summaryrefslogtreecommitdiff
path: root/drivers/mtd/nand/gpmi-nfc/gpmi-nfc-hal-v1.c
diff options
context:
space:
mode:
Diffstat (limited to 'drivers/mtd/nand/gpmi-nfc/gpmi-nfc-hal-v1.c')
-rw-r--r--drivers/mtd/nand/gpmi-nfc/gpmi-nfc-hal-v1.c866
1 files changed, 866 insertions, 0 deletions
diff --git a/drivers/mtd/nand/gpmi-nfc/gpmi-nfc-hal-v1.c b/drivers/mtd/nand/gpmi-nfc/gpmi-nfc-hal-v1.c
new file mode 100644
index 000000000000..962efe686853
--- /dev/null
+++ b/drivers/mtd/nand/gpmi-nfc/gpmi-nfc-hal-v1.c
@@ -0,0 +1,866 @@
+/*
+ * Freescale GPMI NFC NAND Flash Driver
+ *
+ * Copyright (C) 2010 Freescale Semiconductor, Inc.
+ * Copyright (C) 2008 Embedded Alley Solutions, Inc.
+ *
+ * This program is free software; you can redistribute it and/or modify
+ * it under the terms of the GNU General Public License as published by
+ * the Free Software Foundation; either version 2 of the License, or
+ * (at your option) any later version.
+ *
+ * This program is distributed in the hope that it will be useful,
+ * but WITHOUT ANY WARRANTY; without even the implied warranty of
+ * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
+ * GNU General Public License for more details.
+ *
+ * You should have received a copy of the GNU General Public License along
+ * with this program; if not, write to the Free Software Foundation, Inc.,
+ * 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
+ */
+
+#include "gpmi-nfc.h"
+
+#include "gpmi-nfc-gpmi-regs-v1.h"
+#include "gpmi-nfc-bch-regs-v1.h"
+
+/**
+ * init() - Initializes the NFC hardware.
+ *
+ * @this: Per-device data.
+ */
+static int init(struct gpmi_nfc_data *this)
+{
+ struct resources *resources = &this->resources;
+ int error;
+
+ /* Initialize DMA. */
+
+ error = gpmi_nfc_dma_init(this);
+
+ if (error)
+ return error;
+
+ /* Enable the clock. */
+
+ clk_enable(resources->clock);
+
+ /* Reset the GPMI block. */
+
+ mxs_reset_block(resources->gpmi_regs + HW_GPMI_CTRL0, true);
+
+ /* Choose NAND mode. */
+ __raw_writel(BM_GPMI_CTRL1_GPMI_MODE,
+ resources->gpmi_regs + HW_GPMI_CTRL1_CLR);
+
+ /* Set the IRQ polarity. */
+ __raw_writel(BM_GPMI_CTRL1_ATA_IRQRDY_POLARITY,
+ resources->gpmi_regs + HW_GPMI_CTRL1_SET);
+
+ /* Disable write protection. */
+ __raw_writel(BM_GPMI_CTRL1_DEV_RESET,
+ resources->gpmi_regs + HW_GPMI_CTRL1_SET);
+
+ /* Select BCH ECC. */
+ __raw_writel(BM_GPMI_CTRL1_BCH_MODE,
+ resources->gpmi_regs + HW_GPMI_CTRL1_SET);
+
+ /* Disable the clock. */
+
+ clk_disable(resources->clock);
+
+ /* If control arrives here, all is well. */
+
+ return 0;
+
+}
+
+/**
+ * set_geometry() - Configures the NFC geometry.
+ *
+ * @this: Per-device data.
+ */
+static int set_geometry(struct gpmi_nfc_data *this)
+{
+ struct resources *resources = &this->resources;
+ struct nfc_geometry *nfc = &this->nfc_geometry;
+ unsigned int block_count;
+ unsigned int block_size;
+ unsigned int metadata_size;
+ unsigned int ecc_strength;
+ unsigned int page_size;
+
+ /* We make the abstract choices in a common function. */
+
+ if (gpmi_nfc_set_geometry(this))
+ return !0;
+
+ /* Translate the abstract choices into register fields. */
+
+ block_count = nfc->ecc_chunk_count - 1;
+ block_size = nfc->ecc_chunk_size_in_bytes;
+ metadata_size = nfc->metadata_size_in_bytes;
+ ecc_strength = nfc->ecc_strength >> 1;
+ page_size = nfc->page_size_in_bytes;
+
+ /* Enable the clock. */
+
+ clk_enable(resources->clock);
+
+ /*
+ * Reset the BCH block. Notice that we pass in true for the just_enable
+ * flag. This is because the soft reset for the version 0 BCH block
+ * doesn't work and the version 1 BCH block is similar enough that we
+ * suspect the same (though this has not been officially tested). If you
+ * try to soft reset a version 0 BCH block, it becomes unusable until
+ * the next hard reset.
