cpu->arch.idt))
return 0;
/* Early on the Guest hasn't set the IDT entries (or maybe it put a
* bogus one in): if we fail here, the Guest will be killed. */
- if (!idt_present(lg->arch.idt[num].a, lg->arch.idt[num].b))
+ if (!idt_present(cpu->arch.idt[num].a, cpu->arch.idt[num].b))
return 0;
- set_guest_interrupt(lg, lg->arch.idt[num].a, lg->arch.idt[num].b,
- has_err(num));
+ set_guest_interrupt(cpu, cpu->arch.idt[num].a,
+ cpu->arch.idt[num].b, has_err(num));
return 1;
}
@@ -309,18 +310,18 @@ static int direct_trap(unsigned int num)
* the Guest.
*
* Which is deeply unfair, because (literally!) it wasn't the Guests' fault. */
-void pin_stack_pages(struct lguest *lg)
+void pin_stack_pages(struct lg_cpu *cpu)
{
unsigned int i;
/* Depending on the CONFIG_4KSTACKS option, the Guest can have one or
* two pages of stack space. */
- for (i = 0; i < lg->stack_pages; i++)
+ for (i = 0; i < cpu->lg->stack_pages; i++)
/* The stack grows *upwards*, so the address we're given is the
* start of the page after the kernel stack. Subtract one to
* get back onto the first stack page, and keep subtracting to
* get to the rest of the stack pages. */
- pin_page(lg, lg->esp1 - 1 - i * PAGE_SIZE);
+ pin_page(cpu, cpu->esp1 - 1 - i * PAGE_SIZE);
}
/* Direct traps also mean that we need to know whenever the Guest wants to use
@@ -331,21 +332,21 @@ void pin_stack_pages(struct lguest *lg)
*
* In Linux each process has its own kernel stack, so this happens a lot: we
* change stacks on each context switch. */
-void guest_set_stack(struct lguest *lg, u32 seg, u32 esp, unsigned int pages)
+void guest_set_stack(struct lg_cpu *cpu, u32 seg, u32 esp, unsigned int pages)
{
/* You are not allowed have a stack segment with privilege level 0: bad
* Guest! */
if ((seg & 0x3) != GUEST_PL)
- kill_guest(lg, "bad stack segment %i", seg);
+ kill_guest(cpu, "bad stack segment %i", seg);
/* We only expect one or two stack pages. */
if (pages > 2)
- kill_guest(lg, "bad stack pages %u", pages);
+ kill_guest(cpu, "bad stack pages %u", pages);
/* Save where the stack is, and how many pages */
- lg->ss1 = seg;
- lg->esp1 = esp;
- lg->stack_pages = pages;
+ cpu->ss1 = seg;
+ cpu->esp1 = esp;
+ cpu->lg->stack_pages = pages;
/* Make sure the new stack pages are mapped */
- pin_stack_pages(lg);
+ pin_stack_pages(cpu);
}
/* All this reference to mapping stacks leads us neatly into the other complex
@@ -353,7 +354,7 @@ void guest_set_stack(struct lguest *lg, u32 seg, u32 esp, unsigned int pages)
/*H:235 This is the routine which actually checks the Guest's IDT entry and
* transfers it into the entry in "struct lguest": */
-static void set_trap(struct lguest *lg, struct desc_struct *trap,
+static void set_trap(struct lg_cpu *cpu, struct desc_struct *trap,
unsigned int num, u32 lo, u32 hi)
{
u8 type = idt_type(lo, hi);
@@ -366,7 +367,7 @@ static void set_trap(struct lguest *lg, struct desc_struct *trap,
/* We only support interrupt and trap gates. */
if (type != 0xE && type != 0xF)
- kill_guest(lg, "bad IDT type %i", type);
+ kill_guest(cpu, "bad IDT type %i", type);
/* We only copy the handler address, present bit, privilege level and
* type. The privilege level controls where the trap can be triggered
@@ -383,7 +384,7 @@ static void set_trap(struct lguest *lg, struct desc_struct *trap,
*
* We saw the Guest setting Interrupt Descriptor Table (IDT) entries with the
* LHCALL_LOAD_IDT_ENTRY hypercall before: that comes here. */
-void load_guest_idt_entry(struct lguest *lg, unsigned int num, u32 lo, u32 hi)
+void load_guest_idt_entry(struct lg_cpu *cpu, unsigned int num, u32 lo, u32 hi)
{
/* Guest never handles: NMI, doublefault, spurious interrupt or
* hypercall. We ignore when it tries to set them. */
