diff options
Diffstat (limited to 'drivers/mtd/nand/gpmi-nfc')
18 files changed, 12627 insertions, 0 deletions
diff --git a/drivers/mtd/nand/gpmi-nfc/Makefile b/drivers/mtd/nand/gpmi-nfc/Makefile new file mode 100644 index 000000000000..9df1b6454e90 --- /dev/null +++ b/drivers/mtd/nand/gpmi-nfc/Makefile @@ -0,0 +1,11 @@ +obj-$(CONFIG_MTD_NAND_GPMI_NFC) += gpmi-nfc.o +gpmi-nfc-objs += gpmi-nfc-main.o +gpmi-nfc-objs += gpmi-nfc-event-reporting.o +gpmi-nfc-objs += gpmi-nfc-hal-common.o +gpmi-nfc-objs += gpmi-nfc-hal-v0.o +gpmi-nfc-objs += gpmi-nfc-hal-v1.o +gpmi-nfc-objs += gpmi-nfc-hal-v2.o +gpmi-nfc-objs += gpmi-nfc-rom-common.o +gpmi-nfc-objs += gpmi-nfc-rom-v0.o +gpmi-nfc-objs += gpmi-nfc-rom-v1.o +gpmi-nfc-objs += gpmi-nfc-mil.o diff --git a/drivers/mtd/nand/gpmi-nfc/gpmi-nfc-bch-regs-v0.h b/drivers/mtd/nand/gpmi-nfc/gpmi-nfc-bch-regs-v0.h new file mode 100644 index 000000000000..9af4feb29021 --- /dev/null +++ b/drivers/mtd/nand/gpmi-nfc/gpmi-nfc-bch-regs-v0.h @@ -0,0 +1,550 @@ +/* + * Freescale GPMI NFC NAND Flash Driver + * + * Copyright 2008-2010 Freescale Semiconductor, Inc. + * Copyright 2008 Embedded Alley Solutions, Inc. + * + * This program is free software; you can redistribute it and/or modify + * it under the terms of the GNU General Public License as published by + * the Free Software Foundation; either version 2 of the License, or + * (at your option) any later version. + * + * This program is distributed in the hope that it will be useful, + * but WITHOUT ANY WARRANTY; without even the implied warranty of + * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the + * GNU General Public License for more details. + * + * You should have received a copy of the GNU General Public License along + * with this program; if not, write to the Free Software Foundation, Inc., + * 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA. + */ + +#ifndef __GPMI_NFC_BCH_REGS_H +#define __GPMI_NFC_BCH_REGS_H + +/*============================================================================*/ + +#define HW_BCH_CTRL (0x00000000) +#define HW_BCH_CTRL_SET (0x00000004) +#define HW_BCH_CTRL_CLR (0x00000008) +#define HW_BCH_CTRL_TOG (0x0000000c) + +#define BM_BCH_CTRL_SFTRST 0x80000000 +#define BV_BCH_CTRL_SFTRST__RUN 0x0 +#define BV_BCH_CTRL_SFTRST__RESET 0x1 +#define BM_BCH_CTRL_CLKGATE 0x40000000 +#define BV_BCH_CTRL_CLKGATE__RUN 0x0 +#define BV_BCH_CTRL_CLKGATE__NO_CLKS 0x1 +#define BP_BCH_CTRL_RSVD5 23 +#define BM_BCH_CTRL_RSVD5 0x3F800000 +#define BF_BCH_CTRL_RSVD5(v) (((v) << 23) & BM_BCH_CTRL_RSVD5) +#define BM_BCH_CTRL_DEBUGSYNDROME 0x00400000 +#define BP_BCH_CTRL_RSVD4 20 +#define BM_BCH_CTRL_RSVD4 0x00300000 +#define BF_BCH_CTRL_RSVD4(v) (((v) << 20) & BM_BCH_CTRL_RSVD4) +#define BP_BCH_CTRL_M2M_LAYOUT 18 +#define BM_BCH_CTRL_M2M_LAYOUT 0x000C0000 +#define BF_BCH_CTRL_M2M_LAYOUT(v) (((v) << 18) & BM_BCH_CTRL_M2M_LAYOUT) +#define BM_BCH_CTRL_M2M_ENCODE 0x00020000 +#define BM_BCH_CTRL_M2M_ENABLE 0x00010000 +#define BP_BCH_CTRL_RSVD3 11 +#define BM_BCH_CTRL_RSVD3 0x0000F800 +#define BF_BCH_CTRL_RSVD3(v) (((v) << 11) & BM_BCH_CTRL_RSVD3) +#define BM_BCH_CTRL_DEBUG_STALL_IRQ_EN 0x00000400 +#define BM_BCH_CTRL_RSVD2 0x00000200 +#define BM_BCH_CTRL_COMPLETE_IRQ_EN 0x00000100 +#define BP_BCH_CTRL_RSVD1 4 +#define BM_BCH_CTRL_RSVD1 0x000000F0 +#define BF_BCH_CTRL_RSVD1(v) (((v) << 4) & BM_BCH_CTRL_RSVD1) +#define BM_BCH_CTRL_BM_ERROR_IRQ 0x00000008 +#define BM_BCH_CTRL_DEBUG_STALL_IRQ 0x00000004 +#define BM_BCH_CTRL_RSVD0 0x00000002 +#define BM_BCH_CTRL_COMPLETE_IRQ 0x00000001 + +/*============================================================================*/ + +#define HW_BCH_STATUS0 (0x00000010) + +#define BP_BCH_STATUS0_HANDLE 20 +#define BM_BCH_STATUS0_HANDLE 0xFFF00000 +#define BF_BCH_STATUS0_HANDLE(v) \ + (((v) << 20) & BM_BCH_STATUS0_HANDLE) +#define BP_BCH_STATUS0_COMPLETED_CE 16 +#define BM_BCH_STATUS0_COMPLETED_CE 0x000F0000 +#define BF_BCH_STATUS0_COMPLETED_CE(v) \ + (((v) << 16) & BM_BCH_STATUS0_COMPLETED_CE) +#define BP_BCH_STATUS0_STATUS_BLK0 8 +#define BM_BCH_STATUS0_STATUS_BLK0 0x0000FF00 +#define BF_BCH_STATUS0_STATUS_BLK0(v) \ + (((v) << 8) & BM_BCH_STATUS0_STATUS_BLK0) +#define BV_BCH_STATUS0_STATUS_BLK0__ZERO 0x00 +#define BV_BCH_STATUS0_STATUS_BLK0__ERROR1 0x01 +#define BV_BCH_STATUS0_STATUS_BLK0__ERROR2 0x02 +#define BV_BCH_STATUS0_STATUS_BLK0__ERROR3 0x03 +#define BV_BCH_STATUS0_STATUS_BLK0__ERROR4 0x04 +#define BV_BCH_STATUS0_STATUS_BLK0__UNCORRECTABLE 0xFE +#define BV_BCH_STATUS0_STATUS_BLK0__ERASED 0xFF +#define BP_BCH_STATUS0_RSVD1 5 +#define BM_BCH_STATUS0_RSVD1 0x000000E0 +#define BF_BCH_STATUS0_RSVD1(v) \ + (((v) << 5) & BM_BCH_STATUS0_RSVD1) +#define BM_BCH_STATUS0_ALLONES 0x00000010 +#define BM_BCH_STATUS0_CORRECTED 0x00000008 +#define BM_BCH_STATUS0_UNCORRECTABLE 0x00000004 +#define BP_BCH_STATUS0_RSVD0 0 +#define BM_BCH_STATUS0_RSVD0 0x00000003 +#define BF_BCH_STATUS0_RSVD0(v) \ + (((v) << 0) & BM_BCH_STATUS0_RSVD0) + +/*============================================================================*/ + +#define HW_BCH_MODE (0x00000020) + +#define BP_BCH_MODE_RSVD 8 +#define BM_BCH_MODE_RSVD 0xFFFFFF00 +#define BF_BCH_MODE_RSVD(v) \ + (((v) << 8) & BM_BCH_MODE_RSVD) +#define BP_BCH_MODE_ERASE_THRESHOLD 0 +#define BM_BCH_MODE_ERASE_THRESHOLD 0x000000FF +#define BF_BCH_MODE_ERASE_THRESHOLD(v) \ + (((v) << 0) & BM_BCH_MODE_ERASE_THRESHOLD) + +/*============================================================================*/ + +#define HW_BCH_ENCODEPTR (0x00000030) + +#define BP_BCH_ENCODEPTR_ADDR 0 +#define BM_BCH_ENCODEPTR_ADDR 0xFFFFFFFF +#define BF_BCH_ENCODEPTR_ADDR(v) (v) + +/*============================================================================*/ + +#define HW_BCH_DATAPTR (0x00000040) + +#define BP_BCH_DATAPTR_ADDR 0 +#define BM_BCH_DATAPTR_ADDR 0xFFFFFFFF +#define BF_BCH_DATAPTR_ADDR(v) (v) + +/*============================================================================*/ + +#define HW_BCH_METAPTR (0x00000050) + +#define BP_BCH_METAPTR_ADDR 0 +#define BM_BCH_METAPTR_ADDR 0xFFFFFFFF +#define BF_BCH_METAPTR_ADDR(v) (v) + +/*============================================================================*/ + +#define HW_BCH_LAYOUTSELECT (0x00000070) + +#define BP_BCH_LAYOUTSELECT_CS15_SELECT 30 +#define BM_BCH_LAYOUTSELECT_CS15_SELECT 0xC0000000 +#define BF_BCH_LAYOUTSELECT_CS15_SELECT(v) \ + (((v) << 30) & BM_BCH_LAYOUTSELECT_CS15_SELECT) +#define BP_BCH_LAYOUTSELECT_CS14_SELECT 28 +#define BM_BCH_LAYOUTSELECT_CS14_SELECT 0x30000000 +#define BF_BCH_LAYOUTSELECT_CS14_SELECT(v) \ + (((v) << 28) & BM_BCH_LAYOUTSELECT_CS14_SELECT) +#define BP_BCH_LAYOUTSELECT_CS13_SELECT 26 +#define BM_BCH_LAYOUTSELECT_CS13_SELECT 0x0C000000 +#define BF_BCH_LAYOUTSELECT_CS13_SELECT(v) \ + (((v) << 26) & BM_BCH_LAYOUTSELECT_CS13_SELECT) +#define BP_BCH_LAYOUTSELECT_CS12_SELECT 24 +#define BM_BCH_LAYOUTSELECT_CS12_SELECT 0x03000000 +#define BF_BCH_LAYOUTSELECT_CS12_SELECT(v) \ + (((v) << 24) & BM_BCH_LAYOUTSELECT_CS12_SELECT) +#define BP_BCH_LAYOUTSELECT_CS11_SELECT 22 +#define BM_BCH_LAYOUTSELECT_CS11_SELECT 0x00C00000 +#define BF_BCH_LAYOUTSELECT_CS11_SELECT(v) \ + (((v) << 22) & BM_BCH_LAYOUTSELECT_CS11_SELECT) +#define BP_BCH_LAYOUTSELECT_CS10_SELECT 20 +#define BM_BCH_LAYOUTSELECT_CS10_SELECT 0x00300000 +#define BF_BCH_LAYOUTSELECT_CS10_SELECT(v) \ + (((v) << 20) & BM_BCH_LAYOUTSELECT_CS10_SELECT) +#define BP_BCH_LAYOUTSELECT_CS9_SELECT 18 +#define BM_BCH_LAYOUTSELECT_CS9_SELECT 0x000C0000 +#define BF_BCH_LAYOUTSELECT_CS9_SELECT(v) \ + (((v) << 18) & BM_BCH_LAYOUTSELECT_CS9_SELECT) +#define BP_BCH_LAYOUTSELECT_CS8_SELECT 16 +#define BM_BCH_LAYOUTSELECT_CS8_SELECT 0x00030000 +#define BF_BCH_LAYOUTSELECT_CS8_SELECT(v) \ + (((v) << 16) & BM_BCH_LAYOUTSELECT_CS8_SELECT) +#define BP_BCH_LAYOUTSELECT_CS7_SELECT 14 +#define BM_BCH_LAYOUTSELECT_CS7_SELECT 0x0000C000 +#define BF_BCH_LAYOUTSELECT_CS7_SELECT(v) \ + (((v) << 14) & BM_BCH_LAYOUTSELECT_CS7_SELECT) +#define BP_BCH_LAYOUTSELECT_CS6_SELECT 12 +#define BM_BCH_LAYOUTSELECT_CS6_SELECT 0x00003000 +#define BF_BCH_LAYOUTSELECT_CS6_SELECT(v) \ + (((v) << 12) & BM_BCH_LAYOUTSELECT_CS6_SELECT) +#define BP_BCH_LAYOUTSELECT_CS5_SELECT 10 +#define BM_BCH_LAYOUTSELECT_CS5_SELECT 0x00000C00 +#define BF_BCH_LAYOUTSELECT_CS5_SELECT(v) \ + (((v) << 10) & BM_BCH_LAYOUTSELECT_CS5_SELECT) +#define BP_BCH_LAYOUTSELECT_CS4_SELECT 8 +#define BM_BCH_LAYOUTSELECT_CS4_SELECT 0x00000300 +#define BF_BCH_LAYOUTSELECT_CS4_SELECT(v) \ + (((v) << 8) & BM_BCH_LAYOUTSELECT_CS4_SELECT) +#define BP_BCH_LAYOUTSELECT_CS3_SELECT 6 +#define BM_BCH_LAYOUTSELECT_CS3_SELECT 0x000000C0 +#define BF_BCH_LAYOUTSELECT_CS3_SELECT(v) \ + (((v) << 6) & BM_BCH_LAYOUTSELECT_CS3_SELECT) +#define BP_BCH_LAYOUTSELECT_CS2_SELECT 4 +#define BM_BCH_LAYOUTSELECT_CS2_SELECT 0x00000030 +#define BF_BCH_LAYOUTSELECT_CS2_SELECT(v) \ + (((v) << 4) & BM_BCH_LAYOUTSELECT_CS2_SELECT) +#define BP_BCH_LAYOUTSELECT_CS1_SELECT 2 +#define BM_BCH_LAYOUTSELECT_CS1_SELECT 0x0000000C +#define BF_BCH_LAYOUTSELECT_CS1_SELECT(v) \ + (((v) << 2) & BM_BCH_LAYOUTSELECT_CS1_SELECT) +#define BP_BCH_LAYOUTSELECT_CS0_SELECT 0 +#define BM_BCH_LAYOUTSELECT_CS0_SELECT 0x00000003 +#define BF_BCH_LAYOUTSELECT_CS0_SELECT(v) \ + (((v) << 0) & BM_BCH_LAYOUTSELECT_CS0_SELECT) + +/*============================================================================*/ + +#define HW_BCH_FLASH0LAYOUT0 (0x00000080) + +#define BP_BCH_FLASH0LAYOUT0_NBLOCKS 24 +#define BM_BCH_FLASH0LAYOUT0_NBLOCKS 0xFF000000 +#define BF_BCH_FLASH0LAYOUT0_NBLOCKS(v) \ + (((v) << 24) & BM_BCH_FLASH0LAYOUT0_NBLOCKS) +#define BP_BCH_FLASH0LAYOUT0_META_SIZE 16 +#define BM_BCH_FLASH0LAYOUT0_META_SIZE 0x00FF0000 +#define BF_BCH_FLASH0LAYOUT0_META_SIZE(v) \ + (((v) << 16) & BM_BCH_FLASH0LAYOUT0_META_SIZE) +#define BP_BCH_FLASH0LAYOUT0_ECC0 12 +#define BM_BCH_FLASH0LAYOUT0_ECC0 0x0000F000 +#define BF_BCH_FLASH0LAYOUT0_ECC0(v) \ + (((v) << 12) & BM_BCH_FLASH0LAYOUT0_ECC0) +#define BV_BCH_FLASH0LAYOUT0_ECC0__NONE 0x0 +#define BV_BCH_FLASH0LAYOUT0_ECC0__ECC2 0x1 +#define BV_BCH_FLASH0LAYOUT0_ECC0__ECC4 0x2 +#define BV_BCH_FLASH0LAYOUT0_ECC0__ECC6 0x3 +#define BV_BCH_FLASH0LAYOUT0_ECC0__ECC8 0x4 +#define BV_BCH_FLASH0LAYOUT0_ECC0__ECC10 0x5 +#define BV_BCH_FLASH0LAYOUT0_ECC0__ECC12 0x6 +#define BV_BCH_FLASH0LAYOUT0_ECC0__ECC14 0x7 +#define BV_BCH_FLASH0LAYOUT0_ECC0__ECC16 0x8 +#define BV_BCH_FLASH0LAYOUT0_ECC0__ECC18 0x9 +#define BV_BCH_FLASH0LAYOUT0_ECC0__ECC20 0xA +#define BP_BCH_FLASH0LAYOUT0_DATA0_SIZE 0 +#define BM_BCH_FLASH0LAYOUT0_DATA0_SIZE 0x00000FFF +#define BF_BCH_FLASH0LAYOUT0_DATA0_SIZE(v) \ + (((v) << 0) & BM_BCH_FLASH0LAYOUT0_DATA0_SIZE) + +/*============================================================================*/ + +#define HW_BCH_FLASH0LAYOUT1 (0x00000090) + +#define BP_BCH_FLASH0LAYOUT1_PAGE_SIZE 16 +#define BM_BCH_FLASH0LAYOUT1_PAGE_SIZE 0xFFFF0000 +#define BF_BCH_FLASH0LAYOUT1_PAGE_SIZE(v) \ + (((v) << 16) & BM_BCH_FLASH0LAYOUT1_PAGE_SIZE) +#define BP_BCH_FLASH0LAYOUT1_ECCN 12 +#define BM_BCH_FLASH0LAYOUT1_ECCN 0x0000F000 +#define BF_BCH_FLASH0LAYOUT1_ECCN(v) \ + (((v) << 12) & BM_BCH_FLASH0LAYOUT1_ECCN) +#define BV_BCH_FLASH0LAYOUT1_ECCN__NONE 0x0 +#define BV_BCH_FLASH0LAYOUT1_ECCN__ECC2 0x1 +#define BV_BCH_FLASH0LAYOUT1_ECCN__ECC4 0x2 +#define BV_BCH_FLASH0LAYOUT1_ECCN__ECC6 0x3 +#define BV_BCH_FLASH0LAYOUT1_ECCN__ECC8 0x4 +#define BV_BCH_FLASH0LAYOUT1_ECCN__ECC10 0x5 +#define BV_BCH_FLASH0LAYOUT1_ECCN__ECC12 0x6 +#define BV_BCH_FLASH0LAYOUT1_ECCN__ECC14 0x7 +#define BV_BCH_FLASH0LAYOUT1_ECCN__ECC16 0x8 +#define BV_BCH_FLASH0LAYOUT1_ECCN__ECC18 0x9 +#define BV_BCH_FLASH0LAYOUT1_ECCN__ECC20 0xA +#define BP_BCH_FLASH0LAYOUT1_DATAN_SIZE 0 +#define BM_BCH_FLASH0LAYOUT1_DATAN_SIZE 0x00000FFF +#define BF_BCH_FLASH0LAYOUT1_DATAN_SIZE(v) \ + (((v) << 0) & BM_BCH_FLASH0LAYOUT1_DATAN_SIZE) + +/*============================================================================*/ + +#define HW_BCH_FLASH1LAYOUT0 (0x000000a0) + +#define BP_BCH_FLASH1LAYOUT0_NBLOCKS 24 +#define BM_BCH_FLASH1LAYOUT0_NBLOCKS 0xFF000000 +#define BF_BCH_FLASH1LAYOUT0_NBLOCKS(v) \ + (((v) << 24) & BM_BCH_FLASH1LAYOUT0_NBLOCKS) +#define BP_BCH_FLASH1LAYOUT0_META_SIZE 16 +#define BM_BCH_FLASH1LAYOUT0_META_SIZE 0x00FF0000 +#define BF_BCH_FLASH1LAYOUT0_META_SIZE(v) \ + (((v) << 16) & BM_BCH_FLASH1LAYOUT0_META_SIZE) +#define BP_BCH_FLASH1LAYOUT0_ECC0 12 +#define BM_BCH_FLASH1LAYOUT0_ECC0 0x0000F000 +#define BF_BCH_FLASH1LAYOUT0_ECC0(v) \ + (((v) << 12) & BM_BCH_FLASH1LAYOUT0_ECC0) +#define BV_BCH_FLASH1LAYOUT0_ECC0__NONE 0x0 +#define BV_BCH_FLASH1LAYOUT0_ECC0__ECC2 0x1 +#define BV_BCH_FLASH1LAYOUT0_ECC0__ECC4 0x2 +#define BV_BCH_FLASH1LAYOUT0_ECC0__ECC6 0x3 +#define BV_BCH_FLASH1LAYOUT0_ECC0__ECC8 0x4 +#define BV_BCH_FLASH1LAYOUT0_ECC0__ECC10 0x5 +#define BV_BCH_FLASH1LAYOUT0_ECC0__ECC12 0x6 +#define BV_BCH_FLASH1LAYOUT0_ECC0__ECC14 0x7 +#define BV_BCH_FLASH1LAYOUT0_ECC0__ECC16 0x8 +#define BV_BCH_FLASH1LAYOUT0_ECC0__ECC18 0x9 +#define BV_BCH_FLASH1LAYOUT0_ECC0__ECC20 0xA +#define BP_BCH_FLASH1LAYOUT0_DATA0_SIZE 0 +#define BM_BCH_FLASH1LAYOUT0_DATA0_SIZE 0x00000FFF +#define BF_BCH_FLASH1LAYOUT0_DATA0_SIZE(v) \ + (((v) << 0) & BM_BCH_FLASH1LAYOUT0_DATA0_SIZE) + +/*============================================================================*/ + +#define HW_BCH_FLASH1LAYOUT1 (0x000000b0) + +#define BP_BCH_FLASH1LAYOUT1_PAGE_SIZE 16 +#define BM_BCH_FLASH1LAYOUT1_PAGE_SIZE 0xFFFF0000 +#define BF_BCH_FLASH1LAYOUT1_PAGE_SIZE(v) \ + (((v) << 16) & BM_BCH_FLASH1LAYOUT1_PAGE_SIZE) +#define BP_BCH_FLASH1LAYOUT1_ECCN 12 +#define BM_BCH_FLASH1LAYOUT1_ECCN 0x0000F000 +#define BF_BCH_FLASH1LAYOUT1_ECCN(v) \ + (((v) << 12) & BM_BCH_FLASH1LAYOUT1_ECCN) +#define BV_BCH_FLASH1LAYOUT1_ECCN__NONE 0x0 +#define BV_BCH_FLASH1LAYOUT1_ECCN__ECC2 0x1 +#define BV_BCH_FLASH1LAYOUT1_ECCN__ECC4 0x2 +#define BV_BCH_FLASH1LAYOUT1_ECCN__ECC6 0x3 +#define BV_BCH_FLASH1LAYOUT1_ECCN__ECC8 0x4 +#define BV_BCH_FLASH1LAYOUT1_ECCN__ECC10 0x5 +#define BV_BCH_FLASH1LAYOUT1_ECCN__ECC12 0x6 +#define BV_BCH_FLASH1LAYOUT1_ECCN__ECC14 0x7 +#define BV_BCH_FLASH1LAYOUT1_ECCN__ECC16 0x8 +#define BV_BCH_FLASH1LAYOUT1_ECCN__ECC18 0x9 +#define BV_BCH_FLASH1LAYOUT1_ECCN__ECC20 0xA +#define BP_BCH_FLASH1LAYOUT1_DATAN_SIZE 0 +#define BM_BCH_FLASH1LAYOUT1_DATAN_SIZE 0x00000FFF +#define BF_BCH_FLASH1LAYOUT1_DATAN_SIZE(v) \ + (((v) << 0) & BM_BCH_FLASH1LAYOUT1_DATAN_SIZE) + +/*============================================================================*/ + +#define HW_BCH_FLASH2LAYOUT0 (0x000000c0) + +#define BP_BCH_FLASH2LAYOUT0_NBLOCKS 24 +#define BM_BCH_FLASH2LAYOUT0_NBLOCKS 0xFF000000 +#define BF_BCH_FLASH2LAYOUT0_NBLOCKS(v) \ + (((v) << 24) & BM_BCH_FLASH2LAYOUT0_NBLOCKS) +#define BP_BCH_FLASH2LAYOUT0_META_SIZE 16 +#define BM_BCH_FLASH2LAYOUT0_META_SIZE 0x00FF0000 +#define BF_BCH_FLASH2LAYOUT0_META_SIZE(v) \ + (((v) << 16) & BM_BCH_FLASH2LAYOUT0_META_SIZE) +#define BP_BCH_FLASH2LAYOUT0_ECC0 12 +#define BM_BCH_FLASH2LAYOUT0_ECC0 0x0000F000 +#define BF_BCH_FLASH2LAYOUT0_ECC0(v) \ + (((v) << 12) & BM_BCH_FLASH2LAYOUT0_ECC0) +#define BV_BCH_FLASH2LAYOUT0_ECC0__NONE 0x0 +#define BV_BCH_FLASH2LAYOUT0_ECC0__ECC2 0x1 +#define BV_BCH_FLASH2LAYOUT0_ECC0__ECC4 0x2 +#define BV_BCH_FLASH2LAYOUT0_ECC0__ECC6 0x3 +#define BV_BCH_FLASH2LAYOUT0_ECC0__ECC8 0x4 +#define BV_BCH_FLASH2LAYOUT0_ECC0__ECC10 0x5 +#define BV_BCH_FLASH2LAYOUT0_ECC0__ECC12 0x6 +#define BV_BCH_FLASH2LAYOUT0_ECC0__ECC14 0x7 +#define BV_BCH_FLASH2LAYOUT0_ECC0__ECC16 0x8 +#define BV_BCH_FLASH2LAYOUT0_ECC0__ECC18 0x9 +#define BV_BCH_FLASH2LAYOUT0_ECC0__ECC20 0xA +#define BP_BCH_FLASH2LAYOUT0_DATA0_SIZE 0 +#define BM_BCH_FLASH2LAYOUT0_DATA0_SIZE 0x00000FFF +#define BF_BCH_FLASH2LAYOUT0_DATA0_SIZE(v) \ + (((v) << 0) & BM_BCH_FLASH2LAYOUT0_DATA0_SIZE) + +/*============================================================================*/ + +#define HW_BCH_FLASH2LAYOUT1 (0x000000d0) + +#define BP_BCH_FLASH2LAYOUT1_PAGE_SIZE 16 +#define BM_BCH_FLASH2LAYOUT1_PAGE_SIZE 0xFFFF0000 +#define BF_BCH_FLASH2LAYOUT1_PAGE_SIZE(v) \ + (((v) << 16) & BM_BCH_FLASH2LAYOUT1_PAGE_SIZE) +#define BP_BCH_FLASH2LAYOUT1_ECCN 12 +#define BM_BCH_FLASH2LAYOUT1_ECCN 0x0000F000 +#define BF_BCH_FLASH2LAYOUT1_ECCN(v) \ + (((v) << 12) & BM_BCH_FLASH2LAYOUT1_ECCN) +#define BV_BCH_FLASH2LAYOUT1_ECCN__NONE 0x0 +#define BV_BCH_FLASH2LAYOUT1_ECCN__ECC2 0x1 +#define BV_BCH_FLASH2LAYOUT1_ECCN__ECC4 0x2 +#define BV_BCH_FLASH2LAYOUT1_ECCN__ECC6 0x3 +#define BV_BCH_FLASH2LAYOUT1_ECCN__ECC8 0x4 +#define BV_BCH_FLASH2LAYOUT1_ECCN__ECC10 0x5 +#define BV_BCH_FLASH2LAYOUT1_ECCN__ECC12 0x6 +#define BV_BCH_FLASH2LAYOUT1_ECCN__ECC14 0x7 +#define BV_BCH_FLASH2LAYOUT1_ECCN__ECC16 0x8 +#define BV_BCH_FLASH2LAYOUT1_ECCN__ECC18 0x9 +#define BV_BCH_FLASH2LAYOUT1_ECCN__ECC20 0xA +#define BP_BCH_FLASH2LAYOUT1_DATAN_SIZE 0 +#define BM_BCH_FLASH2LAYOUT1_DATAN_SIZE 0x00000FFF +#define BF_BCH_FLASH2LAYOUT1_DATAN_SIZE(v) \ + (((v) << 0) & BM_BCH_FLASH2LAYOUT1_DATAN_SIZE) + +/*============================================================================*/ + +#define HW_BCH_FLASH3LAYOUT0 (0x000000e0) + +#define BP_BCH_FLASH3LAYOUT0_NBLOCKS 24 +#define BM_BCH_FLASH3LAYOUT0_NBLOCKS 0xFF000000 +#define BF_BCH_FLASH3LAYOUT0_NBLOCKS(v) \ + (((v) << 24) & BM_BCH_FLASH3LAYOUT0_NBLOCKS) +#define BP_BCH_FLASH3LAYOUT0_META_SIZE 16 +#define BM_BCH_FLASH3LAYOUT0_META_SIZE 0x00FF0000 +#define BF_BCH_FLASH3LAYOUT0_META_SIZE(v) \ + (((v) << 16) & BM_BCH_FLASH3LAYOUT0_META_SIZE) +#define BP_BCH_FLASH3LAYOUT0_ECC0 12 +#define BM_BCH_FLASH3LAYOUT0_ECC0 0x0000F000 +#define BF_BCH_FLASH3LAYOUT0_ECC0(v) \ + (((v) << 12) & BM_BCH_FLASH3LAYOUT0_ECC0) +#define BV_BCH_FLASH3LAYOUT0_ECC0__NONE 0x0 +#define BV_BCH_FLASH3LAYOUT0_ECC0__ECC2 0x1 +#define BV_BCH_FLASH3LAYOUT0_ECC0__ECC4 0x2 +#define BV_BCH_FLASH3LAYOUT0_ECC0__ECC6 0x3 +#define BV_BCH_FLASH3LAYOUT0_ECC0__ECC8 0x4 +#define BV_BCH_FLASH3LAYOUT0_ECC0__ECC10 0x5 +#define BV_BCH_FLASH3LAYOUT0_ECC0__ECC12 0x6 +#define BV_BCH_FLASH3LAYOUT0_ECC0__ECC14 0x7 +#define BV_BCH_FLASH3LAYOUT0_ECC0__ECC16 0x8 +#define BV_BCH_FLASH3LAYOUT0_ECC0__ECC18 0x9 +#define BV_BCH_FLASH3LAYOUT0_ECC0__ECC20 0xA +#define BP_BCH_FLASH3LAYOUT0_DATA0_SIZE 0 +#define BM_BCH_FLASH3LAYOUT0_DATA0_SIZE 0x00000FFF +#define BF_BCH_FLASH3LAYOUT0_DATA0_SIZE(v) \ + (((v) << 0) & BM_BCH_FLASH3LAYOUT0_DATA0_SIZE) + +/*============================================================================*/ + +#define HW_BCH_FLASH3LAYOUT1 (0x000000f0) + +#define BP_BCH_FLASH3LAYOUT1_PAGE_SIZE 16 +#define BM_BCH_FLASH3LAYOUT1_PAGE_SIZE 0xFFFF0000 +#define BF_BCH_FLASH3LAYOUT1_PAGE_SIZE(v) \ + (((v) << 16) & BM_BCH_FLASH3LAYOUT1_PAGE_SIZE) +#define BP_BCH_FLASH3LAYOUT1_ECCN 12 +#define BM_BCH_FLASH3LAYOUT1_ECCN 0x0000F000 +#define BF_BCH_FLASH3LAYOUT1_ECCN(v) \ + (((v) << 12) & BM_BCH_FLASH3LAYOUT1_ECCN) +#define BV_BCH_FLASH3LAYOUT1_ECCN__NONE 0x0 +#define BV_BCH_FLASH3LAYOUT1_ECCN__ECC2 0x1 +#define BV_BCH_FLASH3LAYOUT1_ECCN__ECC4 0x2 +#define BV_BCH_FLASH3LAYOUT1_ECCN__ECC6 0x3 +#define BV_BCH_FLASH3LAYOUT1_ECCN__ECC8 0x4 +#define BV_BCH_FLASH3LAYOUT1_ECCN__ECC10 0x5 +#define BV_BCH_FLASH3LAYOUT1_ECCN__ECC12 0x6 +#define BV_BCH_FLASH3LAYOUT1_ECCN__ECC14 0x7 +#define BV_BCH_FLASH3LAYOUT1_ECCN__ECC16 0x8 +#define BV_BCH_FLASH3LAYOUT1_ECCN__ECC18 0x9 +#define BV_BCH_FLASH3LAYOUT1_ECCN__ECC20 0xA +#define BP_BCH_FLASH3LAYOUT1_DATAN_SIZE 0 +#define BM_BCH_FLASH3LAYOUT1_DATAN_SIZE 0x00000FFF +#define BF_BCH_FLASH3LAYOUT1_DATAN_SIZE(v) \ + (((v) << 0) & BM_BCH_FLASH3LAYOUT1_DATAN_SIZE) + +/*============================================================================*/ + +#define HW_BCH_DEBUG0 (0x00000100) +#define HW_BCH_DEBUG0_SET (0x00000104) +#define HW_BCH_DEBUG0_CLR (0x00000108) +#define HW_BCH_DEBUG0_TOG (0x0000010c) + +#define BP_BCH_DEBUG0_RSVD1 27 +#define BM_BCH_DEBUG0_RSVD1 0xF8000000 +#define BF_BCH_DEBUG0_RSVD1(v) \ + (((v) << 27) & BM_BCH_DEBUG0_RSVD1) +#define BM_BCH_DEBUG0_ROM_BIST_ENABLE 0x04000000 +#define BM_BCH_DEBUG0_ROM_BIST_COMPLETE 0x02000000 +#define BP_BCH_DEBUG0_KES_DEBUG_SYNDROME_SYMBOL 16 +#define BM_BCH_DEBUG0_KES_DEBUG_SYNDROME_SYMBOL 0x01FF0000 +#define BF_BCH_DEBUG0_KES_DEBUG_SYNDROME_SYMBOL(v) \ + (((v) << 16) & BM_BCH_DEBUG0_KES_DEBUG_SYNDROME_SYMBOL) +#define BV_BCH_DEBUG0_KES_DEBUG_SYNDROME_SYMBOL__NORMAL 0x0 +#define BV_BCH_DEBUG0_KES_DEBUG_SYNDROME_SYMBOL__TEST_MODE 0x1 +#define BM_BCH_DEBUG0_KES_DEBUG_SHIFT_SYND 0x00008000 +#define BM_BCH_DEBUG0_KES_DEBUG_PAYLOAD_FLAG 0x00004000 +#define BV_BCH_DEBUG0_KES_DEBUG_PAYLOAD_FLAG__DATA 0x1 +#define BV_BCH_DEBUG0_KES_DEBUG_PAYLOAD_FLAG__AUX 0x1 +#define BM_BCH_DEBUG0_KES_DEBUG_MODE4K 0x00002000 +#define BV_BCH_DEBUG0_KES_DEBUG_MODE4K__4k 0x1 +#define BV_BCH_DEBUG0_KES_DEBUG_MODE4K__2k 0x1 +#define BM_BCH_DEBUG0_KES_DEBUG_KICK 0x00001000 +#define BM_BCH_DEBUG0_KES_STANDALONE 0x00000800 +#define BV_BCH_DEBUG0_KES_STANDALONE__NORMAL 0x0 +#define BV_BCH_DEBUG0_KES_STANDALONE__TEST_MODE 0x1 +#define BM_BCH_DEBUG0_KES_DEBUG_STEP 0x00000400 +#define BM_BCH_DEBUG0_KES_DEBUG_STALL 0x00000200 +#define BV_BCH_DEBUG0_KES_DEBUG_STALL__NORMAL 0x0 +#define BV_BCH_DEBUG0_KES_DEBUG_STALL__WAIT 0x1 +#define BM_BCH_DEBUG0_BM_KES_TEST_BYPASS 0x00000100 +#define BV_BCH_DEBUG0_BM_KES_TEST_BYPASS__NORMAL 0x0 +#define BV_BCH_DEBUG0_BM_KES_TEST_BYPASS__TEST_MODE 0x1 +#define BP_BCH_DEBUG0_RSVD0 6 +#define BM_BCH_DEBUG0_RSVD0 0x000000C0 +#define BF_BCH_DEBUG0_RSVD0(v) \ + (((v) << 6) & BM_BCH_DEBUG0_RSVD0) +#define BP_BCH_DEBUG0_DEBUG_REG_SELECT 0 +#define BM_BCH_DEBUG0_DEBUG_REG_SELECT 0x0000003F +#define BF_BCH_DEBUG0_DEBUG_REG_SELECT(v) \ + (((v) << 0) & BM_BCH_DEBUG0_DEBUG_REG_SELECT) + +/*============================================================================*/ + +#define HW_BCH_DBGKESREAD (0x00000110) + +#define BP_BCH_DBGKESREAD_VALUES 0 +#define BM_BCH_DBGKESREAD_VALUES 0xFFFFFFFF +#define BF_BCH_DBGKESREAD_VALUES(v) (v) + +/*============================================================================*/ + +#define HW_BCH_DBGCSFEREAD (0x00000120) + +#define BP_BCH_DBGCSFEREAD_VALUES 0 +#define BM_BCH_DBGCSFEREAD_VALUES 0xFFFFFFFF +#define BF_BCH_DBGCSFEREAD_VALUES(v) (v) + +/*============================================================================*/ + +#define HW_BCH_DBGSYNDGENREAD (0x00000130) + +#define BP_BCH_DBGSYNDGENREAD_VALUES 0 +#define BM_BCH_DBGSYNDGENREAD_VALUES 0xFFFFFFFF +#define BF_BCH_DBGSYNDGENREAD_VALUES(v) (v) + +/*============================================================================*/ + +#define HW_BCH_DBGAHBMREAD (0x00000140) + +#define BP_BCH_DBGAHBMREAD_VALUES 0 +#define BM_BCH_DBGAHBMREAD_VALUES 0xFFFFFFFF +#define BF_BCH_DBGAHBMREAD_VALUES(v) (v) + +/*============================================================================*/ + +#define HW_BCH_BLOCKNAME (0x00000150) + +#define BP_BCH_BLOCKNAME_NAME 0 +#define BM_BCH_BLOCKNAME_NAME 0xFFFFFFFF +#define BF_BCH_BLOCKNAME_NAME(v) (v) + +/*============================================================================*/ + +#define HW_BCH_VERSION (0x00000160) + +#define BP_BCH_VERSION_MAJOR 24 +#define BM_BCH_VERSION_MAJOR 0xFF000000 +#define BF_BCH_VERSION_MAJOR(v) \ + (((v) << 24) & BM_BCH_VERSION_MAJOR) +#define BP_BCH_VERSION_MINOR 16 +#define BM_BCH_VERSION_MINOR 0x00FF0000 +#define BF_BCH_VERSION_MINOR(v) \ + (((v) << 16) & BM_BCH_VERSION_MINOR) +#define BP_BCH_VERSION_STEP 0 +#define BM_BCH_VERSION_STEP 0x0000FFFF +#define BF_BCH_VERSION_STEP(v) \ + (((v) << 0) & BM_BCH_VERSION_STEP) + +/*============================================================================*/ + +#endif diff --git a/drivers/mtd/nand/gpmi-nfc/gpmi-nfc-bch-regs-v1.h b/drivers/mtd/nand/gpmi-nfc/gpmi-nfc-bch-regs-v1.h new file mode 100644 index 000000000000..692db086de4d --- /dev/null +++ b/drivers/mtd/nand/gpmi-nfc/gpmi-nfc-bch-regs-v1.h @@ -0,0 +1,557 @@ +/* + * Freescale GPMI NFC NAND Flash Driver + * + * Copyright 2008-2010 Freescale Semiconductor, Inc. All Rights Reserved. + * + * This program is free software; you can redistribute it and/or modify + * it under the terms of the GNU General Public License as published by + * the Free Software Foundation; either version 2 of the License, or + * (at your option) any later version. + * + * This program is distributed in the hope that it will be useful, + * but WITHOUT ANY WARRANTY; without even the implied warranty of + * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the + * GNU General Public License for more details. + * + * You should have received a copy of the GNU General Public License + * along with this program; if not, write to the Free Software + * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA + * + * Xml Revision: 2.5 + * Template revision: 26195 + */ + +#ifndef __GPMI_NFC_BCH_REGS_H +#define __GPMI_NFC_BCH_REGS_H + +/*============================================================================*/ + +#define HW_BCH_CTRL (0x00000000) +#define HW_BCH_CTRL_SET (0x00000004) +#define HW_BCH_CTRL_CLR (0x00000008) +#define HW_BCH_CTRL_TOG (0x0000000c) + +#define BM_BCH_CTRL_SFTRST 0x80000000 +#define BV_BCH_CTRL_SFTRST__RUN 0x0 +#define BV_BCH_CTRL_SFTRST__RESET 0x1 +#define BM_BCH_CTRL_CLKGATE 0x40000000 +#define BV_BCH_CTRL_CLKGATE__RUN 0x0 +#define BV_BCH_CTRL_CLKGATE__NO_CLKS 0x1 +#define BP_BCH_CTRL_RSVD5 23 +#define BM_BCH_CTRL_RSVD5 0x3F800000 +#define BF_BCH_CTRL_RSVD5(v) \ + (((v) << 23) & BM_BCH_CTRL_RSVD5) +#define BM_BCH_CTRL_DEBUGSYNDROME 0x00400000 +#define BP_BCH_CTRL_RSVD4 20 +#define BM_BCH_CTRL_RSVD4 0x00300000 +#define BF_BCH_CTRL_RSVD4(v) \ + (((v) << 20) & BM_BCH_CTRL_RSVD4) +#define BP_BCH_CTRL_M2M_LAYOUT 18 +#define BM_BCH_CTRL_M2M_LAYOUT 0x000C0000 +#define BF_BCH_CTRL_M2M_LAYOUT(v) \ + (((v) << 18) & BM_BCH_CTRL_M2M_LAYOUT) +#define BM_BCH_CTRL_M2M_ENCODE 0x00020000 +#define BM_BCH_CTRL_M2M_ENABLE 0x00010000 +#define BP_BCH_CTRL_RSVD3 11 +#define BM_BCH_CTRL_RSVD3 0x0000F800 +#define BF_BCH_CTRL_RSVD3(v) \ + (((v) << 11) & BM_BCH_CTRL_RSVD3) +#define BM_BCH_CTRL_DEBUG_STALL_IRQ_EN 0x00000400 +#define BM_BCH_CTRL_RSVD2 0x00000200 +#define BM_BCH_CTRL_COMPLETE_IRQ_EN 0x00000100 +#define BP_BCH_CTRL_RSVD1 4 +#define BM_BCH_CTRL_RSVD1 0x000000F0 +#define BF_BCH_CTRL_RSVD1(v) \ + (((v) << 4) & BM_BCH_CTRL_RSVD1) +#define BM_BCH_CTRL_BM_ERROR_IRQ 0x00000008 +#define BM_BCH_CTRL_DEBUG_STALL_IRQ 0x00000004 +#define BM_BCH_CTRL_RSVD0 0x00000002 +#define BM_BCH_CTRL_COMPLETE_IRQ 0x00000001 + +/*============================================================================*/ + +#define HW_BCH_STATUS0 (0x00000010) + +#define BP_BCH_STATUS0_HANDLE 20 +#define BM_BCH_STATUS0_HANDLE 0xFFF00000 +#define BF_BCH_STATUS0_HANDLE(v) \ + (((v) << 20) & BM_BCH_STATUS0_HANDLE) +#define BP_BCH_STATUS0_COMPLETED_CE 16 +#define BM_BCH_STATUS0_COMPLETED_CE 0x000F0000 +#define BF_BCH_STATUS0_COMPLETED_CE(v) \ + (((v) << 16) & BM_BCH_STATUS0_COMPLETED_CE) +#define BP_BCH_STATUS0_STATUS_BLK0 8 +#define BM_BCH_STATUS0_STATUS_BLK0 0x0000FF00 +#define BF_BCH_STATUS0_STATUS_BLK0(v) \ + (((v) << 8) & BM_BCH_STATUS0_STATUS_BLK0) +#define BV_BCH_STATUS0_STATUS_BLK0__ZERO 0x00 +#define BV_BCH_STATUS0_STATUS_BLK0__ERROR1 0x01 +#define BV_BCH_STATUS0_STATUS_BLK0__ERROR2 0x02 +#define BV_BCH_STATUS0_STATUS_BLK0__ERROR3 0x03 +#define BV_BCH_STATUS0_STATUS_BLK0__ERROR4 0x04 +#define BV_BCH_STATUS0_STATUS_BLK0__UNCORRECTABLE 0xFE +#define BV_BCH_STATUS0_STATUS_BLK0__ERASED 0xFF +#define BP_BCH_STATUS0_RSVD1 5 +#define BM_BCH_STATUS0_RSVD1 0x000000E0 +#define BF_BCH_STATUS0_RSVD1(v) \ + (((v) << 5) & BM_BCH_STATUS0_RSVD1) +#define BM_BCH_STATUS0_ALLONES 0x00000010 +#define BM_BCH_STATUS0_CORRECTED 0x00000008 +#define BM_BCH_STATUS0_UNCORRECTABLE 0x00000004 +#define BP_BCH_STATUS0_RSVD0 0 +#define BM_BCH_STATUS0_RSVD0 0x00000003 +#define BF_BCH_STATUS0_RSVD0(v) \ + (((v) << 0) & BM_BCH_STATUS0_RSVD0) + +/*============================================================================*/ + +#define HW_BCH_MODE (0x00000020) + +#define BP_BCH_MODE_RSVD 8 +#define BM_BCH_MODE_RSVD 0xFFFFFF00 +#define BF_BCH_MODE_RSVD(v) \ + (((v) << 8) & BM_BCH_MODE_RSVD) +#define BP_BCH_MODE_ERASE_THRESHOLD 0 +#define BM_BCH_MODE_ERASE_THRESHOLD 0x000000FF +#define BF_BCH_MODE_ERASE_THRESHOLD(v) \ + (((v) << 0) & BM_BCH_MODE_ERASE_THRESHOLD) + +/*============================================================================*/ + +#define HW_BCH_ENCODEPTR (0x00000030) + +#define BP_BCH_ENCODEPTR_ADDR 0 +#define BM_BCH_ENCODEPTR_ADDR 0xFFFFFFFF +#define BF_BCH_ENCODEPTR_ADDR(v) (v) + +/*============================================================================*/ + +#define HW_BCH_DATAPTR (0x00000040) + +#define BP_BCH_DATAPTR_ADDR 0 +#define BM_BCH_DATAPTR_ADDR 0xFFFFFFFF +#define BF_BCH_DATAPTR_ADDR(v) (v) + +/*============================================================================*/ + +#define HW_BCH_METAPTR (0x00000050) + +#define BP_BCH_METAPTR_ADDR 0 +#define BM_BCH_METAPTR_ADDR 0xFFFFFFFF +#define BF_BCH_METAPTR_ADDR(v) (v) + +/*============================================================================*/ + +#define HW_BCH_LAYOUTSELECT (0x00000070) + +#define BP_BCH_LAYOUTSELECT_CS15_SELECT 30 +#define BM_BCH_LAYOUTSELECT_CS15_SELECT 0xC0000000 +#define BF_BCH_LAYOUTSELECT_CS15_SELECT(v) \ + (((v) << 30) & BM_BCH_LAYOUTSELECT_CS15_SELECT) +#define BP_BCH_LAYOUTSELECT_CS14_SELECT 28 +#define BM_BCH_LAYOUTSELECT_CS14_SELECT 0x30000000 +#define BF_BCH_LAYOUTSELECT_CS14_SELECT(v) \ + (((v) << 28) & BM_BCH_LAYOUTSELECT_CS14_SELECT) +#define BP_BCH_LAYOUTSELECT_CS13_SELECT 26 +#define BM_BCH_LAYOUTSELECT_CS13_SELECT 0x0C000000 +#define BF_BCH_LAYOUTSELECT_CS13_SELECT(v) \ + (((v) << 26) & BM_BCH_LAYOUTSELECT_CS13_SELECT) +#define BP_BCH_LAYOUTSELECT_CS12_SELECT 24 +#define BM_BCH_LAYOUTSELECT_CS12_SELECT 0x03000000 +#define BF_BCH_LAYOUTSELECT_CS12_SELECT(v) \ + (((v) << 24) & BM_BCH_LAYOUTSELECT_CS12_SELECT) +#define BP_BCH_LAYOUTSELECT_CS11_SELECT 22 +#define BM_BCH_LAYOUTSELECT_CS11_SELECT 0x00C00000 +#define BF_BCH_LAYOUTSELECT_CS11_SELECT(v) \ + (((v) << 22) & BM_BCH_LAYOUTSELECT_CS11_SELECT) +#define BP_BCH_LAYOUTSELECT_CS10_SELECT 20 +#define BM_BCH_LAYOUTSELECT_CS10_SELECT 0x00300000 +#define BF_BCH_LAYOUTSELECT_CS10_SELECT(v) \ + (((v) << 20) & BM_BCH_LAYOUTSELECT_CS10_SELECT) +#define BP_BCH_LAYOUTSELECT_CS9_SELECT 18 +#define BM_BCH_LAYOUTSELECT_CS9_SELECT 0x000C0000 +#define BF_BCH_LAYOUTSELECT_CS9_SELECT(v) \ + (((v) << 18) & BM_BCH_LAYOUTSELECT_CS9_SELECT) +#define BP_BCH_LAYOUTSELECT_CS8_SELECT 16 +#define BM_BCH_LAYOUTSELECT_CS8_SELECT 0x00030000 +#define BF_BCH_LAYOUTSELECT_CS8_SELECT(v) \ + (((v) << 16) & BM_BCH_LAYOUTSELECT_CS8_SELECT) +#define BP_BCH_LAYOUTSELECT_CS7_SELECT 14 +#define BM_BCH_LAYOUTSELECT_CS7_SELECT 0x0000C000 +#define BF_BCH_LAYOUTSELECT_CS7_SELECT(v) \ + (((v) << 14) & BM_BCH_LAYOUTSELECT_CS7_SELECT) +#define BP_BCH_LAYOUTSELECT_CS6_SELECT 12 +#define BM_BCH_LAYOUTSELECT_CS6_SELECT 0x00003000 +#define BF_BCH_LAYOUTSELECT_CS6_SELECT(v) \ + (((v) << 12) & BM_BCH_LAYOUTSELECT_CS6_SELECT) +#define BP_BCH_LAYOUTSELECT_CS5_SELECT 10 +#define BM_BCH_LAYOUTSELECT_CS5_SELECT 0x00000C00 +#define BF_BCH_LAYOUTSELECT_CS5_SELECT(v) \ + (((v) << 10) & BM_BCH_LAYOUTSELECT_CS5_SELECT) +#define BP_BCH_LAYOUTSELECT_CS4_SELECT 8 +#define BM_BCH_LAYOUTSELECT_CS4_SELECT 0x00000300 +#define BF_BCH_LAYOUTSELECT_CS4_SELECT(v) \ + (((v) << 8) & BM_BCH_LAYOUTSELECT_CS4_SELECT) +#define BP_BCH_LAYOUTSELECT_CS3_SELECT 6 +#define BM_BCH_LAYOUTSELECT_CS3_SELECT 0x000000C0 +#define BF_BCH_LAYOUTSELECT_CS3_SELECT(v) \ + (((v) << 6) & BM_BCH_LAYOUTSELECT_CS3_SELECT) +#define BP_BCH_LAYOUTSELECT_CS2_SELECT 4 +#define BM_BCH_LAYOUTSELECT_CS2_SELECT 0x00000030 +#define BF_BCH_LAYOUTSELECT_CS2_SELECT(v) \ + (((v) << 4) & BM_BCH_LAYOUTSELECT_CS2_SELECT) +#define BP_BCH_LAYOUTSELECT_CS1_SELECT 2 +#define BM_BCH_LAYOUTSELECT_CS1_SELECT 0x0000000C +#define BF_BCH_LAYOUTSELECT_CS1_SELECT(v) \ + (((v) << 2) & BM_BCH_LAYOUTSELECT_CS1_SELECT) +#define BP_BCH_LAYOUTSELECT_CS0_SELECT 0 +#define BM_BCH_LAYOUTSELECT_CS0_SELECT 0x00000003 +#define BF_BCH_LAYOUTSELECT_CS0_SELECT(v) \ + (((v) << 0) & BM_BCH_LAYOUTSELECT_CS0_SELECT) + +/*============================================================================*/ + +#define HW_BCH_FLASH0LAYOUT0 (0x00000080) + +#define BP_BCH_FLASH0LAYOUT0_NBLOCKS 24 +#define BM_BCH_FLASH0LAYOUT0_NBLOCKS 0xFF000000 +#define BF_BCH_FLASH0LAYOUT0_NBLOCKS(v) \ + (((v) << 24) & BM_BCH_FLASH0LAYOUT0_NBLOCKS) +#define BP_BCH_FLASH0LAYOUT0_META_SIZE 16 +#define BM_BCH_FLASH0LAYOUT0_META_SIZE 0x00FF0000 +#define BF_BCH_FLASH0LAYOUT0_META_SIZE(v) \ + (((v) << 16) & BM_BCH_FLASH0LAYOUT0_META_SIZE) +#define BP_BCH_FLASH0LAYOUT0_ECC0 12 +#define BM_BCH_FLASH0LAYOUT0_ECC0 0x0000F000 +#define BF_BCH_FLASH0LAYOUT0_ECC0(v) \ + (((v) << 12) & BM_BCH_FLASH0LAYOUT0_ECC0) +#define BV_BCH_FLASH0LAYOUT0_ECC0__NONE 0x0 +#define BV_BCH_FLASH0LAYOUT0_ECC0__ECC2 0x1 +#define BV_BCH_FLASH0LAYOUT0_ECC0__ECC4 0x2 +#define BV_BCH_FLASH0LAYOUT0_ECC0__ECC6 0x3 +#define BV_BCH_FLASH0LAYOUT0_ECC0__ECC8 0x4 +#define BV_BCH_FLASH0LAYOUT0_ECC0__ECC10 0x5 +#define BV_BCH_FLASH0LAYOUT0_ECC0__ECC12 0x6 +#define BV_BCH_FLASH0LAYOUT0_ECC0__ECC14 0x7 +#define BV_BCH_FLASH0LAYOUT0_ECC0__ECC16 0x8 +#define BV_BCH_FLASH0LAYOUT0_ECC0__ECC18 0x9 +#define BV_BCH_FLASH0LAYOUT0_ECC0__ECC20 0xA +#define BP_BCH_FLASH0LAYOUT0_DATA0_SIZE 0 +#define BM_BCH_FLASH0LAYOUT0_DATA0_SIZE 0x00000FFF +#define BF_BCH_FLASH0LAYOUT0_DATA0_SIZE(v) \ + (((v) << 0) & BM_BCH_FLASH0LAYOUT0_DATA0_SIZE) + +/*============================================================================*/ + +#define HW_BCH_FLASH0LAYOUT1 (0x00000090) + +#define BP_BCH_FLASH0LAYOUT1_PAGE_SIZE 16 +#define BM_BCH_FLASH0LAYOUT1_PAGE_SIZE 0xFFFF0000 +#define BF_BCH_FLASH0LAYOUT1_PAGE_SIZE(v) \ + (((v) << 16) & BM_BCH_FLASH0LAYOUT1_PAGE_SIZE) +#define BP_BCH_FLASH0LAYOUT1_ECCN 12 +#define BM_BCH_FLASH0LAYOUT1_ECCN 0x0000F000 +#define BF_BCH_FLASH0LAYOUT1_ECCN(v) \ + (((v) << 12) & BM_BCH_FLASH0LAYOUT1_ECCN) +#define BV_BCH_FLASH0LAYOUT1_ECCN__NONE 0x0 +#define BV_BCH_FLASH0LAYOUT1_ECCN__ECC2 0x1 +#define BV_BCH_FLASH0LAYOUT1_ECCN__ECC4 0x2 +#define BV_BCH_FLASH0LAYOUT1_ECCN__ECC6 0x3 +#define BV_BCH_FLASH0LAYOUT1_ECCN__ECC8 0x4 +#define BV_BCH_FLASH0LAYOUT1_ECCN__ECC10 0x5 +#define BV_BCH_FLASH0LAYOUT1_ECCN__ECC12 0x6 +#define BV_BCH_FLASH0LAYOUT1_ECCN__ECC14 0x7 +#define BV_BCH_FLASH0LAYOUT1_ECCN__ECC16 0x8 +#define BV_BCH_FLASH0LAYOUT1_ECCN__ECC18 0x9 +#define BV_BCH_FLASH0LAYOUT1_ECCN__ECC20 0xA +#define BP_BCH_FLASH0LAYOUT1_DATAN_SIZE 0 +#define BM_BCH_FLASH0LAYOUT1_DATAN_SIZE 0x00000FFF +#define BF_BCH_FLASH0LAYOUT1_DATAN_SIZE(v) \ + (((v) << 0) & BM_BCH_FLASH0LAYOUT1_DATAN_SIZE) + +/*============================================================================*/ + +#define HW_BCH_FLASH1LAYOUT0 (0x000000a0) + +#define BP_BCH_FLASH1LAYOUT0_NBLOCKS 24 +#define BM_BCH_FLASH1LAYOUT0_NBLOCKS 0xFF000000 +#define BF_BCH_FLASH1LAYOUT0_NBLOCKS(v) \ + (((v) << 24) & BM_BCH_FLASH1LAYOUT0_NBLOCKS) +#define BP_BCH_FLASH1LAYOUT0_META_SIZE 16 +#define BM_BCH_FLASH1LAYOUT0_META_SIZE 0x00FF0000 +#define BF_BCH_FLASH1LAYOUT0_META_SIZE(v) \ + (((v) << 16) & BM_BCH_FLASH1LAYOUT0_META_SIZE) +#define BP_BCH_FLASH1LAYOUT0_ECC0 12 +#define BM_BCH_FLASH1LAYOUT0_ECC0 0x0000F000 +#define BF_BCH_FLASH1LAYOUT0_ECC0(v) \ + (((v) << 12) & BM_BCH_FLASH1LAYOUT0_ECC0) +#define BV_BCH_FLASH1LAYOUT0_ECC0__NONE 0x0 +#define BV_BCH_FLASH1LAYOUT0_ECC0__ECC2 0x1 +#define BV_BCH_FLASH1LAYOUT0_ECC0__ECC4 0x2 +#define BV_BCH_FLASH1LAYOUT0_ECC0__ECC6 0x3 +#define BV_BCH_FLASH1LAYOUT0_ECC0__ECC8 0x4 +#define BV_BCH_FLASH1LAYOUT0_ECC0__ECC10 0x5 +#define BV_BCH_FLASH1LAYOUT0_ECC0__ECC12 0x6 +#define BV_BCH_FLASH1LAYOUT0_ECC0__ECC14 0x7 +#define BV_BCH_FLASH1LAYOUT0_ECC0__ECC16 0x8 +#define BV_BCH_FLASH1LAYOUT0_ECC0__ECC18 0x9 +#define BV_BCH_FLASH1LAYOUT0_ECC0__ECC20 0xA +#define BP_BCH_FLASH1LAYOUT0_DATA0_SIZE 0 +#define BM_BCH_FLASH1LAYOUT0_DATA0_SIZE 0x00000FFF +#define BF_BCH_FLASH1LAYOUT0_DATA0_SIZE(v) \ + (((v) << 0) & BM_BCH_FLASH1LAYOUT0_DATA0_SIZE) + +/*============================================================================*/ + +#define HW_BCH_FLASH1LAYOUT1 (0x000000b0) + +#define BP_BCH_FLASH1LAYOUT1_PAGE_SIZE 16 +#define BM_BCH_FLASH1LAYOUT1_PAGE_SIZE 0xFFFF0000 +#define BF_BCH_FLASH1LAYOUT1_PAGE_SIZE(v) \ + (((v) << 16) & BM_BCH_FLASH1LAYOUT1_PAGE_SIZE) +#define BP_BCH_FLASH1LAYOUT1_ECCN 12 +#define BM_BCH_FLASH1LAYOUT1_ECCN 0x0000F000 +#define BF_BCH_FLASH1LAYOUT1_ECCN(v) \ + (((v) << 12) & BM_BCH_FLASH1LAYOUT1_ECCN) +#define BV_BCH_FLASH1LAYOUT1_ECCN__NONE 0x0 +#define BV_BCH_FLASH1LAYOUT1_ECCN__ECC2 0x1 +#define BV_BCH_FLASH1LAYOUT1_ECCN__ECC4 0x2 +#define BV_BCH_FLASH1LAYOUT1_ECCN__ECC6 0x3 +#define BV_BCH_FLASH1LAYOUT1_ECCN__ECC8 0x4 +#define BV_BCH_FLASH1LAYOUT1_ECCN__ECC10 0x5 +#define BV_BCH_FLASH1LAYOUT1_ECCN__ECC12 0x6 +#define BV_BCH_FLASH1LAYOUT1_ECCN__ECC14 0x7 +#define BV_BCH_FLASH1LAYOUT1_ECCN__ECC16 0x8 +#define BV_BCH_FLASH1LAYOUT1_ECCN__ECC18 0x9 +#define BV_BCH_FLASH1LAYOUT1_ECCN__ECC20 0xA +#define BP_BCH_FLASH1LAYOUT1_DATAN_SIZE 0 +#define BM_BCH_FLASH1LAYOUT1_DATAN_SIZE 0x00000FFF +#define BF_BCH_FLASH1LAYOUT1_DATAN_SIZE(v) \ + (((v) << 0) & BM_BCH_FLASH1LAYOUT1_DATAN_SIZE) + +/*============================================================================*/ + +#define HW_BCH_FLASH2LAYOUT0 (0x000000c0) + +#define BP_BCH_FLASH2LAYOUT0_NBLOCKS 24 +#define BM_BCH_FLASH2LAYOUT0_NBLOCKS 0xFF000000 +#define BF_BCH_FLASH2LAYOUT0_NBLOCKS(v) \ + (((v) << 24) & BM_BCH_FLASH2LAYOUT0_NBLOCKS) +#define BP_BCH_FLASH2LAYOUT0_META_SIZE 16 +#define BM_BCH_FLASH2LAYOUT0_META_SIZE 0x00FF0000 +#define BF_BCH_FLASH2LAYOUT0_META_SIZE(v) \ + (((v) << 16) & BM_BCH_FLASH2LAYOUT0_META_SIZE) +#define BP_BCH_FLASH2LAYOUT0_ECC0 12 +#define BM_BCH_FLASH2LAYOUT0_ECC0 0x0000F000 +#define BF_BCH_FLASH2LAYOUT0_ECC0(v) \ + (((v) << 12) & BM_BCH_FLASH2LAYOUT0_ECC0) +#define BV_BCH_FLASH2LAYOUT0_ECC0__NONE 0x0 +#define BV_BCH_FLASH2LAYOUT0_ECC0__ECC2 0x1 +#define BV_BCH_FLASH2LAYOUT0_ECC0__ECC4 0x2 +#define BV_BCH_FLASH2LAYOUT0_ECC0__ECC6 0x3 +#define BV_BCH_FLASH2LAYOUT0_ECC0__ECC8 0x4 +#define BV_BCH_FLASH2LAYOUT0_ECC0__ECC10 0x5 +#define BV_BCH_FLASH2LAYOUT0_ECC0__ECC12 0x6 +#define BV_BCH_FLASH2LAYOUT0_ECC0__ECC14 0x7 +#define BV_BCH_FLASH2LAYOUT0_ECC0__ECC16 0x8 +#define BV_BCH_FLASH2LAYOUT0_ECC0__ECC18 0x9 +#define BV_BCH_FLASH2LAYOUT0_ECC0__ECC20 0xA +#define BP_BCH_FLASH2LAYOUT0_DATA0_SIZE 0 +#define BM_BCH_FLASH2LAYOUT0_DATA0_SIZE 0x00000FFF +#define BF_BCH_FLASH2LAYOUT0_DATA0_SIZE(v) \ + (((v) << 0) & BM_BCH_FLASH2LAYOUT0_DATA0_SIZE) + +/*============================================================================*/ + +#define HW_BCH_FLASH2LAYOUT1 (0x000000d0) + +#define BP_BCH_FLASH2LAYOUT1_PAGE_SIZE 16 +#define BM_BCH_FLASH2LAYOUT1_PAGE_SIZE 0xFFFF0000 +#define BF_BCH_FLASH2LAYOUT1_PAGE_SIZE(v) \ + (((v) << 16) & BM_BCH_FLASH2LAYOUT1_PAGE_SIZE) +#define BP_BCH_FLASH2LAYOUT1_ECCN 12 +#define BM_BCH_FLASH2LAYOUT1_ECCN 0x0000F000 +#define BF_BCH_FLASH2LAYOUT1_ECCN(v) \ + (((v) << 12) & BM_BCH_FLASH2LAYOUT1_ECCN) +#define BV_BCH_FLASH2LAYOUT1_ECCN__NONE 0x0 +#define BV_BCH_FLASH2LAYOUT1_ECCN__ECC2 0x1 +#define BV_BCH_FLASH2LAYOUT1_ECCN__ECC4 0x2 +#define BV_BCH_FLASH2LAYOUT1_ECCN__ECC6 0x3 +#define BV_BCH_FLASH2LAYOUT1_ECCN__ECC8 0x4 +#define BV_BCH_FLASH2LAYOUT1_ECCN__ECC10 0x5 +#define BV_BCH_FLASH2LAYOUT1_ECCN__ECC12 0x6 +#define BV_BCH_FLASH2LAYOUT1_ECCN__ECC14 0x7 +#define BV_BCH_FLASH2LAYOUT1_ECCN__ECC16 0x8 +#define BV_BCH_FLASH2LAYOUT1_ECCN__ECC18 0x9 +#define BV_BCH_FLASH2LAYOUT1_ECCN__ECC20 0xA +#define BP_BCH_FLASH2LAYOUT1_DATAN_SIZE 0 +#define BM_BCH_FLASH2LAYOUT1_DATAN_SIZE 0x00000FFF +#define BF_BCH_FLASH2LAYOUT1_DATAN_SIZE(v) \ + (((v) << 0) & BM_BCH_FLASH2LAYOUT1_DATAN_SIZE) + +/*============================================================================*/ + +#define HW_BCH_FLASH3LAYOUT0 (0x000000e0) + +#define BP_BCH_FLASH3LAYOUT0_NBLOCKS 24 +#define BM_BCH_FLASH3LAYOUT0_NBLOCKS 0xFF000000 +#define BF_BCH_FLASH3LAYOUT0_NBLOCKS(v) \ + (((v) << 24) & BM_BCH_FLASH3LAYOUT0_NBLOCKS) +#define BP_BCH_FLASH3LAYOUT0_META_SIZE 16 +#define BM_BCH_FLASH3LAYOUT0_META_SIZE 0x00FF0000 +#define BF_BCH_FLASH3LAYOUT0_META_SIZE(v) \ + (((v) << 16) & BM_BCH_FLASH3LAYOUT0_META_SIZE) +#define BP_BCH_FLASH3LAYOUT0_ECC0 12 +#define BM_BCH_FLASH3LAYOUT0_ECC0 0x0000F000 +#define BF_BCH_FLASH3LAYOUT0_ECC0(v) \ + (((v) << 12) & BM_BCH_FLASH3LAYOUT0_ECC0) +#define BV_BCH_FLASH3LAYOUT0_ECC0__NONE 0x0 +#define BV_BCH_FLASH3LAYOUT0_ECC0__ECC2 0x1 +#define BV_BCH_FLASH3LAYOUT0_ECC0__ECC4 0x2 +#define BV_BCH_FLASH3LAYOUT0_ECC0__ECC6 0x3 +#define BV_BCH_FLASH3LAYOUT0_ECC0__ECC8 0x4 +#define BV_BCH_FLASH3LAYOUT0_ECC0__ECC10 0x5 +#define BV_BCH_FLASH3LAYOUT0_ECC0__ECC12 0x6 +#define BV_BCH_FLASH3LAYOUT0_ECC0__ECC14 0x7 +#define BV_BCH_FLASH3LAYOUT0_ECC0__ECC16 0x8 +#define BV_BCH_FLASH3LAYOUT0_ECC0__ECC18 0x9 +#define BV_BCH_FLASH3LAYOUT0_ECC0__ECC20 0xA +#define BP_BCH_FLASH3LAYOUT0_DATA0_SIZE 0 +#define BM_BCH_FLASH3LAYOUT0_DATA0_SIZE 0x00000FFF +#define BF_BCH_FLASH3LAYOUT0_DATA0_SIZE(v) \ + (((v) << 0) & BM_BCH_FLASH3LAYOUT0_DATA0_SIZE) + +/*============================================================================*/ + +#define HW_BCH_FLASH3LAYOUT1 (0x000000f0) + +#define BP_BCH_FLASH3LAYOUT1_PAGE_SIZE 16 +#define BM_BCH_FLASH3LAYOUT1_PAGE_SIZE 0xFFFF0000 +#define BF_BCH_FLASH3LAYOUT1_PAGE_SIZE(v) \ + (((v) << 16) & BM_BCH_FLASH3LAYOUT1_PAGE_SIZE) +#define BP_BCH_FLASH3LAYOUT1_ECCN 12 +#define BM_BCH_FLASH3LAYOUT1_ECCN 0x0000F000 +#define BF_BCH_FLASH3LAYOUT1_ECCN(v) \ + (((v) << 12) & BM_BCH_FLASH3LAYOUT1_ECCN) +#define BV_BCH_FLASH3LAYOUT1_ECCN__NONE 0x0 +#define BV_BCH_FLASH3LAYOUT1_ECCN__ECC2 0x1 +#define BV_BCH_FLASH3LAYOUT1_ECCN__ECC4 0x2 +#define BV_BCH_FLASH3LAYOUT1_ECCN__ECC6 0x3 +#define BV_BCH_FLASH3LAYOUT1_ECCN__ECC8 0x4 +#define BV_BCH_FLASH3LAYOUT1_ECCN__ECC10 0x5 +#define BV_BCH_FLASH3LAYOUT1_ECCN__ECC12 0x6 +#define BV_BCH_FLASH3LAYOUT1_ECCN__ECC14 0x7 +#define BV_BCH_FLASH3LAYOUT1_ECCN__ECC16 0x8 +#define BV_BCH_FLASH3LAYOUT1_ECCN__ECC18 0x9 +#define BV_BCH_FLASH3LAYOUT1_ECCN__ECC20 0xA +#define BP_BCH_FLASH3LAYOUT1_DATAN_SIZE 0 +#define BM_BCH_FLASH3LAYOUT1_DATAN_SIZE 0x00000FFF +#define BF_BCH_FLASH3LAYOUT1_DATAN_SIZE(v) \ + (((v) << 0) & BM_BCH_FLASH3LAYOUT1_DATAN_SIZE) + +/*============================================================================*/ + +#define HW_BCH_DEBUG0 (0x00000100) +#define HW_BCH_DEBUG0_SET (0x00000104) +#define HW_BCH_DEBUG0_CLR (0x00000108) +#define HW_BCH_DEBUG0_TOG (0x0000010c) + +#define BP_BCH_DEBUG0_RSVD1 27 +#define BM_BCH_DEBUG0_RSVD1 0xF8000000 +#define BF_BCH_DEBUG0_RSVD1(v) \ + (((v) << 27) & BM_BCH_DEBUG0_RSVD1) +#define BM_BCH_DEBUG0_ROM_BIST_ENABLE 0x04000000 +#define BM_BCH_DEBUG0_ROM_BIST_COMPLETE 0x02000000 +#define BP_BCH_DEBUG0_KES_DEBUG_SYNDROME_SYMBOL 16 +#define BM_BCH_DEBUG0_KES_DEBUG_SYNDROME_SYMBOL 0x01FF0000 +#define BF_BCH_DEBUG0_KES_DEBUG_SYNDROME_SYMBOL(v) \ + (((v) << 16) & BM_BCH_DEBUG0_KES_DEBUG_SYNDROME_SYMBOL) +#define BV_BCH_DEBUG0_KES_DEBUG_SYNDROME_SYMBOL__NORMAL 0x0 +#define BV_BCH_DEBUG0_KES_DEBUG_SYNDROME_SYMBOL__TEST_MODE 0x1 +#define BM_BCH_DEBUG0_KES_DEBUG_SHIFT_SYND 0x00008000 +#define BM_BCH_DEBUG0_KES_DEBUG_PAYLOAD_FLAG 0x00004000 +#define BV_BCH_DEBUG0_KES_DEBUG_PAYLOAD_FLAG__DATA 0x1 +#define BV_BCH_DEBUG0_KES_DEBUG_PAYLOAD_FLAG__AUX 0x1 +#define BM_BCH_DEBUG0_KES_DEBUG_MODE4K 0x00002000 +#define BV_BCH_DEBUG0_KES_DEBUG_MODE4K__4k 0x1 +#define BV_BCH_DEBUG0_KES_DEBUG_MODE4K__2k 0x1 +#define BM_BCH_DEBUG0_KES_DEBUG_KICK 0x00001000 +#define BM_BCH_DEBUG0_KES_STANDALONE 0x00000800 +#define BV_BCH_DEBUG0_KES_STANDALONE__NORMAL 0x0 +#define BV_BCH_DEBUG0_KES_STANDALONE__TEST_MODE 0x1 +#define BM_BCH_DEBUG0_KES_DEBUG_STEP 0x00000400 +#define BM_BCH_DEBUG0_KES_DEBUG_STALL 0x00000200 +#define BV_BCH_DEBUG0_KES_DEBUG_STALL__NORMAL 0x0 +#define BV_BCH_DEBUG0_KES_DEBUG_STALL__WAIT 0x1 +#define BM_BCH_DEBUG0_BM_KES_TEST_BYPASS 0x00000100 +#define BV_BCH_DEBUG0_BM_KES_TEST_BYPASS__NORMAL 0x0 +#define BV_BCH_DEBUG0_BM_KES_TEST_BYPASS__TEST_MODE 0x1 +#define BP_BCH_DEBUG0_RSVD0 6 +#define BM_BCH_DEBUG0_RSVD0 0x000000C0 +#define BF_BCH_DEBUG0_RSVD0(v) \ + (((v) << 6) & BM_BCH_DEBUG0_RSVD0) +#define BP_BCH_DEBUG0_DEBUG_REG_SELECT 0 +#define BM_BCH_DEBUG0_DEBUG_REG_SELECT 0x0000003F +#define BF_BCH_DEBUG0_DEBUG_REG_SELECT(v) \ + (((v) << 0) & BM_BCH_DEBUG0_DEBUG_REG_SELECT) + +/*============================================================================*/ + +#define HW_BCH_DBGKESREAD (0x00000110) + +#define BP_BCH_DBGKESREAD_VALUES 0 +#define BM_BCH_DBGKESREAD_VALUES 0xFFFFFFFF +#define BF_BCH_DBGKESREAD_VALUES(v) (v) + +/*============================================================================*/ + +#define HW_BCH_DBGCSFEREAD (0x00000120) + +#define BP_BCH_DBGCSFEREAD_VALUES 0 +#define BM_BCH_DBGCSFEREAD_VALUES 0xFFFFFFFF +#define BF_BCH_DBGCSFEREAD_VALUES(v) (v) + +/*============================================================================*/ + +#define HW_BCH_DBGSYNDGENREAD (0x00000130) + +#define BP_BCH_DBGSYNDGENREAD_VALUES 0 +#define BM_BCH_DBGSYNDGENREAD_VALUES 0xFFFFFFFF +#define BF_BCH_DBGSYNDGENREAD_VALUES(v) (v) + +/*============================================================================*/ + +#define HW_BCH_DBGAHBMREAD (0x00000140) + +#define BP_BCH_DBGAHBMREAD_VALUES 0 +#define BM_BCH_DBGAHBMREAD_VALUES 0xFFFFFFFF +#define BF_BCH_DBGAHBMREAD_VALUES(v) (v) + +/*============================================================================*/ + +#define HW_BCH_BLOCKNAME (0x00000150) + +#define BP_BCH_BLOCKNAME_NAME 0 +#define BM_BCH_BLOCKNAME_NAME 0xFFFFFFFF +#define BF_BCH_BLOCKNAME_NAME(v) (v) + +/*============================================================================*/ + +#define HW_BCH_VERSION (0x00000160) + +#define BP_BCH_VERSION_MAJOR 24 +#define BM_BCH_VERSION_MAJOR 0xFF000000 +#define BF_BCH_VERSION_MAJOR(v) \ + (((v) << 24) & BM_BCH_VERSION_MAJOR) +#define BP_BCH_VERSION_MINOR 16 +#define BM_BCH_VERSION_MINOR 0x00FF0000 +#define BF_BCH_VERSION_MINOR(v) \ + (((v) << 16) & BM_BCH_VERSION_MINOR) +#define BP_BCH_VERSION_STEP 0 +#define BM_BCH_VERSION_STEP 0x0000FFFF +#define BF_BCH_VERSION_STEP(v) \ + (((v) << 0) & BM_BCH_VERSION_STEP) + +/*============================================================================*/ + +#endif diff --git a/drivers/mtd/nand/gpmi-nfc/gpmi-nfc-bch-regs-v2.h b/drivers/mtd/nand/gpmi-nfc/gpmi-nfc-bch-regs-v2.h new file mode 100644 index 000000000000..46c0ceb6ddff --- /dev/null +++ b/drivers/mtd/nand/gpmi-nfc/gpmi-nfc-bch-regs-v2.h @@ -0,0 +1,567 @@ +/* + * Freescale BCH Register Definitions + * + * Copyright 2008-2010 Freescale Semiconductor, Inc. All Rights Reserved. + * + * This program is free software; you can redistribute it and/or modify + * it under the terms of the GNU General Public License as published by + * the Free Software Foundation; either version 2 of the License, or + * (at your option) any later version. + * + * This program is distributed in the hope that it will be useful, + * but WITHOUT ANY WARRANTY; without even the implied warranty of + * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the + * GNU General Public License for more details. + * + * You should have received a copy of the GNU General Public License + * along with this program; if not, write to the Free Software + * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA + * + * This file is created by xml file. Don't Edit it. + * + * Xml Revision: 1.3 + * Template revision: 1.3 + */ + +#ifndef __ARCH_ARM___BCH_H +#define __ARCH_ARM___BCH_H + + +#define HW_BCH_CTRL (0x00000000) +#define HW_BCH_CTRL_SET (0x00000004) +#define HW_BCH_CTRL_CLR (0x00000008) +#define HW_BCH_CTRL_TOG (0x0000000c) + +#define BM_BCH_CTRL_SFTRST 0x80000000 +#define BV_BCH_CTRL_SFTRST__RUN 0x0 +#define BV_BCH_CTRL_SFTRST__RESET 0x1 +#define BM_BCH_CTRL_CLKGATE 0x40000000 +#define BV_BCH_CTRL_CLKGATE__RUN 0x0 +#define BV_BCH_CTRL_CLKGATE__NO_CLKS 0x1 +#define BP_BCH_CTRL_RSVD5 23 +#define BM_BCH_CTRL_RSVD5 0x3F800000 +#define BF_BCH_CTRL_RSVD5(v) \ + (((v) << 23) & BM_BCH_CTRL_RSVD5) +#define BM_BCH_CTRL_DEBUGSYNDROME 0x00400000 +#define BP_BCH_CTRL_RSVD4 20 +#define BM_BCH_CTRL_RSVD4 0x00300000 +#define BF_BCH_CTRL_RSVD4(v) \ + (((v) << 20) & BM_BCH_CTRL_RSVD4) +#define BP_BCH_CTRL_M2M_LAYOUT 18 +#define BM_BCH_CTRL_M2M_LAYOUT 0x000C0000 +#define BF_BCH_CTRL_M2M_LAYOUT(v) \ + (((v) << 18) & BM_BCH_CTRL_M2M_LAYOUT) +#define BM_BCH_CTRL_M2M_ENCODE 0x00020000 +#define BM_BCH_CTRL_M2M_ENABLE 0x00010000 +#define BP_BCH_CTRL_RSVD3 11 +#define BM_BCH_CTRL_RSVD3 0x0000F800 +#define BF_BCH_CTRL_RSVD3(v) \ + (((v) << 11) & BM_BCH_CTRL_RSVD3) +#define BM_BCH_CTRL_DEBUG_STALL_IRQ_EN 0x00000400 +#define BM_BCH_CTRL_RSVD2 0x00000200 +#define BM_BCH_CTRL_COMPLETE_IRQ_EN 0x00000100 +#define BP_BCH_CTRL_RSVD1 4 +#define BM_BCH_CTRL_RSVD1 0x000000F0 +#define BF_BCH_CTRL_RSVD1(v) \ + (((v) << 4) & BM_BCH_CTRL_RSVD1) +#define BM_BCH_CTRL_BM_ERROR_IRQ 0x00000008 +#define BM_BCH_CTRL_DEBUG_STALL_IRQ 0x00000004 +#define BM_BCH_CTRL_RSVD0 0x00000002 +#define BM_BCH_CTRL_COMPLETE_IRQ 0x00000001 + +#define HW_BCH_STATUS0 (0x00000010) + +#define BP_BCH_STATUS0_HANDLE 20 +#define BM_BCH_STATUS0_HANDLE 0xFFF00000 +#define BF_BCH_STATUS0_HANDLE(v) \ + (((v) << 20) & BM_BCH_STATUS0_HANDLE) +#define BP_BCH_STATUS0_COMPLETED_CE 16 +#define BM_BCH_STATUS0_COMPLETED_CE 0x000F0000 +#define BF_BCH_STATUS0_COMPLETED_CE(v) \ + (((v) << 16) & BM_BCH_STATUS0_COMPLETED_CE) +#define BP_BCH_STATUS0_STATUS_BLK0 8 +#define BM_BCH_STATUS0_STATUS_BLK0 0x0000FF00 +#define BF_BCH_STATUS0_STATUS_BLK0(v) \ + (((v) << 8) & BM_BCH_STATUS0_STATUS_BLK0) +#define BV_BCH_STATUS0_STATUS_BLK0__ZERO 0x00 +#define BV_BCH_STATUS0_STATUS_BLK0__ERROR1 0x01 +#define BV_BCH_STATUS0_STATUS_BLK0__ERROR2 0x02 +#define BV_BCH_STATUS0_STATUS_BLK0__ERROR3 0x03 +#define BV_BCH_STATUS0_STATUS_BLK0__ERROR4 0x04 +#define BV_BCH_STATUS0_STATUS_BLK0__UNCORRECTABLE 0xFE +#define BV_BCH_STATUS0_STATUS_BLK0__ERASED 0xFF +#define BP_BCH_STATUS0_RSVD1 5 +#define BM_BCH_STATUS0_RSVD1 0x000000E0 +#define BF_BCH_STATUS0_RSVD1(v) \ + (((v) << 5) & BM_BCH_STATUS0_RSVD1) +#define BM_BCH_STATUS0_ALLONES 0x00000010 +#define BM_BCH_STATUS0_CORRECTED 0x00000008 +#define BM_BCH_STATUS0_UNCORRECTABLE 0x00000004 +#define BP_BCH_STATUS0_RSVD0 0 +#define BM_BCH_STATUS0_RSVD0 0x00000003 +#define BF_BCH_STATUS0_RSVD0(v) \ + (((v) << 0) & BM_BCH_STATUS0_RSVD0) + +#define HW_BCH_MODE (0x00000020) + +#define BP_BCH_MODE_RSVD 8 +#define BM_BCH_MODE_RSVD 0xFFFFFF00 +#define BF_BCH_MODE_RSVD(v) \ + (((v) << 8) & BM_BCH_MODE_RSVD) +#define BP_BCH_MODE_ERASE_THRESHOLD 0 +#define BM_BCH_MODE_ERASE_THRESHOLD 0x000000FF +#define BF_BCH_MODE_ERASE_THRESHOLD(v) \ + (((v) << 0) & BM_BCH_MODE_ERASE_THRESHOLD) + +#define HW_BCH_ENCODEPTR (0x00000030) + +#define BP_BCH_ENCODEPTR_ADDR 0 +#define BM_BCH_ENCODEPTR_ADDR 0xFFFFFFFF +#define BF_BCH_ENCODEPTR_ADDR(v) (v) + +#define HW_BCH_DATAPTR (0x00000040) + +#define BP_BCH_DATAPTR_ADDR 0 +#define BM_BCH_DATAPTR_ADDR 0xFFFFFFFF +#define BF_BCH_DATAPTR_ADDR(v) (v) + +#define HW_BCH_METAPTR (0x00000050) + +#define BP_BCH_METAPTR_ADDR 0 +#define BM_BCH_METAPTR_ADDR 0xFFFFFFFF +#define BF_BCH_METAPTR_ADDR(v) (v) + +#define HW_BCH_LAYOUTSELECT (0x00000070) + +#define BP_BCH_LAYOUTSELECT_CS15_SELECT 30 +#define BM_BCH_LAYOUTSELECT_CS15_SELECT 0xC0000000 +#define BF_BCH_LAYOUTSELECT_CS15_SELECT(v) \ + (((v) << 30) & BM_BCH_LAYOUTSELECT_CS15_SELECT) +#define BP_BCH_LAYOUTSELECT_CS14_SELECT 28 +#define BM_BCH_LAYOUTSELECT_CS14_SELECT 0x30000000 +#define BF_BCH_LAYOUTSELECT_CS14_SELECT(v) \ + (((v) << 28) & BM_BCH_LAYOUTSELECT_CS14_SELECT) +#define BP_BCH_LAYOUTSELECT_CS13_SELECT 26 +#define BM_BCH_LAYOUTSELECT_CS13_SELECT 0x0C000000 +#define BF_BCH_LAYOUTSELECT_CS13_SELECT(v) \ + (((v) << 26) & BM_BCH_LAYOUTSELECT_CS13_SELECT) +#define BP_BCH_LAYOUTSELECT_CS12_SELECT 24 +#define BM_BCH_LAYOUTSELECT_CS12_SELECT 0x03000000 +#define BF_BCH_LAYOUTSELECT_CS12_SELECT(v) \ + (((v) << 24) & BM_BCH_LAYOUTSELECT_CS12_SELECT) +#define BP_BCH_LAYOUTSELECT_CS11_SELECT 22 +#define BM_BCH_LAYOUTSELECT_CS11_SELECT 0x00C00000 +#define BF_BCH_LAYOUTSELECT_CS11_SELECT(v) \ + (((v) << 22) & BM_BCH_LAYOUTSELECT_CS11_SELECT) +#define BP_BCH_LAYOUTSELECT_CS10_SELECT 20 +#define BM_BCH_LAYOUTSELECT_CS10_SELECT 0x00300000 +#define BF_BCH_LAYOUTSELECT_CS10_SELECT(v) \ + (((v) << 20) & BM_BCH_LAYOUTSELECT_CS10_SELECT) +#define BP_BCH_LAYOUTSELECT_CS9_SELECT 18 +#define BM_BCH_LAYOUTSELECT_CS9_SELECT 0x000C0000 +#define BF_BCH_LAYOUTSELECT_CS9_SELECT(v) \ + (((v) << 18) & BM_BCH_LAYOUTSELECT_CS9_SELECT) +#define BP_BCH_LAYOUTSELECT_CS8_SELECT 16 +#define BM_BCH_LAYOUTSELECT_CS8_SELECT 0x00030000 +#define BF_BCH_LAYOUTSELECT_CS8_SELECT(v) \ + (((v) << 16) & BM_BCH_LAYOUTSELECT_CS8_SELECT) +#define BP_BCH_LAYOUTSELECT_CS7_SELECT 14 +#define BM_BCH_LAYOUTSELECT_CS7_SELECT 0x0000C000 +#define BF_BCH_LAYOUTSELECT_CS7_SELECT(v) \ + (((v) << 14) & BM_BCH_LAYOUTSELECT_CS7_SELECT) +#define BP_BCH_LAYOUTSELECT_CS6_SELECT 12 +#define BM_BCH_LAYOUTSELECT_CS6_SELECT 0x00003000 +#define BF_BCH_LAYOUTSELECT_CS6_SELECT(v) \ + (((v) << 12) & BM_BCH_LAYOUTSELECT_CS6_SELECT) +#define BP_BCH_LAYOUTSELECT_CS5_SELECT 10 +#define BM_BCH_LAYOUTSELECT_CS5_SELECT 0x00000C00 +#define BF_BCH_LAYOUTSELECT_CS5_SELECT(v) \ + (((v) << 10) & BM_BCH_LAYOUTSELECT_CS5_SELECT) +#define BP_BCH_LAYOUTSELECT_CS4_SELECT 8 +#define BM_BCH_LAYOUTSELECT_CS4_SELECT 0x00000300 +#define BF_BCH_LAYOUTSELECT_CS4_SELECT(v) \ + (((v) << 8) & BM_BCH_LAYOUTSELECT_CS4_SELECT) +#define BP_BCH_LAYOUTSELECT_CS3_SELECT 6 +#define BM_BCH_LAYOUTSELECT_CS3_SELECT 0x000000C0 +#define BF_BCH_LAYOUTSELECT_CS3_SELECT(v) \ + (((v) << 6) & BM_BCH_LAYOUTSELECT_CS3_SELECT) +#define BP_BCH_LAYOUTSELECT_CS2_SELECT 4 +#define BM_BCH_LAYOUTSELECT_CS2_SELECT 0x00000030 +#define BF_BCH_LAYOUTSELECT_CS2_SELECT(v) \ + (((v) << 4) & BM_BCH_LAYOUTSELECT_CS2_SELECT) +#define BP_BCH_LAYOUTSELECT_CS1_SELECT 2 +#define BM_BCH_LAYOUTSELECT_CS1_SELECT 0x0000000C +#define BF_BCH_LAYOUTSELECT_CS1_SELECT(v) \ + (((v) << 2) & BM_BCH_LAYOUTSELECT_CS1_SELECT) +#define BP_BCH_LAYOUTSELECT_CS0_SELECT 0 +#define BM_BCH_LAYOUTSELECT_CS0_SELECT 0x00000003 +#define BF_BCH_LAYOUTSELECT_CS0_SELECT(v) \ + (((v) << 0) & BM_BCH_LAYOUTSELECT_CS0_SELECT) + +#define HW_BCH_FLASH0LAYOUT0 (0x00000080) + +#define BP_BCH_FLASH0LAYOUT0_NBLOCKS 24 +#define BM_BCH_FLASH0LAYOUT0_NBLOCKS 0xFF000000 +#define BF_BCH_FLASH0LAYOUT0_NBLOCKS(v) \ + (((v) << 24) & BM_BCH_FLASH0LAYOUT0_NBLOCKS) +#define BP_BCH_FLASH0LAYOUT0_META_SIZE 16 +#define BM_BCH_FLASH0LAYOUT0_META_SIZE 0x00FF0000 +#define BF_BCH_FLASH0LAYOUT0_META_SIZE(v) \ + (((v) << 16) & BM_BCH_FLASH0LAYOUT0_META_SIZE) +#define BP_BCH_FLASH0LAYOUT0_ECC0 11 +#define BM_BCH_FLASH0LAYOUT0_ECC0 0x0000F800 +#define BF_BCH_FLASH0LAYOUT0_ECC0(v) \ + (((v) << 11) & BM_BCH_FLASH0LAYOUT0_ECC0) +#define BV_BCH_FLASH0LAYOUT0_ECC0__NONE 0x0 +#define BV_BCH_FLASH0LAYOUT0_ECC0__ECC2 0x1 +#define BV_BCH_FLASH0LAYOUT0_ECC0__ECC4 0x2 +#define BV_BCH_FLASH0LAYOUT0_ECC0__ECC6 0x3 +#define BV_BCH_FLASH0LAYOUT0_ECC0__ECC8 0x4 +#define BV_BCH_FLASH0LAYOUT0_ECC0__ECC10 0x5 +#define BV_BCH_FLASH0LAYOUT0_ECC0__ECC12 0x6 +#define BV_BCH_FLASH0LAYOUT0_ECC0__ECC14 0x7 +#define BV_BCH_FLASH0LAYOUT0_ECC0__ECC16 0x8 +#define BV_BCH_FLASH0LAYOUT0_ECC0__ECC18 0x9 +#define BV_BCH_FLASH0LAYOUT0_ECC0__ECC20 0xA +#define BV_BCH_FLASH0LAYOUT0_ECC0__ECC22 0xB +#define BV_BCH_FLASH0LAYOUT0_ECC0__ECC24 0xC +#define BV_BCH_FLASH0LAYOUT0_ECC0__ECC26 0xD +#define BV_BCH_FLASH0LAYOUT0_ECC0__ECC28 0xE +#define BV_BCH_FLASH0LAYOUT0_ECC0__ECC30 0xF +#define BV_BCH_FLASH0LAYOUT0_ECC0__ECC32 0x10 +#define BM_BCH_FLASH0LAYOUT0_GF13_0_GF14_1 0x00000400 +#define BP_BCH_FLASH0LAYOUT0_DATA0_SIZE 0 +#define BM_BCH_FLASH0LAYOUT0_DATA0_SIZE 0x000003FF +#define BF_BCH_FLASH0LAYOUT0_DATA0_SIZE(v) \ + (((v) << 0) & BM_BCH_FLASH0LAYOUT0_DATA0_SIZE) + +#define HW_BCH_FLASH0LAYOUT1 (0x00000090) + +#define BP_BCH_FLASH0LAYOUT1_PAGE_SIZE 16 +#define BM_BCH_FLASH0LAYOUT1_PAGE_SIZE 0xFFFF0000 +#define BF_BCH_FLASH0LAYOUT1_PAGE_SIZE(v) \ + (((v) << 16) & BM_BCH_FLASH0LAYOUT1_PAGE_SIZE) +#define BP_BCH_FLASH0LAYOUT1_ECCN 11 +#define BM_BCH_FLASH0LAYOUT1_ECCN 0x0000F800 +#define BF_BCH_FLASH0LAYOUT1_ECCN(v) \ + (((v) << 11) & BM_BCH_FLASH0LAYOUT1_ECCN) +#define BV_BCH_FLASH0LAYOUT1_ECCN__NONE 0x0 +#define BV_BCH_FLASH0LAYOUT1_ECCN__ECC2 0x1 +#define BV_BCH_FLASH0LAYOUT1_ECCN__ECC4 0x2 +#define BV_BCH_FLASH0LAYOUT1_ECCN__ECC6 0x3 +#define BV_BCH_FLASH0LAYOUT1_ECCN__ECC8 0x4 +#define BV_BCH_FLASH0LAYOUT1_ECCN__ECC10 0x5 +#define BV_BCH_FLASH0LAYOUT1_ECCN__ECC12 0x6 +#define BV_BCH_FLASH0LAYOUT1_ECCN__ECC14 0x7 +#define BV_BCH_FLASH0LAYOUT1_ECCN__ECC16 0x8 +#define BV_BCH_FLASH0LAYOUT1_ECCN__ECC18 0x9 +#define BV_BCH_FLASH0LAYOUT1_ECCN__ECC20 0xA +#define BV_BCH_FLASH0LAYOUT1_ECCN__ECC22 0xB +#define BV_BCH_FLASH0LAYOUT1_ECCN__ECC24 0xC +#define BV_BCH_FLASH0LAYOUT1_ECCN__ECC26 0xD +#define BV_BCH_FLASH0LAYOUT1_ECCN__ECC28 0xE +#define BV_BCH_FLASH0LAYOUT1_ECCN__ECC30 0xF +#define BV_BCH_FLASH0LAYOUT1_ECCN__ECC32 0x10 +#define BM_BCH_FLASH0LAYOUT1_GF13_0_GF14_1 0x00000400 +#define BP_BCH_FLASH0LAYOUT1_DATAN_SIZE 0 +#define BM_BCH_FLASH0LAYOUT1_DATAN_SIZE 0x000003FF +#define BF_BCH_FLASH0LAYOUT1_DATAN_SIZE(v) \ + (((v) << 0) & BM_BCH_FLASH0LAYOUT1_DATAN_SIZE) + +#define HW_BCH_FLASH1LAYOUT0 (0x000000a0) + +#define BP_BCH_FLASH1LAYOUT0_NBLOCKS 24 +#define BM_BCH_FLASH1LAYOUT0_NBLOCKS 0xFF000000 +#define BF_BCH_FLASH1LAYOUT0_NBLOCKS(v) \ + (((v) << 24) & BM_BCH_FLASH1LAYOUT0_NBLOCKS) +#define BP_BCH_FLASH1LAYOUT0_META_SIZE 16 +#define BM_BCH_FLASH1LAYOUT0_META_SIZE 0x00FF0000 +#define BF_BCH_FLASH1LAYOUT0_META_SIZE(v) \ + (((v) << 16) & BM_BCH_FLASH1LAYOUT0_META_SIZE) +#define BP_BCH_FLASH1LAYOUT0_ECC0 11 +#define BM_BCH_FLASH1LAYOUT0_ECC0 0x0000F800 +#define BF_BCH_FLASH1LAYOUT0_ECC0(v) \ + (((v) << 11) & BM_BCH_FLASH1LAYOUT0_ECC0) +#define BV_BCH_FLASH1LAYOUT0_ECC0__NONE 0x0 +#define BV_BCH_FLASH1LAYOUT0_ECC0__ECC2 0x1 +#define BV_BCH_FLASH1LAYOUT0_ECC0__ECC4 0x2 +#define BV_BCH_FLASH1LAYOUT0_ECC0__ECC6 0x3 +#define BV_BCH_FLASH1LAYOUT0_ECC0__ECC8 0x4 +#define BV_BCH_FLASH1LAYOUT0_ECC0__ECC10 0x5 +#define BV_BCH_FLASH1LAYOUT0_ECC0__ECC12 0x6 +#define BV_BCH_FLASH1LAYOUT0_ECC0__ECC14 0x7 +#define BV_BCH_FLASH1LAYOUT0_ECC0__ECC16 0x8 +#define BV_BCH_FLASH1LAYOUT0_ECC0__ECC18 0x9 +#define BV_BCH_FLASH1LAYOUT0_ECC0__ECC20 0xA +#define BV_BCH_FLASH1LAYOUT0_ECC0__ECC22 0xB +#define BV_BCH_FLASH1LAYOUT0_ECC0__ECC24 0xC +#define BV_BCH_FLASH1LAYOUT0_ECC0__ECC26 0xD +#define BV_BCH_FLASH1LAYOUT0_ECC0__ECC28 0xE +#define BV_BCH_FLASH1LAYOUT0_ECC0__ECC30 0xF +#define BV_BCH_FLASH1LAYOUT0_ECC0__ECC32 0x10 +#define BM_BCH_FLASH1LAYOUT0_GF13_0_GF14_1 0x00000400 +#define BP_BCH_FLASH1LAYOUT0_DATA0_SIZE 0 +#define BM_BCH_FLASH1LAYOUT0_DATA0_SIZE 0x000003FF +#define BF_BCH_FLASH1LAYOUT0_DATA0_SIZE(v) \ + (((v) << 0) & BM_BCH_FLASH1LAYOUT0_DATA0_SIZE) + +#define HW_BCH_FLASH1LAYOUT1 (0x000000b0) + +#define BP_BCH_FLASH1LAYOUT1_PAGE_SIZE 16 +#define BM_BCH_FLASH1LAYOUT1_PAGE_SIZE 0xFFFF0000 +#define BF_BCH_FLASH1LAYOUT1_PAGE_SIZE(v) \ + (((v) << 16) & BM_BCH_FLASH1LAYOUT1_PAGE_SIZE) +#define BP_BCH_FLASH1LAYOUT1_ECCN 11 +#define BM_BCH_FLASH1LAYOUT1_ECCN 0x0000F800 +#define BF_BCH_FLASH1LAYOUT1_ECCN(v) \ + (((v) << 11) & BM_BCH_FLASH1LAYOUT1_ECCN) +#define BV_BCH_FLASH1LAYOUT1_ECCN__NONE 0x0 +#define BV_BCH_FLASH1LAYOUT1_ECCN__ECC2 0x1 +#define BV_BCH_FLASH1LAYOUT1_ECCN__ECC4 0x2 +#define BV_BCH_FLASH1LAYOUT1_ECCN__ECC6 0x3 +#define BV_BCH_FLASH1LAYOUT1_ECCN__ECC8 0x4 +#define BV_BCH_FLASH1LAYOUT1_ECCN__ECC10 0x5 +#define BV_BCH_FLASH1LAYOUT1_ECCN__ECC12 0x6 +#define BV_BCH_FLASH1LAYOUT1_ECCN__ECC14 0x7 +#define BV_BCH_FLASH1LAYOUT1_ECCN__ECC16 0x8 +#define BV_BCH_FLASH1LAYOUT1_ECCN__ECC18 0x9 +#define BV_BCH_FLASH1LAYOUT1_ECCN__ECC20 0xA +#define BV_BCH_FLASH1LAYOUT1_ECCN__ECC22 0xB +#define BV_BCH_FLASH1LAYOUT1_ECCN__ECC24 0xC +#define BV_BCH_FLASH1LAYOUT1_ECCN__ECC26 0xD +#define BV_BCH_FLASH1LAYOUT1_ECCN__ECC28 0xE +#define BV_BCH_FLASH1LAYOUT1_ECCN__ECC30 0xF +#define BV_BCH_FLASH1LAYOUT1_ECCN__ECC32 0x10 +#define BM_BCH_FLASH1LAYOUT1_GF13_0_GF14_1 0x00000400 +#define BP_BCH_FLASH1LAYOUT1_DATAN_SIZE 0 +#define BM_BCH_FLASH1LAYOUT1_DATAN_SIZE 0x000003FF +#define BF_BCH_FLASH1LAYOUT1_DATAN_SIZE(v) \ + (((v) << 0) & BM_BCH_FLASH1LAYOUT1_DATAN_SIZE) + +#define HW_BCH_FLASH2LAYOUT0 (0x000000c0) + +#define BP_BCH_FLASH2LAYOUT0_NBLOCKS 24 +#define BM_BCH_FLASH2LAYOUT0_NBLOCKS 0xFF000000 +#define BF_BCH_FLASH2LAYOUT0_NBLOCKS(v) \ + (((v) << 24) & BM_BCH_FLASH2LAYOUT0_NBLOCKS) +#define BP_BCH_FLASH2LAYOUT0_META_SIZE 16 +#define BM_BCH_FLASH2LAYOUT0_META_SIZE 0x00FF0000 +#define BF_BCH_FLASH2LAYOUT0_META_SIZE(v) \ + (((v) << 16) & BM_BCH_FLASH2LAYOUT0_META_SIZE) +#define BP_BCH_FLASH2LAYOUT0_ECC0 11 +#define BM_BCH_FLASH2LAYOUT0_ECC0 0x0000F800 +#define BF_BCH_FLASH2LAYOUT0_ECC0(v) \ + (((v) << 11) & BM_BCH_FLASH2LAYOUT0_ECC0) +#define BV_BCH_FLASH2LAYOUT0_ECC0__NONE 0x0 +#define BV_BCH_FLASH2LAYOUT0_ECC0__ECC2 0x1 +#define BV_BCH_FLASH2LAYOUT0_ECC0__ECC4 0x2 +#define BV_BCH_FLASH2LAYOUT0_ECC0__ECC6 0x3 +#define BV_BCH_FLASH2LAYOUT0_ECC0__ECC8 0x4 +#define BV_BCH_FLASH2LAYOUT0_ECC0__ECC10 0x5 +#define BV_BCH_FLASH2LAYOUT0_ECC0__ECC12 0x6 +#define BV_BCH_FLASH2LAYOUT0_ECC0__ECC14 0x7 +#define BV_BCH_FLASH2LAYOUT0_ECC0__ECC16 0x8 +#define BV_BCH_FLASH2LAYOUT0_ECC0__ECC18 0x9 +#define BV_BCH_FLASH2LAYOUT0_ECC0__ECC20 0xA +#define BV_BCH_FLASH2LAYOUT0_ECC0__ECC22 0xB +#define BV_BCH_FLASH2LAYOUT0_ECC0__ECC24 0xC +#define BV_BCH_FLASH2LAYOUT0_ECC0__ECC26 0xD +#define BV_BCH_FLASH2LAYOUT0_ECC0__ECC28 0xE +#define BV_BCH_FLASH2LAYOUT0_ECC0__ECC30 0xF +#define BV_BCH_FLASH2LAYOUT0_ECC0__ECC32 0x10 +#define BM_BCH_FLASH2LAYOUT0_GF13_0_GF14_1 0x00000400 +#define BP_BCH_FLASH2LAYOUT0_DATA0_SIZE 0 +#define BM_BCH_FLASH2LAYOUT0_DATA0_SIZE 0x000003FF +#define BF_BCH_FLASH2LAYOUT0_DATA0_SIZE(v) \ + (((v) << 0) & BM_BCH_FLASH2LAYOUT0_DATA0_SIZE) + +#define HW_BCH_FLASH2LAYOUT1 (0x000000d0) + +#define BP_BCH_FLASH2LAYOUT1_PAGE_SIZE 16 +#define BM_BCH_FLASH2LAYOUT1_PAGE_SIZE 0xFFFF0000 +#define BF_BCH_FLASH2LAYOUT1_PAGE_SIZE(v) \ + (((v) << 16) & BM_BCH_FLASH2LAYOUT1_PAGE_SIZE) +#define BP_BCH_FLASH2LAYOUT1_ECCN 11 +#define BM_BCH_FLASH2LAYOUT1_ECCN 0x0000F800 +#define BF_BCH_FLASH2LAYOUT1_ECCN(v) \ + (((v) << 11) & BM_BCH_FLASH2LAYOUT1_ECCN) +#define BV_BCH_FLASH2LAYOUT1_ECCN__NONE 0x0 +#define BV_BCH_FLASH2LAYOUT1_ECCN__ECC2 0x1 +#define BV_BCH_FLASH2LAYOUT1_ECCN__ECC4 0x2 +#define BV_BCH_FLASH2LAYOUT1_ECCN__ECC6 0x3 +#define BV_BCH_FLASH2LAYOUT1_ECCN__ECC8 0x4 +#define BV_BCH_FLASH2LAYOUT1_ECCN__ECC10 0x5 +#define BV_BCH_FLASH2LAYOUT1_ECCN__ECC12 0x6 +#define BV_BCH_FLASH2LAYOUT1_ECCN__ECC14 0x7 +#define BV_BCH_FLASH2LAYOUT1_ECCN__ECC16 0x8 +#define BV_BCH_FLASH2LAYOUT1_ECCN__ECC18 0x9 +#define BV_BCH_FLASH2LAYOUT1_ECCN__ECC20 0xA +#define BV_BCH_FLASH2LAYOUT1_ECCN__ECC22 0xB +#define BV_BCH_FLASH2LAYOUT1_ECCN__ECC24 0xC +#define BV_BCH_FLASH2LAYOUT1_ECCN__ECC26 0xD +#define BV_BCH_FLASH2LAYOUT1_ECCN__ECC28 0xE +#define BV_BCH_FLASH2LAYOUT1_ECCN__ECC30 0xF +#define BV_BCH_FLASH2LAYOUT1_ECCN__ECC32 0x10 +#define BM_BCH_FLASH2LAYOUT1_GF13_0_GF14_1 0x00000400 +#define BP_BCH_FLASH2LAYOUT1_DATAN_SIZE 0 +#define BM_BCH_FLASH2LAYOUT1_DATAN_SIZE 0x000003FF +#define BF_BCH_FLASH2LAYOUT1_DATAN_SIZE(v) \ + (((v) << 0) & BM_BCH_FLASH2LAYOUT1_DATAN_SIZE) + +#define HW_BCH_FLASH3LAYOUT0 (0x000000e0) + +#define BP_BCH_FLASH3LAYOUT0_NBLOCKS 24 +#define BM_BCH_FLASH3LAYOUT0_NBLOCKS 0xFF000000 +#define BF_BCH_FLASH3LAYOUT0_NBLOCKS(v) \ + (((v) << 24) & BM_BCH_FLASH3LAYOUT0_NBLOCKS) +#define BP_BCH_FLASH3LAYOUT0_META_SIZE 16 +#define BM_BCH_FLASH3LAYOUT0_META_SIZE 0x00FF0000 +#define BF_BCH_FLASH3LAYOUT0_META_SIZE(v) \ + (((v) << 16) & BM_BCH_FLASH3LAYOUT0_META_SIZE) +#define BP_BCH_FLASH3LAYOUT0_ECC0 11 +#define BM_BCH_FLASH3LAYOUT0_ECC0 0x0000F800 +#define BF_BCH_FLASH3LAYOUT0_ECC0(v) \ + (((v) << 11) & BM_BCH_FLASH3LAYOUT0_ECC0) +#define BV_BCH_FLASH3LAYOUT0_ECC0__NONE 0x0 +#define BV_BCH_FLASH3LAYOUT0_ECC0__ECC2 0x1 +#define BV_BCH_FLASH3LAYOUT0_ECC0__ECC4 0x2 +#define BV_BCH_FLASH3LAYOUT0_ECC0__ECC6 0x3 +#define BV_BCH_FLASH3LAYOUT0_ECC0__ECC8 0x4 +#define BV_BCH_FLASH3LAYOUT0_ECC0__ECC10 0x5 +#define BV_BCH_FLASH3LAYOUT0_ECC0__ECC12 0x6 +#define BV_BCH_FLASH3LAYOUT0_ECC0__ECC14 0x7 +#define BV_BCH_FLASH3LAYOUT0_ECC0__ECC16 0x8 +#define BV_BCH_FLASH3LAYOUT0_ECC0__ECC18 0x9 +#define BV_BCH_FLASH3LAYOUT0_ECC0__ECC20 0xA +#define BV_BCH_FLASH3LAYOUT0_ECC0__ECC22 0xB +#define BV_BCH_FLASH3LAYOUT0_ECC0__ECC24 0xC +#define BV_BCH_FLASH3LAYOUT0_ECC0__ECC26 0xD +#define BV_BCH_FLASH3LAYOUT0_ECC0__ECC28 0xE +#define BV_BCH_FLASH3LAYOUT0_ECC0__ECC30 0xF +#define BV_BCH_FLASH3LAYOUT0_ECC0__ECC32 0x10 +#define BM_BCH_FLASH3LAYOUT0_GF13_0_GF14_1 0x00000400 +#define BP_BCH_FLASH3LAYOUT0_DATA0_SIZE 0 +#define BM_BCH_FLASH3LAYOUT0_DATA0_SIZE 0x000003FF +#define BF_BCH_FLASH3LAYOUT0_DATA0_SIZE(v) \ + (((v) << 0) & BM_BCH_FLASH3LAYOUT0_DATA0_SIZE) + +#define HW_BCH_FLASH3LAYOUT1 (0x000000f0) + +#define BP_BCH_FLASH3LAYOUT1_PAGE_SIZE 16 +#define BM_BCH_FLASH3LAYOUT1_PAGE_SIZE 0xFFFF0000 +#define BF_BCH_FLASH3LAYOUT1_PAGE_SIZE(v) \ + (((v) << 16) & BM_BCH_FLASH3LAYOUT1_PAGE_SIZE) +#define BP_BCH_FLASH3LAYOUT1_ECCN 11 +#define BM_BCH_FLASH3LAYOUT1_ECCN 0x0000F800 +#define BF_BCH_FLASH3LAYOUT1_ECCN(v) \ + (((v) << 11) & BM_BCH_FLASH3LAYOUT1_ECCN) +#define BV_BCH_FLASH3LAYOUT1_ECCN__NONE 0x0 +#define BV_BCH_FLASH3LAYOUT1_ECCN__ECC2 0x1 +#define BV_BCH_FLASH3LAYOUT1_ECCN__ECC4 0x2 +#define BV_BCH_FLASH3LAYOUT1_ECCN__ECC6 0x3 +#define BV_BCH_FLASH3LAYOUT1_ECCN__ECC8 0x4 +#define BV_BCH_FLASH3LAYOUT1_ECCN__ECC10 0x5 +#define BV_BCH_FLASH3LAYOUT1_ECCN__ECC12 0x6 +#define BV_BCH_FLASH3LAYOUT1_ECCN__ECC14 0x7 +#define BV_BCH_FLASH3LAYOUT1_ECCN__ECC16 0x8 +#define BV_BCH_FLASH3LAYOUT1_ECCN__ECC18 0x9 +#define BV_BCH_FLASH3LAYOUT1_ECCN__ECC20 0xA +#define BV_BCH_FLASH3LAYOUT1_ECCN__ECC22 0xB +#define BV_BCH_FLASH3LAYOUT1_ECCN__ECC24 0xC +#define BV_BCH_FLASH3LAYOUT1_ECCN__ECC26 0xD +#define BV_BCH_FLASH3LAYOUT1_ECCN__ECC28 0xE +#define BV_BCH_FLASH3LAYOUT1_ECCN__ECC30 0xF +#define BV_BCH_FLASH3LAYOUT1_ECCN__ECC32 0x10 +#define BM_BCH_FLASH3LAYOUT1_GF13_0_GF14_1 0x00000400 +#define BP_BCH_FLASH3LAYOUT1_DATAN_SIZE 0 +#define BM_BCH_FLASH3LAYOUT1_DATAN_SIZE 0x000003FF +#define BF_BCH_FLASH3LAYOUT1_DATAN_SIZE(v) \ + (((v) << 0) & BM_BCH_FLASH3LAYOUT1_DATAN_SIZE) + +#define HW_BCH_DEBUG0 (0x00000100) +#define HW_BCH_DEBUG0_SET (0x00000104) +#define HW_BCH_DEBUG0_CLR (0x00000108) +#define HW_BCH_DEBUG0_TOG (0x0000010c) + +#define BP_BCH_DEBUG0_RSVD1 25 +#define BM_BCH_DEBUG0_RSVD1 0xFE000000 +#define BF_BCH_DEBUG0_RSVD1(v) \ + (((v) << 25) & BM_BCH_DEBUG0_RSVD1) +#define BP_BCH_DEBUG0_KES_DEBUG_SYNDROME_SYMBOL 16 +#define BM_BCH_DEBUG0_KES_DEBUG_SYNDROME_SYMBOL 0x01FF0000 +#define BF_BCH_DEBUG0_KES_DEBUG_SYNDROME_SYMBOL(v) \ + (((v) << 16) & BM_BCH_DEBUG0_KES_DEBUG_SYNDROME_SYMBOL) +#define BV_BCH_DEBUG0_KES_DEBUG_SYNDROME_SYMBOL__NORMAL 0x0 +#define BV_BCH_DEBUG0_KES_DEBUG_SYNDROME_SYMBOL__TEST_MODE 0x1 +#define BM_BCH_DEBUG0_KES_DEBUG_SHIFT_SYND 0x00008000 +#define BM_BCH_DEBUG0_KES_DEBUG_PAYLOAD_FLAG 0x00004000 +#define BV_BCH_DEBUG0_KES_DEBUG_PAYLOAD_FLAG__DATA 0x1 +#define BV_BCH_DEBUG0_KES_DEBUG_PAYLOAD_FLAG__AUX 0x1 +#define BM_BCH_DEBUG0_KES_DEBUG_MODE4K 0x00002000 +#define BV_BCH_DEBUG0_KES_DEBUG_MODE4K__4k 0x1 +#define BV_BCH_DEBUG0_KES_DEBUG_MODE4K__2k 0x1 +#define BM_BCH_DEBUG0_KES_DEBUG_KICK 0x00001000 +#define BM_BCH_DEBUG0_KES_STANDALONE 0x00000800 +#define BV_BCH_DEBUG0_KES_STANDALONE__NORMAL 0x0 +#define BV_BCH_DEBUG0_KES_STANDALONE__TEST_MODE 0x1 +#define BM_BCH_DEBUG0_KES_DEBUG_STEP 0x00000400 +#define BM_BCH_DEBUG0_KES_DEBUG_STALL 0x00000200 +#define BV_BCH_DEBUG0_KES_DEBUG_STALL__NORMAL 0x0 +#define BV_BCH_DEBUG0_KES_DEBUG_STALL__WAIT 0x1 +#define BM_BCH_DEBUG0_BM_KES_TEST_BYPASS 0x00000100 +#define BV_BCH_DEBUG0_BM_KES_TEST_BYPASS__NORMAL 0x0 +#define BV_BCH_DEBUG0_BM_KES_TEST_BYPASS__TEST_MODE 0x1 +#define BP_BCH_DEBUG0_RSVD0 6 +#define BM_BCH_DEBUG0_RSVD0 0x000000C0 +#define BF_BCH_DEBUG0_RSVD0(v) \ + (((v) << 6) & BM_BCH_DEBUG0_RSVD0) +#define BP_BCH_DEBUG0_DEBUG_REG_SELECT 0 +#define BM_BCH_DEBUG0_DEBUG_REG_SELECT 0x0000003F +#define BF_BCH_DEBUG0_DEBUG_REG_SELECT(v) \ + (((v) << 0) & BM_BCH_DEBUG0_DEBUG_REG_SELECT) + +#define HW_BCH_DBGKESREAD (0x00000110) + +#define BP_BCH_DBGKESREAD_VALUES 0 +#define BM_BCH_DBGKESREAD_VALUES 0xFFFFFFFF +#define BF_BCH_DBGKESREAD_VALUES(v) (v) + +#define HW_BCH_DBGCSFEREAD (0x00000120) + +#define BP_BCH_DBGCSFEREAD_VALUES 0 +#define BM_BCH_DBGCSFEREAD_VALUES 0xFFFFFFFF +#define BF_BCH_DBGCSFEREAD_VALUES(v) (v) + +#define HW_BCH_DBGSYNDGENREAD (0x00000130) + +#define BP_BCH_DBGSYNDGENREAD_VALUES 0 +#define BM_BCH_DBGSYNDGENREAD_VALUES 0xFFFFFFFF +#define BF_BCH_DBGSYNDGENREAD_VALUES(v) (v) + +#define HW_BCH_DBGAHBMREAD (0x00000140) + +#define BP_BCH_DBGAHBMREAD_VALUES 0 +#define BM_BCH_DBGAHBMREAD_VALUES 0xFFFFFFFF +#define BF_BCH_DBGAHBMREAD_VALUES(v) (v) + +#define HW_BCH_BLOCKNAME (0x00000150) + +#define BP_BCH_BLOCKNAME_NAME 0 +#define BM_BCH_BLOCKNAME_NAME 0xFFFFFFFF +#define BF_BCH_BLOCKNAME_NAME(v) (v) + +#define HW_BCH_VERSION (0x00000160) + +#define BP_BCH_VERSION_MAJOR 24 +#define BM_BCH_VERSION_MAJOR 0xFF000000 +#define BF_BCH_VERSION_MAJOR(v) \ + (((v) << 24) & BM_BCH_VERSION_MAJOR) +#define BP_BCH_VERSION_MINOR 16 +#define BM_BCH_VERSION_MINOR 0x00FF0000 +#define BF_BCH_VERSION_MINOR(v) \ + (((v) << 16) & BM_BCH_VERSION_MINOR) +#define BP_BCH_VERSION_STEP 0 +#define BM_BCH_VERSION_STEP 0x0000FFFF +#define BF_BCH_VERSION_STEP(v) \ + (((v) << 0) & BM_BCH_VERSION_STEP) +#endif /* __ARCH_ARM___BCH_H */ diff --git a/drivers/mtd/nand/gpmi-nfc/gpmi-nfc-event-reporting.c b/drivers/mtd/nand/gpmi-nfc/gpmi-nfc-event-reporting.c new file mode 100644 index 000000000000..45574391b0f0 --- /dev/null +++ b/drivers/mtd/nand/gpmi-nfc/gpmi-nfc-event-reporting.c @@ -0,0 +1,307 @@ +/* + * Freescale GPMI NFC NAND Flash Driver + * + * Copyright (C) 2010 Freescale Semiconductor, Inc. + * Copyright (C) 2008 Embedded Alley Solutions, Inc. + * + * This program is free software; you can redistribute it and/or modify + * it under the terms of the GNU General Public License as published by + * the Free Software Foundation; either version 2 of the License, or + * (at your option) any later version. + * + * This program is distributed in the hope that it will be useful, + * but WITHOUT ANY WARRANTY; without even the implied warranty of + * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the + * GNU General Public License for more details. + * + * You should have received a copy of the GNU General Public License along + * with this program; if not, write to the Free Software Foundation, Inc., + * 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA. + */ + +#include "gpmi-nfc.h" + +#if defined(EVENT_REPORTING) + +/* + * This variable and module parameter controls whether the driver reports event + * information by printing to the console. + */ + +static int report_events; +module_param(report_events, int, 0600); + +/** + * struct event - A single record in the event trace. + * + * @time: The time at which the event occurred. + * @nesting: Indicates function call nesting. + * @description: A description of the event. + */ + +struct event { + ktime_t time; + unsigned int nesting; + char *description; +}; + +/** + * The event trace. + * + * @overhead: The delay to take a time stamp and nothing else. + * @nesting: The current nesting level. + * @overflow: Indicates the trace overflowed. + * @next: Index of the next event to write. + * @events: The array of events. + */ + +#define MAX_EVENT_COUNT (200) + +static struct { + ktime_t overhead; + int nesting; + int overflow; + unsigned int next; + struct event events[MAX_EVENT_COUNT]; +} event_trace; + +/** + * gpmi_nfc_reset_event_trace() - Resets the event trace. + */ +void gpmi_nfc_reset_event_trace(void) +{ + event_trace.nesting = 0; + event_trace.overflow = false; + event_trace.next = 0; +} + +/** + * gpmi_nfc_add_event() - Adds an event to the event trace. + * + * @description: A description of the event. + * @delta: A delta to the nesting level for this event [-1, 0, 1]. + */ +void gpmi_nfc_add_event(char *description, int delta) +{ + struct event *event; + + if (!report_events) + return; + + if (event_trace.overflow) + return; + + if (event_trace.next >= MAX_EVENT_COUNT) { + event_trace.overflow = true; + return; + } + + event = event_trace.events + event_trace.next; + + event->time = ktime_get(); + + event->description = description; + + if (!delta) + event->nesting = event_trace.nesting; + else if (delta < 0) { + event->nesting = event_trace.nesting - 1; + event_trace.nesting -= 2; + } else { + event->nesting = event_trace.nesting + 1; + event_trace.nesting += 2; + } + + if (event_trace.nesting < 0) + event_trace.nesting = 0; + + event_trace.next++; + +} + +/** + * gpmi_nfc_start_event_trace() - Starts an event trace. + * + * @description: A description of the first event. + */ +void gpmi_nfc_start_event_trace(char *description) +{ + + ktime_t t0; + ktime_t t1; + + if (!report_events) + return; + + gpmi_nfc_reset_event_trace(); + + t0 = ktime_get(); + t1 = ktime_get(); + + event_trace.overhead = ktime_sub(t1, t0); + + gpmi_nfc_add_event(description, 1); + +} + +/** + * gpmi_nfc_dump_event_trace() - Dumps the event trace. + */ +void gpmi_nfc_dump_event_trace(void) +{ + unsigned int i; + time_t seconds; + long nanoseconds; + char line[100]; + int o; + struct event *first_event; + struct event *last_event; + struct event *matching_event; + struct event *event; + ktime_t delta; + + /* Check if event reporting is turned off. */ + + if (!report_events) + return; + + /* Print important facts about this event trace. */ + + pr_info("\n+----------------\n"); + + pr_info("| Overhead : [%d:%d]\n", event_trace.overhead.tv.sec, + event_trace.overhead.tv.nsec); + + if (!event_trace.next) { + pr_info("| No Events\n"); + return; + } + + first_event = event_trace.events; + last_event = event_trace.events + (event_trace.next - 1); + + delta = ktime_sub(last_event->time, first_event->time); + pr_info("| Elapsed Time: [%d:%d]\n", delta.tv.sec, delta.tv.nsec); + + if (event_trace.overflow) + pr_info("| Overflow!