+ */
+
+ mxs_reset_block(resources->bch_regs, true);
+
+ /* Configure layout 0. */
+
+ __raw_writel(
+ BF_BCH_FLASH0LAYOUT0_NBLOCKS(block_count) |
+ BF_BCH_FLASH0LAYOUT0_META_SIZE(metadata_size) |
+ BF_BCH_FLASH0LAYOUT0_ECC0(ecc_strength) |
+ BF_BCH_FLASH0LAYOUT0_DATA0_SIZE(block_size) ,
+ resources->bch_regs + HW_BCH_FLASH0LAYOUT0);
+
+ __raw_writel(
+ BF_BCH_FLASH0LAYOUT1_PAGE_SIZE(page_size) |
+ BF_BCH_FLASH0LAYOUT1_ECCN(ecc_strength) |
+ BF_BCH_FLASH0LAYOUT1_DATAN_SIZE(block_size) ,
+ resources->bch_regs + HW_BCH_FLASH0LAYOUT1);
+
+ /* Set *all* chip selects to use layout 0. */
+
+ __raw_writel(0, resources->bch_regs + HW_BCH_LAYOUTSELECT);
+
+ /* Enable interrupts. */
+
+ __raw_writel(BM_BCH_CTRL_COMPLETE_IRQ_EN,
+ resources->bch_regs + HW_BCH_CTRL_SET);
+
+ /* Disable the clock. */
+
+ clk_disable(resources->clock);
+
+ /* Return success. */
+
+ return 0;
+
+}
+
+/**
+ * set_timing() - Configures the NFC timing.
+ *
+ * @this: Per-device data.
+ * @timing: The timing of interest.
+ */
+static int set_timing(struct gpmi_nfc_data *this,
+ const struct gpmi_nfc_timing *timing)
+{
+ struct nfc_hal *nfc = this->nfc;
+
+ /* Accept the new timing. */
+
+ nfc->timing = *timing;
+
+ /* Return success. */
+
+ return 0;
+
+}
+
+/**
+ * get_timing() - Retrieves the NFC hardware timing.
+ *
+ * @this: Per-device data.
+ * @clock_frequency_in_hz: The clock frequency, in Hz, during the current
+ * I/O transaction. If no I/O transaction is in
+ * progress, this is the clock frequency during the
+ * most recent I/O transaction.
+ * @hardware_timing: The hardware timing configuration in effect during
+ * the current I/O transaction. If no I/O transaction
+ * is in progress, this is the hardware timing
+ * configuration during the most recent I/O
+ * transaction.
+ */
+static void get_timing(struct gpmi_nfc_data *this,
+ unsigned long *clock_frequency_in_hz,
+ struct gpmi_nfc_hardware_timing *hardware_timing)
+{
+ struct resources *resources = &this->resources;
+ struct nfc_hal *nfc = this->nfc;
+ unsigned char *gpmi_regs = resources->gpmi_regs;
+ uint32_t register_image;
+
+ /* Return the clock frequency. */
+
+ *clock_frequency_in_hz = nfc->clock_frequency_in_hz;
+
+ /* We'll be reading the hardware, so let's enable the clock. */
+
+ clk_enable(resources->clock);
+
+ /* Retrieve the hardware timing. */
+
+ register_image = __raw_readl(gpmi_regs + HW_GPMI_TIMING0);
+
+ hardware_timing->data_setup_in_cycles =
+ (register_image & BM_GPMI_TIMING0_DATA_SETUP) >>
+ BP_GPMI_TIMING0_DATA_SETUP;
+
+ hardware_timing->data_hold_in_cycles =
+ (register_image & BM_GPMI_TIMING0_DATA_HOLD) >>
+ BP_GPMI_TIMING0_DATA_HOLD;
+
+ hardware_timing->address_setup_in_cycles =
+ (register_image & BM_GPMI_TIMING0_ADDRESS_SETUP) >>
+ BP_GPMI_TIMING0_ADDRESS_SETUP;
+
+ register_image = __raw_readl(gpmi_regs + HW_GPMI_CTRL1);
+
+ hardware_timing->use_half_periods =
+ (register_image & BM_GPMI_CTRL1_HALF_PERIOD) >>
+ BP_GPMI_CTRL1_HALF_PERIOD;
+
+ hardware_timing->sample_delay_factor =
+ (register_image & BM_GPMI_CTRL1_RDN_DELAY) >>
+ BP_GPMI_CTRL1_RDN_DELAY;
+
+ /* We're done reading the hardware, so disable the clock. */
+
+ clk_disable(resources->clock);
+
+}
+
+/**
+ * exit() - Shuts down the NFC hardware.