@@ -392,13 +393,13 @@ void load_guest_idt_entry(struct lguest *lg, unsigned int num, u32 lo, u32 hi)
/* Mark the IDT as changed: next time the Guest runs we'll know we have
* to copy this again. */
- lg->changed |= CHANGED_IDT;
+ cpu->changed |= CHANGED_IDT;
/* Check that the Guest doesn't try to step outside the bounds. */
- if (num >= ARRAY_SIZE(lg->arch.idt))
- kill_guest(lg, "Setting idt entry %u", num);
+ if (num >= ARRAY_SIZE(cpu->arch.idt))
+ kill_guest(cpu, "Setting idt entry %u", num);
else
- set_trap(lg, &lg->arch.idt[num], num, lo, hi);
+ set_trap(cpu, &cpu->arch.idt[num], num, lo, hi);
}
/* The default entry for each interrupt points into the Switcher routines which
@@ -434,14 +435,14 @@ void setup_default_idt_entries(struct lguest_ro_state *state,
/*H:240 We don't use the IDT entries in the "struct lguest" directly, instead
* we copy them into the IDT which we've set up for Guests on this CPU, just
* before we run the Guest. This routine does that copy. */
-void copy_traps(const struct lguest *lg, struct desc_struct *idt,
+void copy_traps(const struct lg_cpu *cpu, struct desc_struct *idt,
const unsigned long *def)
{
unsigned int i;
/* We can simply copy the direct traps, otherwise we use the default
* ones in the Switcher: they will return to the Host. */
- for (i = 0; i < ARRAY_SIZE(lg->arch.idt); i++) {
+ for (i = 0; i < ARRAY_SIZE(cpu->arch.idt); i++) {
/* If no Guest can ever override this trap, leave it alone. */
if (!direct_trap(i))
continue;
@@ -450,8 +451,8 @@ void copy_traps(const struct lguest *lg, struct desc_struct *idt,
* Interrupt gates (type 14) disable interrupts as they are
* entered, which we never let the Guest do. Not present
* entries (type 0x0) also can't go direct, of course. */
- if (idt_type(lg->arch.idt[i].a, lg->arch.idt[i].b) == 0xF)
- idt[i] = lg->arch.idt[i];
+ if (idt_type(cpu->arch.idt[i].a, cpu->arch.idt[i].b) == 0xF)
+ idt[i] = cpu->arch.idt[i];
else
/* Reset it to the default. */
default_idt_entry(&idt[i], i, def[i]);
@@ -470,13 +471,13 @@ void copy_traps(const struct lguest *lg, struct desc_struct *idt,
* infrastructure to set a callback at that time.
*
* 0 means "turn off the clock". */
-void guest_set_clockevent(struct lguest *lg, unsigned long delta)
+void guest_set_clockevent(struct lg_cpu *cpu, unsigned long delta)
{
ktime_t expires;
if (unlikely(delta == 0)) {
/* Clock event device is shutting down. */
- hrtimer_cancel(&lg->hrt);
+ hrtimer_cancel(&cpu->hrt);
return;
}
@@ -484,25 +485,25 @@ void guest_set_clockevent(struct lguest *lg, unsigned long delta)
* all the time between now and the timer interrupt it asked for. This
* is almost always the right thing to do. */
expires = ktime_add_ns(ktime_get_real(), delta);
- hrtimer_start(&lg->hrt, expires, HRTIMER_MODE_ABS);
+ hrtimer_start(&cpu->hrt, expires, HRTIMER_MODE_ABS);
}
/* This is the function called when the Guest's timer expires. */
static enum hrtimer_restart clockdev_fn(struct hrtimer *timer)
{
- struct lguest *lg = container_of(timer, struct lguest, hrt);
+ struct lg_cpu *cpu = container_of(timer, struct lg_cpu, hrt);
/* Remember the first interrupt is the timer interrupt. */
- set_bit(0, lg->irqs_pending);
+ set_bit(0, cpu->irqs_pending);
/* If the Guest is actually stopped, we need to wake it up. */
- if (lg->halted)
- wake_up_process(lg->tsk);
+ if (cpu->halted)
+ wake_up_process(cpu->tsk);
return HRTIMER_NORESTART;
}
/* This sets up the timer for this Guest. */
-void init_clockdev(struct lguest *lg)
+void init_clockdev(struct lg_cpu *cpu)
{
- hrtimer_init(&lg->hrt, CLOCK_REALTIME, HRTIMER_MODE_ABS);
- lg->hrt.function = clockdev_fn;
+ hrtimer_init(&cpu->hrt, CLOCK_REALTIME, HRTIMER_MODE_ABS);
+ cpu->hrt.function = clockdev_fn;
}