\n"); + + /* Print the events in this history. */ + + for (i = 0, event = event_trace.events; + i < event_trace.next; i++, event++) { + + /* Get the delta between this event and the previous event. */ + + if (!i) { + seconds = 0; + nanoseconds = 0; + } else { + delta = ktime_sub(event[0].time, event[-1].time); + seconds = delta.tv.sec; + nanoseconds = delta.tv.nsec; + } + + /* Print the current event. */ + + o = 0; + + o = snprintf(line, sizeof(line) - o, "| [%ld:% 10ld]%*s %s", + seconds, nanoseconds, + event->nesting, "", + event->description); + /* Check if this is the last event in a nested series. */ + + if (i && (event[0].nesting < event[-1].nesting)) { + + for (matching_event = event - 1;; matching_event--) { + + if (matching_event < event_trace.events) { + matching_event = 0; + break; + } + + if (matching_event->nesting == event->nesting) + break; + + } + + if (matching_event) { + delta = ktime_sub(event->time, + matching_event->time); + o += snprintf(line + o, sizeof(line) - o, + " <%d:%d]", delta.tv.sec, + delta.tv.nsec); + } + + } + + /* Check if this is the first event in a nested series. */ + + if ((i < event_trace.next - 1) && + (event[0].nesting < event[1].nesting)) { + + for (matching_event = event + 1;; matching_event++) { + + if (matching_event >= + (event_trace.events+event_trace.next)) { + matching_event = 0; + break; + } + + if (matching_event->nesting == event->nesting) + break; + + } + + if (matching_event) { + delta = ktime_sub(matching_event->time, + event->time); + o += snprintf(line + o, sizeof(line) - o, + " [%d:%d>", delta.tv.sec, + delta.tv.nsec); + } + + } + + pr_info("%s\n", line); + + } + + pr_info("+----------------\n"); + +} + +/** + * gpmi_nfc_stop_event_trace() - Stops an event trace. + * + * @description: A description of the last event. + */ +void gpmi_nfc_stop_event_trace(char *description) +{ + struct event *event; + + if (!report_events) + return; + + /* + * We want the end of the trace, no matter what happens. If the trace + * has already overflowed, or is about to, just jam this event into the + * last spot. Otherwise, add this event like any other. + */ + + if (event_trace.overflow || (event_trace.next >= MAX_EVENT_COUNT)) { + event = event_trace.events + (MAX_EVENT_COUNT - 1); + event->time = ktime_get(); + event->description = description; + event->nesting = 0; + } else { + gpmi_nfc_add_event(description, -1); + } + + gpmi_nfc_dump_event_trace(); + gpmi_nfc_reset_event_trace(); + +} + +#endif /* EVENT_REPORTING */ diff --git a/drivers/mtd/nand/gpmi-nfc/gpmi-nfc-gpmi-regs-v0.h b/drivers/mtd/nand/gpmi-nfc/gpmi-nfc-gpmi-regs-v0.h new file mode 100644 index 000000000000..2f9fce609a34 --- /dev/null +++ b/drivers/mtd/nand/gpmi-nfc/gpmi-nfc-gpmi-regs-v0.h @@ -0,0 +1,416 @@ +/* + * Freescale GPMI NFC NAND Flash Driver + * + * Copyright 2008-2010 Freescale Semiconductor, Inc. + * Copyright 2008 Embedded Alley Solutions, Inc. + * + * This program is free software; you can redistribute it and/or modify + * it under the terms of the GNU General Public License as published by + * the Free Software Foundation; either version 2 of the License, or + * (at your option) any later version. + * + * This program is distributed in the hope that it will be useful, + * but WITHOUT ANY WARRANTY; without even the implied warranty of + * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the + * GNU General Public License for more details. + * + * You should have received a copy of the GNU General Public License along + * with this program; if not, write to the Free Software Foundation, Inc., + * 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA. + */ + +#ifndef __GPMI_NFC_GPMI_REGS_H +#define __GPMI_NFC_GPMI_REGS_H + +/*============================================================================*/ + +#define HW_GPMI_CTRL0 (0x00000000) +#define HW_GPMI_CTRL0_SET (0x00000004) +#define HW_GPMI_CTRL0_CLR (0x00000008) +#define HW_GPMI_CTRL0_TOG (0x0000000c) + +#define BM_GPMI_CTRL0_SFTRST 0x80000000 +#define BV_GPMI_CTRL0_SFTRST__RUN 0x0 +#define BV_GPMI_CTRL0_SFTRST__RESET 0x1 +#define BM_GPMI_CTRL0_CLKGATE 0x40000000 +#define BV_GPMI_CTRL0_CLKGATE__RUN 0x0 +#define BV_GPMI_CTRL0_CLKGATE__NO_CLKS 0x1 +#define BM_GPMI_CTRL0_RUN 0x20000000 +#define BV_GPMI_CTRL0_RUN__IDLE 0x0 +#define BV_GPMI_CTRL0_RUN__BUSY 0x1 +#define BM_GPMI_CTRL0_DEV_IRQ_EN 0x10000000 +#define BM_GPMI_CTRL0_TIMEOUT_IRQ_EN 0x08000000 +#define BM_GPMI_CTRL0_UDMA 0x04000000 +#define BV_GPMI_CTRL0_UDMA__DISABLED 0x0 +#define BV_GPMI_CTRL0_UDMA__ENABLED 0x1 +#define BP_GPMI_CTRL0_COMMAND_MODE 24 +#define BM_GPMI_CTRL0_COMMAND_MODE 0x03000000 +#define BF_GPMI_CTRL0_COMMAND_MODE(v) \ + (((v) << 24) & BM_GPMI_CTRL0_COMMAND_MODE) +#define BV_GPMI_CTRL0_COMMAND_MODE__WRITE 0x0 +#define BV_GPMI_CTRL0_COMMAND_MODE__READ 0x1 +#define BV_GPMI_CTRL0_COMMAND_MODE__READ_AND_COMPARE 0x2 +#define BV_GPMI_CTRL0_COMMAND_MODE__WAIT_FOR_READY 0x3 +#define BM_GPMI_CTRL0_WORD_LENGTH 0x00800000 +#define BV_GPMI_CTRL0_WORD_LENGTH__16_BIT 0x0 +#define BV_GPMI_CTRL0_WORD_LENGTH__8_BIT 0x1 +#define BM_GPMI_CTRL0_LOCK_CS 0x00400000 +#define BV_GPMI_CTRL0_LOCK_CS__DISABLED 0x0 +#define BV_GPMI_CTRL0_LOCK_CS__ENABLED 0x1 +#define BP_GPMI_CTRL0_CS 20 +#define BM_GPMI_CTRL0_CS 0x00300000 +#define BF_GPMI_CTRL0_CS(v) (((v) << 20) & BM_GPMI_CTRL0_CS) +#define BP_GPMI_CTRL0_ADDRESS 17 +#define BM_GPMI_CTRL0_ADDRESS 0x000E0000 +#define BF_GPMI_CTRL0_ADDRESS(v) (((v) << 17) & BM_GPMI_CTRL0_ADDRESS) +#define BV_GPMI_CTRL0_ADDRESS__NAND_DATA 0x0 +#define BV_GPMI_CTRL0_ADDRESS__NAND_CLE 0x1 +#define BV_GPMI_CTRL0_ADDRESS__NAND_ALE 0x2 +#define BM_GPMI_CTRL0_ADDRESS_INCREMENT 0x00010000 +#define BV_GPMI_CTRL0_ADDRESS_INCREMENT__DISABLED 0x0 +#define BV_GPMI_CTRL0_ADDRESS_INCREMENT__ENABLED 0x1 +#define BP_GPMI_CTRL0_XFER_COUNT 0 +#define BM_GPMI_CTRL0_XFER_COUNT 0x0000FFFF +#define BF_GPMI_CTRL0_XFER_COUNT(v) \ + (((v) << 0) & BM_GPMI_CTRL0_XFER_COUNT) + +/*============================================================================*/ + +#define HW_GPMI_COMPARE (0x00000010) + +#define BP_GPMI_COMPARE_MASK 16 +#define BM_GPMI_COMPARE_MASK 0xFFFF0000 +#define BF_GPMI_COMPARE_MASK(v) (((v) << 16) & BM_GPMI_COMPARE_MASK) +#define BP_GPMI_COMPARE_REFERENCE 0 +#define BM_GPMI_COMPARE_REFERENCE 0x0000FFFF +#define BF_GPMI_COMPARE_REFERENCE(v) \ + (((v) << 0) & BM_GPMI_COMPARE_REFERENCE) + +/*============================================================================*/ + +#define HW_GPMI_ECCCTRL (0x00000020) +#define HW_GPMI_ECCCTRL_SET (0x00000024) +#define HW_GPMI_ECCCTRL_CLR (0x00000028) +#define HW_GPMI_ECCCTRL_TOG (0x0000002c) + +#define BP_GPMI_ECCCTRL_HANDLE 16 +#define BM_GPMI_ECCCTRL_HANDLE 0xFFFF0000 +#define BF_GPMI_ECCCTRL_HANDLE(v) (((v) << 16) & BM_GPMI_ECCCTRL_HANDLE) +#define BM_GPMI_ECCCTRL_RSVD2 0x00008000 +#define BP_GPMI_ECCCTRL_ECC_CMD 13 +#define BM_GPMI_ECCCTRL_ECC_CMD 0x00006000 +#define BF_GPMI_ECCCTRL_ECC_CMD(v) (((v) << 13) & BM_GPMI_ECCCTRL_ECC_CMD) +#define BV_GPMI_ECCCTRL_ECC_CMD__DECODE_4_BIT 0x0 +#define BV_GPMI_ECCCTRL_ECC_CMD__ENCODE_4_BIT 0x1 +#define BV_GPMI_ECCCTRL_ECC_CMD__DECODE_8_BIT 0x2 +#define BV_GPMI_ECCCTRL_ECC_CMD__ENCODE_8_BIT 0x3 +#define BV_GPMI_ECCCTRL_ECC_CMD__BCH_DECODE 0x0 +#define BV_GPMI_ECCCTRL_ECC_CMD__BCH_ENCODE 0x1 +#define BM_GPMI_ECCCTRL_ENABLE_ECC 0x00001000 +#define BV_GPMI_ECCCTRL_ENABLE_ECC__ENABLE 0x1 +#define BV_GPMI_ECCCTRL_ENABLE_ECC__DISABLE 0x0 +#define BP_GPMI_ECCCTRL_RSVD1 9 +#define BM_GPMI_ECCCTRL_RSVD1 0x00000E00 +#define BF_GPMI_ECCCTRL_RSVD1(v) (((v) << 9) & BM_GPMI_ECCCTRL_RSVD1) +#define BP_GPMI_ECCCTRL_BUFFER_MASK 0 +#define BM_GPMI_ECCCTRL_BUFFER_MASK 0x000001FF +#define BF_GPMI_ECCCTRL_BUFFER_MASK(v) \ + (((v) << 0) & BM_GPMI_ECCCTRL_BUFFER_MASK) +#define BV_GPMI_ECCCTRL_BUFFER_MASK__BCH_AUXONLY 0x100 +#define BV_GPMI_ECCCTRL_BUFFER_MASK__BCH_PAGE 0x1FF +#define BV_GPMI_ECCCTRL_BUFFER_MASK__AUXILIARY 0x100 +#define BV_GPMI_ECCCTRL_BUFFER_MASK__BUFFER7 0x080 +#define BV_GPMI_ECCCTRL_BUFFER_MASK__BUFFER6 0x040 +#define BV_GPMI_ECCCTRL_BUFFER_MASK__BUFFER5 0x020 +#define BV_GPMI_ECCCTRL_BUFFER_MASK__BUFFER4 0x010 +#define BV_GPMI_ECCCTRL_BUFFER_MASK__BUFFER3 0x008 +#define BV_GPMI_ECCCTRL_BUFFER_MASK__BUFFER2 0x004 +#define BV_GPMI_ECCCTRL_BUFFER_MASK__BUFFER1 0x002 +#define BV_GPMI_ECCCTRL_BUFFER_MASK__BUFFER0 0x001 + +/*============================================================================*/ + +#define HW_GPMI_ECCCOUNT (0x00000030) + +#define BP_GPMI_ECCCOUNT_RSVD2 16 +#define BM_GPMI_ECCCOUNT_RSVD2 0xFFFF0000 +#define BF_GPMI_ECCCOUNT_RSVD2(v) (((v) << 16) & BM_GPMI_ECCCOUNT_RSVD2) +#define BP_GPMI_ECCCOUNT_COUNT 0 +#define BM_GPMI_ECCCOUNT_COUNT 0x0000FFFF +#define BF_GPMI_ECCCOUNT_COUNT(v) (((v) << 0) & BM_GPMI_ECCCOUNT_COUNT) + +/*============================================================================*/ + +#define HW_GPMI_PAYLOAD (0x00000040) + +#define BP_GPMI_PAYLOAD_ADDRESS 2 +#define BM_GPMI_PAYLOAD_ADDRESS 0xFFFFFFFC +#define BF_GPMI_PAYLOAD_ADDRESS(v) (((v) << 2) & BM_GPMI_PAYLOAD_ADDRESS) +#define BP_GPMI_PAYLOAD_RSVD0 0 +#define BM_GPMI_PAYLOAD_RSVD0 0x00000003 +#define BF_GPMI_PAYLOAD_RSVD0(v) (((v) << 0) & BM_GPMI_PAYLOAD_RSVD0) + +/*============================================================================*/ + +#define HW_GPMI_AUXILIARY (0x00000050) + +#define BP_GPMI_AUXILIARY_ADDRESS 2 +#define BM_GPMI_AUXILIARY_ADDRESS 0xFFFFFFFC +#define BF_GPMI_AUXILIARY_ADDRESS(v) \ + (((v) << 2) & BM_GPMI_AUXILIARY_ADDRESS) +#define BP_GPMI_AUXILIARY_RSVD0 0 +#define BM_GPMI_AUXILIARY_RSVD0 0x00000003 +#define BF_GPMI_AUXILIARY_RSVD0(v) (((v) << 0) & BM_GPMI_AUXILIARY_RSVD0) + +/*============================================================================*/ + +#define HW_GPMI_CTRL1 (0x00000060) +#define HW_GPMI_CTRL1_SET (0x00000064) +#define HW_GPMI_CTRL1_CLR (0x00000068) +#define HW_GPMI_CTRL1_TOG (0x0000006c) + +#define BP_GPMI_CTRL1_RSVD2 24 +#define BM_GPMI_CTRL1_RSVD2 0xFF000000 +#define BF_GPMI_CTRL1_RSVD2(v) \ + (((v) << 24) & BM_GPMI_CTRL1_RSVD2) +#define BM_GPMI_CTRL1_CE3_SEL 0x00800000 +#define BM_GPMI_CTRL1_CE2_SEL 0x00400000 +#define BM_GPMI_CTRL1_CE1_SEL 0x00200000 +#define BM_GPMI_CTRL1_CE0_SEL 0x00100000 +#define BM_GPMI_CTRL1_GANGED_RDYBUSY 0x00080000 +#define BM_GPMI_CTRL1_GPMI_MODE 0x00000001 +#define BP_GPMI_CTRL1_GPMI_MODE 0 +#define BM_GPMI_CTRL1_ATA_IRQRDY_POLARITY 0x00000004 +#define BM_GPMI_CTRL1_DEV_RESET 0x00000008 +#define BM_GPMI_CTRL1_TIMEOUT_IRQ 0x00000200 +#define BM_GPMI_CTRL1_DEV_IRQ 0x00000400 +#define BM_GPMI_CTRL1_RDN_DELAY 0x0000F000 +#define BP_GPMI_CTRL1_RDN_DELAY 12 +#define BM_GPMI_CTRL1_BCH_MODE 0x00040000 +#define BP_GPMI_CTRL1_DLL_ENABLE 17 +#define BM_GPMI_CTRL1_DLL_ENABLE 0x00020000 +#define BP_GPMI_CTRL1_HALF_PERIOD 16 +#define BM_GPMI_CTRL1_HALF_PERIOD 0x00010000 +#define BP_GPMI_CTRL1_RDN_DELAY 12 +#define BM_GPMI_CTRL1_RDN_DELAY 0x0000F000 +#define BF_GPMI_CTRL1_RDN_DELAY(v) \ + (((v) << 12) & BM_GPMI_CTRL1_RDN_DELAY) +#define BM_GPMI_CTRL1_DMA2ECC_MODE 0x00000800 +#define BM_GPMI_CTRL1_DEV_IRQ 0x00000400 +#define BM_GPMI_CTRL1_TIMEOUT_IRQ 0x00000200 +#define BM_GPMI_CTRL1_BURST_EN 0x00000100 +#define BM_GPMI_CTRL1_ABORT_WAIT_FOR_READY3 0x00000080 +#define BM_GPMI_CTRL1_ABORT_WAIT_FOR_READY2 0x00000040 +#define BM_GPMI_CTRL1_ABORT_WAIT_FOR_READY1 0x00000020 +#define BM_GPMI_CTRL1_ABORT_WAIT_FOR_READY0 0x00000010 +#define BM_GPMI_CTRL1_DEV_RESET 0x00000008 +#define BV_GPMI_CTRL1_DEV_RESET__ENABLED 0x0 +#define BV_GPMI_CTRL1_DEV_RESET__DISABLED 0x1 +#define BM_GPMI_CTRL1_ATA_IRQRDY_POLARITY 0x00000004 +#define BV_GPMI_CTRL1_ATA_IRQRDY_POLARITY__ACTIVELOW 0x0 +#define BV_GPMI_CTRL1_ATA_IRQRDY_POLARITY__ACTIVEHIGH 0x1 +#define BM_GPMI_CTRL1_CAMERA_MODE 0x00000002 +#define BM_GPMI_CTRL1_GPMI_MODE 0x00000001 +#define BV_GPMI_CTRL1_GPMI_MODE__NAND 0x0 +#define BV_GPMI_CTRL1_GPMI_MODE__ATA 0x1 + +/*============================================================================*/ + +#define HW_GPMI_TIMING0 (0x00000070) + +#define BP_GPMI_TIMING0_RSVD1 24 +#define BM_GPMI_TIMING0_RSVD1 0xFF000000 +#define BF_GPMI_TIMING0_RSVD1(v) \ + (((v) << 24) & BM_GPMI_TIMING0_RSVD1) +#define BP_GPMI_TIMING0_ADDRESS_SETUP 16 +#define BM_GPMI_TIMING0_ADDRESS_SETUP 0x00FF0000 +#define BF_GPMI_TIMING0_ADDRESS_SETUP(v) \ + (((v) << 16) & BM_GPMI_TIMING0_ADDRESS_SETUP) +#define BP_GPMI_TIMING0_DATA_HOLD 8 +#define BM_GPMI_TIMING0_DATA_HOLD 0x0000FF00 +#define BF_GPMI_TIMING0_DATA_HOLD(v) \ + (((v) << 8) & BM_GPMI_TIMING0_DATA_HOLD) +#define BP_GPMI_TIMING0_DATA_SETUP 0 +#define BM_GPMI_TIMING0_DATA_SETUP 0x000000FF +#define BF_GPMI_TIMING0_DATA_SETUP(v) \ + (((v) << 0) & BM_GPMI_TIMING0_DATA_SETUP) + +/*============================================================================*/ + +#define HW_GPMI_TIMING1 (0x00000080) + +#define BP_GPMI_TIMING1_DEVICE_BUSY_TIMEOUT 16 +#define BM_GPMI_TIMING1_DEVICE_BUSY_TIMEOUT 0xFFFF0000 +#define BF_GPMI_TIMING1_DEVICE_BUSY_TIMEOUT(v) \ + (((v) << 16) & BM_GPMI_TIMING1_DEVICE_BUSY_TIMEOUT) +#define BP_GPMI_TIMING1_RSVD1 0 +#define BM_GPMI_TIMING1_RSVD1 0x0000FFFF +#define BF_GPMI_TIMING1_RSVD1(v) \ + (((v) << 0) & BM_GPMI_TIMING1_RSVD1) + +/*============================================================================*/ + +#define HW_GPMI_TIMING2 (0x00000090) + +#define BP_GPMI_TIMING2_UDMA_TRP 24 +#define BM_GPMI_TIMING2_UDMA_TRP 0xFF000000 +#define BF_GPMI_TIMING2_UDMA_TRP(v) \ + (((v) << 24) & BM_GPMI_TIMING2_UDMA_TRP) +#define BP_GPMI_TIMING2_UDMA_ENV 16 +#define BM_GPMI_TIMING2_UDMA_ENV 0x00FF0000 +#define BF_GPMI_TIMING2_UDMA_ENV(v) \ + (((v) << 16) & BM_GPMI_TIMING2_UDMA_ENV) +#define BP_GPMI_TIMING2_UDMA_HOLD 8 +#define BM_GPMI_TIMING2_UDMA_HOLD 0x0000FF00 +#define BF_GPMI_TIMING2_UDMA_HOLD(v) \ + (((v) << 8) & BM_GPMI_TIMING2_UDMA_HOLD) +#define BP_GPMI_TIMING2_UDMA_SETUP 0 +#define BM_GPMI_TIMING2_UDMA_SETUP 0x000000FF +#define BF_GPMI_TIMING2_UDMA_SETUP(v) \ + (((v) << 0) & BM_GPMI_TIMING2_UDMA_SETUP) + +/*============================================================================*/ + +#define HW_GPMI_DATA (0x000000a0) + +#define BP_GPMI_DATA_DATA 0 +#define BM_GPMI_DATA_DATA 0xFFFFFFFF +#define BF_GPMI_DATA_DATA(v) (v) + +/*============================================================================*/ + +#define HW_GPMI_STAT (0x000000b0) + +#define BM_GPMI_STAT_PRESENT 0x80000000 +#define BV_GPMI_STAT_PRESENT__UNAVAILABLE 0x0 +#define BV_GPMI_STAT_PRESENT__AVAILABLE 0x1 +#define BP_GPMI_STAT_RSVD1 12 +#define BM_GPMI_STAT_RSVD1 0x7FFFF000 +#define BF_GPMI_STAT_RSVD1(v) \ + (((v) << 12) & BM_GPMI_STAT_RSVD1) +#define BP_GPMI_STAT_RDY_TIMEOUT 8 +#define BM_GPMI_STAT_RDY_TIMEOUT 0x00000F00 +#define BF_GPMI_STAT_RDY_TIMEOUT(v) \ + (((v) << 8) & BM_GPMI_STAT_RDY_TIMEOUT) +#define BM_GPMI_STAT_ATA_IRQ 0x00000080 +#define BM_GPMI_STAT_INVALID_BUFFER_MASK 0x00000040 +#define BM_GPMI_STAT_FIFO_EMPTY 0x00000020 +#define BV_GPMI_STAT_FIFO_EMPTY__NOT_EMPTY 0x0 +#define BV_GPMI_STAT_FIFO_EMPTY__EMPTY 0x1 +#define BM_GPMI_STAT_FIFO_FULL 0x00000010 +#define BV_GPMI_STAT_FIFO_FULL__NOT_FULL 0x0 +#define BV_GPMI_STAT_FIFO_FULL__FULL 0x1 +#define BM_GPMI_STAT_DEV3_ERROR 0x00000008 +#define BM_GPMI_STAT_DEV2_ERROR 0x00000004 +#define BM_GPMI_STAT_DEV1_ERROR 0x00000002 +#define BM_GPMI_STAT_DEERROR 0x00000001 + +/*============================================================================*/ + +#define HW_GPMI_DEBUG (0x000000c0) + +#define BM_GPMI_DEBUG_READY3 0x80000000 +#define BM_GPMI_DEBUG_READY2 0x40000000 +#define BM_GPMI_DEBUG_READY1 0x20000000 +#define BM_GPMI_DEBUG_READY0 0x10000000 +#define BM_GPMI_DEBUG_WAIT_FOR_READY_END3 0x08000000 +#define BM_GPMI_DEBUG_WAIT_FOR_READY_END2 0x04000000 +#define BM_GPMI_DEBUG_WAIT_FOR_READY_END1 0x02000000 +#define BM_GPMI_DEBUG_WAIT_FOR_READY_END0 0x01000000 +#define BM_GPMI_DEBUG_SENSE3 0x00800000 +#define BM_GPMI_DEBUG_SENSE2 0x00400000 +#define BM_GPMI_DEBUG_SENSE1 0x00200000 +#define BM_GPMI_DEBUG_SENSE0 0x00100000 +#define BM_GPMI_DEBUG_DMAREQ3 0x00080000 +#define BM_GPMI_DEBUG_DMAREQ2 0x00040000 +#define BM_GPMI_DEBUG_DMAREQ1 0x00020000 +#define BM_GPMI_DEBUG_DMAREQ0 0x00010000 +#define BP_GPMI_DEBUG_CMD_END 12 +#define BM_GPMI_DEBUG_CMD_END 0x0000F000 +#define BF_GPMI_DEBUG_CMD_END(v) \ + (((v) << 12) & BM_GPMI_DEBUG_CMD_END) +#define BP_GPMI_DEBUG_UDMA_STATE 8 +#define BM_GPMI_DEBUG_UDMA_STATE 0x00000F00 +#define BF_GPMI_DEBUG_UDMA_STATE(v) \ + (((v) << 8) & BM_GPMI_DEBUG_UDMA_STATE) +#define BM_GPMI_DEBUG_BUSY 0x00000080 +#define BV_GPMI_DEBUG_BUSY__DISABLED 0x0 +#define BV_GPMI_DEBUG_BUSY__ENABLED 0x1 +#define BP_GPMI_DEBUG_PIN_STATE 4 +#define BM_GPMI_DEBUG_PIN_STATE 0x00000070 +#define BF_GPMI_DEBUG_PIN_STATE(v) \ + (((v) << 4) & BM_GPMI_DEBUG_PIN_STATE) +#define BV_GPMI_DEBUG_PIN_STATE__PSM_IDLE 0x0 +#define BV_GPMI_DEBUG_PIN_STATE__PSM_BYTCNT 0x1 +#define BV_GPMI_DEBUG_PIN_STATE__PSM_ADDR 0x2 +#define BV_GPMI_DEBUG_PIN_STATE__PSM_STALL 0x3 +#define BV_GPMI_DEBUG_PIN_STATE__PSM_STROBE 0x4 +#define BV_GPMI_DEBUG_PIN_STATE__PSM_ATARDY 0x5 +#define BV_GPMI_DEBUG_PIN_STATE__PSM_DHOLD 0x6 +#define BV_GPMI_DEBUG_PIN_STATE__PSM_DONE 0x7 +#define BP_GPMI_DEBUG_MAIN_STATE 0 +#define BM_GPMI_DEBUG_MAIN_STATE 0x0000000F +#define BF_GPMI_DEBUG_MAIN_STATE(v) \ + (((v) << 0) & BM_GPMI_DEBUG_MAIN_STATE) +#define BV_GPMI_DEBUG_MAIN_STATE__MSM_IDLE 0x0 +#define BV_GPMI_DEBUG_MAIN_STATE__MSM_BYTCNT 0x1 +#define BV_GPMI_DEBUG_MAIN_STATE__MSM_WAITFE 0x2 +#define BV_GPMI_DEBUG_MAIN_STATE__MSM_WAITFR 0x3 +#define BV_GPMI_DEBUG_MAIN_STATE__MSM_DMAREQ 0x4 +#define BV_GPMI_DEBUG_MAIN_STATE__MSM_DMAACK 0x5 +#define BV_GPMI_DEBUG_MAIN_STATE__MSM_WAITFF 0x6 +#define BV_GPMI_DEBUG_MAIN_STATE__MSM_LDFIFO 0x7 +#define BV_GPMI_DEBUG_MAIN_STATE__MSM_LDDMAR 0x8 +#define BV_GPMI_DEBUG_MAIN_STATE__MSM_RDCMP 0x9 +#define BV_GPMI_DEBUG_MAIN_STATE__MSM_DONE 0xA + +/*============================================================================*/ + +#define HW_GPMI_VERSION (0x000000d0) + +#define BP_GPMI_VERSION_MAJOR 24 +#define BM_GPMI_VERSION_MAJOR 0xFF000000 +#define BF_GPMI_VERSION_MAJOR(v) (((v) << 24) & BM_GPMI_VERSION_MAJOR) +#define BP_GPMI_VERSION_MINOR 16 +#define BM_GPMI_VERSION_MINOR 0x00FF0000 +#define BF_GPMI_VERSION_MINOR(v) (((v) << 16) & BM_GPMI_VERSION_MINOR) +#define BP_GPMI_VERSION_STEP 0 +#define BM_GPMI_VERSION_STEP 0x0000FFFF +#define BF_GPMI_VERSION_STEP(v) (((v) << 0) & BM_GPMI_VERSION_STEP) + +/*============================================================================*/ + +#define HW_GPMI_DEBUG2 (0x000000e0) + +#define BP_GPMI_DEBUG2_RSVD1 16 +#define BM_GPMI_DEBUG2_RSVD1 0xFFFF0000 +#define BF_GPMI_DEBUG2_RSVD1(v) (((v) << 16) & BM_GPMI_DEBUG2_RSVD1) +#define BP_GPMI_DEBUG2_SYND2GPMI_BE 12 +#define BM_GPMI_DEBUG2_SYND2GPMI_BE 0x0000F000 +#define BF_GPMI_DEBUG2_SYND2GPMI_BE(v) \ + (((v) << 12) & BM_GPMI_DEBUG2_SYND2GPMI_BE) +#define BM_GPMI_DEBUG2_GPMI2SYND_VALID 0x00000800 +#define BM_GPMI_DEBUG2_GPMI2SYND_READY 0x00000400 +#define BM_GPMI_DEBUG2_SYND2GPMI_VALID 0x00000200 +#define BM_GPMI_DEBUG2_SYND2GPMI_READY 0x00000100 +#define BM_GPMI_DEBUG2_VIEW_DELAYED_RDN 0x00000080 +#define BM_GPMI_DEBUG2_UPDATE_WINDOW 0x00000040 +#define BP_GPMI_DEBUG2_RDN_TAP 0 +#define BM_GPMI_DEBUG2_RDN_TAP 0x0000003F +#define BF_GPMI_DEBUG2_RDN_TAP(v) (((v) << 0) & BM_GPMI_DEBUG2_RDN_TAP) + +/*============================================================================*/ + +#define HW_GPMI_DEBUG3 (0x000000f0) + +#define BP_GPMI_DEBUG3_APB_WORD_CNTR 16 +#define BM_GPMI_DEBUG3_APB_WORD_CNTR 0xFFFF0000 +#define BF_GPMI_DEBUG3_APB_WORD_CNTR(v) \ + (((v) << 16) & BM_GPMI_DEBUG3_APB_WORD_CNTR) +#define BP_GPMI_DEBUG3_DEV_WORD_CNTR 0 +#define BM_GPMI_DEBUG3_DEV_WORD_CNTR 0x0000FFFF +#define BF_GPMI_DEBUG3_DEV_WORD_CNTR(v) \ + (((v) << 0) & BM_GPMI_DEBUG3_DEV_WORD_CNTR) + +/*============================================================================*/ +#endif diff --git a/drivers/mtd/nand/gpmi-nfc/gpmi-nfc-gpmi-regs-v1.h b/drivers/mtd/nand/gpmi-nfc/gpmi-nfc-gpmi-regs-v1.h new file mode 100644 index 000000000000..dcb3b7d3fc88 --- /dev/null +++ b/drivers/mtd/nand/gpmi-nfc/gpmi-nfc-gpmi-regs-v1.h @@ -0,0 +1,421 @@ +/* + * Freescale GPMI NFC NAND Flash Driver + * + * Copyright 2008-2010 Freescale Semiconductor, Inc. All Rights Reserved. + * + * This program is free software; you can redistribute it and/or modify + * it under the terms of the GNU General Public License as published by + * the Free Software Foundation; either version 2 of the License, or + * (at your option) any later version. + * + * This program is distributed in the hope that it will be useful, + * but WITHOUT ANY WARRANTY; without even the implied warranty of + * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the + * GNU General Public License for more details. + * + * You should have received a copy of the GNU General Public License + * along with this program; if not, write to the Free Software + * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA + * + * Xml Revision: 2.2 + * Template revision: 26195 + */ + +#ifndef __GPMI_NFC_GPMI_REGS_H +#define __GPMI_NFC_GPMI_REGS_H + +/*============================================================================*/ + +#define HW_GPMI_CTRL0 (0x00000000) +#define HW_GPMI_CTRL0_SET (0x00000004) +#define HW_GPMI_CTRL0_CLR (0x00000008) +#define HW_GPMI_CTRL0_TOG (0x0000000c) + +#define BM_GPMI_CTRL0_SFTRST 0x80000000 +#define BV_GPMI_CTRL0_SFTRST__RUN 0x0 +#define BV_GPMI_CTRL0_SFTRST__RESET 0x1 +#define BM_GPMI_CTRL0_CLKGATE 0x40000000 +#define BV_GPMI_CTRL0_CLKGATE__RUN 0x0 +#define BV_GPMI_CTRL0_CLKGATE__NO_CLKS 0x1 +#define BM_GPMI_CTRL0_RUN 0x20000000 +#define BV_GPMI_CTRL0_RUN__IDLE 0x0 +#define BV_GPMI_CTRL0_RUN__BUSY 0x1 +#define BM_GPMI_CTRL0_DEV_IRQ_EN 0x10000000 +#define BM_GPMI_CTRL0_LOCK_CS 0x08000000 +#define BV_GPMI_CTRL0_LOCK_CS__DISABLED 0x0 +#define BV_GPMI_CTRL0_LOCK_CS__ENABLED 0x1 +#define BM_GPMI_CTRL0_UDMA 0x04000000 +#define BV_GPMI_CTRL0_UDMA__DISABLED 0x0 +#define BV_GPMI_CTRL0_UDMA__ENABLED 0x1 +#define BP_GPMI_CTRL0_COMMAND_MODE 24 +#define BM_GPMI_CTRL0_COMMAND_MODE 0x03000000 +#define BF_GPMI_CTRL0_COMMAND_MODE(v) \ + (((v) << 24) & BM_GPMI_CTRL0_COMMAND_MODE) +#define BV_GPMI_CTRL0_COMMAND_MODE__WRITE 0x0 +#define BV_GPMI_CTRL0_COMMAND_MODE__READ 0x1 +#define BV_GPMI_CTRL0_COMMAND_MODE__READ_AND_COMPARE 0x2 +#define BV_GPMI_CTRL0_COMMAND_MODE__WAIT_FOR_READY 0x3 +#define BM_GPMI_CTRL0_WORD_LENGTH 0x00800000 +#define BV_GPMI_CTRL0_WORD_LENGTH__16_BIT 0x0 +#define BV_GPMI_CTRL0_WORD_LENGTH__8_BIT 0x1 +#define BP_GPMI_CTRL0_CS 20 +#define BM_GPMI_CTRL0_CS 0x00700000 +#define BF_GPMI_CTRL0_CS(v) \ + (((v) << 20) & BM_GPMI_CTRL0_CS) +#define BP_GPMI_CTRL0_ADDRESS 17 +#define BM_GPMI_CTRL0_ADDRESS 0x000E0000 +#define BF_GPMI_CTRL0_ADDRESS(v) \ + (((v) << 17) & BM_GPMI_CTRL0_ADDRESS) +#define BV_GPMI_CTRL0_ADDRESS__NAND_DATA 0x0 +#define BV_GPMI_CTRL0_ADDRESS__NAND_CLE 0x1 +#define BV_GPMI_CTRL0_ADDRESS__NAND_ALE 0x2 +#define BM_GPMI_CTRL0_ADDRESS_INCREMENT 0x00010000 +#define BV_GPMI_CTRL0_ADDRESS_INCREMENT__DISABLED 0x0 +#define BV_GPMI_CTRL0_ADDRESS_INCREMENT__ENABLED 0x1 +#define BP_GPMI_CTRL0_XFER_COUNT 0 +#define BM_GPMI_CTRL0_XFER_COUNT 0x0000FFFF +#define BF_GPMI_CTRL0_XFER_COUNT(v) \ + (((v) << 0) & BM_GPMI_CTRL0_XFER_COUNT) + +/*============================================================================*/ + +#define HW_GPMI_COMPARE (0x00000010) + +#define BP_GPMI_COMPARE_MASK 16 +#define BM_GPMI_COMPARE_MASK 0xFFFF0000 +#define BF_GPMI_COMPARE_MASK(v) \ + (((v) << 16) & BM_GPMI_COMPARE_MASK) +#define BP_GPMI_COMPARE_REFERENCE 0 +#define BM_GPMI_COMPARE_REFERENCE 0x0000FFFF +#define BF_GPMI_COMPARE_REFERENCE(v) \ + (((v) << 0) & BM_GPMI_COMPARE_REFERENCE) + +/*============================================================================*/ + +#define HW_GPMI_ECCCTRL (0x00000020) +#define HW_GPMI_ECCCTRL_SET (0x00000024) +#define HW_GPMI_ECCCTRL_CLR (0x00000028) +#define HW_GPMI_ECCCTRL_TOG (0x0000002c) + +#define BP_GPMI_ECCCTRL_HANDLE 16 +#define BM_GPMI_ECCCTRL_HANDLE 0xFFFF0000 +#define BF_GPMI_ECCCTRL_HANDLE(v) \ + (((v) << 16) & BM_GPMI_ECCCTRL_HANDLE) +#define BM_GPMI_ECCCTRL_RSVD2 0x00008000 +#define BP_GPMI_ECCCTRL_ECC_CMD 13 +#define BM_GPMI_ECCCTRL_ECC_CMD 0x00006000 +#define BF_GPMI_ECCCTRL_ECC_CMD(v) \ + (((v) << 13) & BM_GPMI_ECCCTRL_ECC_CMD) +#define BV_GPMI_ECCCTRL_ECC_CMD__DECODE 0x0 +#define BV_GPMI_ECCCTRL_ECC_CMD__ENCODE 0x1 +#define BV_GPMI_ECCCTRL_ECC_CMD__RESERVE2 0x2 +#define BV_GPMI_ECCCTRL_ECC_CMD__RESERVE3 0x3 +#define BM_GPMI_ECCCTRL_ENABLE_ECC 0x00001000 +#define BV_GPMI_ECCCTRL_ENABLE_ECC__ENABLE 0x1 +#define BV_GPMI_ECCCTRL_ENABLE_ECC__DISABLE 0x0 +#define BP_GPMI_ECCCTRL_RSVD1 9 +#define BM_GPMI_ECCCTRL_RSVD1 0x00000E00 +#define BF_GPMI_ECCCTRL_RSVD1(v) \ + (((v) << 9) & BM_GPMI_ECCCTRL_RSVD1) +#define BP_GPMI_ECCCTRL_BUFFER_MASK 0 +#define BM_GPMI_ECCCTRL_BUFFER_MASK 0x000001FF +#define BF_GPMI_ECCCTRL_BUFFER_MASK(v) \ + (((v) << 0) & BM_GPMI_ECCCTRL_BUFFER_MASK) +#define BV_GPMI_ECCCTRL_BUFFER_MASK__BCH_AUXONLY 0x100 +#define BV_GPMI_ECCCTRL_BUFFER_MASK__BCH_PAGE 0x1FF + +/*============================================================================*/ + +#define HW_GPMI_ECCCOUNT (0x00000030) + +#define BP_GPMI_ECCCOUNT_RSVD2 16 +#define BM_GPMI_ECCCOUNT_RSVD2 0xFFFF0000 +#define BF_GPMI_ECCCOUNT_RSVD2(v) \ + (((v) << 16) & BM_GPMI_ECCCOUNT_RSVD2) +#define BP_GPMI_ECCCOUNT_COUNT 0 +#define BM_GPMI_ECCCOUNT_COUNT 0x0000FFFF +#define BF_GPMI_ECCCOUNT_COUNT(v) \ + (((v) << 0) & BM_GPMI_ECCCOUNT_COUNT) + +/*============================================================================*/ + +#define HW_GPMI_PAYLOAD (0x00000040) + +#define BP_GPMI_PAYLOAD_ADDRESS 2 +#define BM_GPMI_PAYLOAD_ADDRESS 0xFFFFFFFC +#define BF_GPMI_PAYLOAD_ADDRESS(v) \ + (((v) << 2) & BM_GPMI_PAYLOAD_ADDRESS) +#define BP_GPMI_PAYLOAD_RSVD0 0 +#define BM_GPMI_PAYLOAD_RSVD0 0x00000003 +#define BF_GPMI_PAYLOAD_RSVD0(v) \ + (((v) << 0) & BM_GPMI_PAYLOAD_RSVD0) + +/*============================================================================*/ + +#define HW_GPMI_AUXILIARY (0x00000050) + +#define BP_GPMI_AUXILIARY_ADDRESS 2 +#define BM_GPMI_AUXILIARY_ADDRESS 0xFFFFFFFC +#define BF_GPMI_AUXILIARY_ADDRESS(v) \ + (((v) << 2) & BM_GPMI_AUXILIARY_ADDRESS) +#define BP_GPMI_AUXILIARY_RSVD0 0 +#define BM_GPMI_AUXILIARY_RSVD0 0x00000003 +#define BF_GPMI_AUXILIARY_RSVD0(v) \ + (((v) << 0) & BM_GPMI_AUXILIARY_RSVD0) + +/*============================================================================*/ + +#define HW_GPMI_CTRL1 (0x00000060) +#define HW_GPMI_CTRL1_SET (0x00000064) +#define HW_GPMI_CTRL1_CLR (0x00000068) +#define HW_GPMI_CTRL1_TOG (0x0000006c) + +#define BP_GPMI_CTRL1_RSVD2 25 +#define BM_GPMI_CTRL1_RSVD2 0xFE000000 +#define BF_GPMI_CTRL1_RSVD2(v) \ + (((v) << 25) & BM_GPMI_CTRL1_RSVD2) +#define BM_GPMI_CTRL1_DECOUPLE_CS 0x01000000 +#define BP_GPMI_CTRL1_WRN_DLY_SEL 22 +#define BM_GPMI_CTRL1_WRN_DLY_SEL 0x00C00000 +#define BF_GPMI_CTRL1_WRN_DLY_SEL(v) \ + (((v) << 22) & BM_GPMI_CTRL1_WRN_DLY_SEL) +#define BM_GPMI_CTRL1_RSVD1 0x00200000 +#define BM_GPMI_CTRL1_TIMEOUT_IRQ_EN 0x00100000 +#define BM_GPMI_CTRL1_GANGED_RDYBUSY 0x00080000 +#define BM_GPMI_CTRL1_BCH_MODE 0x00040000 +#define BP_GPMI_CTRL1_DLL_ENABLE 17 +#define BM_GPMI_CTRL1_DLL_ENABLE 0x00020000 +#define BP_GPMI_CTRL1_HALF_PERIOD 16 +#define BM_GPMI_CTRL1_HALF_PERIOD 0x00010000 +#define BP_GPMI_CTRL1_RDN_DELAY 12 +#define BM_GPMI_CTRL1_RDN_DELAY 0x0000F000 +#define BF_GPMI_CTRL1_RDN_DELAY(v) \ + (((v) << 12) & BM_GPMI_CTRL1_RDN_DELAY) +#define BM_GPMI_CTRL1_DMA2ECC_MODE 0x00000800 +#define BM_GPMI_CTRL1_DEV_IRQ 0x00000400 +#define BM_GPMI_CTRL1_TIMEOUT_IRQ 0x00000200 +#define BM_GPMI_CTRL1_BURST_EN 0x00000100 +#define BM_GPMI_CTRL1_ABORT_WAIT_REQUEST 0x00000080 +#define BP_GPMI_CTRL1_ABORT_WAIT_FOR_READY_CHANNEL 4 +#define BM_GPMI_CTRL1_ABORT_WAIT_FOR_READY_CHANNEL 0x00000070 +#define BF_GPMI_CTRL1_ABORT_WAIT_FOR_READY_CHANNEL(v) \ + (((v) << 4) & BM_GPMI_CTRL1_ABORT_WAIT_FOR_READY_CHANNEL) +#define BM_GPMI_CTRL1_DEV_RESET 0x00000008 +#define BV_GPMI_CTRL1_DEV_RESET__ENABLED 0x0 +#define BV_GPMI_CTRL1_DEV_RESET__DISABLED 0x1 +#define BM_GPMI_CTRL1_ATA_IRQRDY_POLARITY 0x00000004 +#define BV_GPMI_CTRL1_ATA_IRQRDY_POLARITY__ACTIVELOW 0x0 +#define BV_GPMI_CTRL1_ATA_IRQRDY_POLARITY__ACTIVEHIGH 0x1 +#define BM_GPMI_CTRL1_CAMERA_MODE 0x00000002 +#define BM_GPMI_CTRL1_GPMI_MODE 0x00000001 +#define BV_GPMI_CTRL1_GPMI_MODE__NAND 0x0 +#define BV_GPMI_CTRL1_GPMI_MODE__ATA 0x1 + +/*============================================================================*/ + +#define HW_GPMI_TIMING0 (0x00000070) + +#define BP_GPMI_TIMING0_RSVD1 24 +#define BM_GPMI_TIMING0_RSVD1 0xFF000000 +#define BF_GPMI_TIMING0_RSVD1(v) \ + (((v) << 24) & BM_GPMI_TIMING0_RSVD1) +#define BP_GPMI_TIMING0_ADDRESS_SETUP 16 +#define BM_GPMI_TIMING0_ADDRESS_SETUP 0x00FF0000 +#define BF_GPMI_TIMING0_ADDRESS_SETUP(v) \ + (((v) << 16) & BM_GPMI_TIMING0_ADDRESS_SETUP) +#define BP_GPMI_TIMING0_DATA_HOLD 8 +#define BM_GPMI_TIMING0_DATA_HOLD 0x0000FF00 +#define BF_GPMI_TIMING0_DATA_HOLD(v) \ + (((v) << 8) & BM_GPMI_TIMING0_DATA_HOLD) +#define BP_GPMI_TIMING0_DATA_SETUP 0 +#define BM_GPMI_TIMING0_DATA_SETUP 0x000000FF +#define BF_GPMI_TIMING0_DATA_SETUP(v) \ + (((v) << 0) & BM_GPMI_TIMING0_DATA_SETUP) + +/*============================================================================*/ + +#define HW_GPMI_TIMING1 (0x00000080) + +#define BP_GPMI_TIMING1_DEVICE_BUSY_TIMEOUT 16 +#define BM_GPMI_TIMING1_DEVICE_BUSY_TIMEOUT 0xFFFF0000 +#define BF_GPMI_TIMING1_DEVICE_BUSY_TIMEOUT(v) \ + (((v) << 16) & BM_GPMI_TIMING1_DEVICE_BUSY_TIMEOUT) +#define BP_GPMI_TIMING1_RSVD1 0 +#define BM_GPMI_TIMING1_RSVD1 0x0000FFFF +#define BF_GPMI_TIMING1_RSVD1(v) \ + (((v) << 0) & BM_GPMI_TIMING1_RSVD1) + +/*============================================================================*/ + +#define HW_GPMI_TIMING2 (0x00000090) + +#define BP_GPMI_TIMING2_UDMA_TRP 24 +#define BM_GPMI_TIMING2_UDMA_TRP 0xFF000000 +#define BF_GPMI_TIMING2_UDMA_TRP(v) \ + (((v) << 24) & BM_GPMI_TIMING2_UDMA_TRP) +#define BP_GPMI_TIMING2_UDMA_ENV 16 +#define BM_GPMI_TIMING2_UDMA_ENV 0x00FF0000 +#define BF_GPMI_TIMING2_UDMA_ENV(v) \ + (((v) << 16) & BM_GPMI_TIMING2_UDMA_ENV) +#define BP_GPMI_TIMING2_UDMA_HOLD 8 +#define BM_GPMI_TIMING2_UDMA_HOLD 0x0000FF00 +#define BF_GPMI_TIMING2_UDMA_HOLD(v) \ + (((v) << 8) & BM_GPMI_TIMING2_UDMA_HOLD) +#define BP_GPMI_TIMING2_UDMA_SETUP 0 +#define BM_GPMI_TIMING2_UDMA_SETUP 0x000000FF +#define BF_GPMI_TIMING2_UDMA_SETUP(v) \ + (((v) << 0) & BM_GPMI_TIMING2_UDMA_SETUP) + +/*============================================================================*/ + +#define HW_GPMI_DATA (0x000000a0) + +#define BP_GPMI_DATA_DATA 0 +#define BM_GPMI_DATA_DATA 0xFFFFFFFF +#define BF_GPMI_DATA_DATA(v) (v) + +#define HW_GPMI_STAT (0x000000b0) + +#define BP_GPMI_STAT_READY_BUSY 24 +#define BM_GPMI_STAT_READY_BUSY 0xFF000000 +#define BF_GPMI_STAT_READY_BUSY(v) \ + (((v) << 24) & BM_GPMI_STAT_READY_BUSY) +#define BP_GPMI_STAT_RDY_TIMEOUT 16 +#define BM_GPMI_STAT_RDY_TIMEOUT 0x00FF0000 +#define BF_GPMI_STAT_RDY_TIMEOUT(v) \ + (((v) << 16) & BM_GPMI_STAT_RDY_TIMEOUT) +#define BM_GPMI_STAT_DEV7_ERROR 0x00008000 +#define BM_GPMI_STAT_DEV6_ERROR 0x00004000 +#define BM_GPMI_STAT_DEV5_ERROR 0x00002000 +#define BM_GPMI_STAT_DEV4_ERROR 0x00001000 +#define BM_GPMI_STAT_DEV3_ERROR 0x00000800 +#define BM_GPMI_STAT_DEV2_ERROR 0x00000400 +#define BM_GPMI_STAT_DEERROR 0x00000200 +#define BM_GPMI_STAT_DEV0_ERROR 0x00000100 +#define BP_GPMI_STAT_RSVD1 5 +#define BM_GPMI_STAT_RSVD1 0x000000E0 +#define BF_GPMI_STAT_RSVD1(v) \ + (((v) << 5) & BM_GPMI_STAT_RSVD1) +#define BM_GPMI_STAT_ATA_IRQ 0x00000010 +#define BM_GPMI_STAT_INVALID_BUFFER_MASK 0x00000008 +#define BM_GPMI_STAT_FIFO_EMPTY 0x00000004 +#define BV_GPMI_STAT_FIFO_EMPTY__NOT_EMPTY 0x0 +#define BV_GPMI_STAT_FIFO_EMPTY__EMPTY 0x1 +#define BM_GPMI_STAT_FIFO_FULL 0x00000002 +#define BV_GPMI_STAT_FIFO_FULL__NOT_FULL 0x0 +#define BV_GPMI_STAT_FIFO_FULL__FULL 0x1 +#define BM_GPMI_STAT_PRESENT 0x00000001 +#define BV_GPMI_STAT_PRESENT__UNAVAILABLE 0x0 +#define BV_GPMI_STAT_PRESENT__AVAILABLE 0x1 + +/*============================================================================*/ + +#define HW_GPMI_DEBUG (0x000000c0) + +#define BP_GPMI_DEBUG_WAIT_FOR_READY_END 24 +#define BM_GPMI_DEBUG_WAIT_FOR_READY_END 0xFF000000 +#define BF_GPMI_DEBUG_WAIT_FOR_READY_END(v) \ + (((v) << 24) & BM_GPMI_DEBUG_WAIT_FOR_READY_END) +#define BP_GPMI_DEBUG_DMA_SENSE 16 +#define BM_GPMI_DEBUG_DMA_SENSE 0x00FF0000 +#define BF_GPMI_DEBUG_DMA_SENSE(v) \ + (((v) << 16) & BM_GPMI_DEBUG_DMA_SENSE) +#define BP_GPMI_DEBUG_DMAREQ 8 +#define BM_GPMI_DEBUG_DMAREQ 0x0000FF00 +#define BF_GPMI_DEBUG_DMAREQ(v) \ + (((v) << 8) & BM_GPMI_DEBUG_DMAREQ) +#define BP_GPMI_DEBUG_CMD_END 0 +#define BM_GPMI_DEBUG_CMD_END 0x000000FF +#define BF_GPMI_DEBUG_CMD_END(v) \ + (((v) << 0) & BM_GPMI_DEBUG_CMD_END) + +/*============================================================================*/ + +#define HW_GPMI_VERSION (0x000000d0) + +#define BP_GPMI_VERSION_MAJOR 24 +#define BM_GPMI_VERSION_MAJOR 0xFF000000 +#define BF_GPMI_VERSION_MAJOR(v) \ + (((v) << 24) & BM_GPMI_VERSION_MAJOR) +#define BP_GPMI_VERSION_MINOR 16 +#define BM_GPMI_VERSION_MINOR 0x00FF0000 +#define BF_GPMI_VERSION_MINOR(v) \ + (((v) << 16) & BM_GPMI_VERSION_MINOR) +#define BP_GPMI_VERSION_STEP 0 +#define BM_GPMI_VERSION_STEP 0x0000FFFF +#define BF_GPMI_VERSION_STEP(v) \ + (((v) << 0) & BM_GPMI_VERSION_STEP) + +/*============================================================================*/ + +#define HW_GPMI_DEBUG2 (0x000000e0) + +#define BP_GPMI_DEBUG2_RSVD1 28 +#define BM_GPMI_DEBUG2_RSVD1 0xF0000000 +#define BF_GPMI_DEBUG2_RSVD1(v) \ + (((v) << 28) & BM_GPMI_DEBUG2_RSVD1) +#define BP_GPMI_DEBUG2_UDMA_STATE 24 +#define BM_GPMI_DEBUG2_UDMA_STATE 0x0F000000 +#define BF_GPMI_DEBUG2_UDMA_STATE(v) \ + (((v) << 24) & BM_GPMI_DEBUG2_UDMA_STATE) +#define BM_GPMI_DEBUG2_BUSY 0x00800000 +#define BV_GPMI_DEBUG2_BUSY__DISABLED 0x0 +#define BV_GPMI_DEBUG2_BUSY__ENABLED 0x1 +#define BP_GPMI_DEBUG2_PIN_STATE 20 +#define BM_GPMI_DEBUG2_PIN_STATE 0x00700000 +#define BF_GPMI_DEBUG2_PIN_STATE(v) \ + (((v) << 20) & BM_GPMI_DEBUG2_PIN_STATE) +#define BV_GPMI_DEBUG2_PIN_STATE__PSM_IDLE 0x0 +#define BV_GPMI_DEBUG2_PIN_STATE__PSM_BYTCNT 0x1 +#define BV_GPMI_DEBUG2_PIN_STATE__PSM_ADDR 0x2 +#define BV_GPMI_DEBUG2_PIN_STATE__PSM_STALL 0x3 +#define BV_GPMI_DEBUG2_PIN_STATE__PSM_STROBE 0x4 +#define BV_GPMI_DEBUG2_PIN_STATE__PSM_ATARDY 0x5 +#define BV_GPMI_DEBUG2_PIN_STATE__PSM_DHOLD 0x6 +#define BV_GPMI_DEBUG2_PIN_STATE__PSM_DONE 0x7 +#define BP_GPMI_DEBUG2_MAIN_STATE 16 +#define BM_GPMI_DEBUG2_MAIN_STATE 0x000F0000 +#define BF_GPMI_DEBUG2_MAIN_STATE(v) \ + (((v) << 16) & BM_GPMI_DEBUG2_MAIN_STATE) +#define BV_GPMI_DEBUG2_MAIN_STATE__MSM_IDLE 0x0 +#define BV_GPMI_DEBUG2_MAIN_STATE__MSM_BYTCNT 0x1 +#define BV_GPMI_DEBUG2_MAIN_STATE__MSM_WAITFE 0x2 +#define BV_GPMI_DEBUG2_MAIN_STATE__MSM_WAITFR 0x3 +#define BV_GPMI_DEBUG2_MAIN_STATE__MSM_DMAREQ 0x4 +#define BV_GPMI_DEBUG2_MAIN_STATE__MSM_DMAACK 0x5 +#define BV_GPMI_DEBUG2_MAIN_STATE__MSM_WAITFF 0x6 +#define BV_GPMI_DEBUG2_MAIN_STATE__MSM_LDFIFO 0x7 +#define BV_GPMI_DEBUG2_MAIN_STATE__MSM_LDDMAR 0x8 +#define BV_GPMI_DEBUG2_MAIN_STATE__MSM_RDCMP 0x9 +#define BV_GPMI_DEBUG2_MAIN_STATE__MSM_DONE 0xA +#define BP_GPMI_DEBUG2_SYND2GPMI_BE 12 +#define BM_GPMI_DEBUG2_SYND2GPMI_BE 0x0000F000 +#define BF_GPMI_DEBUG2_SYND2GPMI_BE(v) \ + (((v) << 12) & BM_GPMI_DEBUG2_SYND2GPMI_BE) +#define BM_GPMI_DEBUG2_GPMI2SYND_VALID 0x00000800 +#define BM_GPMI_DEBUG2_GPMI2SYND_READY 0x00000400 +#define BM_GPMI_DEBUG2_SYND2GPMI_VALID 0x00000200 +#define BM_GPMI_DEBUG2_SYND2GPMI_READY 0x00000100 +#define BM_GPMI_DEBUG2_VIEW_DELAYED_RDN 0x00000080 +#define BM_GPMI_DEBUG2_UPDATE_WINDOW 0x00000040 +#define BP_GPMI_DEBUG2_RDN_TAP 0 +#define BM_GPMI_DEBUG2_RDN_TAP 0x0000003F +#define BF_GPMI_DEBUG2_RDN_TAP(v) \ + (((v) << 0) & BM_GPMI_DEBUG2_RDN_TAP) + +/*============================================================================*/ + +#define HW_GPMI_DEBUG3 (0x000000f0) + +#define BP_GPMI_DEBUG3_APB_WORD_CNTR 16 +#define BM_GPMI_DEBUG3_APB_WORD_CNTR 0xFFFF0000 +#define