+ *
+ * @this: Per-device data.
+ */
+static void exit(struct gpmi_nfc_data *this)
+{
+ gpmi_nfc_dma_exit(this);
+}
+
+/**
+ * begin() - Begin NFC I/O.
+ *
+ * @this: Per-device data.
+ */
+static void begin(struct gpmi_nfc_data *this)
+{
+ struct resources *resources = &this->resources;
+ struct nfc_hal *nfc = this->nfc;
+ struct gpmi_nfc_hardware_timing hw;
+
+ /* Enable the clock. */
+
+ clk_enable(resources->clock);
+
+ /* Get the timing information we need. */
+
+ nfc->clock_frequency_in_hz = clk_get_rate(resources->clock);
+ gpmi_nfc_compute_hardware_timing(this, &hw);
+
+ /* Apply the hardware timing. */
+
+ /* Coming soon - the clock handling code isn't ready yet. */
+
+}
+
+/**
+ * end() - End NFC I/O.
+ *
+ * @this: Per-device data.
+ */
+static void end(struct gpmi_nfc_data *this)
+{
+ struct resources *resources = &this->resources;
+
+ /* Disable the clock. */
+
+ clk_disable(resources->clock);
+
+}
+
+/**
+ * clear_bch() - Clears a BCH interrupt.
+ *
+ * @this: Per-device data.
+ */
+static void clear_bch(struct gpmi_nfc_data *this)
+{
+ struct resources *resources = &this->resources;
+
+ __raw_writel(BM_BCH_CTRL_COMPLETE_IRQ,
+ resources->bch_regs + HW_BCH_CTRL_CLR);
+
+}
+
+/**
+ * is_ready() - Returns the ready/busy status of the given chip.
+ *
+ * @this: Per-device data.
+ * @chip: The chip of interest.
+ */
+static int is_ready(struct gpmi_nfc_data *this, unsigned chip)
+{
+ struct resources *resources = &this->resources;
+ uint32_t mask;
+ uint32_t register_image;
+
+ /* Extract and return the status. */
+
+ mask = BF_GPMI_STAT_READY_BUSY(1 << chip);
+
+ register_image = __raw_readl(resources->gpmi_regs + HW_GPMI_STAT);
+
+ return !!(register_image & mask);
+
+}
+
+/**
+ * send_command() - Sends a command and associated addresses.
+ *
+ * @this: Per-device data.
+ * @chip: The chip of interest.
+ * @buffer: The physical address of a buffer that contains the command bytes.
+ * @length: The number of bytes in the buffer.
+ */
+static int send_command(struct gpmi_nfc_data *this, unsigned chip,
+ dma_addr_t buffer, unsigned int length)
+{
+ struct device *dev = this->dev;
+ struct resources *resources = &this->resources;
+ struct nfc_hal *nfc = this->nfc;
+ struct mxs_dma_desc **d = nfc->dma_descriptors;
+ int dma_channel;
+ int error;
+ uint32_t command_mode;
+ uint32_t address;
+
+ /* Compute the DMA channel. */
+
+ dma_channel = resources->dma_low_channel + chip;
+
+ /* A DMA descriptor that sends out the command. */
+
+ command_mode = BV_GPMI_CTRL0_COMMAND_MODE__WRITE;
+ address = BV_GPMI_CTRL0_ADDRESS__NAND_CLE;
+
+ (*d)->cmd.cmd.data = 0;
+ (*d)->cmd.cmd.bits.command = DMA_READ;
+ (*d)->cmd.cmd.bits.chain = 1;
+ (*d)->cmd.cmd.bits.irq = 1;
+ (*d)->cmd.cmd.bits.nand_lock = 0;
+ (*d)->cmd.cmd.bits.nand_wait_4_ready = 0;
+ (*d)->cmd.cmd.bits.dec_sem = 1;
+ (*d)->cmd.cmd.bits.wait4end = 1;
+ (*d)->cmd.cmd.bits.halt_on_terminate = 0;
+ (*d)->cmd.cmd.bits.terminate_flush = 0;
+ (*d)->cmd.cmd.bits.pio_words = 3;
+ (*d)->cmd.cmd.bits.bytes = length;
+
+ (*d)->cmd.address = buffer;
+
+ (*d)->cmd.pio_words[0] =
+ BF_GPMI_CTRL0_COMMAND_MODE(command_mode) |
+ BM_GPMI_CTRL0_WORD_LENGTH |
+ BF_GPMI_CTRL0_CS(chip) |
+ BF_GPMI_CTRL0_ADDRESS(address) |
+ BM_GPMI_CTRL0_ADDRESS_INCREMENT |
+ BF_GPMI_CTRL0_XFER_COUNT(length) ;
+
+ (*d)->cmd.pio_words[1] = 0;
+ (*d)->cmd.pio_words[2] = 0;
+
+ mxs_dma_desc_append(dma_channel, (*d));
+ d++;
+
+ /* Go! */
+
+ error = gpmi_nfc_dma_go(this, dma_channel);
+
+ if (error)
+ dev_err(dev, "[%s] DMA error\n", __func__);
+
+ /* Return success. */
+
+ return error;
+
+}
+
+/**
+ * send_data() - Sends data to the given chip.
+ *
+ * @this: Per-device data.
+ * @chip: The chip of interest.
+ * @buffer: The physical address of a buffer that contains the data.
+ * @length: The number of bytes in the buffer.
+ */
+static int send_data(struct gpmi_nfc_data *this, unsigned chip,
+ dma_addr_t buffer, unsigned int length)
+{
+ struct device *dev = this->dev;
+ struct resources *resources = &this->resources;
+ struct nfc_hal *nfc = this->nfc;
+ struct mxs_dma_desc **d = nfc->dma_descriptors;
+ int dma_channel;
+ int error = 0;
+ uint32_t command_mode;
+ uint32_t address;
+
+ /* Compute the DMA channel. */
+
+ dma_channel = resources->dma_low_channel + chip;
+
+ /* A DMA descriptor that writes a buffer out. */
+
+ command_mode = BV_GPMI_CTRL0_COMMAND_MODE__WRITE;
+ address = BV_GPMI_CTRL0_ADDRESS__NAND_DATA;
+
+ (*d)->cmd.cmd.data = 0;
+ (*d)->cmd.cmd.bits.command = DMA_READ;
+ (*d)->cmd.cmd.bits.chain = 0;
+ (*d)->cmd.cmd.bits.irq = 1;
+ (*d)->cmd.cmd.bits.nand_lock = 0;
+ (*d)->cmd.cmd.bits.nand_wait_4_ready = 0;
+ (*d)->cmd.cmd.bits.dec_sem = 1;
+ (*d)->cmd.cmd.bits.wait4end = 1;
+ (*d)->cmd.cmd.bits.halt_on_terminate = 0;
+ (*d)->cmd.cmd.bits.terminate_flush = 0;
+ (*d)->cmd.cmd.bits.pio_words = 4;
+ (*d)->cmd.cmd.bits.bytes = length;
+
+ (*d)->cmd.address = buffer;
+
+ (*d)->cmd.pio_words[0] =
+ BF_GPMI_CTRL0_COMMAND_MODE(command_mode) |
+ BM_GPMI_CTRL0_WORD_LENGTH |
+ BF_GPMI_CTRL0_CS(chip) |
+ BF_GPMI_CTRL0_ADDRESS(address) |
+ BF_GPMI_CTRL0_XFER_COUNT(length) ;
+ (*d)->cmd.pio_words[1] = 0;
+ (*d)->cmd.pio_words[2] = 0;
+ (*d)->cmd.pio_words[3] = 0;
+
+ mxs_dma_desc_append(dma_channel, (*d));
+ d++;
+
+ /* Go! */
+
+ error = gpmi_nfc_dma_go(this, dma_channel);
+
+ if (error)
+ dev_err(dev, "[%s] DMA error\n", __func__);
+
+ /* Return success. */
+
+ return error;
+
+}
+
+/**
+ * read_data() - Receives data from the given chip.
+ *
+ * @this: Per-device data.
+ * @chip: The chip of interest.
+ * @buffer: The physical address of a buffer that will receive the data.
+ * @length: The number of bytes to read.