BF_GPMI_DEBUG3_APB_WORD_CNTR(v) \ + (((v) << 16) & BM_GPMI_DEBUG3_APB_WORD_CNTR) +#define BP_GPMI_DEBUG3_DEV_WORD_CNTR 0 +#define BM_GPMI_DEBUG3_DEV_WORD_CNTR 0x0000FFFF +#define BF_GPMI_DEBUG3_DEV_WORD_CNTR(v) \ + (((v) << 0) & BM_GPMI_DEBUG3_DEV_WORD_CNTR) + +/*============================================================================*/ + +#endif diff --git a/drivers/mtd/nand/gpmi-nfc/gpmi-nfc-gpmi-regs-v2.h b/drivers/mtd/nand/gpmi-nfc/gpmi-nfc-gpmi-regs-v2.h new file mode 100644 index 000000000000..3baa9012da69 --- /dev/null +++ b/drivers/mtd/nand/gpmi-nfc/gpmi-nfc-gpmi-regs-v2.h @@ -0,0 +1,511 @@ +/* + * Freescale GPMI Register Definitions + * + * Copyright 2008-2010 Freescale Semiconductor, Inc. All Rights Reserved. + * + * This program is free software; you can redistribute it and/or modify + * it under the terms of the GNU General Public License as published by + * the Free Software Foundation; either version 2 of the License, or + * (at your option) any later version. + * + * This program is distributed in the hope that it will be useful, + * but WITHOUT ANY WARRANTY; without even the implied warranty of + * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the + * GNU General Public License for more details. + * + * You should have received a copy of the GNU General Public License + * along with this program; if not, write to the Free Software + * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA + * + * This file is created by xml file. Don't Edit it. + * + * Xml Revision: 1.19 + * Template revision: 1.3 + */ + +#ifndef __ARCH_ARM___GPMI_H +#define __ARCH_ARM___GPMI_H + + +#define HW_GPMI_CTRL0 (0x00000000) +#define HW_GPMI_CTRL0_SET (0x00000004) +#define HW_GPMI_CTRL0_CLR (0x00000008) +#define HW_GPMI_CTRL0_TOG (0x0000000c) + +#define BM_GPMI_CTRL0_SFTRST 0x80000000 +#define BV_GPMI_CTRL0_SFTRST__RUN 0x0 +#define BV_GPMI_CTRL0_SFTRST__RESET 0x1 +#define BM_GPMI_CTRL0_CLKGATE 0x40000000 +#define BV_GPMI_CTRL0_CLKGATE__RUN 0x0 +#define BV_GPMI_CTRL0_CLKGATE__NO_CLKS 0x1 +#define BM_GPMI_CTRL0_RUN 0x20000000 +#define BV_GPMI_CTRL0_RUN__IDLE 0x0 +#define BV_GPMI_CTRL0_RUN__BUSY 0x1 +#define BM_GPMI_CTRL0_DEV_IRQ_EN 0x10000000 +#define BM_GPMI_CTRL0_LOCK_CS 0x08000000 +#define BV_GPMI_CTRL0_LOCK_CS__DISABLED 0x0 +#define BV_GPMI_CTRL0_LOCK_CS__ENABLED 0x1 +#define BM_GPMI_CTRL0_UDMA 0x04000000 +#define BV_GPMI_CTRL0_UDMA__DISABLED 0x0 +#define BV_GPMI_CTRL0_UDMA__ENABLED 0x1 +#define BP_GPMI_CTRL0_COMMAND_MODE 24 +#define BM_GPMI_CTRL0_COMMAND_MODE 0x03000000 +#define BF_GPMI_CTRL0_COMMAND_MODE(v) \ + (((v) << 24) & BM_GPMI_CTRL0_COMMAND_MODE) +#define BV_GPMI_CTRL0_COMMAND_MODE__WRITE 0x0 +#define BV_GPMI_CTRL0_COMMAND_MODE__READ 0x1 +#define BV_GPMI_CTRL0_COMMAND_MODE__READ_AND_COMPARE 0x2 +#define BV_GPMI_CTRL0_COMMAND_MODE__WAIT_FOR_READY 0x3 +#define BM_GPMI_CTRL0_WORD_LENGTH 0x00800000 +#define BV_GPMI_CTRL0_WORD_LENGTH__16_BIT 0x0 +#define BV_GPMI_CTRL0_WORD_LENGTH__8_BIT 0x1 +#define BP_GPMI_CTRL0_CS 20 +#define BM_GPMI_CTRL0_CS 0x00700000 +#define BF_GPMI_CTRL0_CS(v) \ + (((v) << 20) & BM_GPMI_CTRL0_CS) +#define BP_GPMI_CTRL0_ADDRESS 17 +#define BM_GPMI_CTRL0_ADDRESS 0x000E0000 +#define BF_GPMI_CTRL0_ADDRESS(v) \ + (((v) << 17) & BM_GPMI_CTRL0_ADDRESS) +#define BV_GPMI_CTRL0_ADDRESS__NAND_DATA 0x0 +#define BV_GPMI_CTRL0_ADDRESS__NAND_CLE 0x1 +#define BV_GPMI_CTRL0_ADDRESS__NAND_ALE 0x2 +#define BM_GPMI_CTRL0_ADDRESS_INCREMENT 0x00010000 +#define BV_GPMI_CTRL0_ADDRESS_INCREMENT__DISABLED 0x0 +#define BV_GPMI_CTRL0_ADDRESS_INCREMENT__ENABLED 0x1 +#define BP_GPMI_CTRL0_XFER_COUNT 0 +#define BM_GPMI_CTRL0_XFER_COUNT 0x0000FFFF +#define BF_GPMI_CTRL0_XFER_COUNT(v) \ + (((v) << 0) & BM_GPMI_CTRL0_XFER_COUNT) + +#define HW_GPMI_COMPARE (0x00000010) + +#define BP_GPMI_COMPARE_MASK 16 +#define BM_GPMI_COMPARE_MASK 0xFFFF0000 +#define BF_GPMI_COMPARE_MASK(v) \ + (((v) << 16) & BM_GPMI_COMPARE_MASK) +#define BP_GPMI_COMPARE_REFERENCE 0 +#define BM_GPMI_COMPARE_REFERENCE 0x0000FFFF +#define BF_GPMI_COMPARE_REFERENCE(v) \ + (((v) << 0) & BM_GPMI_COMPARE_REFERENCE) + +#define HW_GPMI_ECCCTRL (0x00000020) +#define HW_GPMI_ECCCTRL_SET (0x00000024) +#define HW_GPMI_ECCCTRL_CLR (0x00000028) +#define HW_GPMI_ECCCTRL_TOG (0x0000002c) + +#define BP_GPMI_ECCCTRL_HANDLE 16 +#define BM_GPMI_ECCCTRL_HANDLE 0xFFFF0000 +#define BF_GPMI_ECCCTRL_HANDLE(v) \ + (((v) << 16) & BM_GPMI_ECCCTRL_HANDLE) +#define BM_GPMI_ECCCTRL_RSVD2 0x00008000 +#define BP_GPMI_ECCCTRL_ECC_CMD 13 +#define BM_GPMI_ECCCTRL_ECC_CMD 0x00006000 +#define BF_GPMI_ECCCTRL_ECC_CMD(v) \ + (((v) << 13) & BM_GPMI_ECCCTRL_ECC_CMD) +#define BV_GPMI_ECCCTRL_ECC_CMD__DECODE 0x0 +#define BV_GPMI_ECCCTRL_ECC_CMD__ENCODE 0x1 +#define BV_GPMI_ECCCTRL_ECC_CMD__RESERVE2 0x2 +#define BV_GPMI_ECCCTRL_ECC_CMD__RESERVE3 0x3 +#define BM_GPMI_ECCCTRL_ENABLE_ECC 0x00001000 +#define BV_GPMI_ECCCTRL_ENABLE_ECC__ENABLE 0x1 +#define BV_GPMI_ECCCTRL_ENABLE_ECC__DISABLE 0x0 +#define BP_GPMI_ECCCTRL_RSVD1 9 +#define BM_GPMI_ECCCTRL_RSVD1 0x00000E00 +#define BF_GPMI_ECCCTRL_RSVD1(v) \ + (((v) << 9) & BM_GPMI_ECCCTRL_RSVD1) +#define BP_GPMI_ECCCTRL_BUFFER_MASK 0 +#define BM_GPMI_ECCCTRL_BUFFER_MASK 0x000001FF +#define BF_GPMI_ECCCTRL_BUFFER_MASK(v) \ + (((v) << 0) & BM_GPMI_ECCCTRL_BUFFER_MASK) +#define BV_GPMI_ECCCTRL_BUFFER_MASK__BCH_AUXONLY 0x100 +#define BV_GPMI_ECCCTRL_BUFFER_MASK__BCH_PAGE 0x1FF + +#define HW_GPMI_ECCCOUNT (0x00000030) + +#define BP_GPMI_ECCCOUNT_RSVD2 16 +#define BM_GPMI_ECCCOUNT_RSVD2 0xFFFF0000 +#define BF_GPMI_ECCCOUNT_RSVD2(v) \ + (((v) << 16) & BM_GPMI_ECCCOUNT_RSVD2) +#define BP_GPMI_ECCCOUNT_COUNT 0 +#define BM_GPMI_ECCCOUNT_COUNT 0x0000FFFF +#define BF_GPMI_ECCCOUNT_COUNT(v) \ + (((v) << 0) & BM_GPMI_ECCCOUNT_COUNT) + +#define HW_GPMI_PAYLOAD (0x00000040) + +#define BP_GPMI_PAYLOAD_ADDRESS 2 +#define BM_GPMI_PAYLOAD_ADDRESS 0xFFFFFFFC +#define BF_GPMI_PAYLOAD_ADDRESS(v) \ + (((v) << 2) & BM_GPMI_PAYLOAD_ADDRESS) +#define BP_GPMI_PAYLOAD_RSVD0 0 +#define BM_GPMI_PAYLOAD_RSVD0 0x00000003 +#define BF_GPMI_PAYLOAD_RSVD0(v) \ + (((v) << 0) & BM_GPMI_PAYLOAD_RSVD0) + +#define HW_GPMI_AUXILIARY (0x00000050) + +#define BP_GPMI_AUXILIARY_ADDRESS 2 +#define BM_GPMI_AUXILIARY_ADDRESS 0xFFFFFFFC +#define BF_GPMI_AUXILIARY_ADDRESS(v) \ + (((v) << 2) & BM_GPMI_AUXILIARY_ADDRESS) +#define BP_GPMI_AUXILIARY_RSVD0 0 +#define BM_GPMI_AUXILIARY_RSVD0 0x00000003 +#define BF_GPMI_AUXILIARY_RSVD0(v) \ + (((v) << 0) & BM_GPMI_AUXILIARY_RSVD0) + +#define HW_GPMI_CTRL1 (0x00000060) +#define HW_GPMI_CTRL1_SET (0x00000064) +#define HW_GPMI_CTRL1_CLR (0x00000068) +#define HW_GPMI_CTRL1_TOG (0x0000006c) + +#define BM_GPMI_CTRL1_DEV_CLK_STOP 0x80000000 +#define BM_GPMI_CTRL1_SSYNC_CLK_STOP 0x40000000 +#define BM_GPMI_CTRL1_WRITE_CLK_STOP 0x20000000 +#define BM_GPMI_CTRL1_TOGGLE_MODE 0x10000000 +#define BM_GPMI_CTRL1_GPMI_CLK_DIV2_EN 0x08000000 +#define BM_GPMI_CTRL1_UPDATE_CS 0x04000000 +#define BM_GPMI_CTRL1_SSYNCMODE 0x02000000 +#define BV_GPMI_CTRL1_SSYNCMODE__ASYNC 0x0 +#define BV_GPMI_CTRL1_SSYNCMODE__SSYNC 0x1 +#define BM_GPMI_CTRL1_DECOUPLE_CS 0x01000000 +#define BP_GPMI_CTRL1_WRN_DLY_SEL 22 +#define BM_GPMI_CTRL1_WRN_DLY_SEL 0x00C00000 +#define BF_GPMI_CTRL1_WRN_DLY_SEL(v) \ + (((v) << 22) & BM_GPMI_CTRL1_WRN_DLY_SEL) +#define BM_GPMI_CTRL1_RSVD1 0x00200000 +#define BM_GPMI_CTRL1_TIMEOUT_IRQ_EN 0x00100000 +#define BM_GPMI_CTRL1_GANGED_RDYBUSY 0x00080000 +#define BM_GPMI_CTRL1_BCH_MODE 0x00040000 +#define BM_GPMI_CTRL1_DLL_ENABLE 0x00020000 +#define BP_GPMI_CTRL1_HALF_PERIOD 16 +#define BM_GPMI_CTRL1_HALF_PERIOD 0x00010000 +#define BP_GPMI_CTRL1_RDN_DELAY 12 +#define BM_GPMI_CTRL1_RDN_DELAY 0x0000F000 +#define BF_GPMI_CTRL1_RDN_DELAY(v) \ + (((v) << 12) & BM_GPMI_CTRL1_RDN_DELAY) +#define BM_GPMI_CTRL1_DMA2ECC_MODE 0x00000800 +#define BM_GPMI_CTRL1_DEV_IRQ 0x00000400 +#define BM_GPMI_CTRL1_TIMEOUT_IRQ 0x00000200 +#define BM_GPMI_CTRL1_BURST_EN 0x00000100 +#define BM_GPMI_CTRL1_ABORT_WAIT_REQUEST 0x00000080 +#define BP_GPMI_CTRL1_ABORT_WAIT_FOR_READY_CHANNEL 4 +#define BM_GPMI_CTRL1_ABORT_WAIT_FOR_READY_CHANNEL 0x00000070 +#define BF_GPMI_CTRL1_ABORT_WAIT_FOR_READY_CHANNEL(v) \ + (((v) << 4) & BM_GPMI_CTRL1_ABORT_WAIT_FOR_READY_CHANNEL) +#define BM_GPMI_CTRL1_DEV_RESET 0x00000008 +#define BV_GPMI_CTRL1_DEV_RESET__ENABLED 0x0 +#define BV_GPMI_CTRL1_DEV_RESET__DISABLED 0x1 +#define BM_GPMI_CTRL1_ATA_IRQRDY_POLARITY 0x00000004 +#define BV_GPMI_CTRL1_ATA_IRQRDY_POLARITY__ACTIVELOW 0x0 +#define BV_GPMI_CTRL1_ATA_IRQRDY_POLARITY__ACTIVEHIGH 0x1 +#define BM_GPMI_CTRL1_CAMERA_MODE 0x00000002 +#define BM_GPMI_CTRL1_GPMI_MODE 0x00000001 +#define BV_GPMI_CTRL1_GPMI_MODE__NAND 0x0 +#define BV_GPMI_CTRL1_GPMI_MODE__ATA 0x1 + +#define HW_GPMI_TIMING0 (0x00000070) + +#define BP_GPMI_TIMING0_RSVD1 24 +#define BM_GPMI_TIMING0_RSVD1 0xFF000000 +#define BF_GPMI_TIMING0_RSVD1(v) \ + (((v) << 24) & BM_GPMI_TIMING0_RSVD1) +#define BP_GPMI_TIMING0_ADDRESS_SETUP 16 +#define BM_GPMI_TIMING0_ADDRESS_SETUP 0x00FF0000 +#define BF_GPMI_TIMING0_ADDRESS_SETUP(v) \ + (((v) << 16) & BM_GPMI_TIMING0_ADDRESS_SETUP) +#define BP_GPMI_TIMING0_DATA_HOLD 8 +#define BM_GPMI_TIMING0_DATA_HOLD 0x0000FF00 +#define BF_GPMI_TIMING0_DATA_HOLD(v) \ + (((v) << 8) & BM_GPMI_TIMING0_DATA_HOLD) +#define BP_GPMI_TIMING0_DATA_SETUP 0 +#define BM_GPMI_TIMING0_DATA_SETUP 0x000000FF +#define BF_GPMI_TIMING0_DATA_SETUP(v) \ + (((v) << 0) & BM_GPMI_TIMING0_DATA_SETUP) + +#define HW_GPMI_TIMING1 (0x00000080) + +#define BP_GPMI_TIMING1_DEVICE_BUSY_TIMEOUT 16 +#define BM_GPMI_TIMING1_DEVICE_BUSY_TIMEOUT 0xFFFF0000 +#define BF_GPMI_TIMING1_DEVICE_BUSY_TIMEOUT(v) \ + (((v) << 16) & BM_GPMI_TIMING1_DEVICE_BUSY_TIMEOUT) +#define BP_GPMI_TIMING1_RSVD1 0 +#define BM_GPMI_TIMING1_RSVD1 0x0000FFFF +#define BF_GPMI_TIMING1_RSVD1(v) \ + (((v) << 0) & BM_GPMI_TIMING1_RSVD1) + +#define HW_GPMI_TIMING2 (0x00000090) + +#define BP_GPMI_TIMING2_RSVD1 27 +#define BM_GPMI_TIMING2_RSVD1 0xF8000000 +#define BF_GPMI_TIMING2_RSVD1(v) \ + (((v) << 27) & BM_GPMI_TIMING2_RSVD1) +#define BP_GPMI_TIMING2_READ_LATENCY 24 +#define BM_GPMI_TIMING2_READ_LATENCY 0x07000000 +#define BF_GPMI_TIMING2_READ_LATENCY(v) \ + (((v) << 24) & BM_GPMI_TIMING2_READ_LATENCY) +#define BP_GPMI_TIMING2_RSVD0 21 +#define BM_GPMI_TIMING2_RSVD0 0x00E00000 +#define BF_GPMI_TIMING2_RSVD0(v) \ + (((v) << 21) & BM_GPMI_TIMING2_RSVD0) +#define BP_GPMI_TIMING2_CE_DELAY 16 +#define BM_GPMI_TIMING2_CE_DELAY 0x001F0000 +#define BF_GPMI_TIMING2_CE_DELAY(v) \ + (((v) << 16) & BM_GPMI_TIMING2_CE_DELAY) +#define BP_GPMI_TIMING2_PREAMBLE_DELAY 12 +#define BM_GPMI_TIMING2_PREAMBLE_DELAY 0x0000F000 +#define BF_GPMI_TIMING2_PREAMBLE_DELAY(v) \ + (((v) << 12) & BM_GPMI_TIMING2_PREAMBLE_DELAY) +#define BP_GPMI_TIMING2_POSTAMBLE_DELAY 8 +#define BM_GPMI_TIMING2_POSTAMBLE_DELAY 0x00000F00 +#define BF_GPMI_TIMING2_POSTAMBLE_DELAY(v) \ + (((v) << 8) & BM_GPMI_TIMING2_POSTAMBLE_DELAY) +#define BP_GPMI_TIMING2_CMDADD_PAUSE 4 +#define BM_GPMI_TIMING2_CMDADD_PAUSE 0x000000F0 +#define BF_GPMI_TIMING2_CMDADD_PAUSE(v) \ + (((v) << 4) & BM_GPMI_TIMING2_CMDADD_PAUSE) +#define BP_GPMI_TIMING2_DATA_PAUSE 0 +#define BM_GPMI_TIMING2_DATA_PAUSE 0x0000000F +#define BF_GPMI_TIMING2_DATA_PAUSE(v) \ + (((v) << 0) & BM_GPMI_TIMING2_DATA_PAUSE) + +#define HW_GPMI_DATA (0x000000a0) + +#define BP_GPMI_DATA_DATA 0 +#define BM_GPMI_DATA_DATA 0xFFFFFFFF +#define BF_GPMI_DATA_DATA(v) (v) + +#define HW_GPMI_STAT (0x000000b0) + +#define BP_GPMI_STAT_READY_BUSY 24 +#define BM_GPMI_STAT_READY_BUSY 0xFF000000 +#define BF_GPMI_STAT_READY_BUSY(v) \ + (((v) << 24) & BM_GPMI_STAT_READY_BUSY) +#define BP_GPMI_STAT_RDY_TIMEOUT 16 +#define BM_GPMI_STAT_RDY_TIMEOUT 0x00FF0000 +#define BF_GPMI_STAT_RDY_TIMEOUT(v) \ + (((v) << 16) & BM_GPMI_STAT_RDY_TIMEOUT) +#define BM_GPMI_STAT_DEV7_ERROR 0x00008000 +#define BM_GPMI_STAT_DEV6_ERROR 0x00004000 +#define BM_GPMI_STAT_DEV5_ERROR 0x00002000 +#define BM_GPMI_STAT_DEV4_ERROR 0x00001000 +#define BM_GPMI_STAT_DEV3_ERROR 0x00000800 +#define BM_GPMI_STAT_DEV2_ERROR 0x00000400 +#define BM_GPMI_STAT_DEV1_ERROR 0x00000200 +#define BM_GPMI_STAT_DEV0_ERROR 0x00000100 +#define BP_GPMI_STAT_RSVD1 5 +#define BM_GPMI_STAT_RSVD1 0x000000E0 +#define BF_GPMI_STAT_RSVD1(v) \ + (((v) << 5) & BM_GPMI_STAT_RSVD1) +#define BM_GPMI_STAT_ATA_IRQ 0x00000010 +#define BM_GPMI_STAT_INVALID_BUFFER_MASK 0x00000008 +#define BM_GPMI_STAT_FIFO_EMPTY 0x00000004 +#define BV_GPMI_STAT_FIFO_EMPTY__NOT_EMPTY 0x0 +#define BV_GPMI_STAT_FIFO_EMPTY__EMPTY 0x1 +#define BM_GPMI_STAT_FIFO_FULL 0x00000002 +#define BV_GPMI_STAT_FIFO_FULL__NOT_FULL 0x0 +#define BV_GPMI_STAT_FIFO_FULL__FULL 0x1 +#define BM_GPMI_STAT_PRESENT 0x00000001 +#define BV_GPMI_STAT_PRESENT__UNAVAILABLE 0x0 +#define BV_GPMI_STAT_PRESENT__AVAILABLE 0x1 + +#define HW_GPMI_DEBUG (0x000000c0) + +#define BP_GPMI_DEBUG_WAIT_FOR_READY_END 24 +#define BM_GPMI_DEBUG_WAIT_FOR_READY_END 0xFF000000 +#define BF_GPMI_DEBUG_WAIT_FOR_READY_END(v) \ + (((v) << 24) & BM_GPMI_DEBUG_WAIT_FOR_READY_END) +#define BP_GPMI_DEBUG_DMA_SENSE 16 +#define BM_GPMI_DEBUG_DMA_SENSE 0x00FF0000 +#define BF_GPMI_DEBUG_DMA_SENSE(v) \ + (((v) << 16) & BM_GPMI_DEBUG_DMA_SENSE) +#define BP_GPMI_DEBUG_DMAREQ 8 +#define BM_GPMI_DEBUG_DMAREQ 0x0000FF00 +#define BF_GPMI_DEBUG_DMAREQ(v) \ + (((v) << 8) & BM_GPMI_DEBUG_DMAREQ) +#define BP_GPMI_DEBUG_CMD_END 0 +#define BM_GPMI_DEBUG_CMD_END 0x000000FF +#define BF_GPMI_DEBUG_CMD_END(v) \ + (((v) << 0) & BM_GPMI_DEBUG_CMD_END) + +#define HW_GPMI_VERSION (0x000000d0) + +#define BP_GPMI_VERSION_MAJOR 24 +#define BM_GPMI_VERSION_MAJOR 0xFF000000 +#define BF_GPMI_VERSION_MAJOR(v) \ + (((v) << 24) & BM_GPMI_VERSION_MAJOR) +#define BP_GPMI_VERSION_MINOR 16 +#define BM_GPMI_VERSION_MINOR 0x00FF0000 +#define BF_GPMI_VERSION_MINOR(v) \ + (((v) << 16) & BM_GPMI_VERSION_MINOR) +#define BP_GPMI_VERSION_STEP 0 +#define BM_GPMI_VERSION_STEP 0x0000FFFF +#define BF_GPMI_VERSION_STEP(v) \ + (((v) << 0) & BM_GPMI_VERSION_STEP) + +#define HW_GPMI_DEBUG2 (0x000000e0) + +#define BP_GPMI_DEBUG2_RSVD1 28 +#define BM_GPMI_DEBUG2_RSVD1 0xF0000000 +#define BF_GPMI_DEBUG2_RSVD1(v) \ + (((v) << 28) & BM_GPMI_DEBUG2_RSVD1) +#define BP_GPMI_DEBUG2_UDMA_STATE 24 +#define BM_GPMI_DEBUG2_UDMA_STATE 0x0F000000 +#define BF_GPMI_DEBUG2_UDMA_STATE(v) \ + (((v) << 24) & BM_GPMI_DEBUG2_UDMA_STATE) +#define BM_GPMI_DEBUG2_BUSY 0x00800000 +#define BV_GPMI_DEBUG2_BUSY__DISABLED 0x0 +#define BV_GPMI_DEBUG2_BUSY__ENABLED 0x1 +#define BP_GPMI_DEBUG2_PIN_STATE 20 +#define BM_GPMI_DEBUG2_PIN_STATE 0x00700000 +#define BF_GPMI_DEBUG2_PIN_STATE(v) \ + (((v) << 20) & BM_GPMI_DEBUG2_PIN_STATE) +#define BV_GPMI_DEBUG2_PIN_STATE__PSM_IDLE 0x0 +#define BV_GPMI_DEBUG2_PIN_STATE__PSM_BYTCNT 0x1 +#define BV_GPMI_DEBUG2_PIN_STATE__PSM_ADDR 0x2 +#define BV_GPMI_DEBUG2_PIN_STATE__PSM_STALL 0x3 +#define BV_GPMI_DEBUG2_PIN_STATE__PSM_STROBE 0x4 +#define BV_GPMI_DEBUG2_PIN_STATE__PSM_ATARDY 0x5 +#define BV_GPMI_DEBUG2_PIN_STATE__PSM_DHOLD 0x6 +#define BV_GPMI_DEBUG2_PIN_STATE__PSM_DONE 0x7 +#define BP_GPMI_DEBUG2_MAIN_STATE 16 +#define BM_GPMI_DEBUG2_MAIN_STATE 0x000F0000 +#define BF_GPMI_DEBUG2_MAIN_STATE(v) \ + (((v) << 16) & BM_GPMI_DEBUG2_MAIN_STATE) +#define BV_GPMI_DEBUG2_MAIN_STATE__MSM_IDLE 0x0 +#define BV_GPMI_DEBUG2_MAIN_STATE__MSM_BYTCNT 0x1 +#define BV_GPMI_DEBUG2_MAIN_STATE__MSM_WAITFE 0x2 +#define BV_GPMI_DEBUG2_MAIN_STATE__MSM_WAITFR 0x3 +#define BV_GPMI_DEBUG2_MAIN_STATE__MSM_DMAREQ 0x4 +#define BV_GPMI_DEBUG2_MAIN_STATE__MSM_DMAACK 0x5 +#define BV_GPMI_DEBUG2_MAIN_STATE__MSM_WAITFF 0x6 +#define BV_GPMI_DEBUG2_MAIN_STATE__MSM_LDFIFO 0x7 +#define BV_GPMI_DEBUG2_MAIN_STATE__MSM_LDDMAR 0x8 +#define BV_GPMI_DEBUG2_MAIN_STATE__MSM_RDCMP 0x9 +#define BV_GPMI_DEBUG2_MAIN_STATE__MSM_DONE 0xA +#define BP_GPMI_DEBUG2_SYND2GPMI_BE 12 +#define BM_GPMI_DEBUG2_SYND2GPMI_BE 0x0000F000 +#define BF_GPMI_DEBUG2_SYND2GPMI_BE(v) \ + (((v) << 12) & BM_GPMI_DEBUG2_SYND2GPMI_BE) +#define BM_GPMI_DEBUG2_GPMI2SYND_VALID 0x00000800 +#define BM_GPMI_DEBUG2_GPMI2SYND_READY 0x00000400 +#define BM_GPMI_DEBUG2_SYND2GPMI_VALID 0x00000200 +#define BM_GPMI_DEBUG2_SYND2GPMI_READY 0x00000100 +#define BM_GPMI_DEBUG2_VIEW_DELAYED_RDN 0x00000080 +#define BM_GPMI_DEBUG2_UPDATE_WINDOW 0x00000040 +#define BP_GPMI_DEBUG2_RDN_TAP 0 +#define BM_GPMI_DEBUG2_RDN_TAP 0x0000003F +#define BF_GPMI_DEBUG2_RDN_TAP(v) \ + (((v) << 0) & BM_GPMI_DEBUG2_RDN_TAP) + +#define HW_GPMI_DEBUG3 (0x000000f0) + +#define BP_GPMI_DEBUG3_APB_WORD_CNTR 16 +#define BM_GPMI_DEBUG3_APB_WORD_CNTR 0xFFFF0000 +#define BF_GPMI_DEBUG3_APB_WORD_CNTR(v) \ + (((v) << 16) & BM_GPMI_DEBUG3_APB_WORD_CNTR) +#define BP_GPMI_DEBUG3_DEV_WORD_CNTR 0 +#define BM_GPMI_DEBUG3_DEV_WORD_CNTR 0x0000FFFF +#define BF_GPMI_DEBUG3_DEV_WORD_CNTR(v) \ + (((v) << 0) & BM_GPMI_DEBUG3_DEV_WORD_CNTR) + +#define HW_GPMI_READ_DDR_DLL_CTRL (0x00000100) + +#define BP_GPMI_READ_DDR_DLL_CTRL_REF_UPDATE_INT 28 +#define BM_GPMI_READ_DDR_DLL_CTRL_REF_UPDATE_INT 0xF0000000 +#define BF_GPMI_READ_DDR_DLL_CTRL_REF_UPDATE_INT(v) \ + (((v) << 28) & BM_GPMI_READ_DDR_DLL_CTRL_REF_UPDATE_INT) +#define BP_GPMI_READ_DDR_DLL_CTRL_SLV_UPDATE_INT 20 +#define BM_GPMI_READ_DDR_DLL_CTRL_SLV_UPDATE_INT 0x0FF00000 +#define BF_GPMI_READ_DDR_DLL_CTRL_SLV_UPDATE_INT(v) \ + (((v) << 20) & BM_GPMI_READ_DDR_DLL_CTRL_SLV_UPDATE_INT) +#define BP_GPMI_READ_DDR_DLL_CTRL_RSVD1 18 +#define BM_GPMI_READ_DDR_DLL_CTRL_RSVD1 0x000C0000 +#define BF_GPMI_READ_DDR_DLL_CTRL_RSVD1(v) \ + (((v) << 18) & BM_GPMI_READ_DDR_DLL_CTRL_RSVD1) +#define BP_GPMI_READ_DDR_DLL_CTRL_SLV_OVERRIDE_VAL 10 +#define BM_GPMI_READ_DDR_DLL_CTRL_SLV_OVERRIDE_VAL 0x0003FC00 +#define BF_GPMI_READ_DDR_DLL_CTRL_SLV_OVERRIDE_VAL(v) \ + (((v) << 10) & BM_GPMI_READ_DDR_DLL_CTRL_SLV_OVERRIDE_VAL) +#define BM_GPMI_READ_DDR_DLL_CTRL_SLV_OVERRIDE 0x00000200 +#define BM_GPMI_READ_DDR_DLL_CTRL_REFCLK_ON 0x00000100 +#define BM_GPMI_READ_DDR_DLL_CTRL_GATE_UPDATE 0x00000080 +#define BP_GPMI_READ_DDR_DLL_CTRL_SLV_DLY_TARGET 3 +#define BM_GPMI_READ_DDR_DLL_CTRL_SLV_DLY_TARGET 0x00000078 +#define BF_GPMI_READ_DDR_DLL_CTRL_SLV_DLY_TARGET(v) \ + (((v) << 3) & BM_GPMI_READ_DDR_DLL_CTRL_SLV_DLY_TARGET) +#define BM_GPMI_READ_DDR_DLL_CTRL_SLV_FORCE_UPD 0x00000004 +#define BM_GPMI_READ_DDR_DLL_CTRL_RESET 0x00000002 +#define BM_GPMI_READ_DDR_DLL_CTRL_ENABLE 0x00000001 + +#define HW_GPMI_WRITE_DDR_DLL_CTRL (0x00000110) + +#define BP_GPMI_WRITE_DDR_DLL_CTRL_REF_UPDATE_INT 28 +#define BM_GPMI_WRITE_DDR_DLL_CTRL_REF_UPDATE_INT 0xF0000000 +#define BF_GPMI_WRITE_DDR_DLL_CTRL_REF_UPDATE_INT(v) \ + (((v) << 28) & BM_GPMI_WRITE_DDR_DLL_CTRL_REF_UPDATE_INT) +#define BP_GPMI_WRITE_DDR_DLL_CTRL_SLV_UPDATE_INT 20 +#define BM_GPMI_WRITE_DDR_DLL_CTRL_SLV_UPDATE_INT 0x0FF00000 +#define BF_GPMI_WRITE_DDR_DLL_CTRL_SLV_UPDATE_INT(v) \ + (((v) << 20) & BM_GPMI_WRITE_DDR_DLL_CTRL_SLV_UPDATE_INT) +#define BP_GPMI_WRITE_DDR_DLL_CTRL_RSVD1 18 +#define BM_GPMI_WRITE_DDR_DLL_CTRL_RSVD1 0x000C0000 +#define BF_GPMI_WRITE_DDR_DLL_CTRL_RSVD1(v) \ + (((v) << 18) & BM_GPMI_WRITE_DDR_DLL_CTRL_RSVD1) +#define BP_GPMI_WRITE_DDR_DLL_CTRL_SLV_OVERRIDE_VAL 10 +#define BM_GPMI_WRITE_DDR_DLL_CTRL_SLV_OVERRIDE_VAL 0x0003FC00 +#define BF_GPMI_WRITE_DDR_DLL_CTRL_SLV_OVERRIDE_VAL(v) \ + (((v) << 10) & BM_GPMI_WRITE_DDR_DLL_CTRL_SLV_OVERRIDE_VAL) +#define BM_GPMI_WRITE_DDR_DLL_CTRL_SLV_OVERRIDE 0x00000200 +#define BM_GPMI_WRITE_DDR_DLL_CTRL_REFCLK_ON 0x00000100 +#define BM_GPMI_WRITE_DDR_DLL_CTRL_GATE_UPDATE 0x00000080 +#define BP_GPMI_WRITE_DDR_DLL_CTRL_SLV_DLY_TARGET 3 +#define BM_GPMI_WRITE_DDR_DLL_CTRL_SLV_DLY_TARGET 0x00000078 +#define BF_GPMI_WRITE_DDR_DLL_CTRL_SLV_DLY_TARGET(v) \ + (((v) << 3) & BM_GPMI_WRITE_DDR_DLL_CTRL_SLV_DLY_TARGET) +#define BM_GPMI_WRITE_DDR_DLL_CTRL_SLV_FORCE_UPD 0x00000004 +#define BM_GPMI_WRITE_DDR_DLL_CTRL_RESET 0x00000002 +#define BM_GPMI_WRITE_DDR_DLL_CTRL_ENABLE 0x00000001 + +#define HW_GPMI_READ_DDR_DLL_STS (0x00000120) + +#define BP_GPMI_READ_DDR_DLL_STS_RSVD1 25 +#define BM_GPMI_READ_DDR_DLL_STS_RSVD1 0xFE000000 +#define BF_GPMI_READ_DDR_DLL_STS_RSVD1(v) \ + (((v) << 25) & BM_GPMI_READ_DDR_DLL_STS_RSVD1) +#define BP_GPMI_READ_DDR_DLL_STS_REF_SEL 17 +#define BM_GPMI_READ_DDR_DLL_STS_REF_SEL 0x01FE0000 +#define BF_GPMI_READ_DDR_DLL_STS_REF_SEL(v) \ + (((v) << 17) & BM_GPMI_READ_DDR_DLL_STS_REF_SEL) +#define BM_GPMI_READ_DDR_DLL_STS_REF_LOCK 0x00010000 +#define BP_GPMI_READ_DDR_DLL_STS_RSVD0 9 +#define BM_GPMI_READ_DDR_DLL_STS_RSVD0 0x0000FE00 +#define BF_GPMI_READ_DDR_DLL_STS_RSVD0(v) \ + (((v) << 9) & BM_GPMI_READ_DDR_DLL_STS_RSVD0) +#define BP_GPMI_READ_DDR_DLL_STS_SLV_SEL 1 +#define BM_GPMI_READ_DDR_DLL_STS_SLV_SEL 0x000001FE +#define BF_GPMI_READ_DDR_DLL_STS_SLV_SEL(v) \ + (((v) << 1) & BM_GPMI_READ_DDR_DLL_STS_SLV_SEL) +#define BM_GPMI_READ_DDR_DLL_STS_SLV_LOCK 0x00000001 + +#define HW_GPMI_WRITE_DDR_DLL_STS (0x00000130) + +#define BP_GPMI_WRITE_DDR_DLL_STS_RSVD1 25 +#define BM_GPMI_WRITE_DDR_DLL_STS_RSVD1 0xFE000000 +#define BF_GPMI_WRITE_DDR_DLL_STS_RSVD1(v) \ + (((v) << 25) & BM_GPMI_WRITE_DDR_DLL_STS_RSVD1) +#define BP_GPMI_WRITE_DDR_DLL_STS_REF_SEL 17 +#define BM_GPMI_WRITE_DDR_DLL_STS_REF_SEL 0x01FE0000 +#define BF_GPMI_WRITE_DDR_DLL_STS_REF_SEL(v) \ + (((v) << 17) & BM_GPMI_WRITE_DDR_DLL_STS_REF_SEL) +#define BM_GPMI_WRITE_DDR_DLL_STS_REF_LOCK 0x00010000 +#define BP_GPMI_WRITE_DDR_DLL_STS_RSVD0 9 +#define BM_GPMI_WRITE_DDR_DLL_STS_RSVD0 0x0000FE00 +#define BF_GPMI_WRITE_DDR_DLL_STS_RSVD0(v) \ + (((v) << 9) & BM_GPMI_WRITE_DDR_DLL_STS_RSVD0) +#define BP_GPMI_WRITE_DDR_DLL_STS_SLV_SEL 1 +#define BM_GPMI_WRITE_DDR_DLL_STS_SLV_SEL 0x000001FE +#define BF_GPMI_WRITE_DDR_DLL_STS_SLV_SEL(v) \ + (((v) << 1) & BM_GPMI_WRITE_DDR_DLL_STS_SLV_SEL) +#define BM_GPMI_WRITE_DDR_DLL_STS_SLV_LOCK 0x00000001 +#endif /* __ARCH_ARM___GPMI_H */ diff --git a/drivers/mtd/nand/gpmi-nfc/gpmi-nfc-hal-common.c b/drivers/mtd/nand/gpmi-nfc/gpmi-nfc-hal-common.c new file mode 100644 index 000000000000..b38d653a21fd --- /dev/null +++ b/drivers/mtd/nand/gpmi-nfc/gpmi-nfc-hal-common.c @@ -0,0 +1,1037 @@ +/* + * Freescale GPMI NFC NAND Flash Driver + * + * Copyright (C) 2010 Freescale Semiconductor, Inc. + * Copyright (C) 2008 Embedded Alley Solutions, Inc. + * + * This program is free software; you can redistribute it and/or modify + * it under the terms of the GNU General Public License as published by + * the Free Software Foundation; either version 2 of the License, or + * (at your option) any later version. + * + * This program is distributed in the hope that it will be useful, + * but WITHOUT ANY WARRANTY; without even the implied warranty of + * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the + * GNU General Public License for more details. + * + * You should have received a copy of the GNU General Public License along + * with this program; if not, write to the Free Software Foundation, Inc., + * 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA. + */ + +#include "gpmi-nfc.h" + +/** + * gpmi_nfc_bch_isr - BCH interrupt service routine. + * + * @interrupt_number: The interrupt number. + * @cookie: A cookie that contains a pointer to the owning device + * data structure. + */ +irqreturn_t gpmi_nfc_bch_isr(int irq, void *cookie) +{ + struct gpmi_nfc_data *this = cookie; + struct nfc_hal *nfc = this->nfc; + + gpmi_nfc_add_event("> gpmi_nfc_bch_isr", 1); + + /* Clear the interrupt. */ + + nfc->clear_bch(this); + + /* Release the base level. */ + + complete(&(nfc->bch_done)); + + /* Return success. */ + + gpmi_nfc_add_event("< gpmi_nfc_bch_isr", -1); + + return IRQ_HANDLED; + +} + +/** + * gpmi_nfc_dma_isr - DMA interrupt service routine. + * + * @interrupt_number: The interrupt number. + * @cookie: A cookie that contains a pointer to the owning device + * data structure. + */ +irqreturn_t gpmi_nfc_dma_isr(int irq, void *cookie) +{ + struct gpmi_nfc_data *this = cookie; + struct nfc_hal *nfc = this->nfc; + + gpmi_nfc_add_event("> gpmi_nfc_dma_isr", 1); + + /* Acknowledge the DMA channel's interrupt. */ + + mxs_dma_ack_irq(nfc->isr_dma_channel); + + /* Release the base level. */ + + complete(&(nfc->dma_done)); + + /* Return success. */ + + gpmi_nfc_add_event("< gpmi_nfc_dma_isr", -1); + + return IRQ_HANDLED; + +} + +/** + * gpmi_nfc_dma_init() - Initializes DMA. + * + * @this: Per-device data. + */ +int gpmi_nfc_dma_init(struct gpmi_nfc_data *this) +{ + struct device *dev = this->dev; + struct nfc_hal *nfc = this->nfc; + int i; + int error; + + /* Allocate the DMA descriptors. */ + + for (i = 0; i < NFC_DMA_DESCRIPTOR_COUNT; i++) { + nfc->dma_descriptors[i] = mxs_dma_alloc_desc(); + if (!nfc->dma_descriptors[i]) { + dev_err(dev, "Cannot allocate all DMA descriptors.\n"); + error = -ENOMEM; + goto exit_descriptor_allocation; + } + } + + /* If control arrives here, all is well. */ + + return 0; + + /* Control arrives here when something has gone wrong. */ + +exit_descriptor_allocation: + while (--i >= 0) + mxs_dma_free_desc(this->nfc->dma_descriptors[i]); + + return error; + +} + +/** + * gpmi_nfc_dma_exit() - Shuts down DMA. + * + * @this: Per-device data. + */ +void gpmi_nfc_dma_exit(struct gpmi_nfc_data *this) +{ + struct nfc_hal *nfc = this->nfc; + int i; + + /* Free the DMA descriptors. */ + + for (i = 0; i < NFC_DMA_DESCRIPTOR_COUNT; i++) + mxs_dma_free_desc(nfc->dma_descriptors[i]); + +} + +/** + * gpmi_nfc_set_geometry() - Shared NFC geometry configuration. + * + * In principle, computing the NFC geometry is version-specific. However, at + * this writing all, versions share the same page model, so this code can also + * be shared. + * + * @this: Per-device data. + */ +int gpmi_nfc_set_geometry(struct gpmi_nfc_data *this) +{ + struct device *dev = this->dev; + struct physical_geometry *physical = &this->physical_geometry; + struct nfc_geometry *geometry = &this->nfc_geometry; + struct boot_rom_helper *rom = this->rom; + unsigned int metadata_size; + unsigned int status_size; + unsigned int chunk_data_size_in_bits; + unsigned int chunk_ecc_size_in_bits; + unsigned int chunk_total_size_in_bits; + unsigned int block_mark_chunk_number; + unsigned int block_mark_chunk_bit_offset; + unsigned int block_mark_bit_offset; + + /* At this writing, we support only BCH. */ + + geometry->ecc_algorithm = "BCH"; + + /* + * We always choose a metadata size of 10. Don't try to make sense of + * it -- this is really only for historical compatibility. + */ + + geometry->metadata_size_in_bytes = 10; + + /* + * At this writing, we always use 512-byte ECC chunks. Later hardware + * will be able to support larger chunks, which will cause this + * decision to move into version-specific code. + */ + + geometry->ecc_chunk_size_in_bytes = 512; + + /* Compute the page size based on the physical geometry. */ + + geometry->page_size_in_bytes = + physical->page_data_size_in_bytes + + physical->page_oob_size_in_bytes ; + + /* + * Compute the total number of ECC chunks in a page. This includes the + * slightly larger chunk at the beginning of the page, which contains + * both data and metadata. + */ + + geometry->ecc_chunk_count = + physical->page_data_size_in_bytes / + /*---------------------------------*/ + geometry->ecc_chunk_size_in_bytes; + + /* + * We use the same ECC strength for all chunks, including the first one. + * At this writing, we base our ECC strength choice entirely on the + * the physical page geometry. In the future, this should be changed to + * pay attention to the detailed device information we gathered earlier. + */ + + geometry->ecc_strength = 0; + + switch (physical->page_data_size_in_bytes) { + case 2048: + geometry->ecc_strength = 8; + break; + case 4096: + switch (physical->page_oob_size_in_bytes) { + case 128: + geometry->ecc_strength = 8; + break; + case 218: + geometry->ecc_strength = 16; + break; + } + break; + } + + /* Check if we were able to figure out the ECC strength. */ + + if (!geometry->ecc_strength) { + dev_err(dev, "Unsupported page geometry: %u:%u\n", + physical->page_data_size_in_bytes, + physical->page_oob_size_in_bytes); + return !0; + } + + /* + * The payload buffer contains the data area of a page. The ECC engine + * only needs what's required to hold the data. + */ + + geometry->payload_size_in_bytes = physical->page_data_size_in_bytes; + + /* + * In principle, computing the auxiliary buffer geometry is NFC + * version-specific. However, at this writing, all versions share the + * same model, so this code can also be shared. + * + * The auxiliary buffer contains the metadata and the ECC status. The + * metadata is padded to the nearest 32-bit boundary. The ECC status + * contains one byte for every ECC chunk, and is also padded to the + * nearest 32-bit boundary. + */ + + metadata_size = (geometry->metadata_size_in_bytes + 0x3) & ~0x3; + status_size = (geometry->ecc_chunk_count + 0x3) & ~0x3; + + geometry->auxiliary_size_in_bytes = metadata_size + status_size; + geometry->auxiliary_status_offset = metadata_size; + + /* Check if we're going to do block mark swapping. */ + + if (!rom->swap_block_mark) + return 0; + + /* + * If control arrives here, we're doing block mark swapping, so we need + * to compute the byte and bit offsets of the physical block mark within + * the ECC-based view of the page data. In principle, this isn't a + * difficult computation -- but it's very important and it's easy to get + * it wrong, so we do it carefully. + * + * Note that this calculation is simpler because we use the same ECC + * strength for all chunks, including the zero'th one, which contains + * the metadata. The calculation would be slightly more complicated + * otherwise. + * + * We start by computing the physical bit offset of the block mark. We + * then subtract the number of metadata and ECC bits appearing before + * the mark to arrive at its bit offset within the data alone. + */ + + /* Compute some important facts about chunk geometry. */ + + chunk_data_size_in_bits = geometry->ecc_chunk_size_in_bytes * 8; + chunk_ecc_size_in_bits = geometry->ecc_strength * 13; + + chunk_total_size_in_bits = + chunk_data_size_in_bits + chunk_ecc_size_in_bits; + + /* Compute the bit offset of the block mark within the physical page. */ + + block_mark_bit_offset = physical->page_data_size_in_bytes * 8; + + /* Subtract the metadata bits. */ + + block_mark_bit_offset -= geometry->metadata_size_in_bytes * 8; + + /* + * Compute the chunk number (starting at zero) in which the block mark + * appears. + */ + + block_mark_chunk_number = + block_mark_bit_offset / chunk_total_size_in_bits; + + /* + * Compute the bit offset of the block mark within its chunk, and + * validate it. + */ + + block_mark_chunk_bit_offset = + block_mark_bit_offset - + (block_mark_chunk_number * chunk_total_size_in_bits); + + if (block_mark_chunk_bit_offset > chunk_data_size_in_bits) { + + /* + * If control arrives here, the block mark actually appears in + * the ECC bits of this chunk. This wont' work. + */ + + dev_err(dev, "Unsupported page geometry " + "(block mark in ECC): %u:%u\n", + physical->page_data_size_in_bytes, + physical->page_oob_size_in_bytes); + return !0; + + } + + /* + * Now that we know the chunk number in which the block mark appears, + * we can subtract all the ECC bits that appear before it. + */ + + block_mark_bit_offset -= + block_mark_chunk_number * chunk_ecc_size_in_bits; + + /* + * We now know the absolute bit offset of the block mark within the + * ECC-based data. We can now compute the byte offset and the bit + * offset within the byte. + */ + + geometry->block_mark_byte_offset = block_mark_bit_offset / 8; + geometry->block_mark_bit_offset = block_mark_bit_offset % 8; + + /* Return success. */ + + return 0; + +} + +/* + * This code is useful for debugging. + */ + +/*#define DUMP_DMA_CONTEXT*/ + +#if (defined DUMP_DMA_CONTEXT) + +int dump_dma_context_flag; + +void dump_dma_context(struct gpmi_nfc_data *this, char *title) +{ + + struct resources *resources = &this->resources; + struct nfc_hal *nfc = this->nfc; + struct mxs_dma_desc **d = nfc->dma_descriptors; + void *q; + uint32_t *p; + unsigned int i; + unsigned int j; + + if (!dump_dma_context_flag) + return; + + pr_info("%s\n", title); + pr_info("======\n"); + pr_info("\n"); + + /*--------------------------------------------------------------------*/ + + pr_info(" Descriptors\n"); + pr_info(" -----------\n"); + { + + for (i = 0; i < NFC_DMA_DESCRIPTOR_COUNT; i++, d++) { + pr_info(" #%u\n", i); + pr_info(" --\n"); + pr_info(" Physical Address: 0x%08x\n" , (*d)->address); + pr_info(" Next : 0x%08lx\n", (*d)->cmd.next); + pr_info(" Command : 0x%08lx\n", (*d)->cmd.cmd.data); + pr_info(" Buffer : 0x%08x\n" , (*d)->cmd.address); + for (j = 0; j < 6; j++) + pr_info(" PIO[%u] : 0x%08lx\n", + j, (*d)->cmd.pio_words[j]); + } + + } + pr_info("\n"); + + /*--------------------------------------------------------------------*/ + + pr_info(" DMA\n"); + pr_info(" ---\n"); + { + void *DMA = IO_ADDRESS(APBH_DMA_PHYS_ADDR); + + p = q = DMA + 0x200; + + for (i = 0; i < 7; i++) { + pr_info(" [0x%03x] 0x%08x\n", q - DMA, *p); + q += 0x10; + p = q; + } + + } + pr_info("\n"); + + /*--------------------------------------------------------------------*/ + + pr_info(" GPMI\n"); + pr_info(" ----\n"); + { + void *GPMI = resources->gpmi_regs; + + p = q = GPMI; + + for (i = 0; i < 33; i++) { + pr_info(" [0x%03x] 0x%08x\n", q - GPMI, *p); + q += 0x10; + p = q; + } + + } + pr_info("\n"); + + /*--------------------------------------------------------------------*/ + + pr_info(" BCH\n"); + pr_info(" ---\n"); + { + void *BCH = resources->bch_regs; + + p = q = BCH; + + for (i = 0; i < 22; i++) { + pr_info(" [0x%03x] 0x%08x\n", q - BCH, *p); + q += 0x10; + p = q; + } + + } + pr_info("\n"); + +} + +#endif + +/** + * gpmi_nfc_dma_go - Run a DMA channel. + * + * @this: Per-device data structure. + * @dma_channel: The DMA channel we're going to use. + */ +int gpmi_nfc_dma_go(struct gpmi_nfc_data *this, int dma_channel) +{ + struct device *dev = this->dev; + struct resources *resources = &this->resources; + struct nfc_hal *nfc = this->nfc; + unsigned long timeout; + int error; + LIST_HEAD(tmp_desc_list); + + gpmi_nfc_add_event("> gpmi_nfc_dma_go", 1); + + /* Get ready... */ + + nfc->isr_dma_channel = dma_channel; + init_completion(&nfc->dma_done); + mxs_dma_enable_irq(dma_channel, 1); + + /* Go! */ + + #if defined(DUMP_DMA_CONTEXT) + dump_dma_context(this, "BEFORE"); + #endif + + mxs_dma_enable(dma_channel); + + /* Wait for it to finish. */ + + timeout = wait_for_completion_timeout(&nfc->dma_done, + msecs_to_jiffies(1000)); + + #if defined(DUMP_DMA_CONTEXT) + dump_dma_context(this, "AFTER"); + #endif + + error = (!timeout) ? -ETIMEDOUT : 0; + + if (error) { + dev_err(dev, "[%s] Chip: %u, DMA Channel: %d, Error %d\n", + __func__, dma_channel - resources->dma_low_channel, + dma_channel, error); + gpmi_nfc_add_event("...DMA timed out", 0); + } else + gpmi_nfc_add_event("...Finished DMA successfully", 0); + + /* Clear out the descriptors we just ran. */ + + mxs_dma_cooked(dma_channel, &tmp_desc_list); + + /* Shut the DMA channel down. */ + + mxs_dma_reset(dma_channel); + mxs_dma_enable_irq(dma_channel, 0); + mxs_dma_disable(dma_channel); + + /* Return. */ + + gpmi_nfc_add_event("< gpmi_nfc_dma_go", -1); + + return error; + +} + +/** + * ns_to_cycles - Converts time in nanoseconds to cycles. + * + * @ntime: The time, in nanoseconds. + * @period: The cycle period, in nanoseconds. + * @min: The minimum allowable number of cycles. + */ +static unsigned int ns_to_cycles(unsigned int time, + unsigned int period, unsigned int min) +{ + unsigned int k; + + /* + * Compute the minimum number of cycles that entirely contain the + * given time. + */ + + k = (time + period - 1) / period; + + return max(k, min); + +} + +/** + * gpmi_compute_hardware_timing - Apply timing to current hardware conditions. + * + * @this: Per-device data. + * @hardware_timing: A pointer to a hardware timing structure that will receive + * the results of our calculations. + */ +int gpmi_nfc_compute_hardware_timing(struct gpmi_nfc_data *this, + struct gpmi_nfc_hardware_timing *hw) +{ + struct gpmi_nfc_platform_data *pdata = this->pdata; + struct physical_geometry *physical = &this->physical_geometry; + struct nfc_hal *nfc = this->nfc; + struct gpmi_nfc_timing target = nfc->timing; + bool improved_timing_is_available; + unsigned long clock_frequency_in_hz; + unsigned int clock_period_in_ns; + bool dll_use_half_periods; + unsigned int dll_delay_shift; + unsigned int max_sample_delay_in_ns; + unsigned int address_setup_in_cycles; + unsigned int data_setup_in_ns; + unsigned int data_setup_in_cycles; + unsigned int data_hold_in_cycles; + int ideal_sample_delay_in_ns; + unsigned int sample_delay_factor; + int tEYE; + unsigned int min_prop_delay_in_ns = pdata->min_prop_delay_in_ns; + unsigned int max_prop_delay_in_ns = pdata->max_prop_delay_in_ns; + + /* + * If there are multiple chips, we need to relax the timings to allow + * for signal