+ */
+static int read_data(struct gpmi_nfc_data *this, unsigned chip,
+ dma_addr_t buffer, unsigned int length)
+{
+ struct device *dev = this->dev;
+ struct resources *resources = &this->resources;
+ struct nfc_hal *nfc = this->nfc;
+ struct mxs_dma_desc **d = nfc->dma_descriptors;
+ int dma_channel;
+ int error = 0;
+ uint32_t command_mode;
+ uint32_t address;
+
+ /* Compute the DMA channel. */
+
+ dma_channel = resources->dma_low_channel + chip;
+
+ /* A DMA descriptor that reads the data. */
+
+ command_mode = BV_GPMI_CTRL0_COMMAND_MODE__READ;
+ address = BV_GPMI_CTRL0_ADDRESS__NAND_DATA;
+
+ (*d)->cmd.cmd.data = 0;
+ (*d)->cmd.cmd.bits.command = DMA_WRITE;
+ (*d)->cmd.cmd.bits.chain = 1;
+ (*d)->cmd.cmd.bits.irq = 0;
+ (*d)->cmd.cmd.bits.nand_lock = 0;
+ (*d)->cmd.cmd.bits.nand_wait_4_ready = 0;
+ (*d)->cmd.cmd.bits.dec_sem = 1;
+ (*d)->cmd.cmd.bits.wait4end = 1;
+ (*d)->cmd.cmd.bits.halt_on_terminate = 0;
+ (*d)->cmd.cmd.bits.terminate_flush = 0;
+ (*d)->cmd.cmd.bits.pio_words = 1;
+ (*d)->cmd.cmd.bits.bytes = length;
+
+ (*d)->cmd.address = buffer;
+
+ (*d)->cmd.pio_words[0] =
+ BF_GPMI_CTRL0_COMMAND_MODE(command_mode) |
+ BM_GPMI_CTRL0_WORD_LENGTH |
+ BF_GPMI_CTRL0_CS(chip) |
+ BF_GPMI_CTRL0_ADDRESS(address) |
+ BF_GPMI_CTRL0_XFER_COUNT(length) ;
+
+ mxs_dma_desc_append(dma_channel, (*d));
+ d++;
+
+ /*
+ * A DMA descriptor that waits for the command to end and the chip to
+ * become ready.
+ *
+ * I think we actually should *not* be waiting for the chip to become
+ * ready because, after all, we don't care. I think the original code
+ * did that and no one has re-thought it yet.
+ */
+
+ command_mode = BV_GPMI_CTRL0_COMMAND_MODE__WAIT_FOR_READY;
+ address = BV_GPMI_CTRL0_ADDRESS__NAND_DATA;
+
+ (*d)->cmd.cmd.data = 0;
+ (*d)->cmd.cmd.bits.command = NO_DMA_XFER;
+ (*d)->cmd.cmd.bits.chain = 0;
+ (*d)->cmd.cmd.bits.irq = 1;
+ (*d)->cmd.cmd.bits.nand_lock = 0;
+ (*d)->cmd.cmd.bits.nand_wait_4_ready = 1;
+ (*d)->cmd.cmd.bits.dec_sem = 1;
+ (*d)->cmd.cmd.bits.wait4end = 1;
+ (*d)->cmd.cmd.bits.halt_on_terminate = 0;
+ (*d)->cmd.cmd.bits.terminate_flush = 0;
+ (*d)->cmd.cmd.bits.pio_words = 4;
+ (*d)->cmd.cmd.bits.bytes = 0;
+
+ (*d)->cmd.address = 0;
+
+ (*d)->cmd.pio_words[0] =
+ BF_GPMI_CTRL0_COMMAND_MODE(command_mode) |
+ BM_GPMI_CTRL0_WORD_LENGTH |
+ BF_GPMI_CTRL0_CS(chip) |
+ BF_GPMI_CTRL0_ADDRESS(address) |
+ BF_GPMI_CTRL0_XFER_COUNT(0) ;
+ (*d)->cmd.pio_words[1] = 0;
+ (*d)->cmd.pio_words[2] = 0;
+ (*d)->cmd.pio_words[3] = 0;
+
+ mxs_dma_desc_append(dma_channel, (*d));
+ d++;
+
+ /* Go! */
+
+ error = gpmi_nfc_dma_go(this, dma_channel);
+
+ if (error)
+ dev_err(dev, "[%s] DMA error\n", __func__);
+
+ /* Return success. */
+
+ return error;
+
+}
+
+/**
+ * send_page() - Sends a page, using ECC.
+ *
+ * @this: Per-device data.
+ * @chip: The chip of interest.
+ * @payload: The physical address of the payload buffer.
+ * @auxiliary: The physical address of the auxiliary buffer.
+ */
+static int send_page(struct gpmi_nfc_data *this, unsigned chip,
+ dma_addr_t payload, dma_addr_t auxiliary)
+{
+ struct device *dev = this->dev;
+ struct resources *resources = &this->resources;
+ struct nfc_hal *nfc = this->nfc;
+ struct nfc_geometry *nfc_geo = &this->nfc_geometry;
+ struct mxs_dma_desc **d = nfc->dma_descriptors;
+ int dma_channel;
+ int error = 0;
+ uint32_t command_mode;
+ uint32_t address;
+ uint32_t ecc_command;
+ uint32_t buffer_mask;
+
+ /* Compute the DMA channel. */
+
+ dma_channel = resources->dma_low_channel + chip;
+
+ /* A DMA descriptor that does an ECC page read. */
+
+ command_mode = BV_GPMI_CTRL0_COMMAND_MODE__WRITE;
+ address = BV_GPMI_CTRL0_ADDRESS__NAND_DATA;
+ ecc_command = BV_GPMI_ECCCTRL_ECC_CMD__ENCODE;
+ buffer_mask = BV_GPMI_ECCCTRL_BUFFER_MASK__BCH_PAGE |
+ BV_GPMI_ECCCTRL_BUFFER_MASK__BCH_AUXONLY;
+
+ (*d)->cmd.cmd.data = 0;
+ (*d)->cmd.cmd.bits.command = NO_DMA_XFER;
+ (*d)->cmd.cmd.bits.chain = 0;
+ (*d)->cmd.cmd.bits.irq = 1;
+ (*d)->cmd.cmd.bits.nand_lock = 0;
+ (*d)->cmd.cmd.bits.nand_wait_4_ready = 0;
+ (*d)->cmd.cmd.bits.dec_sem = 1;
+ (*d)->cmd.cmd.bits.wait4end = 1;
+ (*d)->cmd.cmd.bits.halt_on_terminate = 0;
+ (*d)->cmd.cmd.bits.terminate_flush = 0;
+ (*d)->cmd.cmd.bits.pio_words = 6;
+ (*d)->cmd.cmd.bits.bytes = 0;
+
+ (*d)->cmd.address = 0;
+
+ (*d)->cmd.pio_words[0] =
+ BF_GPMI_CTRL0_COMMAND_MODE(command_mode) |
+ BM_GPMI_CTRL0_WORD_LENGTH |
+ BF_GPMI_CTRL0_CS(chip) |
+ BF_GPMI_CTRL0_ADDRESS(address) |
+ BF_GPMI_CTRL0_XFER_COUNT(0) ;
+
+ (*d)->cmd.pio_words[1] = 0;
+
+ (*d)->cmd.pio_words[2] =
+ BM_GPMI_ECCCTRL_ENABLE_ECC |
+ BF_GPMI_ECCCTRL_ECC_CMD(ecc_command) |
+ BF_GPMI_ECCCTRL_BUFFER_MASK(buffer_mask) ;
+
+ (*d)->cmd.pio_words[3] = nfc_geo->page_size_in_bytes;
+ (*d)->cmd.pio_words[4] = payload;
+ (*d)->cmd.pio_words[5] = auxiliary;
+
+ mxs_dma_desc_append(dma_channel, (*d));
+ d++;
+
+ /* Prepare to receive an interrupt from the BCH block. */
+
+ init_completion(&nfc->bch_done);
+
+ /* Go! */
+
+ error = gpmi_nfc_dma_go(this, dma_channel);
+
+ if (error)
+ dev_err(dev, "[%s] DMA error\n", __func__);
+
+ /* Wait for the interrupt from the BCH block. */
+
+ wait_for_completion(&nfc->bch_done);
+
+ /* Return success. */
+
+ return error;
+
+}
+
+/**
+ * read_page() - Reads a page, using ECC.
+ *
+ * @this: Per-device data.
+ * @chip: The chip of interest.
+ * @payload: The physical address of the payload buffer.
+ * @auxiliary: The physical address of the auxiliary buffer.