distortion due to higher capacitance. + */ + + if (physical->chip_count > 2) { + target.data_setup_in_ns += 10; + target.data_hold_in_ns += 10; + target.address_setup_in_ns += 10; + } else if (physical->chip_count > 1) { + target.data_setup_in_ns += 5; + target.data_hold_in_ns += 5; + target.address_setup_in_ns += 5; + } + + /* Check if improved timing information is available. */ + + improved_timing_is_available = + (target.tREA_in_ns >= 0) && + (target.tRLOH_in_ns >= 0) && + (target.tRHOH_in_ns >= 0) ; + + /* Inspect the clock. */ + + clock_frequency_in_hz = nfc->clock_frequency_in_hz; + clock_period_in_ns = 1000000000 / clock_frequency_in_hz; + + /* + * The NFC quantizes setup and hold parameters in terms of clock cycles. + * Here, we quantize the setup and hold timing parameters to the + * next-highest clock period to make sure we apply at least the + * specified times. + * + * For data setup and data hold, the hardware interprets a value of zero + * as the largest possible delay. This is not what's intended by a zero + * in the input parameter, so we impose a minimum of one cycle. + */ + + data_setup_in_cycles = ns_to_cycles(target.data_setup_in_ns, + clock_period_in_ns, 1); + data_hold_in_cycles = ns_to_cycles(target.data_hold_in_ns, + clock_period_in_ns, 1); + address_setup_in_cycles = ns_to_cycles(target.address_setup_in_ns, + clock_period_in_ns, 0); + + /* + * The clock's period affects the sample delay in a number of ways: + * + * (1) The NFC HAL tells us the maximum clock period the sample delay + * DLL can tolerate. If the clock period is greater than half that + * maximum, we must configure the DLL to be driven by half periods. + * + * (2) We need to convert from an ideal sample delay, in ns, to a + * "sample delay factor," which the NFC uses. This factor depends on + * whether we're driving the DLL with full or half periods. + * Paraphrasing the reference manual: + * + * AD = SDF x 0.125 x RP + * + * where: + * + * AD is the applied delay, in ns. + * SDF is the sample delay factor, which is dimensionless. + * RP is the reference period, in ns, which is a full clock period + * if the DLL is being driven by full periods, or half that if + * the DLL is being driven by half periods. + * + * Let's re-arrange this in a way that's more useful to us: + * + * 8 + * SDF = AD x ---- + * RP + * + * The reference period is either the clock period or half that, so this + * is: + * + * 8 AD x DDF + * SDF = AD x ----- = -------- + * f x P P + * + * where: + * + * f is 1 or 1/2, depending on how we're driving the DLL. + * P is the clock period. + * DDF is the DLL Delay Factor, a dimensionless value that + * incorporates all the constants in the conversion. + * + * DDF will be either 8 or 16, both of which are powers of two. We can + * reduce the cost of this conversion by using bit shifts instead of + * multiplication or division. Thus: + * + * AD << DDS + * SDF = --------- + * P + * + * or + * + * AD = (SDF >> DDS) x P + * + * where: + * + * DDS is the DLL Delay Shift, the logarithm to base 2 of the DDF. + */ + + if (clock_period_in_ns > (nfc->max_dll_clock_period_in_ns >> 1)) { + dll_use_half_periods = true; + dll_delay_shift = 3 + 1; + } else { + dll_use_half_periods = false; + dll_delay_shift = 3; + } + + /* + * Compute the maximum sample delay the NFC allows, under current + * conditions. If the clock is running too slowly, no sample delay is + * possible. + */ + + if (clock_period_in_ns > nfc->max_dll_clock_period_in_ns) + max_sample_delay_in_ns = 0; + else { + + /* + * Compute the delay implied by the largest sample delay factor + * the NFC allows. + */ + + max_sample_delay_in_ns = + (nfc->max_sample_delay_factor * clock_period_in_ns) >> + dll_delay_shift; + + /* + * Check if the implied sample delay larger than the NFC + * actually allows. + */ + + if (max_sample_delay_in_ns > nfc->max_dll_delay_in_ns) + max_sample_delay_in_ns = nfc->max_dll_delay_in_ns; + + } + + /* + * Check if improved timing information is available. If not, we have to + * use a less-sophisticated algorithm. + */ + + if (!improved_timing_is_available) { + + /* + * Fold the read setup time required by the NFC into the ideal + * sample delay. + */ + + ideal_sample_delay_in_ns = target.gpmi_sample_delay_in_ns + + nfc->internal_data_setup_in_ns; + + /* + * The ideal sample delay may be greater than the maximum + * allowed by the NFC. If so, we can trade off sample delay time + * for more data setup time. + * + * In each iteration of the following loop, we add a cycle to + * the data setup time and subtract a corresponding amount from + * the sample delay until we've satisified the constraints or + * can't do any better. + */ + + while ((ideal_sample_delay_in_ns > max_sample_delay_in_ns) && + (data_setup_in_cycles < nfc->max_data_setup_cycles)) { + + data_setup_in_cycles++; + ideal_sample_delay_in_ns -= clock_period_in_ns; + + if (ideal_sample_delay_in_ns < 0) + ideal_sample_delay_in_ns = 0; + + } + + /* + * Compute the sample delay factor that corresponds most closely + * to the ideal sample delay. If the result is too large for the + * NFC, use the maximum value. + * + * Notice that we use the ns_to_cycles function to compute the + * sample delay factor. We do this because the form of the + * computation is the same as that for calculating cycles. + */ + + sample_delay_factor = + ns_to_cycles( + ideal_sample_delay_in_ns << dll_delay_shift, + clock_period_in_ns, 0); + + if (sample_delay_factor > nfc->max_sample_delay_factor) + sample_delay_factor = nfc->max_sample_delay_factor; + + /* Skip to the part where we return our results. */ + + goto return_results; + + } + + /* + * If control arrives here, we have more detailed timing information, + * so we can use a better algorithm. + */ + + /* + * Fold the read setup time required by the NFC into the maximum + * propagation delay. + */ + + max_prop_delay_in_ns += nfc->internal_data_setup_in_ns; + + /* + * Earlier, we computed the number of clock cycles required to satisfy + * the data setup time. Now, we need to know the actual nanoseconds. + */ + + data_setup_in_ns = clock_period_in_ns * data_setup_in_cycles; + + /* + * Compute tEYE, the width of the data eye when reading from the NAND + * Flash. The eye width is fundamentally determined by the data setup + * time, perturbed by propagation delays and some characteristics of the + * NAND Flash device. + * + * start of the eye = max_prop_delay + tREA + * end of the eye = min_prop_delay + tRHOH + data_setup + */ + + tEYE = (int)min_prop_delay_in_ns + (int)target.tRHOH_in_ns + + (int)data_setup_in_ns; + + tEYE -= (int)max_prop_delay_in_ns + (int)target.tREA_in_ns; + + /* + * The eye must be open. If it's not, we can try to open it by + * increasing its main forcer, the data setup time. + * + * In each iteration of the following loop, we increase the data setup + * time by a single clock cycle. We do this until either the eye is + * open or we run into NFC limits. + */ + + while ((tEYE <= 0) && + (data_setup_in_cycles < nfc->max_data_setup_cycles)) { + /* Give a cycle to data setup. */ + data_setup_in_cycles++; + /* Synchronize the data setup time with the cycles. */ + data_setup_in_ns += clock_period_in_ns; + /* Adjust tEYE accordingly. */ + tEYE += clock_period_in_ns; + } + + /* + * When control arrives here, the eye is open. The ideal time to sample + * the data is in the center of the eye: + * + * end of the eye + start of the eye + * --------------------------------- - data_setup + * 2 + * + * After some algebra, this simplifies to the code immediately below. + */ + + ideal_sample_delay_in_ns = + ((int)max_prop_delay_in_ns + + (int)target.tREA_in_ns + + (int)min_prop_delay_in_ns + + (int)target.tRHOH_in_ns - + (int)data_setup_in_ns) >> 1; + + /* + * The following figure illustrates some aspects of a NAND Flash read: + * + * + * __ _____________________________________ + * RDN \_________________/ + * + * <---- tEYE -----> + * /-----------------\ + * Read Data ----------------------------< >--------- + * \-----------------/ + * ^ ^ ^ ^ + * | | | | + * |<--Data Setup -->|<--Delay Time -->| | + * | | | | + * | | | + * | |<-- Quantized Delay Time -->| + * | | | + * + * + * We have some issues we must now address: + * + * (1) The *ideal* sample delay time must not be negative. If it is, we + * jam it to zero. + * + * (2) The *ideal* sample delay time must not be greater than that + * allowed by the NFC. If it is, we can increase the data setup + * time, which will reduce the delay between the end of the data + * setup and the center of the eye. It will also make the eye + * larger, which might help with the next issue... + * + * (3) The *quantized* sample delay time must not fall either before the + * eye opens or after it closes (the latter is the problem + * illustrated in the above figure). + */ + + /* Jam a negative ideal sample delay to zero. */ + + if (ideal_sample_delay_in_ns < 0) + ideal_sample_delay_in_ns = 0; + + /* + * Extend the data setup as needed to reduce the ideal sample delay + * below the maximum permitted by the NFC. + */ + + while ((ideal_sample_delay_in_ns > max_sample_delay_in_ns) && + (data_setup_in_cycles < nfc->max_data_setup_cycles)) { + + /* Give a cycle to data setup. */ + data_setup_in_cycles++; + /* Synchronize the data setup time with the cycles. */ + data_setup_in_ns += clock_period_in_ns; + /* Adjust tEYE accordingly. */ + tEYE += clock_period_in_ns; + + /* + * Decrease the ideal sample delay by one half cycle, to keep it + * in the middle of the eye. + */ + ideal_sample_delay_in_ns -= (clock_period_in_ns >> 1); + + /* Jam a negative ideal sample delay to zero. */ + if (ideal_sample_delay_in_ns < 0) + ideal_sample_delay_in_ns = 0; + + } + + /* + * Compute the sample delay factor that corresponds to the ideal sample + * delay. If the result is too large, then use the maximum allowed + * value. + * + * Notice that we use the ns_to_cycles function to compute the sample + * delay factor. We do this because the form of the computation is the + * same as that for calculating cycles. + */ + + sample_delay_factor = + ns_to_cycles(ideal_sample_delay_in_ns << dll_delay_shift, + clock_period_in_ns, 0); + + if (sample_delay_factor > nfc->max_sample_delay_factor) + sample_delay_factor = nfc->max_sample_delay_factor; + + /* + * These macros conveniently encapsulate a computation we'll use to + * continuously evaluate whether or not the data sample delay is inside + * the eye. + */ + + #define IDEAL_DELAY ((int) ideal_sample_delay_in_ns) + + #define QUANTIZED_DELAY \ + ((int) ((sample_delay_factor * clock_period_in_ns) >> \ + dll_delay_shift)) + + #define DELAY_ERROR (abs(QUANTIZED_DELAY - IDEAL_DELAY)) + + #define SAMPLE_IS_NOT_WITHIN_THE_EYE (DELAY_ERROR > (tEYE >> 1)) + + /* + * While the quantized sample time falls outside the eye, reduce the + * sample delay or extend the data setup to move the sampling point back + * toward the eye. Do not allow the number of data setup cycles to + * exceed the maximum allowed by the NFC. + */ + + while (SAMPLE_IS_NOT_WITHIN_THE_EYE && + (data_setup_in_cycles < nfc->max_data_setup_cycles)) { + + /* + * If control arrives here, the quantized sample delay falls + * outside the eye. Check if it's before the eye opens, or after + * the eye closes. + */ + + if (QUANTIZED_DELAY > IDEAL_DELAY) { + + /* + * If control arrives here, the quantized sample delay + * falls after the eye closes. Decrease the quantized + * delay time and then go back to re-evaluate. + */ + + if (sample_delay_factor != 0) + sample_delay_factor--; + + continue; + + } + + /* + * If control arrives here, the quantized sample delay falls + * before the eye opens. Shift the sample point by increasing + * data setup time. This will also make the eye larger. + */ + + /* Give a cycle to data setup. */ + data_setup_in_cycles++; + /* Synchronize the data setup time with the cycles. */ + data_setup_in_ns += clock_period_in_ns; + /* Adjust tEYE accordingly. */ + tEYE += clock_period_in_ns; + + /* + * Decrease the ideal sample delay by one half cycle, to keep it + * in the middle of the eye. + */ + ideal_sample_delay_in_ns -= (clock_period_in_ns >> 1); + + /* ...and one less period for the delay time. */ + ideal_sample_delay_in_ns -= clock_period_in_ns; + + /* Jam a negative ideal sample delay to zero. */ + if (ideal_sample_delay_in_ns < 0) + ideal_sample_delay_in_ns = 0; + + /* + * We have a new ideal sample delay, so re-compute the quantized + * delay. + */ + + sample_delay_factor = + ns_to_cycles( + ideal_sample_delay_in_ns << dll_delay_shift, + clock_period_in_ns, 0); + + if (sample_delay_factor > nfc->max_sample_delay_factor) + sample_delay_factor = nfc->max_sample_delay_factor; + + } + + /* Control arrives here when we're ready to return our results. */ + +return_results: + + hw->data_setup_in_cycles = data_setup_in_cycles; + hw->data_hold_in_cycles = data_hold_in_cycles; + hw->address_setup_in_cycles = address_setup_in_cycles; + hw->use_half_periods = dll_use_half_periods; + hw->sample_delay_factor = sample_delay_factor; + + /* Return success. */ + + return 0; + +} diff --git a/drivers/mtd/nand/gpmi-nfc/gpmi-nfc-hal-v0.c b/drivers/mtd/nand/gpmi-nfc/gpmi-nfc-hal-v0.c new file mode 100644 index 000000000000..294bb9409581 --- /dev/null +++ b/drivers/mtd/nand/gpmi-nfc/gpmi-nfc-hal-v0.c @@ -0,0 +1,924 @@ +/* + * Freescale GPMI NFC NAND Flash Driver + * + * Copyright (C) 2010 Freescale Semiconductor, Inc. + * Copyright (C) 2008 Embedded Alley Solutions, Inc. + * + * This program is free software; you can redistribute it and/or modify + * it under the terms of the GNU General Public License as published by + * the Free Software Foundation; either version 2 of the License, or + * (at your option) any later version. + * + * This program is distributed in the hope that it will be useful, + * but WITHOUT ANY WARRANTY; without even the implied warranty of + * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the + * GNU General Public License for more details. + * + * You should have received a copy of the GNU General Public License along + * with this program; if not, write to the Free Software Foundation, Inc., + * 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA. + */ + +#include "gpmi-nfc.h" + +#include "gpmi-nfc-gpmi-regs-v0.h" +#include "gpmi-nfc-bch-regs-v0.h" + +/** + * init() - Initializes the NFC hardware. + * + * @this: Per-device data. + */ +static int init(struct gpmi_nfc_data *this) +{ + struct resources *resources = &this->resources; + int error; + + /* Initialize DMA. */ + + error = gpmi_nfc_dma_init(this); + + if (error) + return error; + + /* Enable the clock. It will stay on until the end of set_geometry(). */ + + clk_enable(resources->clock); + + /* Reset the GPMI block. */ + + mxs_reset_block(resources->gpmi_regs + HW_GPMI_CTRL0, true); + + /* Choose NAND mode. */ + __raw_writel(BM_GPMI_CTRL1_GPMI_MODE, + resources->gpmi_regs + HW_GPMI_CTRL1_CLR); + + /* Set the IRQ polarity. */ + __raw_writel(BM_GPMI_CTRL1_ATA_IRQRDY_POLARITY, + resources->gpmi_regs + HW_GPMI_CTRL1_SET); + + /* Disable write protection. */ + __raw_writel(BM_GPMI_CTRL1_DEV_RESET, + resources->gpmi_regs + HW_GPMI_CTRL1_SET); + + /* Select BCH ECC. */ + __raw_writel(BM_GPMI_CTRL1_BCH_MODE, + resources->gpmi_regs + HW_GPMI_CTRL1_SET); + + /* Disable the clock. */ + + clk_disable(resources->clock); + + /* If control arrives here, all is well. */ + + return 0; + +} + +/** + * set_geometry() - Configures the NFC geometry. + * + * @this: Per-device data. + */ +static int set_geometry(struct gpmi_nfc_data *this) +{ + struct resources *resources = &this->resources; + struct nfc_geometry *nfc = &this->nfc_geometry; + unsigned int block_count; + unsigned int block_size; + unsigned int metadata_size; + unsigned int ecc_strength; + unsigned int page_size; + + /* We make the abstract choices in a common function. */ + + if (gpmi_nfc_set_geometry(this)) + return !0; + + /* Translate the abstract choices into register fields. */ + + block_count = nfc->ecc_chunk_count - 1; + block_size = nfc->ecc_chunk_size_in_bytes; + metadata_size = nfc->metadata_size_in_bytes; + ecc_strength = nfc->ecc_strength >> 1; + page_size = nfc->page_size_in_bytes; + + /* Enable the clock. */ + + clk_enable(resources->clock); + + /* + * Reset the BCH block. Notice that we pass in true for the just_enable + * flag. This is because the soft reset for the version 0 BCH block + * doesn't work. If you try to soft reset the BCH block, it becomes + * unusable until the next hard reset. + */ + + mxs_reset_block(resources->bch_regs, true); + + /* Configure layout 0. */ + + __raw_writel( + BF_BCH_FLASH0LAYOUT0_NBLOCKS(block_count) | + BF_BCH_FLASH0LAYOUT0_META_SIZE(metadata_size) | + BF_BCH_FLASH0LAYOUT0_ECC0(ecc_strength) | + BF_BCH_FLASH0LAYOUT0_DATA0_SIZE(block_size) , + resources->bch_regs + HW_BCH_FLASH0LAYOUT0); + + __raw_writel( + BF_BCH_FLASH0LAYOUT1_PAGE_SIZE(page_size) | + BF_BCH_FLASH0LAYOUT1_ECCN(ecc_strength) | + BF_BCH_FLASH0LAYOUT1_DATAN_SIZE(block_size) , + resources->bch_regs + HW_BCH_FLASH0LAYOUT1); + + /* Set *all* chip selects to use layout 0. */ + + __raw_writel(0, resources->bch_regs + HW_BCH_LAYOUTSELECT); + + /* Enable interrupts. */ + + __raw_writel(BM_BCH_CTRL_COMPLETE_IRQ_EN, + resources->bch_regs + HW_BCH_CTRL_SET); + + /* Disable the clock. */ + + clk_disable(resources->clock); + + /* Return success. */ + + return 0; + +} + +/** + * set_timing() - Configures the NFC timing. + * + * @this: Per-device data. + * @timing: The timing of interest. + */ +static int set_timing(struct gpmi_nfc_data *this, + const struct gpmi_nfc_timing *timing) +{ + struct nfc_hal *nfc = this->nfc; + + /* Accept the new timing. */ + + nfc->timing = *timing; + + /* Return success. */ + + return 0; + +} + +/** + * get_timing() - Retrieves the NFC hardware timing. + * + * @this: Per-device data. + * @clock_frequency_in_hz: The clock frequency, in Hz, during the current + * I/O transaction. If no I/O transaction is in + * progress, this is the clock frequency during the + * most recent I/O transaction. + * @hardware_timing: The hardware timing configuration in effect during + * the current I/O transaction. If no I/O transaction + * is in progress, this is the hardware timing + * configuration during the most recent I/O + * transaction. + */ +static void get_timing(struct gpmi_nfc_data *this, + unsigned long *clock_frequency_in_hz, + struct gpmi_nfc_hardware_timing *hardware_timing) +{ + struct resources *resources = &this->resources; + struct nfc_hal *nfc = this->nfc; + unsigned char *gpmi_regs = resources->gpmi_regs; + uint32_t register_image; + + /* Return the clock frequency. */ + + *clock_frequency_in_hz = nfc->clock_frequency_in_hz; + + /* We'll be reading the hardware, so let's enable the clock. */ + + clk_enable(resources->clock); + + /* Retrieve the hardware timing. */ + + register_image = __raw_readl(gpmi_regs + HW_GPMI_TIMING0); + + hardware_timing->data_setup_in_cycles = + (register_image & BM_GPMI_TIMING0_DATA_SETUP) >> + BP_GPMI_TIMING0_DATA_SETUP; + + hardware_timing->data_hold_in_cycles = + (register_image & BM_GPMI_TIMING0_DATA_HOLD) >> + BP_GPMI_TIMING0_DATA_HOLD; + + hardware_timing->address_setup_in_cycles = + (register_image & BM_GPMI_TIMING0_ADDRESS_SETUP) >> + BP_GPMI_TIMING0_ADDRESS_SETUP; + + register_image = __raw_readl(gpmi_regs + HW_GPMI_CTRL1); + + hardware_timing->use_half_periods = + (register_image & BM_GPMI_CTRL1_HALF_PERIOD) >> + BP_GPMI_CTRL1_HALF_PERIOD; + + hardware_timing->sample_delay_factor = + (register_image & BM_GPMI_CTRL1_RDN_DELAY) >> + BP_GPMI_CTRL1_RDN_DELAY; + + /* We're done reading the hardware, so disable the clock. */ + + clk_disable(resources->clock); + +} + +/** + * exit() - Shuts down the NFC hardware. + * + * @this: Per-device data. + */ +static void exit(struct gpmi_nfc_data *this) +{ + gpmi_nfc_dma_exit(this); +} + +/** + * begin() - Begin NFC I/O. + * + * @this: Per-device data. + */ +static void begin(struct gpmi_nfc_data *this) +{ + struct resources *resources = &this->resources; + struct nfc_hal *nfc = this->nfc; + struct gpmi_nfc_hardware_timing hw; + unsigned char *gpmi_regs = resources->gpmi_regs; + unsigned int clock_period_in_ns; + uint32_t register_image; + unsigned int dll_wait_time_in_us; + + /* Enable the clock. */ + + clk_enable(resources->clock); + + /* Get the timing information we need. */ + + nfc->clock_frequency_in_hz = clk_get_rate(resources->clock); + clock_period_in_ns = 1000000000 / nfc->clock_frequency_in_hz; + + gpmi_nfc_compute_hardware_timing(this, &hw); + + /* Set up all the simple timing parameters. */ + + register_image = + BF_GPMI_TIMING0_ADDRESS_SETUP(hw.address_setup_in_cycles) | + BF_GPMI_TIMING0_DATA_HOLD(hw.data_hold_in_cycles) | + BF_GPMI_TIMING0_DATA_SETUP(hw.data_setup_in_cycles) ; + + __raw_writel(register_image, gpmi_regs + HW_GPMI_TIMING0); + + /* + * HEY - PAY ATTENTION! + * + * DLL_ENABLE must be set to zero when setting RDN_DELAY or HALF_PERIOD. + */ + + __raw_writel(BM_GPMI_CTRL1_DLL_ENABLE, gpmi_regs + HW_GPMI_CTRL1_CLR); + + /* Clear out the DLL control fields. */ + + __raw_writel(BM_GPMI_CTRL1_RDN_DELAY, gpmi_regs + HW_GPMI_CTRL1_CLR); + __raw_writel(BM_GPMI_CTRL1_HALF_PERIOD, gpmi_regs + HW_GPMI_CTRL1_CLR); + + /* If no sample delay is called for, return immediately. */ + + if (!hw.sample_delay_factor) + return; + + /* Configure the HALF_PERIOD flag. */ + + if (hw.use_half_periods) + __raw_writel(BM_GPMI_CTRL1_HALF_PERIOD, + gpmi_regs + HW_GPMI_CTRL1_SET); + + /* Set the delay factor. */ + + __raw_writel(BF_GPMI_CTRL1_RDN_DELAY(hw.sample_delay_factor), + gpmi_regs + HW_GPMI_CTRL1_SET); + + /* Enable the DLL. */ + + __raw_writel(BM_GPMI_CTRL1_DLL_ENABLE, gpmi_regs + HW_GPMI_CTRL1_SET); + + /* + * After we enable the GPMI DLL, we have to wait 64 clock cycles before + * we can use the GPMI. + * + * Calculate the amount of time we need to wait, in microseconds. + */ + + dll_wait_time_in_us = (clock_period_in_ns * 64) / 1000; + + if (!dll_wait_time_in_us) + dll_wait_time_in_us = 1; + + /* Wait for the DLL to settle. */ + + udelay(dll_wait_time_in_us); + +} + +/** + * end() - End NFC I/O. + * + * @this: Per-device data. + */ +static void end(struct gpmi_nfc_data *this) +{ + struct resources *resources = &this->resources; + + /* Disable the clock. */ + + clk_disable(resources->clock); + +} + +/** + * clear_bch() - Clears a BCH interrupt. + * + * @this: Per-device data. + */ +static void clear_bch(struct gpmi_nfc_data *this) +{ + struct resources *resources = &this->resources; + + __raw_writel(BM_BCH_CTRL_COMPLETE_IRQ, + resources->bch_regs + HW_BCH_CTRL_CLR); + +} + +/** + * is_ready() - Returns the ready/busy status of the given chip. + * + * @this: Per-device data. + * @chip: The chip of interest. + */ +static int is_ready(struct gpmi_nfc_data *this, unsigned chip) +{ + struct resources *resources = &this->resources; + uint32_t mask; + uint32_t register_image; + + /* Extract and return the status. */ + + mask = BM_GPMI_DEBUG_READY0 << chip; + + register_image = __raw_readl(resources->gpmi_regs + HW_GPMI_DEBUG); + + return !!(register_image & mask); + +} + +/** + * send_command() - Sends a command and associated addresses. + * + * @this: Per-device data. + * @chip: The chip of interest. + * @buffer: The physical address of a buffer that contains the command bytes. + * @length: The number of bytes in the buffer. + */ +static int send_command(struct gpmi_nfc_data *this, unsigned chip, + dma_addr_t buffer, unsigned int length) +{ + struct device *dev = this->dev; + struct resources *resources = &this->resources; + struct nfc_hal *nfc = this->nfc; + struct mxs_dma_desc **d = nfc->dma_descriptors; + int dma_channel; + int error; + uint32_t command_mode; + uint32_t address; + + /* Compute the DMA channel. */ + + dma_channel = resources->dma_low_channel + chip; + + /* A DMA descriptor that sends out the command. */ + + command_mode = BV_GPMI_CTRL0_COMMAND_MODE__WRITE; + address = BV_GPMI_CTRL0_ADDRESS__NAND_CLE; + + (*d)->cmd.cmd.data = 0; + (*d)->cmd.cmd.bits.command = DMA_READ; + (*d)->cmd.cmd.bits.chain = 1; + (*d)->cmd.cmd.bits.irq = 1; + (*d)->cmd.cmd.bits.nand_lock = 0; + (*d)->cmd.cmd.bits.nand_wait_4_ready = 0; + (*d)->cmd.cmd.bits.dec_sem = 1; + (*d)->cmd.cmd.bits.wait4end = 1; + (*d)->cmd.cmd.bits.halt_on_terminate = 0; + (*d)->cmd.cmd.bits.terminate_flush = 0; + (*d)->cmd.cmd.bits.pio_words = 3; + (*d)->cmd.cmd.bits.bytes = length; + + (*d)->cmd.address = buffer; + + (*d)->cmd.pio_words[0] = + BF_GPMI_CTRL0_COMMAND_MODE(command_mode) | + BM_GPMI_CTRL0_WORD_LENGTH | + BF_GPMI_CTRL0_CS(chip) | + BF_GPMI_CTRL0_ADDRESS(address) | + BM_GPMI_CTRL0_ADDRESS_INCREMENT | + BF_GPMI_CTRL0_XFER_COUNT(length) ; + + (*d)->cmd.pio_words[1] = 0; + (*d)->cmd.pio_words[2] = 0; + + mxs_dma_desc_append(dma_channel, (*d)); + d++; + + /* Go! */ + + error = gpmi_nfc_dma_go(this, dma_channel); + + if (error) + dev_err(dev, "[%s] DMA error\n", __func__); + + /* Return success. */ + + return error; + +} + +/** + * send_data() - Sends data to the given chip. + * + * @this: Per-device data. + * @chip: The chip of interest. + * @buffer: The physical address of a buffer that contains the data. + * @length: The number of bytes in the buffer. + */ +static int send_data(struct gpmi_nfc_data *this, unsigned chip, + dma_addr_t buffer, unsigned int length) +{ + struct device *dev = this->dev; + struct resources *resources = &this->resources; + struct nfc_hal *nfc = this->nfc; + struct mxs_dma_desc **d = nfc->dma_descriptors; + int dma_channel; + int error = 0; + uint32_t command_mode; + uint32_t address; + + /* Compute the DMA channel. */ + + dma_channel = resources->dma_low_channel + chip; + + /* A DMA descriptor that writes a buffer out. */ + + command_mode = BV_GPMI_CTRL0_COMMAND_MODE__WRITE; + address = BV_GPMI_CTRL0_ADDRESS__NAND_DATA; + + (*d)->cmd.cmd.data = 0; + (*d)->cmd.cmd.bits.command = DMA_READ; + (*d)->cmd.cmd.bits.chain = 0; + (*d)->cmd.cmd.bits.irq = 1; + (*d)->cmd.cmd.bits.nand_lock = 0; + (*d)->cmd.cmd.bits.nand_wait_4_ready = 0; + (*d)->cmd.cmd.bits.dec_sem = 1; + (*d)->cmd.cmd.bits.wait4end = 1; + (*d)->cmd.cmd.bits.halt_on_terminate = 0; + (*d)->cmd.cmd.bits.terminate_flush = 0; + (*d)->cmd.cmd.bits.pio_words = 4; + (*d)->cmd.cmd.bits.bytes = length; + + (*d)->cmd.address = buffer; + + (*d)->cmd.pio_words[0] = + BF_GPMI_CTRL0_COMMAND_MODE(command_mode) | + BM_GPMI_CTRL0_WORD_LENGTH | + BF_GPMI_CTRL0_CS(chip) | + BF_GPMI_CTRL0_ADDRESS(address) | + BF_GPMI_CTRL0_XFER_COUNT(length) ; + (*d)->cmd.pio_words[1] = 0; + (*d)->cmd.pio_words[2] = 0; + (*d)->cmd.pio_words[3] = 0; + + mxs_dma_desc_append(dma_channel, (*d)); + d++; + + /* Go! */ + + error = gpmi_nfc_dma_go(this, dma_channel); + + if (error) + dev_err(dev, "[%s] DMA error\n", __func__); + + /* Return success. */ + + return error; + +} + +/** + * read_data() - Receives data from the given chip. + * + * @this: Per-device data. + * @chip: The chip of interest. + * @buffer: The physical address of a buffer that will receive the data. + * @length: The number of bytes to read. + */ +static int read_data(struct gpmi_nfc_data *this, unsigned chip, + dma_addr_t buffer, unsigned int length) +{ + struct device *dev = this->dev; + struct resources *resources = &this->resources; + struct nfc_hal *nfc = this->nfc; + struct mxs_dma_desc **d = nfc->dma_descriptors; + int dma_channel; + int error = 0; + uint32_t command_mode; + uint32_t address; + + /* Compute the DMA channel. */ + + dma_channel = resources->dma_low_channel + chip; + + /* A DMA descriptor that reads the data. */ + + command_mode = BV_GPMI_CTRL0_COMMAND_MODE__READ; + address = BV_GPMI_CTRL0_ADDRESS__NAND_DATA; + + (*d)->cmd.cmd.data = 0; + (*d)->cmd.cmd.bits.command = DMA_WRITE; + (*d)->cmd.cmd.bits.chain = 1; + (*d)->cmd.cmd.bits.irq = 0; + (*d)->cmd.cmd.bits.nand_lock = 0; + (*d)->cmd.cmd.bits.nand_wait_4_ready = 0; + (*d)->cmd.cmd.bits.dec_sem = 1; + (*d)->cmd.cmd.bits.wait4end = 1; + (*d)->cmd.cmd.bits.halt_on_terminate = 0; + (*d)->cmd.cmd.bits.terminate_flush = 0; + (*d)->cmd.cmd.bits.pio_words = 1; + (*d)->cmd.cmd.bits.bytes = length; + + (*d)->cmd.address = buffer; + + (*d)->cmd.pio_words[0] = + BF_GPMI_CTRL0_COMMAND_MODE(command_mode) | + BM_GPMI_CTRL0_WORD_LENGTH | + BF_GPMI_CTRL0_CS(chip) | + BF_GPMI_CTRL0_ADDRESS(address) | + BF_GPMI_CTRL0_XFER_COUNT(length) ; + + mxs_dma_desc_append(dma_channel, (*d)); + d++; + + /* + * A DMA descriptor that waits for the command to end and the chip to + * become ready. + * + * I think we actually should *not* be waiting for the chip to become + * ready because, after all, we don't care. I think the original code + * did that and no one has re-thought it yet. + */ + + command_mode = BV_GPMI_CTRL0_COMMAND_MODE__WAIT_FOR_READY; + address = BV_GPMI_CTRL0_ADDRESS__NAND_DATA; + + (*d)->cmd.cmd.data = 0; + (*d)->cmd.cmd.bits.command = NO_DMA_XFER; + (*d)->cmd.cmd.bits.chain = 0; + (*d)->cmd.cmd.bits.irq = 1; + (*d)->cmd.cmd.bits.nand_lock = 0; + (*d)->cmd.cmd.bits.nand_wait_4_ready = 1; + (*d)->cmd.cmd.bits.dec_sem = 1; + (*d)->cmd.cmd.bits.wait4end = 1; + (*d)->cmd.cmd.bits.halt_on_terminate = 0; + (*d)->cmd.cmd.bits.terminate_flush = 0; + (*d)->cmd.cmd.bits.pio_words = 4; + (*d)->cmd.cmd.bits.bytes = 0; + + (*d)->cmd.address = 0; + + (*d)->cmd.pio_words[0] = + BF_GPMI_CTRL0_COMMAND_MODE(command_mode) | + BM_GPMI_CTRL0_WORD_LENGTH | + BF_GPMI_CTRL0_CS(chip) | + BF_GPMI_CTRL0_ADDRESS(address) | + BF_GPMI_CTRL0_XFER_COUNT(0) ; + (*d)->cmd.pio_words[1] = 0; + (*d)->cmd.pio_words[2] = 0; + (*d)->cmd.pio_words[3] = 0; + + mxs_dma_desc_append(dma_channel, (*d)); + d++; + + /* Go! */ + + error = gpmi_nfc_dma_go(this, dma_channel); + + if (error) + dev_err(dev, "[%s] DMA error\n", __func__); + + /* Return success. */ + + return error; + +} + +/** + * send_page() - Sends a page, using ECC. + * + * @this: Per-device data. + * @chip: The chip of interest. + * @payload: The physical address of the payload buffer. + * @auxiliary: The physical address of the auxiliary buffer. + */ +static int send_page(struct gpmi_nfc_data *this, unsigned chip, + dma_addr_t payload, dma_addr_t auxiliary) +{ + struct device *dev = this->dev; + struct resources *resources = &this->resources; + struct nfc_hal *nfc = this->nfc; + struct nfc_geometry *nfc_geo = &this->nfc_geometry; + struct mxs_dma_desc **d = nfc->dma_descriptors; + int dma_channel; + int error = 0; + uint32_t command_mode; + uint32_t address; + uint32_t ecc_command; + uint32_t buffer_mask; + + /* Compute the DMA channel. */ + + dma_channel = resources->dma_low_channel + chip; + + /* A DMA descriptor that does an ECC page read. */ + + command_mode = BV_GPMI_CTRL0_COMMAND_MODE__WRITE; + address = BV_GPMI_CTRL0_ADDRESS__NAND_DATA; + ecc_command = BV_GPMI_ECCCTRL_ECC_CMD__BCH_ENCODE; + buffer_mask = BV_GPMI_ECCCTRL_BUFFER_MASK__BCH_PAGE | + BV_GPMI_ECCCTRL_BUFFER_MASK__BCH_AUXONLY; + + (*d)->cmd.cmd.data = 0; + (*d)->cmd.cmd.bits.command = NO_DMA_XFER; + (*d)->cmd.cmd.bits.chain = 0; + (*d)->cmd.cmd.bits.irq = 1; + (*d)->cmd.cmd.bits.nand_lock = 0; + (*d)->cmd.cmd.bits.nand_wait_4_ready = 0; + (*d)->cmd.cmd.bits.dec_sem = 1; + (*d)->cmd.cmd.bits.wait4end = 1; + (*d)->cmd.cmd.bits.halt_on_terminate = 0; + (*d)->cmd.cmd.bits.terminate_flush = 0; + (*d)->cmd.cmd.bits.pio_words = 6; + (*d)->cmd.cmd.bits.bytes = 0; + + (*d)->cmd.address = 0; + + (*d)->cmd.pio_words[0] = + BF_GPMI_CTRL0_COMMAND_MODE(command_mode) | + BM_GPMI_CTRL0_WORD_LENGTH | + BF_GPMI_CTRL0_CS(chip) | + BF_GPMI_CTRL0_ADDRESS(address) | + BF_GPMI_CTRL0_XFER_COUNT(0) ; + + (*d)->cmd.pio_words[1] = 0; + + (*d)->cmd.pio_words[2] = + BM_GPMI_ECCCTRL_ENABLE_ECC | + BF_GPMI_ECCCTRL_ECC_CMD(ecc_command) | + BF_GPMI_ECCCTRL_BUFFER_MASK(buffer_mask) ; + + (*d)->cmd.pio_words[3] = nfc_geo->page_size_in_bytes; + (*d)->cmd.pio_words[4] = payload; + (*d)->cmd.pio_words[5] = auxiliary; + + mxs_dma_desc_append(dma_channel, (*d)); + d++; + + /* Prepare to receive an interrupt from the BCH block. */ + + init_completion(&nfc->bch_done); + + /* Go! */ + + error = gpmi_nfc_dma_go(this, dma_channel); + + if (error) + dev_err(dev, "[%s] DMA error\n", __func__); + + /* Wait for the interrupt from the BCH block. */ + + wait_for_completion(&nfc->bch_done); + + /* Return success. */ + + return error; + +} + +/** + * read_page() - Reads a page, using ECC. + * + * @this: Per-device data. + * @chip: The chip of interest. + * @payload: The physical address of the payload buffer. + * @auxiliary: The physical address of the auxiliary buffer. + */ +static int read_page(struct gpmi_nfc_data *this, unsigned chip, + dma_addr_t payload, dma_addr_t auxiliary) +{ + struct device *dev = this->dev; + struct resources *resources = &this->resources; + struct nfc_hal *nfc = this->nfc; + struct nfc_geometry *nfc_geo = &this->nfc_geometry; + struct mxs_dma_desc **d = nfc->dma_descriptors; + int dma_channel; + int error = 0; + uint32_t command_mode; + uint32_t address; + uint32_t ecc_command; + uint32_t buffer_mask; + + /* Compute the DMA channel. */ + + dma_channel = resources->dma_low_channel + chip; + + /* Wait for the chip to report ready. */ + + command_mode = BV_GPMI_CTRL0_COMMAND_MODE__WAIT_FOR_READY; + address = BV_GPMI_CTRL0_ADDRESS__NAND_DATA; + + (*d)->cmd.cmd.data = 0; + (*d)->cmd.cmd.bits.command = NO_DMA_XFER; + (*d)->cmd.cmd.bits.chain = 1; + (*d)->cmd.cmd.bits.irq = 0; + (*d)->cmd.cmd.bits.nand_lock = 0; + (*d)->cmd.cmd.bits.nand_wait_4_ready = 1; + (*d)->cmd.cmd.bits.dec_sem = 1; + (*d)->cmd.cmd.bits.wait4end = 1; + (*d)->cmd.cmd.bits.halt_on_terminate = 0; + (*d)->cmd.cmd.bits.terminate_flush = 0; + (*d)->cmd.cmd.bits.pio_words = 1; + (*d)->cmd.cmd.bits.bytes = 0; + + (*d)->cmd.address = 0; + + (*d)->cmd.pio_words[0] = + BF_GPMI_CTRL0_COMMAND_MODE(command_mode) | + BM_GPMI_CTRL0_WORD_LENGTH | + BF_GPMI_CTRL0_CS(chip) | + BF_GPMI_CTRL0_ADDRESS(address) | + BF_GPMI_CTRL0_XFER_COUNT(0) ; + + mxs_dma_desc_append(dma_channel, (*d)); + d++; + + /* Enable the BCH block and read. */ + + command_mode = BV_GPMI_CTRL0_COMMAND_MODE__READ; + address = BV_GPMI_CTRL0_ADDRESS__NAND_DATA; + ecc_command = BV_GPMI_ECCCTRL_ECC_CMD__BCH_DECODE; + buffer_mask = BV_GPMI_ECCCTRL_BUFFER_MASK__BCH_PAGE | + BV_GPMI_ECCCTRL_BUFFER_MASK__BCH_AUXONLY; + + (*d)->cmd.cmd.data = 0; + (*d)->cmd.cmd.bits.command = NO_DMA_XFER; + (*d)->cmd.cmd.bits.chain = 1; + (*d)->cmd.cmd.bits.irq = 0; + (*d)->cmd.cmd.bits.nand_lock = 0; + (*d)->cmd.cmd.bits.nand_wait_4_ready = 0; + (*d)->cmd.cmd.bits.dec_sem = 1; + (*d)->cmd.cmd.bits.wait4end = 1; + (*d)->cmd.cmd.bits.halt_on_terminate = 0; + (*d)->cmd.cmd.bits.terminate_flush = 0; + (*d)->cmd.cmd.bits.pio_words = 6; + (*d)->cmd.cmd.bits.bytes = 0; + + (*d)->cmd.address = 0; + + (*d)->cmd.pio_words[0] = + BF_GPMI_CTRL0_COMMAND_MODE(command_mode) | + BM_GPMI_CTRL0_WORD_LENGTH | + BF_GPMI_CTRL0_CS(chip) | + BF_GPMI_CTRL0_ADDRESS(address) | + BF_GPMI_CTRL0_XFER_COUNT(nfc_geo->page_size_in_bytes) ; + + (*d)->cmd.pio_words[1] = 0; + (*d)->cmd.pio_words[2] = + BM_GPMI_ECCCTRL_ENABLE_ECC | + BF_GPMI_ECCCTRL_ECC_CMD(ecc_command) | + BF_GPMI_ECCCTRL_BUFFER_MASK(buffer_mask) ; + (*d)->cmd.pio_words[3] = nfc_geo->page_size_in_bytes; + (*d)->cmd.pio_words[4] = payload; + (*d)->cmd.pio_words[5] = auxiliary; + + mxs_dma_desc_append(dma_channel, (*d)); + d++; + + /* Disable the BCH block */ + + command_mode = BV_GPMI_CTRL0_COMMAND_MODE__WAIT_FOR_READY; + address = BV_GPMI_CTRL0_ADDRESS__NAND_DATA; + + (*d)->cmd.cmd.data = 0; + (*d)->cmd.cmd.bits.command = NO_DMA_XFER; + (*d)->cmd.cmd.bits.chain = 1; + (*d)->cmd.cmd.bits.irq = 0; + (*d)->cmd.cmd.bits.nand_lock = 0; + (*d)->cmd.cmd.bits.nand_wait_4_ready = 1; + (*d)->cmd.cmd.bits.dec_sem = 1; + (*d)->cmd.cmd.bits.wait4end = 1; + (*d)->cmd.cmd.bits.halt_on_terminate = 0; + (*d)->cmd.cmd.bits.terminate_flush = 0; + (*d)->cmd.cmd.bits.pio_words = 3; + (*d)->cmd.cmd.bits.bytes = 0; + + (*d)->cmd.address = 0; + + (*d)->cmd.pio_words[0] = + BF_GPMI_CTRL0_COMMAND_MODE(command_mode) | + BM_GPMI_CTRL0_WORD_LENGTH | + BF_GPMI_CTRL0_CS(chip) | + BF_GPMI_CTRL0_ADDRESS(address) | + BF_GPMI_CTRL0_XFER_COUNT(nfc_geo->page_size_in_bytes) ; + + (*d)->cmd.pio_words[1] = 0; + (*d)->cmd.pio_words[2] = 0; + + mxs_dma_desc_append(dma_channel, (*d)); + d++; + + /* Deassert the NAND lock and interrupt. */ + + (*d)->cmd.cmd.data = 0; + (*d)->cmd.cmd.bits.command = NO_DMA_XFER; + (*d)->cmd.cmd.bits.chain = 0; + (*d)->cmd.cmd.bits.irq = 1; + (*d)->cmd.cmd.bits.nand_lock = 0; + (*d)->cmd.cmd.bits.nand_wait_4_ready = 0; + (*d)->cmd.cmd.bits.dec_sem = 1; + (*d)->cmd.cmd.bits.wait4end = 0; + (*d)->cmd.cmd.bits.halt_on_terminate = 0; + (*d)->cmd.cmd.bits.terminate_flush = 0; + (*d)->cmd.cmd.bits.pio_words = 0; + (*d)->cmd.cmd.bits.bytes = 0; + + (*d)->cmd.address = 0; + + mxs_dma_desc_append(dma_channel, (*d)); + d++; + + /* Prepare to receive an interrupt from the BCH block. */ + + init_completion(&nfc->bch_done); + + /* Go! */ + + error = gpmi_nfc_dma_go(this, dma_channel); + + if (error) + dev_err(dev, "[%s] DMA error\n", __func__); + + /* Wait for the interrupt from the BCH block. */ + + wait_for_completion(&nfc->bch_done); + + /* Return success. */ + + return error; + +} + +/* This structure represents the NFC HAL for this version of the hardware. */ + +struct nfc_hal gpmi_nfc_hal_v0 = { + .version = 0, + .description = "4-chip GPMI and BCH", + .max_chip_count = 4, + .max_data_setup_cycles = (BM_GPMI_TIMING0_DATA_SETUP >> + BP_GPMI_TIMING0_DATA_SETUP), + .internal_data_setup_in_ns = 0, + .max_sample_delay_factor = (BM_GPMI_CTRL1_RDN_DELAY >> + BP_GPMI_CTRL1_RDN_DELAY), + .max_dll_clock_period_in_ns = 32, + .max_dll_delay_in_ns = 16, + .init = init, + .set_geometry = set_geometry, + .set_timing = set_timing, + .get_timing = get_timing, + .exit = exit, + .begin = begin, + .end = end, + .clear_bch = clear_bch, + .is_ready = is_ready, + .send_command = send_command, + .send_data = send_data, + .read_data = read_data, + .send_page = send_page, + .read_page = read_page, +}; diff --git a/drivers/mtd/nand/gpmi-nfc/gpmi-nfc-hal-v1.c b/drivers/mtd/nand/gpmi-nfc/gpmi-nfc-hal-v1.c new file mode 100644 index 000000000000..962efe686853 --- /dev/null +++ b/drivers/mtd/nand/gpmi-nfc/gpmi-nfc-hal-v1.c @@ -0,0 +1,866 @@ +/* + * Freescale GPMI NFC NAND Flash Driver + * + * Copyright (C) 2010 Freescale Semiconductor, Inc. + * Copyright (C) 2008 Embedded Alley Solutions, Inc. + * + * This program is free software; you can redistribute it and/or modify + * it under the terms of the GNU General Public License as published by + * the Free Software Foundation; either version 2 of the License, or + * (at your option) any later version. + * + * This program is distributed in the hope that it will be useful, + * but WITHOUT ANY WARRANTY; without even the implied warranty of + * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the + * GNU General Public License for more details. + * + * You should have received a copy of the GNU General Public License along + * with this program; if not, write to the Free Software Foundation, Inc., + * 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA. + */ + +#include "gpmi-nfc.h" + +#include "gpmi-nfc-gpmi-regs-v1.h" +#include "gpmi-nfc-bch-regs-v1.h" + +/** + * init() - Initializes the NFC hardware. + * + * @this: Per-device data. + */ +static int init(struct gpmi_nfc_data *this) +{ + struct resources *resources = &this->resources; + int error; + + /* Initialize DMA. */ + + error = gpmi_nfc_dma_init(this); + + if (error) + return error; + + /* Enable the clock. */ + + clk_enable(resources->clock); + + /* Reset the GPMI block. */ + + mxs_reset_block(resources->gpmi_regs + HW_GPMI_CTRL0, true); + + /* Choose NAND mode. */ + __raw_writel(BM_GPMI_CTRL1_GPMI_MODE, + resources->gpmi_regs + HW_GPMI_CTRL1_CLR); + + /* Set the IRQ polarity. */ + __raw_writel(BM_GPMI_CTRL1_ATA_IRQRDY_POLARITY, + resources->gpmi_regs + HW_GPMI_CTRL1_SET); + + /* Disable write protection. */ + __raw_writel(BM_GPMI_CTRL1_DEV_RESET, + resources->gpmi_regs + HW_GPMI_CTRL1_SET); + + /* Select BCH ECC. */ + __raw_writel(BM_GPMI_CTRL1_BCH_MODE, + resources->gpmi_regs + HW_GPMI_CTRL1_SET); + + /* Disable the clock. */ + + clk_disable(resources->clock); + + /* If control arrives here, all is well. */ + + return 0; + +} + +/** + * set_geometry() - Configures the NFC geometry. + * + * @this: Per-device data. + */ +static int set_geometry(struct gpmi_nfc_data *this) +{ + struct resources *resources = &this->resources; + struct nfc_geometry *nfc = &this->nfc_geometry; + unsigned int block_count; + unsigned int block_size; + unsigned int metadata_size; + unsigned int ecc_strength; + unsigned int page_size; + + /* We make the abstract choices in a common function. */ + + if (gpmi_nfc_set_geometry(this)) + return !0; + + /* Translate the abstract choices into register fields. */ + + block_count = nfc->ecc_chunk_count - 1; + block_size = nfc->ecc_chunk_size_in_bytes; + metadata_size = nfc->metadata_size_in_bytes; + ecc_strength = nfc->ecc_strength >> 1; + page_size = nfc->page_size_in_bytes; + + /* Enable the clock. */ + + clk_enable(resources->clock); + + /* + * Reset the BCH block. Notice that we pass in true for the just_enable + * flag. This is because the soft reset for the version 0 BCH block + * doesn't work and the version 1 BCH block is similar enough that we + * suspect the same (though this has not been officially tested). If you + * try to soft reset a version 0 BCH block, it becomes unusable until + * the next hard reset. + */ + + mxs_reset_block(resources->bch_regs, true); + + /* Configure layout 0. */ + + __raw_writel( + BF_BCH_FLASH0LAYOUT0_NBLOCKS(block_count) | + BF_BCH_FLASH0LAYOUT0_META_SIZE(metadata_size) | + BF_BCH_FLASH0LAYOUT0_ECC0(ecc_strength) | + BF_BCH_FLASH0LAYOUT0_DATA0_SIZE(block_size) , + resources->bch_regs + HW_BCH_FLASH0LAYOUT0); + + __raw_writel( + BF_BCH_FLASH0LAYOUT1_PAGE_SIZE(page_size) | + BF_BCH_FLASH0LAYOUT1_ECCN(ecc_strength) | + BF_BCH_FLASH0LAYOUT1_DATAN_SIZE(block_size) , + resources->bch_regs + HW_BCH_FLASH0LAYOUT1); + + /* Set *all* chip selects to use layout 0. */ + + __raw_writel(0, resources->bch_regs + HW_BCH_LAYOUTSELECT); + + /* Enable interrupts. */ + + __raw_writel(BM_BCH_CTRL_COMPLETE_IRQ_EN, + resources->bch_regs + HW_BCH_CTRL_SET); + + /* Disable the clock. */ + + clk_disable(resources->clock); + + /* Return success. */ + + return 0; + +} + +/** + * set_timing() - Configures the NFC timing. + * + * @this: Per-device data. + * @timing: The timing of interest. + */ +static int set_timing(struct gpmi_nfc_data *this, + const struct gpmi_nfc_timing *timing) +{ + struct nfc_hal *nfc = this->nfc; + + /* Accept the new timing. */ + + nfc->timing = *timing; + + /* Return success. */ + + return 0; + +} + +/** + * get_timing() - Retrieves the NFC hardware timing. + * + * @this: Per-device data. + * @clock_frequency_in_hz: The clock frequency, in Hz, during the current + * I/O transaction. If no I/O transaction is in + * progress, this is the clock frequency during the + * most recent I/O transaction. + * @hardware_timing: The hardware timing configuration in effect during + * the current I/O transaction. If no I/O transaction + * is in progress, this is the hardware timing + * configuration during the most recent I/O + * transaction. + */ +static void get_timing(struct gpmi_nfc_data *this, + unsigned long *clock_frequency_in_hz, + struct gpmi_nfc_hardware_timing *hardware_timing) +{ + struct resources *resources = &this->resources; + struct nfc_hal *nfc = this->nfc; + unsigned char *gpmi_regs = resources->gpmi_regs; + uint32_t register_image; + + /* Return the clock frequency. */ + + *clock_frequency_in_hz = nfc->clock_frequency_in_hz; + + /* We'll be reading the hardware, so let's enable the clock. */ + + clk_enable(resources->clock); + + /* Retrieve the hardware timing. */ + + register_image = __raw_readl(gpmi_regs + HW_GPMI_TIMING0); + + hardware_timing->data_setup_in_cycles = + (register_image & BM_GPMI_TIMING0_DATA_SETUP) >> + BP_GPMI_TIMING0_DATA_SETUP; + + hardware_timing->data_hold_in_cycles = + (register_image & BM_GPMI_TIMING0_DATA_HOLD) >> + BP_GPMI_TIMING0_DATA_HOLD; + + hardware_timing->address_setup_in_cycles = + (register_image & BM_GPMI_TIMING0_ADDRESS_SETUP) >> + BP_GPMI_TIMING0_ADDRESS_SETUP; + + register_image = __raw_readl(gpmi_regs + HW_GPMI_CTRL1); + + hardware_timing->use_half_periods = + (register_image & BM_GPMI_CTRL1_HALF_PERIOD) >> + BP_GPMI_CTRL1_HALF_PERIOD; + + hardware_timing->sample_delay_factor = + (register_image & BM_GPMI_CTRL1_RDN_DELAY) >> + BP_GPMI_CTRL1_RDN_DELAY; + + /* We're done reading the hardware, so disable the clock. */ + + clk_disable(resources->clock); + +} + +/** + * exit() - Shuts down the NFC hardware. + * + * @this: Per-device data. + */ +static void exit(struct gpmi_nfc_data *this) +{ + gpmi_nfc_dma_exit(this); +} + +/** + * begin() - Begin NFC I/O. + * + * @this: Per-device data. + */ +static void begin(struct gpmi_nfc_data *this) +{ + struct resources *resources = &this->resources; + struct nfc_hal *nfc = this->nfc; + struct gpmi_nfc_hardware_timing hw; + + /* Enable the clock. */ + + clk_enable(resources->clock); + + /* Get the timing information we need. */ + + nfc->clock_frequency_in_hz = clk_get_rate(resources->clock); + gpmi_nfc_compute_hardware_timing(this, &hw); + + /* Apply the hardware timing. */ + + /* Coming soon - the clock handling code isn't ready yet. */ + +} + +/** + * end() - End NFC I/O. + * + * @this: Per-device data. + */ +static void end(struct gpmi_nfc_data *this) +{ + struct resources *resources = &this->resources; + + /* Disable the clock. */ + + clk_disable(resources->clock); + +} + +/** + * clear_bch() - Clears a BCH interrupt. + * + * @this: Per-device data. + */ +static void clear_bch(struct gpmi_nfc_data *this) +{ + struct resources *resources = &this->resources; + + __raw_writel(BM_BCH_CTRL_COMPLETE_IRQ, + resources->bch_regs + HW_BCH_CTRL_CLR); + +} + +/** + * is_ready() - Returns the ready/busy status of the given chip. + * + * @this: Per-device data. + * @chip: The chip of interest. + */ +static int is_ready(struct gpmi_nfc_data *this, unsigned chip) +{ + struct resources *resources = &this->resources; + uint32_t mask; + uint32_t register_image; + + /* Extract and return the status. */ + + mask = BF_GPMI_STAT_READY_BUSY(1 << chip); + + register_image = __raw_readl(resources->gpmi_regs + HW_GPMI_STAT); + + return !!(register_image & mask); + +} + +/** + * send_command() - Sends a command and associated addresses. + * + * @this: Per-device data. + * @chip: The chip of interest. + * @buffer: The physical address of a buffer that contains the command bytes. + * @length: The number of bytes in the buffer. + */ +static int send_command(struct gpmi_nfc_data *this, unsigned chip, + dma_addr_t buffer, unsigned int length) +{ + struct device *dev = this->dev; + struct resources *resources = &this->resources; + struct nfc_hal *nfc = this->nfc; + struct mxs_dma_desc **d = nfc->dma_descriptors; + int dma_channel; + int error; + uint32_t command_mode; + uint32_t address; + + /* Compute the DMA channel. */ + + dma_channel = resources->dma_low_channel + chip; + + /* A DMA descriptor that sends out the command. */ + + command_mode = BV_GPMI_CTRL0_COMMAND_MODE__WRITE; + address = BV_GPMI_CTRL0_ADDRESS__NAND_CLE; + + (*d)->cmd.cmd.data = 0; + (*d)->cmd.cmd.bits.command = DMA_READ; + (*d)->cmd.cmd.bits.chain = 1; + (*d)->cmd.cmd.bits.irq = 1; + (*d)->cmd.cmd.bits.nand_lock = 0; + (*d)->cmd.cmd.bits.nand_wait_4_ready = 0; + (*d)->cmd.cmd.bits.dec_sem = 1; + (*d)->cmd.cmd.bits.wait4end = 1; + (*d)->cmd.cmd.bits.halt_on_terminate = 0; + (*d)->cmd.cmd.bits.terminate_flush = 0; + (*d)->cmd.cmd.bits.pio_words = 3; + (*d)->cmd.cmd.bits.bytes = length; + + (*d)->cmd.address = buffer; + + (*d)->cmd.pio_words[0] = + BF_GPMI_CTRL0_COMMAND_MODE(command_mode) | + BM_GPMI_CTRL0_WORD_LENGTH | + BF_GPMI_CTRL0_CS(chip) | + BF_GPMI_CTRL0_ADDRESS(address) | + BM_GPMI_CTRL0_ADDRESS_INCREMENT | + BF_GPMI_CTRL0_XFER_COUNT(length) ; + + (*d)->cmd.pio_words[1] = 0; + (*d)->cmd.pio_words[2] = 0; + + mxs_dma_desc_append(dma_channel, (*d)); + d++; + + /* Go! */ + + error = gpmi_nfc_dma_go(this, dma_channel); + + if (error) + dev_err(dev, "[%s] DMA error\n", __func__); + + /* Return success. */ + + return error; + +} + +/** + * send_data() - Sends data to the given chip. + * + * @this: Per-device data. + * @chip: The chip of interest. + * @buffer: The physical address of a buffer that contains the data. + * @length: The number of bytes in the buffer. + */ +static int send_data(struct gpmi_nfc_data *this, unsigned chip, + dma_addr_t buffer, unsigned int length) +{ + struct device *dev = this->dev; + struct resources *resources = &this->resources; + struct nfc_hal *nfc = this->nfc; + struct mxs_dma_desc **d = nfc->dma_descriptors; + int dma_channel; + int error = 0; + uint32_t command_mode; + uint32_t address; + + /* Compute the DMA channel. */ + + dma_channel = resources->dma_low_channel + chip; + + /* A DMA descriptor that writes a buffer out. */ + + command_mode = BV_GPMI_CTRL0_COMMAND_MODE__WRITE; + address = BV_GPMI_CTRL0_ADDRESS__NAND_DATA; + + (*d)->cmd.cmd.data = 0; + (*d)->cmd.cmd.bits.command = DMA_READ; + (*d)->cmd.cmd.bits.chain = 0; + (*d)->cmd.cmd.bits.irq = 1; + (*d)->cmd.cmd.bits.nand_lock = 0; + (*d)->cmd.cmd.bits.nand_wait_4_ready = 0; + (*d)->cmd.cmd.bits.dec_sem = 1; + (*d)->cmd.cmd.bits.wait4end = 1; + (*d)->cmd.cmd.bits.halt_on_terminate = 0; + (*d)->cmd.cmd.bits.terminate_flush = 0; + (*d)->cmd.cmd.bits.pio_words = 4; + (*d)->cmd.cmd.bits.bytes = length; + + (*d)->cmd.address = buffer; + + (*d)->cmd.pio_words[0] = + BF_GPMI_CTRL0_COMMAND_MODE(command_mode) | + BM_GPMI_CTRL0_WORD_LENGTH | + BF_GPMI_CTRL0_CS(chip) | + BF_GPMI_CTRL0_ADDRESS(address) | + BF_GPMI_CTRL0_XFER_COUNT(length) ; + (*d)->cmd.pio_words[1] = 0; + (*d)->cmd.pio_words[2] = 0; + (*d)->cmd.pio_words[3] = 0; + + mxs_dma_desc_append(dma_channel, (*d)); + d++; + + /* Go! */ + + error = gpmi_nfc_dma_go(this, dma_channel); + + if (error) + dev_err(dev, "[%s] DMA error\n", __func__); + + /* Return success. */ + + return error; + +} + +/** + * read_data() - Receives data from the given chip. + * + * @this: Per-device data. + * @chip: The chip of interest. + * @buffer: The physical address of a buffer that will receive the data. + * @length: The number of bytes to read. + */ +static int read_data(struct gpmi_nfc_data *this, unsigned chip, + dma_addr_t buffer, unsigned int length) +{ + struct device *dev = this->dev; + struct resources *resources = &this->resources; + struct nfc_hal *nfc = this->nfc; + struct mxs_dma_desc **d = nfc->dma_descriptors; + int dma_channel; + int error = 0; + uint32_t command_mode; + uint32_t address; + + /* Compute the DMA channel. */ + + dma_channel = resources->dma_low_channel + chip; + + /* A DMA descriptor that reads the data. */ + + command_mode = BV_GPMI_CTRL0_COMMAND_MODE__READ; + address = BV_GPMI_CTRL0_ADDRESS__NAND_DATA; + + (*d)->cmd.cmd.data = 0; + (*d)->cmd.cmd.bits.command = DMA_WRITE; + (*d)->cmd.cmd.bits.chain = 1; + (*d)->cmd.cmd.bits.irq = 0; + (*d)->cmd.cmd.bits.nand_lock = 0; + (*d)->cmd.cmd.bits.nand_wait_4_ready = 0; + (*d)->cmd.cmd.bits.dec_sem = 1; + (*d)->cmd.cmd.bits.wait4end = 1; + (*d)->cmd.cmd.bits.halt_on_terminate = 0; + (*d)->cmd.cmd.bits.terminate_flush = 0; + (*d)->cmd.cmd.bits.pio_words = 1; + (*d)->cmd.cmd.bits.bytes = length; + + (*d)->cmd.address = buffer; + + (*d)->cmd.pio_words[0] = + BF_GPMI_CTRL0_COMMAND_MODE(command_mode) | + BM_GPMI_CTRL0_WORD_LENGTH | + BF_GPMI_CTRL0_CS(chip) | + BF_GPMI_CTRL0_ADDRESS(address) | + BF_GPMI_CTRL0_XFER_COUNT(length) ; + + mxs_dma_desc_append(dma_channel, (*d)); + d++; + + /* + * A DMA descriptor that waits for the command to end and the chip to + * become ready. + * + * I think we actually should *not* be waiting for the chip to become + * ready because, after all, we don't care. I think the original code + * did that and no one has re-thought it yet. + */ + + command_mode = BV_GPMI_CTRL0_COMMAND_MODE__WAIT_FOR_READY; + address = BV_GPMI_CTRL0_ADDRESS__NAND_DATA; + + (*d)->cmd.cmd.data = 0; + (*d)->cmd.cmd.bits.command = NO_DMA_XFER; + (*d)->cmd.cmd.bits.chain = 0; + (*d)->cmd.cmd.bits.irq = 1; + (*d)->cmd.cmd.bits.nand_lock = 0; + (*d)->cmd.cmd.bits.nand_wait_4_ready = 1; + (*d)->cmd.cmd.bits.dec_sem = 1; + (*d)->cmd.cmd.bits.wait4end = 1; + (*d)->cmd.cmd.bits.halt_on_terminate = 0; + (*d)->cmd.cmd.bits.terminate_flush = 0; + (*d)->cmd.cmd.bits.pio_words = 4; + (*d)->cmd.cmd.bits.bytes = 0; + + (*d)->cmd.address = 0; + + (*d)->cmd.pio_words[0] = + BF_GPMI_CTRL0_COMMAND_MODE(command_mode) | + BM_GPMI_CTRL0_WORD_LENGTH | + BF_GPMI_CTRL0_CS(chip) | + BF_GPMI_CTRL0_ADDRESS(address) | + BF_GPMI_CTRL0_XFER_COUNT(0) ; + (*d)->cmd.pio_words[1] = 0; + (*d)->cmd.pio_words[2] = 0; + (*d)->cmd.pio_words[3] = 0; + + mxs_dma_desc_append(dma_channel, (*d)); + d++; + + /* Go! */ + + error = gpmi_nfc_dma_go(this, dma_channel); + + if (error) + dev_err(dev, "[%s] DMA error\n", __func__); + + /* Return success. */ + + return error; + +} + +/** + * send_page() - Sends a page, using ECC. + * + * @this: Per-device data. + * @chip: The chip of interest. + * @payload: The physical address of the payload buffer. + * @auxiliary: The physical address of the auxiliary buffer. + */ +static int send_page(struct gpmi_nfc_data *this, unsigned chip, + dma_addr_t payload, dma_addr_t auxiliary) +{ + struct device *dev = this->dev; + struct resources *resources = &this->resources; + struct nfc_hal *nfc = this->nfc; + struct nfc_geometry *nfc_geo = &this->nfc_geometry; + struct mxs_dma_desc **d = nfc->dma_descriptors; + int dma_channel; + int error = 0; + uint32_t command_mode; + uint32_t address; + uint32_t ecc_command; + uint32_t buffer_mask; + + /* Compute the DMA channel. */ + + dma_channel = resources->dma_low_channel + chip; + + /* A DMA descriptor that does an ECC page read. */ + + command_mode = BV_GPMI_CTRL0_COMMAND_MODE__WRITE; + address = BV_GPMI_CTRL0_ADDRESS__NAND_DATA; + ecc_command = BV_GPMI_ECCCTRL_ECC_CMD__ENCODE; + buffer_mask = BV_GPMI_ECCCTRL_BUFFER_MASK__BCH_PAGE | + BV_GPMI_ECCCTRL_BUFFER_MASK__BCH_AUXONLY; + + (*d)->cmd.cmd.data = 0; + (*d)->cmd.cmd.bits.command = NO_DMA_XFER; + (*d)->cmd.cmd.bits.chain = 0; + (*d)->cmd.cmd.bits.irq = 1; + (*d)->cmd.cmd.bits.nand_lock = 0; + (*d)->cmd.cmd.bits.nand_wait_4_ready = 0; + (*d)->cmd.cmd.bits.dec_sem = 1; + (*d)->cmd.cmd.bits.wait4end = 1; + (*d)->cmd.cmd.bits.halt_on_terminate = 0; + (*d)->cmd.cmd.bits.terminate_flush = 0; + (*d)->cmd.cmd.bits.pio_words = 6; + (*d)->cmd.cmd.bits.bytes = 0; + + (*d)->cmd.address = 0; + + (*d)->cmd.pio_words[0] = + BF_GPMI_CTRL0_COMMAND_MODE(command_mode) | + BM_GPMI_CTRL0_WORD_LENGTH | + BF_GPMI_CTRL0_CS(chip) | + BF_GPMI_CTRL0_ADDRESS(address) | + BF_GPMI_CTRL0_XFER_COUNT(0) ; + + (*d)->cmd.pio_words[1] = 0; + + (*d)->cmd.pio_words[2] = + BM_GPMI_ECCCTRL_ENABLE_ECC | + BF_GPMI_ECCCTRL_ECC_CMD(ecc_command) | + BF_GPMI_ECCCTRL_BUFFER_MASK(buffer_mask) ; + + (*d)->cmd.pio_words[3] = nfc_geo->page_size_in_bytes; + (*d)->cmd.pio_words[4] = payload; + (*d)->cmd.pio_words[5] = auxiliary; + + mxs_dma_desc_append(dma_channel, (*d)); + d++; + + /* Prepare to receive an interrupt from the BCH block. */ + + init_completion(&nfc->bch_done); + + /* Go! */ + + error = gpmi_nfc_dma_go(this, dma_channel); + + if (error) + dev_err(dev, "[%s] DMA error\n", __func__); + + /* Wait for the interrupt from the BCH block. */ + + wait_for_completion(&nfc->bch_done); + + /* Return success. */ + + return error; + +} + +/** + * read_page() - Reads a page, using ECC. + * + * @this: Per-device data. + * @chip: The chip of interest. + * @payload: The physical address of the payload buffer. + * @auxiliary: The physical address of the auxiliary buffer. + */ +static int read_page(struct gpmi_nfc_data *this, unsigned chip, + dma_addr_t payload, dma_addr_t auxiliary) +{ + struct device *dev = this->dev; + struct resources *resources = &this->resources; + struct nfc_hal *nfc = this->nfc; + struct nfc_geometry *nfc_geo = &this->nfc_geometry; + struct mxs_dma_desc **d = nfc->dma_descriptors; + int dma_channel; + int error = 0; + uint32_t command_mode; + uint32_t address; + uint32_t ecc_command; + uint32_t buffer_mask; + + /* Compute the DMA channel. */ + + dma_channel = resources->dma_low_channel + chip; + + /* Wait for the chip to report ready. */ + + command_mode = BV_GPMI_CTRL0_COMMAND_MODE__WAIT_FOR_READY; + address = BV_GPMI_CTRL0_ADDRESS__NAND_DATA; + + (*d)->cmd.cmd.data = 0; + (*d)->cmd.cmd.bits.command = NO_DMA_XFER; + (*d)->cmd.cmd.bits.chain = 1; + (*d)->cmd.cmd.bits.irq = 0; + (*d)->cmd.cmd.bits.nand_lock = 0; + (*d)->cmd.cmd.bits.nand_wait_4_ready = 1; + (*d)->cmd.cmd.bits.dec_sem = 1; + (*d)->cmd.cmd.bits.wait4end = 1; + (*d)->cmd.cmd.bits.halt_on_terminate = 0; + (*d)->cmd.cmd.bits.terminate_flush = 0; + (*d)->cmd.cmd.bits.pio_words = 1; + (*d)->cmd.cmd.bits.bytes = 0; + + (*d)->cmd.address = 0; + + (*d)->cmd.pio_words[0] = + BF_GPMI_CTRL0_COMMAND_MODE(command_mode) | + BM_GPMI_CTRL0_WORD_LENGTH | + BF_GPMI_CTRL0_CS(chip) | + BF_GPMI_CTRL0_ADDRESS(address) | + BF_GPMI_CTRL0_XFER_COUNT(0) ; + + mxs_dma_desc_append(dma_channel, (*d)); + d++; + + /* Enable the BCH block and read. */ + + command_mode = BV_GPMI_CTRL0_COMMAND_MODE__READ; + address = BV_GPMI_CTRL0_ADDRESS__NAND_DATA; + ecc_command = BV_GPMI_ECCCTRL_ECC_CMD__DECODE; + buffer_mask = BV_GPMI_ECCCTRL_BUFFER_MASK__BCH_PAGE | + BV_GPMI_ECCCTRL_BUFFER_MASK__BCH_AUXONLY; + + (*d)->cmd.cmd.data = 0; + (*d)->cmd.cmd.bits.command = NO_DMA_XFER; + (*d)->cmd.cmd.bits.chain = 1; + (*d)->cmd.cmd.bits.irq = 0; + (*d)->cmd.cmd.bits.nand_lock = 0; + (*d)->cmd.cmd.bits.nand_wait_4_ready = 0; + (*d)->cmd.cmd.bits.dec_sem = 1; + (*d)->cmd.cmd.bits.wait4end = 1; + (*d)->cmd.cmd.bits.halt_on_terminate = 0; + (*d)->cmd.cmd.bits.terminate_flush = 0; + (*d)->cmd.cmd.bits.pio_words = 6; + (*d)->cmd.cmd.bits.bytes = 0; + + (*d)->cmd.address = 0; + + (*d)->cmd.pio_words[0] = + BF_GPMI_CTRL0_COMMAND_MODE(command_mode) | + BM_GPMI_CTRL0_WORD_LENGTH | + BF_GPMI_CTRL0_CS(chip) | + BF_GPMI_CTRL0_ADDRESS(address) | + BF_GPMI_CTRL0_XFER_COUNT(nfc_geo->page_size_in_bytes) ; + + (*d)->cmd.pio_words[1] = 0; + (*d)->cmd.pio_words[2] = + BM_GPMI_ECCCTRL_ENABLE_ECC | + BF_GPMI_ECCCTRL_ECC_CMD(ecc_command) | + BF_GPMI_ECCCTRL_BUFFER_MASK(buffer_mask) ; + (*d)->cmd.pio_words[3] = nfc_geo->page_size_in_bytes; + (*d)->cmd.pio_words[4] = payload; + (*d)->cmd.pio_words[5] = auxiliary; + + mxs_dma_desc_append(dma_channel, (*d)); + d++; + + /* Disable the BCH block */ + + command_mode = BV_GPMI_CTRL0_COMMAND_MODE__WAIT_FOR_READY; + address = BV_GPMI_CTRL0_ADDRESS__NAND_DATA; + + (*d)->cmd.cmd.data = 0; + (*d)->cmd.cmd.bits.command = NO_DMA_XFER; + (*d)->cmd.cmd.bits.chain = 1; + (*d)->cmd.cmd.bits.irq = 0; + (*d)->cmd.cmd.bits.nand_lock = 0; + (*d)->cmd.cmd.bits.nand_wait_4_ready = 1; + (*d)->cmd.cmd.bits.dec_sem = 1; + (*d)->cmd.cmd.bits.wait4end = 1; + (*d)->cmd.cmd.bits.halt_on_terminate = 0; + (*d)->cmd.cmd.bits.terminate_flush = 0; + (*d)->cmd.cmd.bits.pio_words = 3; + (*d)->cmd.cmd.bits.bytes = 0; + + (*d)->cmd.address = 0; + + (*d)->cmd.pio_words[0] = + BF_GPMI_CTRL0_COMMAND_MODE(command_mode) | + BM_GPMI_CTRL0_WORD_LENGTH | + BF_GPMI_CTRL0_CS(chip) | + BF_GPMI_CTRL0_ADDRESS(address) | + BF_GPMI_CTRL0_XFER_COUNT(nfc_geo->page_size_in_bytes) ; + + (*d)->cmd.pio_words[1] = 0; + (*d)->cmd.pio_words[2] = 0; + + mxs_dma_desc_append(dma_channel, (*d)); + d++; + + /* Deassert the NAND lock and interrupt. */ + + (*d)->cmd.cmd.data = 0; + (*d)->cmd.cmd.bits.command = NO_DMA_XFER; + (*d)->cmd.cmd.bits.chain = 0; + (*d)->cmd.cmd.bits.irq = 1; + (*d)->cmd.cmd.bits.nand_lock = 0; + (*d)->cmd.cmd.bits.nand_wait_4_ready = 0; + (*d)->cmd.cmd.bits.dec_sem = 1; + (*d)->cmd.cmd.bits.wait4end = 0; + (*d)->cmd.cmd.bits.halt_on_terminate = 0; + (*d)->cmd.cmd.bits.terminate_flush = 0; + (*d)->cmd.cmd.bits.pio_words = 0; + (*d)->cmd.cmd.bits.bytes = 0; + + (*d)->cmd.address = 0; + + mxs_dma_desc_append(dma_channel, (*d)); + d++; + + /* Prepare to receive an interrupt from the BCH block. */ + + init_completion(&nfc->bch_done); + + /* Go! */ + + error = gpmi_nfc_dma_go(this, dma_channel); + + if (error) + dev_err(dev, "[%s] DMA error\n", __func__); + + /* Wait for the interrupt from the BCH block. */ + + wait_for_completion(&nfc->bch_done); + + /* Return success. */ + + return error; + +} + +/* This structure represents the NFC HAL for this version of the hardware. */ + +struct nfc_hal gpmi_nfc_hal_v1 = { + .version = 1, + .description = "8-chip GPMI and BCH", + .max_chip_count = 8, + .max_data_setup_cycles = (BM_GPMI_TIMING0_DATA_SETUP >> + BP_GPMI_TIMING0_DATA_SETUP), + .internal_data_setup_in_ns = 0, + .max_sample_delay_factor = (BM_GPMI_CTRL1_RDN_DELAY >> + BP_GPMI_CTRL1_RDN_DELAY), + .max_dll_clock_period_in_ns = 32, + .max_dll_delay_in_ns = 16, + .init = init, + .set_geometry = set_geometry, + .set_timing = set_timing, + .get_timing = get_timing, + .exit = exit, + .begin = begin, + .end = end, + .clear_bch = clear_bch, + .is_ready = is_ready, + .send_command = send_command, + .send_data = send_data, + .read_data = read_data, + .send_page = send_page, + .read_page = read_page, +}; diff --git a/drivers/mtd/nand/gpmi-nfc/gpmi-nfc-hal-v2.c b/drivers/mtd/nand/gpmi-nfc/gpmi-nfc-hal-v2.c new file mode 100644 index 000000000000..eee49ae58dea --- /dev/null +++ b/drivers/mtd/nand/gpmi-nfc/gpmi-nfc-hal-v2.c @@ -0,0 +1,839 @@ +/* + * Freescale GPMI NFC NAND Flash Driver + * + * Copyright (C) 2010 Freescale Semiconductor, Inc. + * Copyright (C) 2008 Embedded Alley Solutions, Inc. + * + * This program is free software; you can redistribute it and/or modify + * it under the terms of the GNU General Public License as published by + * the Free Software Foundation; either version 2 of the License, or + * (at your option) any later version. + * + * This program is distributed in the hope that it will be useful, + * but WITHOUT ANY WARRANTY; without even the implied warranty of + * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the + * GNU General Public License for more details. + * + * You should have received a copy of the GNU General Public License along + * with this program; if not, write to the Free Software Foundation, Inc., + * 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA. + */ + +#include "gpmi-nfc.h" + +#include "gpmi-nfc-gpmi-regs-v2.h" +#include "gpmi-nfc-bch-regs-v2.h" + +/** + * init() - Initializes the NFC hardware. + * + * @this: Per-device data. + */ +static int init(struct gpmi_nfc_data *this) +{ + struct resources *resources = &this->resources; + int error; + + /* Initialize DMA. */ + + error = gpmi_nfc_dma_init(this); + + if (error) + return error; + + /* Enable the clock. */ + + clk_enable(resources->clock); + + /* Reset the GPMI block. */ + + mxs_reset_block(resources->gpmi_regs + HW_GPMI_CTRL0, true); + + /* Choose NAND mode. */ + __raw_writel(BM_GPMI_CTRL1_GPMI_MODE, + resources->gpmi_regs + HW_GPMI_CTRL1_CLR); + + /* Set the IRQ polarity. */ + __raw_writel(BM_GPMI_CTRL1_ATA_IRQRDY_POLARITY, + resources->gpmi_regs + HW_GPMI_CTRL1_SET); + + /* Disable write protection. */ + __raw_writel(BM_GPMI_CTRL1_DEV_RESET, + resources->gpmi_regs + HW_GPMI_CTRL1_SET); + + /* Select BCH ECC. */ + __raw_writel(BM_GPMI_CTRL1_BCH_MODE, + resources->gpmi_regs + HW_GPMI_CTRL1_SET); + + /* Disable the clock. */ + + clk_disable(resources->clock); + + /* If control arrives here, all is well. */ + + return 0; + +} + +/** + * set_geometry() - Configures the NFC geometry. + * + * @this: Per-device data. + */ +static int set_geometry(struct gpmi_nfc_data *this) +{ + struct resources *resources = &this->resources; + struct nfc_geometry *nfc = &this->nfc_geometry; + unsigned int block_count; + unsigned int block_size; + unsigned int metadata_size; + unsigned int ecc_strength; + unsigned int page_size; + + /* We make the abstract choices in a common function. */ + + if (gpmi_nfc_set_geometry(this)) + return !0; + + /* Translate the abstract choices into register fields. */ + + block_count = nfc->ecc_chunk_count - 1; + block_size = nfc->ecc_chunk_size_in_bytes >> 2; + metadata_size = nfc->metadata_size_in_bytes; + ecc_strength = nfc->ecc_strength >> 1; + page_size = nfc->page_size_in_bytes; + + /* Enable the clock. */ + + clk_enable(resources->clock); + + /* + * Reset the BCH block. Notice that we pass in true for the just_enable + * flag. This is because the soft reset for the version 0 BCH block + * doesn't work and the version 1 BCH block is similar enough that we + * suspect the same (though this has not been officially tested). If you + * try to soft reset a version 0 BCH block, it becomes unusable until + * the next hard reset. + */ + + mxs_reset_block(resources->bch_regs, false); + + /* Configure layout 0. */ + + __raw_writel( + BF_BCH_FLASH0LAYOUT0_NBLOCKS(block_count) | + BF_BCH_FLASH0LAYOUT0_META_SIZE(metadata_size) | + BF_BCH_FLASH0LAYOUT0_ECC0(ecc_strength) | + BF_BCH_FLASH0LAYOUT0_DATA0_SIZE(block_size) , + resources->bch_regs + HW_BCH_FLASH0LAYOUT0); + + __raw_writel( + BF_BCH_FLASH0LAYOUT1_PAGE_SIZE(page_size) | + BF_BCH_FLASH0LAYOUT1_ECCN(ecc_strength) | + BF_BCH_FLASH0LAYOUT1_DATAN_SIZE(block_size) , + resources->bch_regs + HW_BCH_FLASH0LAYOUT1); + + /* Set *all* chip selects to use layout 0. */ + + __raw_writel(0, resources->bch_regs + HW_BCH_LAYOUTSELECT); + + /* Enable interrupts. */ + + __raw_writel(BM_BCH_CTRL_COMPLETE_IRQ_EN, + resources->bch_regs + HW_BCH_CTRL_SET); + + /* Disable the clock. */ + + clk_disable(resources->clock); + + /* Return success. */ + + return 0; + +} + +/** + * set_timing() - Configures the NFC timing. + * + * @this: Per-device data. + * @timing: The timing of interest. + */ +static int set_timing(struct gpmi_nfc_data *this, + const struct gpmi_nfc_timing *timing) +{ + struct nfc_hal *nfc = this->nfc; + + /* Accept the new timing. */ + + nfc->timing = *timing; + + /* Return success. */ + + return 0; + +} + +/** + * get_timing() - Retrieves the NFC hardware timing. + * + * @this: Per-device data. + * @clock_frequency_in_hz: The clock frequency, in Hz, during the current + * I/O transaction. If no I/O transaction is in + * progress, this is the clock frequency during the + * most recent I/O transaction. + * @hardware_timing: The hardware timing configuration in effect during + * the current I/O transaction. If no I/O transaction + * is in progress, this is the hardware timing + * configuration during the most recent I/O + * transaction. + */ +static void get_timing(struct gpmi_nfc_data *this, + unsigned long *clock_frequency_in_hz, + struct gpmi_nfc_hardware_timing *hardware_timing) +{ + struct resources *resources = &this->resources; + struct nfc_hal *nfc = this->nfc; + unsigned char *gpmi_regs = resources->gpmi_regs; + uint32_t register_image; + + /* Return the clock frequency. */ + + *clock_frequency_in_hz = nfc->clock_frequency_in_hz; + + /* We'll be reading the hardware, so let's enable the clock. */ + + clk_enable(resources->clock); + + /* Retrieve the hardware timing. */ + + register_image = __raw_readl(gpmi_regs + HW_GPMI_TIMING0); + + hardware_timing->data_setup_in_cycles = + (register_image & BM_GPMI_TIMING0_DATA_SETUP) >> + BP_GPMI_TIMING0_DATA_SETUP; + + hardware_timing->data_hold_in_cycles = + (register_image & BM_GPMI_TIMING0_DATA_HOLD) >> + BP_GPMI_TIMING0_DATA_HOLD; + + hardware_timing->address_setup_in_cycles = + (register_image & BM_GPMI_TIMING0_ADDRESS_SETUP) >> + BP_GPMI_TIMING0_ADDRESS_SETUP; + + register_image = __raw_readl(gpmi_regs + HW_GPMI_CTRL1); + + hardware_timing->use_half_periods = + (register_image & BM_GPMI_CTRL1_HALF_PERIOD) >> + BP_GPMI_CTRL1_HALF_PERIOD; + + hardware_timing->sample_delay_factor = + (register_image & BM_GPMI_CTRL1_RDN_DELAY) >> + BP_GPMI_CTRL1_RDN_DELAY; + + /* We're done reading the hardware, so disable the clock. */ + + clk_disable(resources->clock); + +} + +/** + * exit() - Shuts down the NFC hardware. + * + * @this: Per-device data. + */ +static void exit(struct gpmi_nfc_data *this) +{ + gpmi_nfc_dma_exit(this); +} + +/** + * begin() - Begin NFC I/O. + * + * @this: Per-device data. + */ +static void begin(struct gpmi_nfc_data *this) +{ + struct resources *resources = &this->resources; + struct nfc_hal *nfc = this->nfc; + struct gpmi_nfc_hardware_timing hw; + + /* Enable the clock. */ + + clk_enable(resources->clock); + + /* Get the timing information we need. */ + + nfc->clock_frequency_in_hz = clk_get_rate(resources->clock); + gpmi_nfc_compute_hardware_timing(this, &hw); + + /* Apply the hardware timing. */ + + /* Coming soon - the clock handling code isn't ready yet. */ + +} + +/** + * end() - End NFC I/O. + * + * @this: Per-device data. + */ +static void end(struct gpmi_nfc_data *this) +{ + struct resources *resources = &this->resources; + + /* Disable the clock. */ + + clk_disable(resources->clock); + +} + +/** + * clear_bch() - Clears a BCH interrupt. + * + * @this: Per-device data. + */ +static void clear_bch(struct gpmi_nfc_data *this) +{ + struct resources *resources = &this->resources; + + __raw_writel(BM_BCH_CTRL_COMPLETE_IRQ, + resources->bch_regs + HW_BCH_CTRL_CLR); + +} + +/** + * is_ready() - Returns the ready/busy status of the given chip. + * + * @this: Per-device data. + * @chip: The chip of interest. + */ +static int is_ready(struct gpmi_nfc_data *this, unsigned chip) +{ + struct resources *resources = &this->resources; + uint32_t mask; + uint32_t register_image; + + /* Extract and return the status. */ + + mask = BF_GPMI_STAT_READY_BUSY(1 << 0); + + register_image = __raw_readl(resources->gpmi_regs + HW_GPMI_STAT); + + return !!