+ */
+static int read_page(struct gpmi_nfc_data *this, unsigned chip,
+ dma_addr_t payload, dma_addr_t auxiliary)
+{
+ struct device *dev = this->dev;
+ struct resources *resources = &this->resources;
+ struct nfc_hal *nfc = this->nfc;
+ struct nfc_geometry *nfc_geo = &this->nfc_geometry;
+ struct mxs_dma_desc **d = nfc->dma_descriptors;
+ int dma_channel;
+ int error = 0;
+ uint32_t command_mode;
+ uint32_t address;
+ uint32_t ecc_command;
+ uint32_t buffer_mask;
+
+ /* Compute the DMA channel. */
+
+ dma_channel = resources->dma_low_channel + chip;
+
+ /* Wait for the chip to report ready. */
+
+ command_mode = BV_GPMI_CTRL0_COMMAND_MODE__WAIT_FOR_READY;
+ address = BV_GPMI_CTRL0_ADDRESS__NAND_DATA;
+
+ (*d)->cmd.cmd.data = 0;
+ (*d)->cmd.cmd.bits.command = NO_DMA_XFER;
+ (*d)->cmd.cmd.bits.chain = 1;
+ (*d)->cmd.cmd.bits.irq = 0;
+ (*d)->cmd.cmd.bits.nand_lock = 0;
+ (*d)->cmd.cmd.bits.nand_wait_4_ready = 1;
+ (*d)->cmd.cmd.bits.dec_sem = 1;
+ (*d)->cmd.cmd.bits.wait4end = 1;
+ (*d)->cmd.cmd.bits.halt_on_terminate = 0;
+ (*d)->cmd.cmd.bits.terminate_flush = 0;
+ (*d)->cmd.cmd.bits.pio_words = 1;
+ (*d)->cmd.cmd.bits.bytes = 0;
+
+ (*d)->cmd.address = 0;
+
+ (*d)->cmd.pio_words[0] =
+ BF_GPMI_CTRL0_COMMAND_MODE(command_mode) |
+ BM_GPMI_CTRL0_WORD_LENGTH |
+ BF_GPMI_CTRL0_CS(chip) |
+ BF_GPMI_CTRL0_ADDRESS(address) |
+ BF_GPMI_CTRL0_XFER_COUNT(0) ;
+
+ mxs_dma_desc_append(dma_channel, (*d));
+ d++;
+
+ /* Enable the BCH block and read. */
+
+ command_mode = BV_GPMI_CTRL0_COMMAND_MODE__READ;
+ address = BV_GPMI_CTRL0_ADDRESS__NAND_DATA;
+ ecc_command = BV_GPMI_ECCCTRL_ECC_CMD__DECODE;
+ buffer_mask = BV_GPMI_ECCCTRL_BUFFER_MASK__BCH_PAGE |
+ BV_GPMI_ECCCTRL_BUFFER_MASK__BCH_AUXONLY;
+
+ (*d)->cmd.cmd.data = 0;
+ (*d)->cmd.cmd.bits.command = NO_DMA_XFER;
+ (*d)->cmd.cmd.bits.chain = 1;
+ (*d)->cmd.cmd.bits.irq = 0;
+ (*d)->cmd.cmd.bits.nand_lock = 0;
+ (*d)->cmd.cmd.bits.nand_wait_4_ready = 0;
+ (*d)->cmd.cmd.bits.dec_sem = 1;
+ (*d)->cmd.cmd.bits.wait4end = 1;
+ (*d)->cmd.cmd.bits.halt_on_terminate = 0;
+ (*d)->cmd.cmd.bits.terminate_flush = 0;
+ (*d)->cmd.cmd.bits.pio_words = 6;
+ (*d)->cmd.cmd.bits.bytes = 0;
+
+ (*d)->cmd.address = 0;
+
+ (*d)->cmd.pio_words[0] =
+ BF_GPMI_CTRL0_COMMAND_MODE(command_mode) |
+ BM_GPMI_CTRL0_WORD_LENGTH |
+ BF_GPMI_CTRL0_CS(chip) |
+ BF_GPMI_CTRL0_ADDRESS(address) |
+ BF_GPMI_CTRL0_XFER_COUNT(nfc_geo->page_size_in_bytes) ;
+
+ (*d)->cmd.pio_words[1] = 0;
+ (*d)->cmd.pio_words[2] =
+ BM_GPMI_ECCCTRL_ENABLE_ECC |
+ BF_GPMI_ECCCTRL_ECC_CMD(ecc_command) |
+ BF_GPMI_ECCCTRL_BUFFER_MASK(buffer_mask) ;
+ (*d)->cmd.pio_words[3] = nfc_geo->page_size_in_bytes;
+ (*d)->cmd.pio_words[4] = payload;
+ (*d)->cmd.pio_words[5] = auxiliary;
+
+ mxs_dma_desc_append(dma_channel, (*d));
+ d++;
+
+ /* Disable the BCH block */
+
+ command_mode = BV_GPMI_CTRL0_COMMAND_MODE__WAIT_FOR_READY;
+ address = BV_GPMI_CTRL0_ADDRESS__NAND_DATA;
+
+ (*d)->cmd.cmd.data = 0;
+ (*d)->cmd.cmd.bits.command = NO_DMA_XFER;
+ (*d)->cmd.cmd.bits.chain = 1;
+ (*d)->cmd.cmd.bits.irq = 0;
+ (*d)->cmd.cmd.bits.nand_lock = 0;
+ (*d)->cmd.cmd.bits.nand_wait_4_ready = 1;
+ (*d)->cmd.cmd.bits.dec_sem = 1;
+ (*d)->cmd.cmd.bits.wait4end = 1;
+ (*d)->cmd.cmd.bits.halt_on_terminate = 0;
+ (*d)->cmd.cmd.bits.terminate_flush = 0;
+ (*d)->cmd.cmd.bits.pio_words = 3;
+ (*d)->cmd.cmd.bits.bytes = 0;
+
+ (*d)->cmd.address = 0;
+
+ (*d)->cmd.pio_words[0] =
+ BF_GPMI_CTRL0_COMMAND_MODE(command_mode) |
+ BM_GPMI_CTRL0_WORD_LENGTH |
+ BF_GPMI_CTRL0_CS(chip) |
+ BF_GPMI_CTRL0_ADDRESS(address) |
+ BF_GPMI_CTRL0_XFER_COUNT(nfc_geo->page_size_in_bytes) ;
+
+ (*d)->cmd.pio_words[1] = 0;
+ (*d)->cmd.pio_words[2] = 0;
+
+ mxs_dma_desc_append(dma_channel, (*d));
+ d++;
+
+ /* Deassert the NAND lock and interrupt. */
+
+ (*d)->cmd.cmd.data = 0;
+ (*d)->cmd.cmd.bits.command = NO_DMA_XFER;
+ (*d)->cmd.cmd.bits.chain = 0;
+ (*d)->cmd.cmd.bits.irq = 1;
+ (*d)->cmd.cmd.bits.nand_lock = 0;
+ (*d)->cmd.cmd.bits.nand_wait_4_ready = 0;
+ (*d)->cmd.cmd.bits.dec_sem = 1;
+ (*d)->cmd.cmd.bits.wait4end = 0;
+ (*d)->cmd.cmd.bits.halt_on_terminate = 0;
+ (*d)->cmd.cmd.bits.terminate_flush = 0;
+ (*d)->cmd.cmd.bits.pio_words = 0;
+ (*d)->cmd.cmd.bits.bytes = 0;
+
+ (*d)->cmd.address = 0;
+
+ mxs_dma_desc_append(dma_channel, (*d));
+ d++;
+
+ /* Prepare to receive an interrupt from the BCH block. */
+
+ init_completion(&nfc->bch_done);
+
+ /* Go! */
+
+ error = gpmi_nfc_dma_go(this, dma_channel);
+
+ if (error)
+ dev_err(dev, "[%s] DMA error\n", __func__);
+
+ /* Wait for the interrupt from the BCH block. */
+
+ wait_for_completion(&nfc->bch_done);
+
+ /* Return success. */
+
+ return error;
+
+}
+
+/* This structure represents the NFC HAL for this version of the hardware. */
+
+struct nfc_hal gpmi_nfc_hal_v1 = {
+ .version = 1,
+ .description = "8-chip GPMI and BCH",
+ .max_chip_count = 8,
+ .max_data_setup_cycles = (BM_GPMI_TIMING0_DATA_SETUP >>
+ BP_GPMI_TIMING0_DATA_SETUP),
+ .internal_data_setup_in_ns = 0,
+ .max_sample_delay_factor = (BM_GPMI_CTRL1_RDN_DELAY >>
+ BP_GPMI_CTRL1_RDN_DELAY),
+ .max_dll_clock_period_in_ns = 32,
+ .max_dll_delay_in_ns = 16,
+ .init = init,
+ .set_geometry = set_geometry,
+ .set_timing = set_timing,
+ .get_timing = get_timing,
+ .exit = exit,
+ .begin = begin,
+ .end = end,
+ .clear_bch = clear_bch,
+ .is_ready = is_ready,
+ .send_command = send_command,
+ .send_data = send_data,
+ .read_data = read_data,
+ .send_page = send_page,
+ .read_page = read_page,
+};