(register_image & mask); + +} + +/** + * send_command() - Sends a command and associated addresses. + * + * @this: Per-device data. + * @chip: The chip of interest. + * @buffer: The physical address of a buffer that contains the command bytes. + * @length: The number of bytes in the buffer. + */ +static int send_command(struct gpmi_nfc_data *this, unsigned chip, + dma_addr_t buffer, unsigned int length) +{ + struct device *dev = this->dev; + struct resources *resources = &this->resources; + struct nfc_hal *nfc = this->nfc; + struct mxs_dma_desc **d = nfc->dma_descriptors; + int dma_channel; + int error; + uint32_t command_mode; + uint32_t address; + + /* Compute the DMA channel. */ + + dma_channel = resources->dma_low_channel + chip; + + /* A DMA descriptor that sends out the command. */ + + command_mode = BV_GPMI_CTRL0_COMMAND_MODE__WRITE; + address = BV_GPMI_CTRL0_ADDRESS__NAND_CLE; + + /* reset the cmd bits fieled */ + (*d)->cmd.cmd.data = 0; + + (*d)->cmd.cmd.bits.command = DMA_READ; + (*d)->cmd.cmd.bits.chain = 0; + (*d)->cmd.cmd.bits.irq = 1; + (*d)->cmd.cmd.bits.nand_lock = 0; + (*d)->cmd.cmd.bits.nand_wait_4_ready = 0; + (*d)->cmd.cmd.bits.dec_sem = 1; + (*d)->cmd.cmd.bits.wait4end = 1; + (*d)->cmd.cmd.bits.halt_on_terminate = 1; + (*d)->cmd.cmd.bits.terminate_flush = 0; + (*d)->cmd.cmd.bits.pio_words = 3; + (*d)->cmd.cmd.bits.bytes = length; + + (*d)->cmd.address = buffer; + + (*d)->cmd.pio_words[0] = + BF_GPMI_CTRL0_COMMAND_MODE(command_mode) | + BM_GPMI_CTRL0_WORD_LENGTH | + BF_GPMI_CTRL0_CS(chip) | + BF_GPMI_CTRL0_ADDRESS(address) | + BM_GPMI_CTRL0_ADDRESS_INCREMENT | + BF_GPMI_CTRL0_XFER_COUNT(length) ; + + (*d)->cmd.pio_words[1] = 0; + (*d)->cmd.pio_words[2] = 0; + + mxs_dma_desc_append(dma_channel, (*d)); + d++; + + /* Go! */ + + error = gpmi_nfc_dma_go(this, dma_channel); + + if (error) + dev_err(dev, "[%s] DMA error\n", __func__); + + /* Return success. */ + + return error; + +} + +/** + * send_data() - Sends data to the given chip. + * + * @this: Per-device data. + * @chip: The chip of interest. + * @buffer: The physical address of a buffer that contains the data. + * @length: The number of bytes in the buffer. + */ +static int send_data(struct gpmi_nfc_data *this, unsigned chip, + dma_addr_t buffer, unsigned int length) +{ + struct device *dev = this->dev; + struct resources *resources = &this->resources; + struct nfc_hal *nfc = this->nfc; + struct mxs_dma_desc **d = nfc->dma_descriptors; + int dma_channel; + int error = 0; + uint32_t command_mode; + uint32_t address; + + /* Compute the DMA channel. */ + + dma_channel = resources->dma_low_channel + chip; + + /* A DMA descriptor that writes a buffer out. */ + + command_mode = BV_GPMI_CTRL0_COMMAND_MODE__WRITE; + address = BV_GPMI_CTRL0_ADDRESS__NAND_DATA; + + (*d)->cmd.cmd.data = 0; + (*d)->cmd.cmd.bits.command = DMA_READ; + (*d)->cmd.cmd.bits.chain = 0; + (*d)->cmd.cmd.bits.irq = 1; + (*d)->cmd.cmd.bits.nand_lock = 0; + (*d)->cmd.cmd.bits.nand_wait_4_ready = 0; + (*d)->cmd.cmd.bits.dec_sem = 1; + (*d)->cmd.cmd.bits.wait4end = 1; + (*d)->cmd.cmd.bits.halt_on_terminate = 0; + (*d)->cmd.cmd.bits.terminate_flush = 0; + (*d)->cmd.cmd.bits.pio_words = 4; + (*d)->cmd.cmd.bits.bytes = length; + + (*d)->cmd.address = buffer; + + (*d)->cmd.pio_words[0] = + BF_GPMI_CTRL0_COMMAND_MODE(command_mode) | + BM_GPMI_CTRL0_WORD_LENGTH | + BF_GPMI_CTRL0_CS(chip) | + BF_GPMI_CTRL0_ADDRESS(address) | + BF_GPMI_CTRL0_XFER_COUNT(length) ; + (*d)->cmd.pio_words[1] = 0; + (*d)->cmd.pio_words[2] = 0; + (*d)->cmd.pio_words[3] = 0; + + mxs_dma_desc_append(dma_channel, (*d)); + d++; + + /* Go! */ + + error = gpmi_nfc_dma_go(this, dma_channel); + + if (error) + dev_err(dev, "[%s] DMA error\n", __func__); + + /* Return success. */ + + return error; + +} + +/** + * read_data() - Receives data from the given chip. + * + * @this: Per-device data. + * @chip: The chip of interest. + * @buffer: The physical address of a buffer that will receive the data. + * @length: The number of bytes to read. + */ +static int read_data(struct gpmi_nfc_data *this, unsigned chip, + dma_addr_t buffer, unsigned int length) +{ + struct device *dev = this->dev; + struct resources *resources = &this->resources; + struct nfc_hal *nfc = this->nfc; + struct mxs_dma_desc **d = nfc->dma_descriptors; + int dma_channel; + int error = 0; + uint32_t command_mode; + uint32_t address; + + /* Compute the DMA channel. */ + + dma_channel = resources->dma_low_channel + chip; + + /* A DMA descriptor that reads the data. */ + + command_mode = BV_GPMI_CTRL0_COMMAND_MODE__READ; + address = BV_GPMI_CTRL0_ADDRESS__NAND_DATA; + + (*d)->cmd.cmd.data = 0; + (*d)->cmd.cmd.bits.command = DMA_WRITE; + (*d)->cmd.cmd.bits.chain = 0; + (*d)->cmd.cmd.bits.irq = 1; + (*d)->cmd.cmd.bits.nand_lock = 0; + (*d)->cmd.cmd.bits.nand_wait_4_ready = 0; + (*d)->cmd.cmd.bits.dec_sem = 1; + (*d)->cmd.cmd.bits.wait4end = 1; + (*d)->cmd.cmd.bits.halt_on_terminate = 1; + (*d)->cmd.cmd.bits.terminate_flush = 0; + (*d)->cmd.cmd.bits.pio_words = 1; + (*d)->cmd.cmd.bits.bytes = length; + + (*d)->cmd.address = buffer; + + (*d)->cmd.pio_words[0] = + BF_GPMI_CTRL0_COMMAND_MODE(command_mode) | + BM_GPMI_CTRL0_WORD_LENGTH | + BF_GPMI_CTRL0_CS(chip) | + BF_GPMI_CTRL0_ADDRESS(address) | + BF_GPMI_CTRL0_XFER_COUNT(length) ; + + mxs_dma_desc_append(dma_channel, (*d)); + d++; + + /* Go! */ + + error = gpmi_nfc_dma_go(this, dma_channel); + + if (error) + dev_err(dev, "[%s] DMA error\n", __func__); + /* Return success. */ + + return error; + +} + +/** + * send_page() - Sends a page, using ECC. + * + * @this: Per-device data. + * @chip: The chip of interest. + * @payload: The physical address of the payload buffer. + * @auxiliary: The physical address of the auxiliary buffer. + */ +static int send_page(struct gpmi_nfc_data *this, unsigned chip, + dma_addr_t payload, dma_addr_t auxiliary) +{ + struct device *dev = this->dev; + struct resources *resources = &this->resources; + struct nfc_hal *nfc = this->nfc; + struct nfc_geometry *nfc_geo = &this->nfc_geometry; + struct mxs_dma_desc **d = nfc->dma_descriptors; + int dma_channel; + int error = 0; + uint32_t command_mode; + uint32_t address; + uint32_t ecc_command; + uint32_t buffer_mask; + + /* Compute the DMA channel. */ + + dma_channel = resources->dma_low_channel + chip; + + /* A DMA descriptor that does an ECC page read. */ + + command_mode = BV_GPMI_CTRL0_COMMAND_MODE__WRITE; + address = BV_GPMI_CTRL0_ADDRESS__NAND_DATA; + ecc_command = BV_GPMI_ECCCTRL_ECC_CMD__ENCODE; + buffer_mask = BV_GPMI_ECCCTRL_BUFFER_MASK__BCH_PAGE | + BV_GPMI_ECCCTRL_BUFFER_MASK__BCH_AUXONLY; + + (*d)->cmd.cmd.data = 0; + (*d)->cmd.cmd.bits.command = NO_DMA_XFER; + (*d)->cmd.cmd.bits.chain = 0; + (*d)->cmd.cmd.bits.irq = 1; + (*d)->cmd.cmd.bits.nand_lock = 0; + (*d)->cmd.cmd.bits.nand_wait_4_ready = 0; + (*d)->cmd.cmd.bits.dec_sem = 1; + (*d)->cmd.cmd.bits.wait4end = 1; + (*d)->cmd.cmd.bits.halt_on_terminate = 0; + (*d)->cmd.cmd.bits.terminate_flush = 0; + (*d)->cmd.cmd.bits.pio_words = 6; + (*d)->cmd.cmd.bits.bytes = 0; + + (*d)->cmd.address = 0; + + (*d)->cmd.pio_words[0] = + BF_GPMI_CTRL0_COMMAND_MODE(command_mode) | + BM_GPMI_CTRL0_WORD_LENGTH | + BF_GPMI_CTRL0_CS(chip) | + BF_GPMI_CTRL0_ADDRESS(address) | + BF_GPMI_CTRL0_XFER_COUNT(0) ; + + (*d)->cmd.pio_words[1] = 0; + + (*d)->cmd.pio_words[2] = + BM_GPMI_ECCCTRL_ENABLE_ECC | + BF_GPMI_ECCCTRL_ECC_CMD(ecc_command) | + BF_GPMI_ECCCTRL_BUFFER_MASK(buffer_mask) ; + + (*d)->cmd.pio_words[3] = nfc_geo->page_size_in_bytes; + (*d)->cmd.pio_words[4] = payload; + (*d)->cmd.pio_words[5] = auxiliary; + + mxs_dma_desc_append(dma_channel, (*d)); + d++; + + /* Prepare to receive an interrupt from the BCH block. */ + + init_completion(&nfc->bch_done); + + /* Go! */ + + error = gpmi_nfc_dma_go(this, dma_channel); + + if (error) + dev_err(dev, "[%s] DMA error\n", __func__); + + /* Wait for the interrupt from the BCH block. */ + + error = wait_for_completion_timeout(&nfc->bch_done, + msecs_to_jiffies(1000)); + + error = (!error) ? -ETIMEDOUT : 0; + + if (error) + dev_err(dev, "[%s] bch timeout!!! \n", __func__); + + /* Return success. */ + + return error; + +} + +/** + * read_page() - Reads a page, using ECC. + * + * @this: Per-device data. + * @chip: The chip of interest. + * @payload: The physical address of the payload buffer. + * @auxiliary: The physical address of the auxiliary buffer. + */ +static int read_page(struct gpmi_nfc_data *this, unsigned chip, + dma_addr_t payload, dma_addr_t auxiliary) +{ + struct device *dev = this->dev; + struct resources *resources = &this->resources; + struct nfc_hal *nfc = this->nfc; + struct nfc_geometry *nfc_geo = &this->nfc_geometry; + struct mxs_dma_desc **d = nfc->dma_descriptors; + int dma_channel; + int error = 0; + uint32_t command_mode; + uint32_t address; + uint32_t ecc_command; + uint32_t buffer_mask; + + /* Compute the DMA channel. */ + + dma_channel = resources->dma_low_channel + chip; + + /* Wait for the chip to report ready. */ + + command_mode = BV_GPMI_CTRL0_COMMAND_MODE__WAIT_FOR_READY; + address = BV_GPMI_CTRL0_ADDRESS__NAND_DATA; + + (*d)->cmd.cmd.data = 0; + (*d)->cmd.cmd.bits.command = NO_DMA_XFER; + (*d)->cmd.cmd.bits.chain = 1; + (*d)->cmd.cmd.bits.irq = 0; + (*d)->cmd.cmd.bits.nand_lock = 0; + (*d)->cmd.cmd.bits.nand_wait_4_ready = 1; + (*d)->cmd.cmd.bits.dec_sem = 0; + (*d)->cmd.cmd.bits.wait4end = 1; + (*d)->cmd.cmd.bits.halt_on_terminate = 0; + (*d)->cmd.cmd.bits.terminate_flush = 0; + (*d)->cmd.cmd.bits.pio_words = 1; + (*d)->cmd.cmd.bits.bytes = 0; + + (*d)->cmd.address = 0; + + (*d)->cmd.pio_words[0] = + BF_GPMI_CTRL0_COMMAND_MODE(command_mode) | + BM_GPMI_CTRL0_WORD_LENGTH | + BF_GPMI_CTRL0_CS(chip) | + BF_GPMI_CTRL0_ADDRESS(address) | + BF_GPMI_CTRL0_XFER_COUNT(0) ; + + mxs_dma_desc_append(dma_channel, (*d)); + d++; + + /* Enable the BCH block and read. */ + + command_mode = BV_GPMI_CTRL0_COMMAND_MODE__READ; + address = BV_GPMI_CTRL0_ADDRESS__NAND_DATA; + ecc_command = BV_GPMI_ECCCTRL_ECC_CMD__DECODE; + buffer_mask = BV_GPMI_ECCCTRL_BUFFER_MASK__BCH_PAGE | + BV_GPMI_ECCCTRL_BUFFER_MASK__BCH_AUXONLY; + + (*d)->cmd.cmd.data = 0; + (*d)->cmd.cmd.bits.command = NO_DMA_XFER; + (*d)->cmd.cmd.bits.chain = 1; + (*d)->cmd.cmd.bits.irq = 0; + (*d)->cmd.cmd.bits.nand_lock = 0; + (*d)->cmd.cmd.bits.nand_wait_4_ready = 0; + (*d)->cmd.cmd.bits.dec_sem = 0; + (*d)->cmd.cmd.bits.wait4end = 1; + (*d)->cmd.cmd.bits.halt_on_terminate = 0; + (*d)->cmd.cmd.bits.terminate_flush = 0; + (*d)->cmd.cmd.bits.pio_words = 6; + (*d)->cmd.cmd.bits.bytes = 0; + + (*d)->cmd.address = 0; + + (*d)->cmd.pio_words[0] = + BF_GPMI_CTRL0_COMMAND_MODE(command_mode) | + BM_GPMI_CTRL0_WORD_LENGTH | + BF_GPMI_CTRL0_CS(chip) | + BF_GPMI_CTRL0_ADDRESS(address) | + BF_GPMI_CTRL0_XFER_COUNT(nfc_geo->page_size_in_bytes) ; + + (*d)->cmd.pio_words[1] = 0; + (*d)->cmd.pio_words[2] = + BM_GPMI_ECCCTRL_ENABLE_ECC | + BF_GPMI_ECCCTRL_ECC_CMD(ecc_command) | + BF_GPMI_ECCCTRL_BUFFER_MASK(buffer_mask) ; + (*d)->cmd.pio_words[3] = nfc_geo->page_size_in_bytes; + (*d)->cmd.pio_words[4] = payload; + (*d)->cmd.pio_words[5] = auxiliary; + + mxs_dma_desc_append(dma_channel, (*d)); + d++; + + /* Disable the BCH block */ + + command_mode = BV_GPMI_CTRL0_COMMAND_MODE__WAIT_FOR_READY; + address = BV_GPMI_CTRL0_ADDRESS__NAND_DATA; + + (*d)->cmd.cmd.data = 0; + (*d)->cmd.cmd.bits.command = NO_DMA_XFER; + (*d)->cmd.cmd.bits.chain = 1; + (*d)->cmd.cmd.bits.irq = 0; + (*d)->cmd.cmd.bits.nand_lock = 0; + (*d)->cmd.cmd.bits.nand_wait_4_ready = 1; + (*d)->cmd.cmd.bits.dec_sem = 0; + (*d)->cmd.cmd.bits.wait4end = 1; + (*d)->cmd.cmd.bits.halt_on_terminate = 0; + (*d)->cmd.cmd.bits.terminate_flush = 0; + (*d)->cmd.cmd.bits.pio_words = 3; + (*d)->cmd.cmd.bits.bytes = 0; + + (*d)->cmd.address = 0; + + (*d)->cmd.pio_words[0] = + BF_GPMI_CTRL0_COMMAND_MODE(command_mode) | + BM_GPMI_CTRL0_WORD_LENGTH | + BF_GPMI_CTRL0_CS(chip) | + BF_GPMI_CTRL0_ADDRESS(address) | + BF_GPMI_CTRL0_XFER_COUNT(nfc_geo->page_size_in_bytes) ; + + (*d)->cmd.pio_words[1] = 0; + (*d)->cmd.pio_words[2] = 0; + + mxs_dma_desc_append(dma_channel, (*d)); + d++; + + /* Deassert the NAND lock and interrupt. */ + + (*d)->cmd.cmd.data = 0; + (*d)->cmd.cmd.bits.command = NO_DMA_XFER; + (*d)->cmd.cmd.bits.chain = 0; + (*d)->cmd.cmd.bits.irq = 1; + (*d)->cmd.cmd.bits.nand_lock = 0; + (*d)->cmd.cmd.bits.nand_wait_4_ready = 0; + (*d)->cmd.cmd.bits.dec_sem = 1; + (*d)->cmd.cmd.bits.wait4end = 0; + (*d)->cmd.cmd.bits.halt_on_terminate = 0; + (*d)->cmd.cmd.bits.terminate_flush = 0; + (*d)->cmd.cmd.bits.pio_words = 0; + (*d)->cmd.cmd.bits.bytes = 0; + + (*d)->cmd.address = 0; + + mxs_dma_desc_append(dma_channel, (*d)); + d++; + + /* Prepare to receive an interrupt from the BCH block. */ + + init_completion(&nfc->bch_done); + + /* Go! */ + + error = gpmi_nfc_dma_go(this, dma_channel); + + if (error) + dev_err(dev, "[%s] DMA error\n", __func__); + + /* Wait for the interrupt from the BCH block. */ + + error = wait_for_completion_timeout(&nfc->bch_done, + msecs_to_jiffies(1000)); + + error = (!error) ? -ETIMEDOUT : 0; + + if (error) + dev_err(dev, "[%s] bch timeout!!! \n", __func__); + + /* Return success. */ + + return error; + +} + +/* This structure represents the NFC HAL for this version of the hardware. */ + +struct nfc_hal gpmi_nfc_hal_v2 = { + .version = 2, + .description = "8-chip GPMI and BCH", + .max_chip_count = 8, + .max_data_setup_cycles = (BM_GPMI_TIMING0_DATA_SETUP >> + BP_GPMI_TIMING0_DATA_SETUP), + .internal_data_setup_in_ns = 0, + .max_sample_delay_factor = (BM_GPMI_CTRL1_RDN_DELAY >> + BP_GPMI_CTRL1_RDN_DELAY), + .max_dll_clock_period_in_ns = 32, + .max_dll_delay_in_ns = 16, + .init = init, + .set_geometry = set_geometry, + .set_timing = set_timing, + .get_timing = get_timing, + .exit = exit, + .begin = begin, + .end = end, + .clear_bch = clear_bch, + .is_ready = is_ready, + .send_command = send_command, + .send_data = send_data, + .read_data = read_data, + .send_page = send_page, + .read_page = read_page, +}; diff --git a/drivers/mtd/nand/gpmi-nfc/gpmi-nfc-main.c b/drivers/mtd/nand/gpmi-nfc/gpmi-nfc-main.c new file mode 100644 index 000000000000..54df1f084509 --- /dev/null +++ b/drivers/mtd/nand/gpmi-nfc/gpmi-nfc-main.c @@ -0,0 +1,1908 @@ +/* + * Freescale GPMI NFC NAND Flash Driver + * + * Copyright (C) 2010 Freescale Semiconductor, Inc. + * Copyright (C) 2008 Embedded Alley Solutions, Inc. + * + * This program is free software; you can redistribute it and/or modify + * it under the terms of the GNU General Public License as published by + * the Free Software Foundation; either version 2 of the License, or + * (at your option) any later version. + * + * This program is distributed in the hope that it will be useful, + * but WITHOUT ANY WARRANTY; without even the implied warranty of + * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the + * GNU General Public License for more details. + * + * You should have received a copy of the GNU General Public License along + * with this program; if not, write to the Free Software Foundation, Inc., + * 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA. + */ + +#include "gpmi-nfc.h" + +/* + * This structure contains the "safe" GPMI timing that should succeed with any + * NAND Flash device (although, with less-than-optimal performance). + */ + +static struct gpmi_nfc_timing safe_timing = { + .data_setup_in_ns = 80, + .data_hold_in_ns = 60, + .address_setup_in_ns = 25, + .gpmi_sample_delay_in_ns = 6, + .tREA_in_ns = -1, + .tRLOH_in_ns = -1, + .tRHOH_in_ns = -1, +}; + +/* + * This array has a pointer to every NFC HAL structure. The probing process will + * find and install the one that matches the version given by the platform. + */ + +static struct nfc_hal *(nfc_hals[]) = { + /* i.mx23 */ + &gpmi_nfc_hal_v0, + /* i.mx28 */ + &gpmi_nfc_hal_v1, + /* i.mx50 */ + &gpmi_nfc_hal_v2, +}; + +/* + * This array has a pointer to every Boot ROM Helper structure. The probing + * process will find and install the one that matches the version given by the + * platform. + */ + +static struct boot_rom_helper *(boot_rom_helpers[]) = { + &gpmi_nfc_boot_rom_helper_v0, + &gpmi_nfc_boot_rom_helper_v1, +}; + +/** + * show_device_report() - Contains a shell script that creates a handy report. + * + * @d: The device of interest. + * @attr: The attribute of interest. + * @buf: A buffer that will receive a representation of the attribute. + */ +static ssize_t show_device_report(struct device *dev, + struct device_attribute *attr, char *buf) +{ + + static const char *script = + "GPMISysDirectory=/sys/bus/platform/devices/gpmi-nfc.0\n" + "\n" + "NodeList='\n" + "physical_geometry\n" + "nfc_info\n" + "nfc_geometry\n" + "timing\n" + "timing_diagram\n" + "rom_geometry\n" + "mtd_nand_info\n" + "mtd_info\n" + "'\n" + "\n" + "cd ${GPMISysDirectory}\n" + "\n" + "printf '\\n'\n" + "\n" + "for NodeName in ${NodeList}\n" + "do\n" + "\n" + " printf '--------------------------------------------\\n'\n" + " printf '%s\\n' ${NodeName}\n" + " printf '--------------------------------------------\\n'\n" + " printf '\\n'\n" + "\n" + " cat ${NodeName}\n" + "\n" + " printf '\\n'\n" + "\n" + "done\n" + ; + + return sprintf(buf, "%s", script); + +} + +/** + * show_device_numchips() - Shows the number of physical chips. + * + * This node is made obsolete by the physical_geometry node, but we keep it for + * backward compatibility (especially for kobs). + * + * @d: The device of interest. + * @attr: The attribute of interest. + * @buf: A buffer that will receive a representation of the attribute. + */ +static ssize_t show_device_numchips(struct device *dev, + struct device_attribute *attr, char *buf) +{ + struct gpmi_nfc_data *this = dev_get_drvdata(dev); + struct physical_geometry *physical = &this->physical_geometry; + + return sprintf(buf, "%d\n", physical->chip_count); + +} + +/** + * show_device_physical_geometry() - Shows the physical Flash device geometry. + * + * @dev: The device of interest. + * @attr: The attribute of interest. + * @buf: A buffer that will receive a representation of the attribute. + */ +static ssize_t show_device_physical_geometry(struct device *dev, + struct device_attribute *attr, char *buf) +{ + struct gpmi_nfc_data *this = dev_get_drvdata(dev); + struct nand_device_info *info = &this->device_info; + struct physical_geometry *physical = &this->physical_geometry; + + return sprintf(buf, + "Description : %s\n" + "Chip Count : %u\n" + "Chip Size in Bytes : %llu\n" + "Block Size in Bytes : %u\n" + "Page Data Size in Bytes: %u\n" + "Page OOB Size in Bytes : %u\n" + , + info->description, + physical->chip_count, + physical->chip_size_in_bytes, + physical->block_size_in_bytes, + physical->page_data_size_in_bytes, + physical->page_oob_size_in_bytes + ); + +} + +/** + * show_device_nfc_info() - Shows the NFC-specific information. + * + * @dev: The device of interest. + * @attr: The attribute of interest. + * @buf: A buffer that will receive a representation of the attribute. + */ +static ssize_t show_device_nfc_info(struct device *dev, + struct device_attribute *attr, char *buf) +{ + struct gpmi_nfc_data *this = dev_get_drvdata(dev); + struct nfc_hal *nfc = this->nfc; + + return sprintf(buf, + "Version : %u\n" + "Description : %s\n" + "Max Chip Count : %u\n" + "Max Data Setup Cycles : 0x%x\n" + "Internal Data Setup in ns : %u\n" + "Max Sample Delay Factor : 0x%x\n" + "Max DLL Clock Period in ns: %u\n" + "Max DLL Delay in ns : %u\n" + , + nfc->version, + nfc->description, + nfc->max_chip_count, + nfc->max_data_setup_cycles, + nfc->internal_data_setup_in_ns, + nfc->max_sample_delay_factor, + nfc->max_dll_clock_period_in_ns, + nfc->max_dll_delay_in_ns + ); + +} + +/** + * show_device_nfc_geometry() - Shows the NFC view of the device geometry. + * + * @dev: The device of interest. + * @attr: The attribute of interest. + * @buf: A buffer that will receive a representation of the attribute. + */ +static ssize_t show_device_nfc_geometry(struct device *dev, + struct device_attribute *attr, char *buf) +{ + struct gpmi_nfc_data *this = dev_get_drvdata(dev); + struct nfc_geometry *nfc = &this->nfc_geometry; + + return sprintf(buf, + "ECC Algorithm : %s\n" + "ECC Strength : %u\n" + "Page Size in Bytes : %u\n" + "Metadata Size in Bytes : %u\n" + "ECC Chunk Size in Bytes: %u\n" + "ECC Chunk Count : %u\n" + "Payload Size in Bytes : %u\n" + "Auxiliary Size in Bytes: %u\n" + "Auxiliary Status Offset: %u\n" + "Block Mark Byte Offset : %u\n" + "Block Mark Bit Offset : %u\n" + , + nfc->ecc_algorithm, + nfc->ecc_strength, + nfc->page_size_in_bytes, + nfc->metadata_size_in_bytes, + nfc->ecc_chunk_size_in_bytes, + nfc->ecc_chunk_count, + nfc->payload_size_in_bytes, + nfc->auxiliary_size_in_bytes, + nfc->auxiliary_status_offset, + nfc->block_mark_byte_offset, + nfc->block_mark_bit_offset + ); + +} + +/** + * show_device_rom_geometry() - Shows the Boot ROM Helper's geometry. + * + * @dev: The device of interest. + * @attr: The attribute of interest. + * @buf: A buffer that will receive a representation of the attribute. + */ +static ssize_t show_device_rom_geometry(struct device *dev, + struct device_attribute *attr, char *buf) +{ + struct gpmi_nfc_data *this = dev_get_drvdata(dev); + struct boot_rom_geometry *rom = &this->rom_geometry; + + return sprintf(buf, + "Boot Area Count : %u\n" + "Boot Area Size in Bytes : %u\n" + "Stride Size in Pages : %u\n" + "Seach Area Stride Exponent: %u\n" + , + rom->boot_area_count, + rom->boot_area_size_in_bytes, + rom->stride_size_in_pages, + rom->search_area_stride_exponent + ); + +} + +/** + * show_device_mtd_nand_info() - Shows the device's MTD NAND-specific info. + * + * @dev: The device of interest. + * @attr: The attribute of interest. + * @buf: A buffer that will receive a representation of the attribute. + */ +static ssize_t show_device_mtd_nand_info(struct device *dev, + struct device_attribute *attr, char *buf) +{ + int o = 0; + unsigned int i; + unsigned int j; + static const unsigned int columns = 8; + struct gpmi_nfc_data *this = dev_get_drvdata(dev); + struct mil *mil = &this->mil; + struct nand_chip *nand = &mil->nand; + + o += sprintf(buf + o, + "Options : 0x%08x\n" + "Chip Count : %u\n" + "Chip Size in Bytes : %llu\n" + "Minimum Writable Size in Bytes: %u\n" + "Page Shift : %u\n" + "Page Mask : 0x%x\n" + "Block Shift : %u\n" + "BBT Block Shift : %u\n" + "Chip Shift : %u\n" + "Block Mark Offset : %u\n" + "Cached Page Number : %d\n" + , + nand->options, + nand->numchips, + nand->chipsize, + nand->subpagesize, + nand->page_shift, + nand->pagemask, + nand->phys_erase_shift, + nand->bbt_erase_shift, + nand->chip_shift, + nand->badblockpos, + nand->pagebuf + ); + + o += sprintf(buf + o, + "ECC Byte Count : %u\n" + , + nand->ecc.layout->eccbytes + ); + + /* Loop over rows. */ + + for (i = 0; (i * columns) < nand->ecc.layout->eccbytes; i++) { + + /* Loop over columns within rows. */ + + for (j = 0; j < columns; j++) { + + if (((i * columns) + j) >= nand->ecc.layout->eccbytes) + break; + + o += sprintf(buf + o, " %3u", + nand->ecc.layout->eccpos[(i * columns) + j]); + + } + + o += sprintf(buf + o, "\n"); + + } + + o += sprintf(buf + o, + "OOB Available Bytes : %u\n" + , + nand->ecc.layout->oobavail + ); + + j = 0; + + for (i = 0; j < nand->ecc.layout->oobavail; i++) { + + j += nand->ecc.layout->oobfree[i].length; + + o += sprintf(buf + o, + " [%3u, %2u]\n" + , + nand->ecc.layout->oobfree[i].offset, + nand->ecc.layout->oobfree[i].length + ); + + } + + return o; + +} + +/** + * show_device_mtd_info() - Shows the device's MTD-specific information. + * + * @dev: The device of interest. + * @attr: The attribute of interest. + * @buf: A buffer that will receive a representation of the attribute. + */ +static ssize_t show_device_mtd_info(struct device *dev, + struct device_attribute *attr, char *buf) +{ + int o = 0; + unsigned int i; + unsigned int j; + static const unsigned int columns = 8; + struct gpmi_nfc_data *this = dev_get_drvdata(dev); + struct mil *mil = &this->mil; + struct mtd_info *mtd = &mil->mtd; + + o += sprintf(buf + o, + "Name : %s\n" + "Type : %u\n" + "Flags : 0x%08x\n" + "Size in Bytes : %llu\n" + "Erase Region Count : %d\n" + "Erase Size in Bytes: %u\n" + "Write Size in Bytes: %u\n" + "OOB Size in Bytes : %u\n" + "Errors Corrected : %u\n" + "Failed Reads : %u\n" + "Bad Block Count : %u\n" + "BBT Block Count : %u\n" + , + mtd->name, + mtd->type, + mtd->flags, + mtd->size, + mtd->numeraseregions, + mtd->erasesize, + mtd->writesize, + mtd->oobsize, + mtd->ecc_stats.corrected, + mtd->ecc_stats.failed, + mtd->ecc_stats.badblocks, + mtd->ecc_stats.bbtblocks + ); + + o += sprintf(buf + o, + "ECC Byte Count : %u\n" + , + mtd->ecclayout->eccbytes + ); + + /* Loop over rows. */ + + for (i = 0; (i * columns) < mtd->ecclayout->eccbytes; i++) { + + /* Loop over columns within rows. */ + + for (j = 0; j < columns; j++) { + + if (((i * columns) + j) >= mtd->ecclayout->eccbytes) + break; + + o += sprintf(buf + o, " %3u", + mtd->ecclayout->eccpos[(i * columns) + j]); + + } + + o += sprintf(buf + o, "\n"); + + } + + o += sprintf(buf + o, + "OOB Available Bytes: %u\n" + , + mtd->ecclayout->oobavail + ); + + j = 0; + + for (i = 0; j < mtd->ecclayout->oobavail; i++) { + + j += mtd->ecclayout->oobfree[i].length; + + o += sprintf(buf + o, + " [%3u, %2u]\n" + , + mtd->ecclayout->oobfree[i].offset, + mtd->ecclayout->oobfree[i].length + ); + + } + + return o; + +} + +/** + * show_device_timing_diagram() - Shows a timing diagram. + * + * @dev: The device of interest. + * @attr: The attribute of interest. + * @buf: A buffer that will receive a representation of the attribute. + */ +static ssize_t show_device_timing_diagram(struct device *dev, + struct device_attribute *attr, char *buf) +{ + struct gpmi_nfc_data *this = dev_get_drvdata(dev); + struct gpmi_nfc_platform_data *pdata = this->pdata; + struct nfc_hal *nfc = this->nfc; + struct gpmi_nfc_timing timing = nfc->timing; + struct gpmi_nfc_hardware_timing hardware_timing; + unsigned long clock_frequency_in_hz; + unsigned long clock_period_in_ns; + unsigned int data_setup_in_ns; + unsigned int dll_delay_shift; + unsigned int sample_delay_in_ns; + unsigned int tDS_in_ns; + unsigned int tOPEN_in_ns; + unsigned int tCLOSE_in_ns; + unsigned int tEYE_in_ns; + unsigned int tDELAY_in_ns; + unsigned int tDS; + unsigned int tOPEN; + unsigned int tCLOSE; + unsigned int tEYE; + unsigned int tDELAY; + const unsigned int diagram_width_in_chars = 55; + unsigned int diagram_width_in_ns; + int o = 0; + unsigned int i; + + /* + * If there are any timing characteristics we need, but don't know, we + * pretend they're zero. + */ + + if (timing.tREA_in_ns < 0) + timing.tREA_in_ns = 0; + + if (timing.tRHOH_in_ns < 0) + timing.tRHOH_in_ns = 0; + + /* Get information about the current/last I/O transaction. */ + + nfc->get_timing(this, &clock_frequency_in_hz, &hardware_timing); + + clock_period_in_ns = 1000000000 / clock_frequency_in_hz; + + /* Compute basic timing facts. */ + + data_setup_in_ns = + hardware_timing.data_setup_in_cycles * clock_period_in_ns; + + /* Compute data sample delay facts. */ + + dll_delay_shift = 3; + + if (hardware_timing.use_half_periods) + dll_delay_shift++; + + sample_delay_in_ns = + (hardware_timing.sample_delay_factor * clock_period_in_ns) >> + dll_delay_shift; + + /* Compute the basic metrics in the diagram, in nanoseconds. */ + + tDS_in_ns = data_setup_in_ns; + tOPEN_in_ns = pdata->max_prop_delay_in_ns + timing.tREA_in_ns; + tCLOSE_in_ns = pdata->min_prop_delay_in_ns + timing.tRHOH_in_ns; + tEYE_in_ns = tDS_in_ns + tCLOSE_in_ns - tOPEN_in_ns; + tDELAY_in_ns = sample_delay_in_ns; + + /* + * We need to translate nanosecond timings into character widths in the + * diagram. The first step is to discover how "wide" the diagram is in + * nanoseconds. That depends on which happens latest: the sample point + * or the close of the eye. + */ + + if (tCLOSE_in_ns >= tDELAY_in_ns) + diagram_width_in_ns = tDS_in_ns + tCLOSE_in_ns; + else + diagram_width_in_ns = tDS_in_ns + tDELAY_in_ns; + + /* Convert the metrics that appear in the diagram. */ + + tDS = (tDS_in_ns * diagram_width_in_chars) / diagram_width_in_ns; + tOPEN = (tOPEN_in_ns * diagram_width_in_chars) / diagram_width_in_ns; + tCLOSE = (tCLOSE_in_ns * diagram_width_in_chars) / diagram_width_in_ns; + tEYE = (tEYE_in_ns * diagram_width_in_chars) / diagram_width_in_ns; + tDELAY = (tDELAY_in_ns * diagram_width_in_chars) / diagram_width_in_ns; + + /* + * Show the results. + * + * This code is really ugly, but it draws a pretty picture :) + */ + + o += sprintf(buf + o, "\n"); + + + o += sprintf(buf + o, "Sample ______"); + for (i = 0; i < tDS; i++) + o += sprintf(buf + o, "_"); + if (tDELAY > 0) + for (i = 0; i < (tDELAY - 1); i++) + o += sprintf(buf + o, "_"); + o += sprintf(buf + o, "|"); + for (i = 0; i < (diagram_width_in_chars - (tDS + tDELAY)); i++) + o += sprintf(buf + o, "_"); + o += sprintf(buf + o, "\n"); + + + o += sprintf(buf + o, "Strobe "); + for (i = 0; i < tDS; i++) + o += sprintf(buf + o, " "); + o += sprintf(buf + o, "|"); + if (tDELAY > 1) { + for (i = 2; i < tDELAY; i++) + o += sprintf(buf + o, "-"); + o += sprintf(buf + o, "|"); + } + o += sprintf(buf + o, " tDELAY\n"); + + + o += sprintf(buf + o, "\n"); + + + o += sprintf(buf + o, " tDS "); + o += sprintf(buf + o, "|"); + if (tDS > 1) { + for (i = 2; i < tDS; i++) + o += sprintf(buf + o, "-"); + o += sprintf(buf + o, "|"); + } + o += sprintf(buf + o, "\n"); + + + o += sprintf(buf + o, " ______"); + for (i = 0; i < tDS; i++) + o += sprintf(buf + o, " "); + for (i = 0; i < (diagram_width_in_chars - tDS); i++) + o += sprintf(buf + o, "_"); + o += sprintf(buf + o, "\n"); + + + o += sprintf(buf + o, "RDN "); + if (tDS > 0) { + if (tDS == 1) + o += sprintf(buf + o, "V"); + else { + o += sprintf(buf + o, "\\"); + for (i = 2; i < tDS; i++) + o += sprintf(buf + o, "_"); + o += sprintf(buf + o, "/"); + } + } + o += sprintf(buf + o, "\n"); + + + o += sprintf(buf + o, "\n"); + + + o += sprintf(buf + o, " tOPEN "); + o += sprintf(buf + o, "|"); + if (tOPEN > 1) { + for (i = 2; i < tOPEN; i++) + o += sprintf(buf + o, "-"); + o += sprintf(buf + o, "|"); + } + o += sprintf(buf + o, "\n"); + + + o += sprintf(buf + o, " "); + for (i = 0; i < tDS; i++) + o += sprintf(buf + o, " "); + o += sprintf(buf + o, "|"); + if (tCLOSE > 1) { + for (i = 2; i < tCLOSE; i++) + o += sprintf(buf + o, "-"); + o += sprintf(buf + o, "|"); + } + o += sprintf(buf + o, " tCLOSE\n"); + + + o += sprintf(buf + o, " "); + for (i = 0; i < tOPEN; i++) + o += sprintf(buf + o, " "); + if (tEYE > 2) { + o += sprintf(buf + o, " "); + for (i = 2; i < tEYE; i++) + o += sprintf(buf + o, "_"); + } + o += sprintf(buf + o, "\n"); + + + o += sprintf(buf + o, "Data ______"); + for (i = 0; i < tOPEN; i++) + o += sprintf(buf + o, "_"); + if (tEYE > 0) { + if (tEYE == 1) + o += sprintf(buf + o, "|"); + else { + o += sprintf(buf + o, "/"); + for (i = 2; i < tEYE; i++) + o += sprintf(buf + o, " "); + o += sprintf(buf + o, "\\"); + } + } + for (i = 0; i < (diagram_width_in_chars - (tOPEN + tEYE)); i++) + o += sprintf(buf + o, "_"); + o += sprintf(buf + o, "\n"); + + + o += sprintf(buf + o, " "); + for (i = 0; i < tOPEN; i++) + o += sprintf(buf + o, " "); + if (tEYE > 0) { + if (tEYE == 1) + o += sprintf(buf + o, "|"); + else { + o += sprintf(buf + o, "\\"); + for (i = 2; i < tEYE; i++) + o += sprintf(buf + o, "_"); + o += sprintf(buf + o, "/"); + } + } + o += sprintf(buf + o, "\n"); + + + o += sprintf(buf + o, " "); + for (i = 0; i < tOPEN; i++) + o += sprintf(buf + o, " "); + o += sprintf(buf + o, "|"); + if (tEYE > 1) { + for (i = 2; i < tEYE; i++) + o += sprintf(buf + o, "-"); + o += sprintf(buf + o, "|"); + } + o += sprintf(buf + o, " tEYE\n"); + + + o += sprintf(buf + o, "\n"); + o += sprintf(buf + o, "tDS : %u ns\n", tDS_in_ns); + o += sprintf(buf + o, "tOPEN : %u ns\n", tOPEN_in_ns); + o += sprintf(buf + o, "tCLOSE: %u ns\n", tCLOSE_in_ns); + o += sprintf(buf + o, "tEYE : %u ns\n", tEYE_in_ns); + o += sprintf(buf + o, "tDELAY: %u ns\n", tDELAY_in_ns); + o += sprintf(buf + o, "\n"); + + + return o; + +} + +/** + * store_device_invalidate_page_cache() - Invalidates the device's page cache. + * + * @dev: The device of interest. + * @attr: The attribute of interest. + * @buf: A buffer containing a new attribute value. + * @size: The size of the buffer. + */ +static ssize_t store_device_invalidate_page_cache(struct device *dev, + struct device_attribute *attr, const char *buf, size_t size) +{ + struct gpmi_nfc_data *this = dev_get_drvdata(dev); + + /* Invalidate the page cache. */ + + this->mil.nand.pagebuf = -1; + + /* Return success. */ + + return size; + +} + +/** + * store_device_mark_block_bad() - Marks a block as bad. + * + * @dev: The device of interest. + * @attr: The attribute of interest. + * @buf: A buffer containing a new attribute value. + * @size: The size of the buffer. + */ +static ssize_t store_device_mark_block_bad(struct device *dev, + struct device_attribute *attr, const char *buf, size_t size) +{ + struct gpmi_nfc_data *this = dev_get_drvdata(dev); + struct mil *mil = &this->mil; + struct mtd_info *mtd = &mil->mtd; + struct nand_chip *nand = &mil->nand; + unsigned long block_number; + loff_t byte_address; + int error; + + /* Look for nonsense. */ + + if (!size) + return -EINVAL; + + /* Try to understand the block number. */ + + if (strict_strtoul(buf, 0, &block_number)) + return -EINVAL; + + /* Compute the byte address of this block. */ + + byte_address = block_number << nand->phys_erase_shift; + + /* Attempt to mark the block bad. */ + + error = mtd->block_markbad(mtd, byte_address); + + if (error) + return error; + + /* Return success. */ + + return size; + +} + +/** + * show_device_ignorebad() - Shows the value of the 'ignorebad' flag. + * + * @d: The device of interest. + * @attr: The attribute of interest. + * @buf: A buffer that will receive a representation of the attribute. + */ +static ssize_t show_device_ignorebad(struct device *dev, + struct device_attribute *attr, char *buf) +{ + struct gpmi_nfc_data *this = dev_get_drvdata(dev); + struct mil *mil = &this->mil; + + return sprintf(buf, "%d\n", mil->ignore_bad_block_marks); +} + +/** + * store_device_ignorebad() - Sets the value of the 'ignorebad' flag. + * + * @dev: The device of interest. + * @attr: The attribute of interest. + * @buf: A buffer containing a new attribute value. + * @size: The size of the buffer. + */ +static ssize_t store_device_ignorebad(struct device *dev, + struct device_attribute *attr, const char *buf, size_t size) +{ + struct gpmi_nfc_data *this = dev_get_drvdata(dev); + struct mil *mil = &this->mil; + const char *p = buf; + unsigned long v; + + /* Try to make sense of what arrived from user space. */ + + if (strict_strtoul(p, 0, &v) < 0) + return size; + + if (v > 0) + v = 1; + + /* Only do something if the value is changing. */ + + if (v != mil->ignore_bad_block_marks) { + + if (v) { + + /* + * If control arrives here, we want to begin ignoring + * bad block marks. Reach into the NAND Flash MTD data + * structures and set the in-memory BBT pointer to NULL. + * This will cause the NAND Flash MTD code to believe + * that it never created a BBT and force it to call our + * block_bad function. + * + * See mil_block_bad for more details. + */ + + mil->saved_bbt = mil->nand.bbt; + mil->nand.bbt = 0; + + } else { + + /* + * If control arrives here, we want to stop ignoring + * bad block marks. Restore the NAND Flash MTD's pointer + * to its in-memory BBT. + */ + + mil->nand.bbt = mil->saved_bbt; + + } + + mil->ignore_bad_block_marks = v; + + } + + return size; + +} + +/** + * show_device_inject_ecc_error() - Shows the device's error injection flag. + * + * @dev: The device of interest. + * @attr: The attribute of interest. + * @buf: A buffer that will receive a representation of the attribute. + */ +static ssize_t show_device_inject_ecc_error(struct device *dev, + struct device_attribute *attr, char *buf) +{ + struct gpmi_nfc_data *this = dev_get_drvdata(dev); + struct mil *mil = &this->mil; + + return sprintf(buf, "%d\n", mil->inject_ecc_error); + +} + +/** + * store_device_inject_ecc_error() - Sets the device's error injection flag. + * + * @dev: The device of interest. + * @attr: The attribute of interest. + * @buf: A buffer containing a new attribute value. + * @size: The size of the buffer. + */ +static ssize_t store_device_inject_ecc_error(struct device *dev, + struct device_attribute *attr, const char *buf, size_t size) +{ + struct gpmi_nfc_data *this = dev_get_drvdata(dev); + struct mil *mil = &this->mil; + long new_inject_ecc_error; + + /* Look for nonsense. */ + + if (!size) + return -EINVAL; + + /* Try to understand the ECC error count. */ + + if (strict_strtol(buf, 0, &new_inject_ecc_error)) + return -EINVAL; + + /* Store the value. */ + + mil->inject_ecc_error = new_inject_ecc_error; + + /* Return success. */ + + return size; + +} + +/** + * show_device_timing_help() - Show help for setting timing. + * + * @d: The device of interest. + * @attr: The attribute of interest. + * @buf: A buffer that will receive a representation of the attribute. + */ +static ssize_t show_device_timing_help(struct device *dev, + struct device_attribute *attr, char *buf) +{ + + static const char *help = + "<Data Setup>,<Data Hold>,<Address Setup>,<Sample Delay>," + "<tREA>,<tRLOH>,<tRHOH>\n"; + + return sprintf(buf, "%s", help); + +} + +/** + * show_device_timing() - Shows the current timing. + * + * @d: The device of interest. + * @attr: The attribute of interest. + * @buf: A buffer that will receive a representation of the attribute. + */ +static ssize_t show_device_timing(struct device *dev, + struct device_attribute *attr, char *buf) +{ + struct gpmi_nfc_data *this = dev_get_drvdata(dev); + struct gpmi_nfc_platform_data *pdata = this->pdata; + struct nfc_hal *nfc = this->nfc; + struct gpmi_nfc_timing *recorded = &nfc->timing; + unsigned long clock_frequency_in_hz; + unsigned long clock_period_in_ns; + struct gpmi_nfc_hardware_timing hardware; + unsigned int effective_data_setup_in_ns; + unsigned int effective_data_hold_in_ns; + unsigned int effective_address_setup_in_ns; + unsigned int dll_delay_shift; + unsigned int effective_sample_delay_in_ns; + + /* Get information about the current/last I/O transaction. */ + + nfc->get_timing(this, &clock_frequency_in_hz, &hardware); + + clock_period_in_ns = 1000000000 / clock_frequency_in_hz; + + /* Compute basic timing facts. */ + + effective_data_setup_in_ns = + hardware.data_setup_in_cycles * clock_period_in_ns; + effective_data_hold_in_ns = + hardware.data_hold_in_cycles * clock_period_in_ns; + effective_address_setup_in_ns = + hardware.address_setup_in_cycles * clock_period_in_ns; + + /* Compute data sample delay facts. */ + + dll_delay_shift = 3; + + if (hardware.use_half_periods) + dll_delay_shift++; + + effective_sample_delay_in_ns = + (hardware.sample_delay_factor * clock_period_in_ns) >> + dll_delay_shift; + + /* Show the results. */ + + return sprintf(buf, + "Minimum Propagation Delay in ns : %u\n" + "Maximum Propagation Delay in ns : %u\n" + "Clock Frequency in Hz : %lu\n" + "Clock Period in ns : %lu\n" + "Recorded Data Setup in ns : %d\n" + "Hardware Data Setup in cycles : %u\n" + "Effective Data Setup in ns : %u\n" + "Recorded Data Hold in ns : %d\n" + "Hardware Data Hold in cycles : %u\n" + "Effective Data Hold in ns : %u\n" + "Recorded Address Setup in ns : %d\n" + "Hardware Address Setup in cycles: %u\n" + "Effective Address Setup in ns : %u\n" + "Using Half Period : %s\n" + "Recorded Sample Delay in ns : %d\n" + "Hardware Sample Delay Factor : %u\n" + "Effective Sample Delay in ns : %u\n" + "Recorded tREA in ns : %d\n" + "Recorded tRLOH in ns : %d\n" + "Recorded tRHOH in ns : %d\n" + , + pdata->min_prop_delay_in_ns, + pdata->max_prop_delay_in_ns, + clock_frequency_in_hz, + clock_period_in_ns, + recorded->data_setup_in_ns, + hardware .data_setup_in_cycles, + effective_data_setup_in_ns, + recorded->data_hold_in_ns, + hardware .data_hold_in_cycles, + effective_data_hold_in_ns, + recorded->address_setup_in_ns, + hardware .address_setup_in_cycles, + effective_address_setup_in_ns, + hardware .use_half_periods ? "Yes" : "No", + recorded->gpmi_sample_delay_in_ns, + hardware .sample_delay_factor, + effective_sample_delay_in_ns, + recorded->tREA_in_ns, + recorded->tRLOH_in_ns, + recorded->tRHOH_in_ns); + +} + +/** + * store_device_timing() - Sets the current timing. + * + * @dev: The device of interest. + * @attr: The attribute of interest. + * @buf: A buffer containing a new attribute value. + * @size: The size of the buffer. + */ +static ssize_t store_device_timing(struct device *dev, + struct device_attribute *attr, const char *buf, size_t size) +{ + struct gpmi_nfc_data *this = dev_get_drvdata(dev); + struct nfc_hal *nfc = this->nfc; + const char *p = buf; + const char *q; + char tmps[20]; + long t; + struct gpmi_nfc_timing new; + + int8_t *field_pointers[] = { + &new.data_setup_in_ns, + &new.data_hold_in_ns, + &new.address_setup_in_ns, + &new.gpmi_sample_delay_in_ns, + &new.tREA_in_ns, + &new.tRLOH_in_ns, + &new.tRHOH_in_ns, + NULL, + }; + + int8_t **field_pointer = field_pointers; + + /* + * Loop over comma-separated timing values in the incoming buffer, + * assigning them to fields in the timing structure as we go along. + */ + + while (*field_pointer != NULL) { + + /* Clear out the temporary buffer. */ + + memset(tmps, 0, sizeof(tmps)); + + /* Copy the timing value into the temporary buffer. */ + + q = strchr(p, ','); + if (q) + strncpy(tmps, p, min_t(int, sizeof(tmps) - 1, q - p)); + else + strncpy(tmps, p, sizeof(tmps) - 1); + + /* Attempt to convert the current timing value. */ + + if (strict_strtol(tmps, 0, &t) < 0) + return -EINVAL; + + if ((t > 127) || (t < -128)) + return -EINVAL; + + /* Assign this value to the current field. */ + + **field_pointer = (int8_t) t; + field_pointer++; + + /* Check if we ran out of input too soon. */ + + if (!q && *field_pointer) + return -EINVAL; + + /* Move past the comma to the next timing value. */ + + p = q + 1; + + } + + /* Hand over the timing to the NFC. */ + + nfc->set_timing(this, &new); + + /* Return success. */ + + return size; + +} + +/* Device attributes that appear in sysfs. */ + +static DEVICE_ATTR(report , 0555, show_device_report , 0); +static DEVICE_ATTR(numchips , 0444, show_device_numchips , 0); +static DEVICE_ATTR(physical_geometry, 0444, show_device_physical_geometry, 0); +static DEVICE_ATTR(nfc_info , 0444, show_device_nfc_info , 0); +static DEVICE_ATTR(nfc_geometry , 0444, show_device_nfc_geometry , 0); +static DEVICE_ATTR(rom_geometry , 0444, show_device_rom_geometry , 0); +static DEVICE_ATTR(mtd_nand_info , 0444, show_device_mtd_nand_info , 0); +static DEVICE_ATTR(mtd_info , 0444, show_device_mtd_info , 0); +static DEVICE_ATTR(timing_diagram , 0444, show_device_timing_diagram , 0); +static DEVICE_ATTR(timing_help , 0444, show_device_timing_help , 0); + +static DEVICE_ATTR(invalidate_page_cache, 0644, + 0, store_device_invalidate_page_cache); + +static DEVICE_ATTR(mark_block_bad, 0200, + 0, store_device_mark_block_bad); + +static DEVICE_ATTR(ignorebad, 0644, + show_device_ignorebad, store_device_ignorebad); + +static DEVICE_ATTR(inject_ecc_error, 0644, + show_device_inject_ecc_error, store_device_inject_ecc_error); + +static DEVICE_ATTR(timing, 0644, + show_device_timing, store_device_timing); + +static struct device_attribute *device_attributes[] = { + &dev_attr_report, + &dev_attr_numchips, + &dev_attr_physical_geometry, + &dev_attr_nfc_info, + &dev_attr_nfc_geometry, + &dev_attr_rom_geometry, + &dev_attr_mtd_nand_info, + &dev_attr_mtd_info, + &dev_attr_invalidate_page_cache, + &dev_attr_mark_block_bad, + &dev_attr_ignorebad, + &dev_attr_inject_ecc_error, + &dev_attr_timing, + &dev_attr_timing_help, + &dev_attr_timing_diagram, +}; + +/** + * validate_the_platform() - Validates information about the platform. + * + * @pdev: A pointer to the platform device data structure. + */ +static int validate_the_platform(struct platform_device *pdev) +{ + struct device *dev = &pdev->dev; + struct gpmi_nfc_platform_data *pdata = pdev->dev.platform_data; + + /* Validate the clock name. */ + + if (!pdata->clock_name) { + dev_err(dev, "No clock name\n"); + return -ENXIO; + } + + /* Validate the partitions. */ + + if ((pdata->partitions && (!pdata->partition_count)) || + (!pdata->partitions && (pdata->partition_count))) { + dev_err(dev, "Bad partition data\n"); + return -ENXIO; + } + + /* Return success */ + + return 0; + +} + +/** + * acquire_register_block() - Tries to acquire and map a register block. + * + * @this: Per-device data. + * @resource_name: The name of the resource. + * @reg_block_base: A pointer to a variable that will receive the address of + * the mapped register block. + */ +static int acquire_register_block(struct gpmi_nfc_data *this, + const char *resource_name, void **reg_block_base) +{ + struct platform_device *pdev = this->pdev; + struct device *dev = this->dev; + void *p; + struct resource *r; + + /* Attempt to get information about the given resource. */ + + r = platform_get_resource_byname(pdev, IORESOURCE_MEM, resource_name); + + if (!r) { + dev_err(dev, "Can't get resource information for '%s'\n", + resource_name); + return -ENXIO; + } + + /* Attempt to remap the register block. */ + + p = ioremap(r->start, r->end - r->start + 1); + + if (!p) { + dev_err(dev, "Can't remap %s\n", resource_name); + return -EIO; + } + + /* If control arrives here, everything went fine. */ + + *reg_block_base = p; + + return 0; + +} + +/** + * release_register_block() - Releases a register block. + * + * @this: Per-device data. + * @reg_block_base: A pointer to the mapped register block. + */ +static void release_register_block(struct gpmi_nfc_data *this, + void *reg_block_base) +{ + iounmap(reg_block_base); +} + +/** + * acquire_interrupt() - Tries to acquire an interrupt. + * + * @this: Per-device data. + * @resource_name: The name of the resource. + * @interrupt_handler: A pointer to the function that will handle interrupts + * from this interrupt number. + * @lno: A pointer to a variable that will receive the acquired + * interrupt number(low part). + * @hno: A pointer to a variable that will receive the acquired + * interrupt number(high part). + */ +static int acquire_interrupt( + struct gpmi_nfc_data *this, const char *resource_name, + irq_handler_t interrupt_handler, int *lno, int *hno) +{ + struct platform_device *pdev = this->pdev; + struct device *dev = this->dev; + int error = 0; + struct resource *r; + int i; + + /* Attempt to get information about the given resource. */ + + r = platform_get_resource_byname(pdev, IORESOURCE_IRQ, resource_name); + + if (!r) { + dev_err(dev, "Can't get resource information for '%s'\n", + resource_name); + return -ENXIO; + } + + /* Attempt to own the interrupt. */ + for (i = r->start; i <= r->end; i++) { + error = request_irq(i, interrupt_handler, 0, + resource_name, this); + + if (error) { + dev_err(dev, "Can't own %s\n", resource_name); + + /* Free all the irq's we've already acquired. */ + + while ((i - r->start) >= 0) { + free_irq(i, this); + i--; + } + + return -EIO; + } + } + + /* If control arrives here, everything went fine. */ + + *lno = r->start; + *hno = r->end; + + return 0; + +} + +/** + * release_interrupt() - Releases an interrupt. + * + * @this: Per-device data. + * @interrupt_number: The interrupt number. + */ +static void release_interrupt(struct gpmi_nfc_data *this, + int low_interrupt_number, int high_interrupt_number) +{ + int i; + for (i = low_interrupt_number; i <= high_interrupt_number; i++) + free_irq(i, this); +} + +/** + * acquire_dma_channels() - Tries to acquire DMA channels. + * + * @this: Per-device data. + * @resource_name: The name of the resource. + * @low_channel: A pointer to a variable that will receive the acquired + * low DMA channel number. + * @high_channel: A pointer to a variable that will receive the acquired + * high DMA channel number. + */ +static int acquire_dma_channels( + struct gpmi_nfc_data *this, const char *resource_name, + unsigned *low_channel, unsigned *high_channel) +{ + struct platform_device *pdev = this->pdev; + struct device *dev = this->dev; + int error = 0; + struct resource *r; + unsigned int dma_channel; + + /* Attempt to get information about the given resource. */ + + r = platform_get_resource_byname(pdev, IORESOURCE_DMA, resource_name); + + if (!r) { + dev_err(dev, "Can't get resource information for '%s'\n", + resource_name); + return -ENXIO; + } + + /* Loop over DMA channels, attempting to own them. */ + + for (dma_channel = r->start; dma_channel <= r->end; dma_channel++) { + + /* Attempt to own the current channel. */ + + error = mxs_dma_request(dma_channel, dev, resource_name); + + /* Check if we successfully acquired the current channel. */ + + if (error) { + + dev_err(dev, "Can't acquire DMA channel %u\n", + dma_channel); + + /* Free all the channels we've already acquired. */ + + while (--dma_channel >= 0) + mxs_dma_release(dma_channel, dev); + + return error; + + } + + /* + * If control arrives here, we successfully acquired the + * current channel. Continue initializing it. + */ + + mxs_dma_reset(dma_channel); + mxs_dma_ack_irq(dma_channel); + + } + + /* If control arrives here, all went well. */ + + *low_channel = r->start; + *high_channel = r->end; + + return 0; + +} + +/** + * release_dma_channels() - Releases DMA channels. + * + * @this: Per-device data. + * @low_channel: The low DMA channel number. + * @high_channel: The high DMA channel number. + */ +static void release_dma_channels(struct gpmi_nfc_data *this, + unsigned low_channel, unsigned high_channel) +{ + struct device *dev = this->dev; + unsigned int i; + + for (i = low_channel; i <= high_channel; i++) + mxs_dma_release(i, dev); +} + +/** + * acquire_clock() - Tries to acquire a clock. + * + * @this: Per-device data. + * @resource_name: The name of the clock. + * @high_channel: A pointer to a variable that will receive the acquired + * clock address. + */ +static int acquire_clock(struct gpmi_nfc_data *this, + const char *clock_name, struct clk **clock) +{ + struct device *dev = this->dev; + int error = 0; + struct clk *c; + + /* Try to get the clock. */ + + c = clk_get(dev, clock_name); + + if (IS_ERR(c)) { + error = PTR_ERR(c); + dev_err(dev, "Can't own clock %s\n", clock_name); + return error; + } + + /* If control arrives here, everything went fine. */ + + *clock = c; + + return 0; + +} + +/** + * release_clock() - Releases a clock. + * + * @this: Per-device data. + * @clock: A pointer to the clock structure. + */ +static void release_clock(struct gpmi_nfc_data *this, struct clk *clock) +{ + clk_disable(clock); + clk_put(clock); +} + +/** + * acquire_resources() - Tries to acquire resources. + * + * @this: Per-device data. + */ +static int acquire_resources(struct gpmi_nfc_data *this) +{ + struct gpmi_nfc_platform_data *pdata = this->pdata; + struct resources *resources = &this->resources; + int error = 0; + + /* Attempt to acquire the GPMI register block. */ + + error = acquire_register_block(this, + GPMI_NFC_GPMI_REGS_ADDR_RES_NAME, &(resources->gpmi_regs)); + + if (error) + goto exit_gpmi_regs; + + /* Attempt to acquire the BCH register block. */ + + error = acquire_register_block(this, + GPMI_NFC_BCH_REGS_ADDR_RES_NAME, &(resources->bch_regs)); + + if (error) + goto exit_bch_regs; + + /* Attempt to acquire the BCH interrupt. */ + + error = acquire_interrupt(this, + GPMI_NFC_BCH_INTERRUPT_RES_NAME, + gpmi_nfc_bch_isr, + &(resources->bch_low_interrupt), + &(resources->bch_high_interrupt)); + + if (error) + goto exit_bch_interrupt; + + /* Attempt to acquire the DMA channels. */ + + error = acquire_dma_channels(this, + GPMI_NFC_DMA_CHANNELS_RES_NAME, + &(resources->dma_low_channel), &(resources->dma_high_channel)); + + if (error) + goto exit_dma_channels; + + /* Attempt to acquire the DMA interrupt. */ + + error = acquire_interrupt(this, + GPMI_NFC_DMA_INTERRUPT_RES_NAME, + gpmi_nfc_dma_isr, + &(resources->dma_low_interrupt), + &(resources->dma_high_interrupt)); + + if (error) + goto exit_dma_interrupt; + + /* Attempt to acquire our clock. */ + + error = acquire_clock(this, pdata->clock_name, &(resources->clock)); + + if (error) + goto exit_clock; + + /* If control arrives here, all went well. */ + + return 0; + + /* Control arrives here if something went wrong. */ + +exit_clock: + release_interrupt(this, + resources->dma_low_interrupt, resources->dma_high_interrupt); +exit_dma_interrupt: + release_dma_channels(this, + resources->dma_low_channel, resources->dma_high_channel); +exit_dma_channels: + release_interrupt(this, + resources->bch_low_interrupt, resources->bch_high_interrupt); +exit_bch_interrupt: + release_register_block(this, resources->bch_regs); +exit_bch_regs: + release_register_block(this, resources->gpmi_regs); +exit_gpmi_regs: + + return error; + +} + +/** + * release_resources() - Releases resources. + * + * @this: Per-device data. + */ +static void release_resources(struct gpmi_nfc_data *this) +{ + struct resources *resources = &this->resources; + + release_clock(this, resources->clock); + release_register_block(this, resources->gpmi_regs); + release_register_block(this, resources->bch_regs); + release_interrupt(this, + resources->bch_low_interrupt, resources->bch_low_interrupt); + release_dma_channels(this, + resources->dma_low_channel, resources->dma_high_channel); + release_interrupt(this, + resources->dma_low_interrupt, resources->dma_high_interrupt); +} + +/** + * set_up_nfc_hal() - Sets up the NFC HAL. + * + * @this: Per-device data. + */ +static int set_up_nfc_hal(struct gpmi_nfc_data *this) +{ + struct gpmi_nfc_platform_data *pdata = this->pdata; + struct device *dev = this->dev; + struct nfc_hal *nfc; + int error = 0; + unsigned int i; + + /* Attempt to find an NFC HAL that matches the given version. */ + + for (i = 0; i < ARRAY_SIZE(nfc_hals); i++) { + + nfc = nfc_hals[i]; + + if (nfc->version == pdata->nfc_version) { + this->nfc = nfc; + break; + } + + } + + /* Check if we found a HAL. */ + + if (i >= ARRAY_SIZE(nfc_hals)) { + dev_err(dev, "Unkown NFC version %u\n", pdata->nfc_version); + return -ENXIO; + } + + pr_info("NFC: Version %u, %s\n", nfc->version, nfc->description); + + /* + * Check if we can handle the number of chips called for by the platform + * data. + */ + + if (pdata->max_chip_count > nfc->max_chip_count) { + dev_err(dev, "Platform data calls for %u chips " + "but NFC supports a max of %u.\n", + pdata->max_chip_count, nfc->max_chip_count); + return -ENXIO; + } + + /* Initialize the NFC HAL. */ + + error = nfc->init(this); + + if (error) + return error; + + /* Set up safe timing. */ + + nfc->set_timing(this, &safe_timing); + + /* + * If control arrives here, all is well. + */ + + return 0; + +} + +/** + * set_up_boot_rom_helper() - Sets up the Boot ROM Helper. + * + * @this: Per-device data. + */ +static int set_up_boot_rom_helper(struct gpmi_nfc_data *this) +{ + struct gpmi_nfc_platform_data *pdata = this->pdata; + struct device *dev = this->dev; + unsigned int i; + struct boot_rom_helper *rom; + + /* Attempt to find a Boot ROM Helper that matches the given version. */ + + for (i = 0; i < ARRAY_SIZE(boot_rom_helpers); i++) { + + rom = boot_rom_helpers[i]; + + if (rom->version == pdata->boot_rom_version) { + this->rom = rom; + break; + } + + } + + /* Check if we found a Boot ROM Helper. */ + + if (i >= ARRAY_SIZE(boot_rom_helpers)) { + dev_err(dev, "Unkown Boot ROM version %u\n", + pdata->boot_rom_version); + return -ENXIO; + } + + pr_info("Boot ROM: Version %u, %s\n", rom->version, rom->description); + + /* + * If control arrives here, all is well. + */ + + return 0; + +} + +/** + * manage_sysfs_files() - Creates/removes sysfs files for this device. + * + * @this: Per-device data. + */ +static void manage_sysfs_files(struct gpmi_nfc_data *this, int create) +{ + struct device *dev = this->dev; + int error; + unsigned int i; + struct device_attribute **attr; + + for (i = 0, attr = device_attributes; + i < ARRAY_SIZE(device_attributes); i++, attr++) { + + if (create) { + error = device_create_file(dev, *attr); + if (error) { + while (--attr >= device_attributes) + device_remove_file(dev, *attr); + return; + } + } else { + device_remove_file(dev, *attr); + } + + } + +} + +/** + * gpmi_nfc_probe() - Probes for a device and, if possible, takes ownership. + * + * @pdev: A pointer to the platform device data structure. + */ +static int gpmi_nfc_probe(struct platform_device *pdev) +{ + int error = 0; + struct device *dev = &pdev->dev; + struct gpmi_nfc_platform_data *pdata = pdev->dev.platform_data; + struct gpmi_nfc_data *this = 0; + + /* Validate the platform device data. */ + + error = validate_the_platform(pdev); + + if (error) + goto exit_validate_platform; + + /* Allocate memory for the per-device data. */ + + this = kzalloc(sizeof(*this), GFP_KERNEL); + + if (!this) { + dev_err(dev, "Failed to allocate per-device memory\n"); + error = -ENOMEM; + goto exit_allocate_this; + } + + /* Set up our data structures. */ + + platform_set_drvdata(pdev, this); + + this->pdev = pdev; + this->dev = &pdev->dev; + this->pdata = pdata; + + /* Acquire the resources we need. */ + + error = acquire_resources(this); + + if (error) + goto exit_acquire_resources; + + /* Set up the NFC. */ + + error = set_up_nfc_hal(this); + + if (error) + goto exit_nfc_init; + + /* Set up the platform. */ + + if (pdata->platform_init) + error = pdata->platform_init(pdata->max_chip_count); + + if (error) + goto exit_platform_init; + + /* Set up the Boot ROM Helper. */ + + error = set_up_boot_rom_helper(this); + + if (error) + goto exit_boot_rom_helper_init; + + /* Initialize the MTD Interface Layer. */ + + error = gpmi_nfc_mil_init(this); + + if (error) + goto exit_mil_init; + + /* Create sysfs entries for this device. */ + + manage_sysfs_files(this, true); + + /* Return success. */ + + return 0; + + /* Error return paths begin here. */ + +exit_mil_init: +exit_boot_rom_helper_init: + if (pdata->platform_exit) + pdata->platform_exit(pdata->max_chip_count); +exit_platform_init: + this->nfc->exit(this); +exit_nfc_init: + release_resources(this); +exit_acquire_resources: + platform_set_drvdata(pdev, NULL); + kfree(this); +exit_allocate_this: +exit_validate_platform: + return error; + +} + +/** + * gpmi_nfc_remove() - Dissociates this driver from the given device. + * + * @pdev: A pointer to the platform device data structure. + */ +static int __exit gpmi_nfc_remove(struct platform_device *pdev) +{ + struct gpmi_nfc_data *this = platform_get_drvdata(pdev); + struct gpmi_nfc_platform_data *pdata = this->pdata; + + manage_sysfs_files(this, false); + gpmi_nfc_mil_exit(this); + if (pdata->platform_exit) + pdata->platform_exit(pdata->max_chip_count); + this->nfc->exit(this); + release_resources(this); + platform_set_drvdata(pdev, NULL); + kfree(this); + + return 0; +} + +#ifdef CONFIG_PM + +/** + * gpmi_nfc_suspend() - Puts the NFC into a low power state. + * + * @pdev: A pointer to the platform device data structure. + * @state: The new power state. + */ +static int gpmi_nfc_suspend(struct platform_device *pdev, pm_message_t state) +{ + return 0; +} + +/** + * gpmi_nfc_resume() - Brings the NFC back from a low power state. + * + * @pdev: A pointer to the platform device data structure. + */ +static int gpmi_nfc_resume(struct platform_device *pdev) +{ + return 0; +} + +#else + +#define suspend NULL +#define resume NULL + +#endif /* CONFIG_PM */ + +/* + * This structure represents this driver to the platform management system. + */ +static struct platform_driver gpmi_nfc_driver = { + .driver = { + .name = GPMI_NFC_DRIVER_NAME, + }, + .probe = gpmi_nfc_probe, + .remove = __exit_p(gpmi_nfc_remove), + .suspend = gpmi_nfc_suspend, + .resume = gpmi_nfc_resume, +}; + +/** + * gpmi_nfc_init() - Initializes this module. + */ +static int __init gpmi_nfc_init(void) +{ + + pr_info("i.MX GPMI NFC\n"); + + /* Register this driver with the platform management system. */ + + if (platform_driver_register(&gpmi_nfc_driver) != 0) { + pr_err("i.MX GPMI NFC driver registration failed\n"); + return -ENODEV; + } + + /* Return success. */ + + return 0; + +} + +/** + * gpmi_nfc_exit() - Deactivates this module. + */ +static void __exit gpmi_nfc_exit(void) +{ + platform_driver_unregister(&gpmi_nfc_driver); +} + +module_init(gpmi_nfc_init); +module_exit(gpmi_nfc_exit); + +MODULE_AUTHOR("Freescale Semiconductor, Inc."); +MODULE_DESCRIPTION("i.MX GPMI NAND Flash Controller Driver"); +MODULE_LICENSE("GPL"); diff --git a/drivers/mtd/nand/gpmi-nfc/gpmi-nfc-mil.c b/drivers/mtd/nand/gpmi-nfc/gpmi-nfc-mil.c new file mode 100644 index 000000000000..50ba771853a4 --- /dev/null +++ b/drivers/mtd/nand/gpmi-nfc/gpmi-nfc-mil.c @@ -0,0 +1,2630 @@ +/* + * Freescale GPMI NFC NAND Flash Driver + * + * Copyright (C) 2010 Freescale Semiconductor, Inc. + * Copyright (C) 2008 Embedded Alley Solutions, Inc. + * + * This program is free software; you can redistribute it and/or modify + * it under the terms of the GNU General Public License as published by + * the Free Software Foundation; either version 2 of the License, or + * (at your option) any later version. + * + * This program is distributed in the hope that it will be useful, + * but WITHOUT ANY WARRANTY; without even the implied warranty of + * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the + * GNU General Public License for more details. + * + * You should have received a copy of the GNU General Public License along + * with this program; if not, write to the Free Software Foundation, Inc., + * 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA. + */ + +#include "gpmi-nfc.h" + +/* + * Indicates the driver should register the MTD that represents the entire + * medium, thus making it visible. + */ + +static int register_main_mtd; +module_param(register_main_mtd, int, 0400); + +/* + * Indicates the driver should attempt to perform DMA directly to/from buffers + * passed into this driver. This is true by default. If false, the driver will + * *always* copy incoming/outgoing data to/from its own DMA buffers. + */ + +static int map_io_buffers = true; +module_param(map_io_buffers, int, 0600); + +/** + * mil_outgoing_buffer_dma_begin() - Begins DMA on an outgoing buffer. + * + * @this: Per-device data. + * @source: The source buffer. + * @length: The length of the data in the source buffer. + * @alt_virt: The virtual address of an alternate buffer which is ready to be + * used for DMA. + * @alt_phys: The physical address of an alternate buffer which is ready to be + * used for DMA. + * @alt_size: The size of the alternate buffer. + * @use_virt: A pointer to a variable that will receive the virtual address to + * use. + * @use_phys: A pointer to a variable that will receive the physical address to + * use. + */ +static int mil_outgoing_buffer_dma_begin(struct gpmi_nfc_data *this, + const void *source, unsigned length, + void *alt_virt, dma_addr_t alt_phys, unsigned alt_size, + const void **use_virt, dma_addr_t *use_phys) +{ + struct device *dev = this->dev; + dma_addr_t source_phys = ~0; + + /* + * If we can, we want to use the caller's buffer directly for DMA. Check + * if the system will let us map them. + */ + + if (map_io_buffers && virt_addr_valid(source)) + source_phys = + dma_map_single(dev, + (void *) source, length, DMA_TO_DEVICE); + + if (dma_mapping_error(dev, source_phys)) { + + /* + * If control arrives here, we're not mapping the source buffer. + * Make sure the alternate is large enough. + */ + + if (alt_size < length) { + dev_err(dev, "Alternate buffer is too small " + "for outgoing I/O\n"); + return -ENOMEM; + } + + /* + * Copy the contents of the source buffer into the alternate + * buffer and set up the return values accordingly. + */ + + memcpy(alt_virt, source, length); + + *use_virt = alt_virt; + *use_phys = alt_phys; + + } else { + + /* + * If control arrives here, we're mapping the source buffer. Set + * up the return values accordingly. + */ + + *use_virt = source; + *use_phys = source_phys; + + } + + /* If control arrives here, all is well. */ + + return 0; + +} + +/** + * mil_outgoing_buffer_dma_end() - Ends DMA on an outgoing buffer. + * + * @this: Per-device data. + * @source: The source buffer. + * @length: The length of the data in the source buffer. + * @alt_virt: The virtual address of an alternate buffer which was ready to be + * used for DMA. + * @alt_phys: The physical address of an alternate buffer which was ready to + * be used for DMA. + * @alt_size: The size of the alternate buffer. + * @used_virt: The virtual address that was used. + * @used_phys: The physical address that was used. + */ +static void mil_outgoing_buffer_dma_end(struct gpmi_nfc_data *this, + const void *source, unsigned length, + void *alt_virt, dma_addr_t alt_phys, unsigned alt_size, + const void *used_virt, dma_addr_t used_phys) +{ + struct device *dev = this->dev; + + /* + * Check if we used the source buffer, and it's not one of our own DMA + * buffers. If so, we need to unmap it. + */ + + if (used_virt == source) + dma_unmap_single(dev, used_phys, length, DMA_TO_DEVICE); + +} + +/** + * mil_incoming_buffer_dma_begin() - Begins DMA on an incoming buffer. + * + * @this: Per-device data. + * @destination: The destination buffer. + * @length: The length of the data that will arrive. + * @alt_virt: The virtual address of an alternate buffer which is ready + * to be used for DMA. + * @alt_phys: The physical address of an alternate buffer which is ready + * to be used for DMA. + * @alt_size: The size of the alternate buffer. + * @use_virt: A pointer to a variable that will receive the virtual address + * to use. + * @use_phys: A pointer to a variable that will receive the physical address + * to use. + */ +static int mil_incoming_buffer_dma_begin(struct gpmi_nfc_data *this, + void *destination, unsigned length, + void *alt_virt, dma_addr_t alt_phys, unsigned alt_size, + void **use_virt, dma_addr_t *use_phys) +{ + struct device *dev = this->dev; + dma_addr_t destination_phys = ~0; + + /* + * If we can, we want to use the caller's buffer directly for DMA. Check + * if the system will let us map them. + */ + if (map_io_buffers && virt_addr_valid(destination) && + !((int)destination & 0x3) && 0) + destination_phys = + dma_map_single(dev, + (void *) destination, length, DMA_FROM_DEVICE); + + if (dma_mapping_error(dev, destination_phys)) { + + /* + * If control arrives here, we're not mapping the destination + * buffer. Make sure the alternate is large enough. + */ + + if (alt_size < length) { + dev_err(dev, "Alternate buffer is too small " + "for incoming I/O\n"); + return -ENOMEM; + } + + /* Set up the return values to use the alternate. */ + + *use_virt = alt_virt; + *use_phys = alt_phys; + + } else { + + /* + * If control arrives here, we're mapping the destination + * buffer. Set up the return values accordingly. + */ + + *use_virt = destination; + *use_phys = destination_phys; + + } + + /* If control arrives here, all is well. */ + + return 0; + +} + +/** + * mil_incoming_buffer_dma_end() - Ends DMA on an incoming buffer. + * + * @this: Per-device data. + * @destination: The destination buffer. + * @length: The length of the data that arrived. + * @alt_virt: The virtual address of an alternate buffer which was ready to + * be used for DMA. + * @alt_phys: The physical address of an alternate buffer which was ready to + * be used for DMA. + * @alt_size: The size of the alternate buffer. + * @used_virt: The virtual address that was used. + * @used_phys: The physical address that was used. + */ +static void mil_incoming_buffer_dma_end(struct gpmi_nfc_data *this, + void *destination, unsigned length, + void *alt_virt, dma_addr_t alt_phys, unsigned alt_size, + void *used_virt, dma_addr_t used_phys) +{ + struct device *dev = this->dev; + + /* + * Check if we used the destination buffer, and it's not one of our own + * DMA buffers. If so, we need to unmap it. + */ + + if (used_virt == destination) + dma_unmap_single(dev, used_phys, length, DMA_FROM_DEVICE); + else + memcpy(destination, alt_virt, length); + +} + +/** + * mil_cmd_ctrl - MTD Interface cmd_ctrl() + * + * This is the function that we install in the cmd_ctrl function pointer of the + * owning struct nand_chip. The only functions in the reference implementation + * that use these functions pointers are cmdfunc and select_chip. + * + * In this driver, we implement our own select_chip, so this function will only + * be called by the reference implementation's cmdfunc. For this reason, we can + * ignore the chip enable bit and concentrate only on sending bytes to the + * NAND Flash. + * + * @mtd: The owning MTD. + * @data: The value to push onto the data signals. + * @ctrl: The values to push onto the control signals. + */ +static void mil_cmd_ctrl(struct mtd_info *mtd, int data, unsigned int ctrl) +{ + struct nand_chip *nand = mtd->priv; + struct gpmi_nfc_data *this = nand->priv; + struct device *dev = this->dev; + struct mil *mil = &this->mil; + struct nfc_hal *nfc = this->nfc; + int error; +#if defined(CONFIG_MTD_DEBUG) + unsigned int i; + char display[MIL_COMMAND_BUFFER_SIZE * 5]; +#endif + + /* + * Every operation begins with a command byte and a series of zero or + * more address bytes. These are distinguished by either the Address + * Latch Enable (ALE) or Command Latch Enable (CLE) signals being + * asserted. When MTD is ready to execute the command, it will deassert + * both latch enables. + * + * Rather than run a separate DMA operation for every single byte, we + * queue them up and run a single DMA operation for the entire series + * of command and data bytes. + */ + + if ((ctrl & (NAND_ALE | NAND_CLE))) { + if (data != NAND_CMD_NONE) + mil->cmd_virt[mil->command_length++] = data; + return; + } + + /* + * If control arrives here, MTD has deasserted both the ALE and CLE, + * which means it's ready to run an operation. Check if we have any + * bytes to send. + */ + + if (!mil->command_length) + return; + + /* Hand the command over to the NFC. */ + + gpmi_nfc_add_event("mil_cmd_ctrl sending command...", 1); + +#if defined(CONFIG_MTD_DEBUG) + display[0] = 0; + for (i = 0; i < mil->command_length; i++) + sprintf(display + strlen(display), " 0x%02x", + mil->cmd_virt[i] & 0xff); + DEBUG(MTD_DEBUG_LEVEL2, "[gpmi_nfc cmd_ctrl] command: %s\n", display); +#endif + + error = nfc->send_command(this, + mil->current_chip, mil->cmd_phys, mil->command_length); + + if (error) { + dev_err(dev, "[%s] Chip: %u, Error %d\n", + __func__, mil->current_chip, error); + print_hex_dump(KERN_ERR, + " Command Bytes: ", DUMP_PREFIX_NONE, 16, 1, + mil->cmd_virt, mil->command_length, 0); + } + + gpmi_nfc_add_event("...Finished", -1); + + /* Reset. */ + + mil->command_length = 0; + +} + +/** + * mil_dev_ready() - MTD Interface dev_ready() + * + * @mtd: A pointer to the owning MTD. + */ +static int mil_dev_ready(struct mtd_info *mtd) +{ + struct nand_chip *nand = mtd->priv; + struct gpmi_nfc_data *this = nand->priv; + struct nfc_hal *nfc = this->nfc; + struct mil *mil = &this->mil; + + DEBUG(MTD_DEBUG_LEVEL2, "[gpmi_nfc dev_ready]\n"); + + gpmi_nfc_add_event("> mil_dev_ready", 1); + + if (nfc->is_ready(this, mil->current_chip)) { + gpmi_nfc_add_event("< mil_dev_ready - Returning ready", -1); + return !0; + } else { + gpmi_nfc_add_event("< mil_dev_ready - Returning busy", -1); + return 0; + } + +} + +/** + * mil_select_chip() - MTD Interface select_chip() + * + * @mtd: A pointer to the owning MTD. + * @chip: The chip number to select, or -1 to select no chip. + */ +static void mil_select_chip(struct mtd_info *mtd, int chip) +{ + struct nand_chip *nand = mtd->priv; + struct gpmi_nfc_data *this = nand->priv; + struct mil *mil = &this->mil; + struct nfc_hal *nfc = this->nfc; + struct clk *clock = this->resources.clock; + + DEBUG(MTD_DEBUG_LEVEL2, "[gpmi_nfc select_chip] chip: %d\n", chip); + + /* Figure out what kind of transition this is. */ + + if ((mil->current_chip < 0) && (chip >= 0)) { + gpmi_nfc_start_event_trace("> mil_select_chip"); + clk_enable(clock); + nfc->begin(this); + gpmi_nfc_add_event("< mil_select_chip", -1); + } else if ((mil->current_chip >= 0) && (chip < 0)) { + gpmi_nfc_add_event("> mil_select_chip", 1); + gpmi_nfc_add_event("> not disable clk", 1); + clk_disable(clock); + nfc->end(this); + gpmi_nfc_stop_event_trace("< mil_select_chip"); + } else { + gpmi_nfc_add_event("> mil_select_chip", 1); + gpmi_nfc_add_event("< mil_select_chip", -1); + } + + mil->current_chip = chip; + +} + +/** + * mil_read_buf() - MTD Interface read_buf(). + * + * @mtd: A pointer to the owning MTD. + * @buf: The destination buffer. + * @len: The number of bytes to read. + */ +static void mil_read_buf(struct mtd_info *mtd, uint8_t *buf, int len) +{ + struct nand_chip *nand = mtd->priv; + struct gpmi_nfc_data *this = nand->priv; + struct device *dev = this->dev; + struct nfc_hal *nfc = this->nfc; + struct nfc_geometry *nfc_geo = &this->nfc_geometry; + struct mil *mil = &this->mil; + void *use_virt = 0; + dma_addr_t use_phys = ~0; + int error; + + DEBUG(MTD_DEBUG_LEVEL2, "[gpmi_nfc readbuf] len: %d\n", len); + + gpmi_nfc_add_event("> mil_read_buf", 1); + + /* Set up DMA. */ + error = mil_incoming_buffer_dma_begin(this, buf, len, + mil->payload_virt, mil->payload_phys, + nfc_geo->payload_size_in_bytes, + &use_virt, &use_phys); + + if (error) { + dev_err(dev, "[%s] Inadequate DMA buffer\n", __func__); + goto exit; + } + + /* Ask the NFC. */ + + nfc->read_data(this, mil->current_chip, use_phys, len); + + /* Finish with DMA. */ + + mil_incoming_buffer_dma_end(this, buf, len, + mil->payload_virt, mil->payload_phys, + nfc_geo->payload_size_in_bytes, + use_virt, use_phys); + + /* Return. */ + +exit: + + gpmi_nfc_add_event("< mil_read_buf", -1); + +} + +/** + * mil_write_buf() - MTD Interface write_buf(). + * + * @mtd: A pointer to the owning MTD. + * @buf: The source buffer. + * @len: The number of bytes to read. + */ +static void mil_write_buf(struct mtd_info *mtd, const uint8_t *buf, int len) +{ + struct nand_chip *nand = mtd->priv; + struct gpmi_nfc_data *this = nand->priv; + struct device *dev = this->dev; + struct nfc_hal *nfc = this->nfc; + struct nfc_geometry *nfc_geo = &this->nfc_geometry; + struct mil *mil = &this->mil; + const void *use_virt = 0; + dma_addr_t use_phys = ~0; + int error; + + DEBUG(MTD_DEBUG_LEVEL2, "[gpmi_nfc writebuf] len: %d\n", len); + + gpmi_nfc_add_event("> mil_write_buf", 1); + + /* Set up DMA. */ + + error = mil_outgoing_buffer_dma_begin(this, buf, len, + mil->payload_virt, mil->payload_phys, + nfc_geo->payload_size_in_bytes, + &use_virt, &use_phys); + + if (error) { + dev_err(dev, "[%s] Inadequate DMA buffer\n", __func__); + goto exit; + } + + /* Ask the NFC. */ + + nfc->send_data(this, mil->current_chip, use_phys, len); + + /* Finish with DMA. */ + + mil_outgoing_buffer_dma_end(this, buf, len, + mil->payload_virt, mil->payload_phys, + nfc_geo->payload_size_in_bytes, + use_virt, use_phys); + + /* Return. */ + +exit: + + gpmi_nfc_add_event("< mil_write_buf", -1); + +} + +/** + * mil_read_byte() - MTD Interface read_byte(). + * + * @mtd: A pointer to the owning MTD. + */ +static uint8_t mil_read_byte(struct mtd_info *mtd) +{ + uint8_t byte; + + DEBUG(MTD_DEBUG_LEVEL2, "[gpmi_nfc read_byte]\n"); + + gpmi_nfc_add_event("> mil_read_byte", 1); + + mil_read_buf(mtd, (uint8_t *) &byte, 1); + + gpmi_nfc_add_event("< mil_read_byte", -1); + + DEBUG(MTD_DEBUG_LEVEL2, "[gpmi_nfc read_byte]: 0x%02x\n", byte); + + return byte; + +} + +/** + * mil_handle_block_mark_swapping() - Handles block mark swapping. + * + * Note that, when this function is called, it doesn't know whether it's + * swapping the block mark, or swapping it *back* -- but it doesn't matter + * because the the operation is the same. + * + * @this: Per-device data. + * @payload: A pointer to the payload buffer. + * @auxiliary: A pointer to the auxiliary buffer. + */ +static void mil_handle_block_mark_swapping(struct gpmi_nfc_data *this, + void *payload, void *auxiliary) +{ + struct nfc_geometry *nfc_geo = &this->nfc_geometry; + struct boot_rom_helper *rom = this->rom; + unsigned char *p; + unsigned char *a; + unsigned int bit; + unsigned char mask; + unsigned char from_data; + unsigned char from_oob; + + /* Check if we're doing block mark swapping. */ + + if (!rom->swap_block_mark) + return; + + /* + * If control arrives here, we're swapping. Make some convenience + * variables. + */ + + bit = nfc_geo->block_mark_bit_offset; + p = ((unsigned char *) payload) + nfc_geo->block_mark_byte_offset; + a = auxiliary; + + /* + * Get the byte from the data area that overlays the block mark. Since + * the ECC engine applies its own view to the bits in the page, the + * physical block mark won't (in general) appear on a byte boundary in + * the data. + */ + + from_data = (p[0] >> bit) | (p[1] << (8 - bit)); + + /* Get the byte from the OOB. */ + + from_oob = a[0]; + + /* Swap them. */ + + a[0] = from_data; + + mask = (0x1 << bit) - 1; + p[0] = (p[0] & mask) | (from_oob << bit); + + mask = ~0 << bit; + p[1] = (p[1] & mask) | (from_oob >> (8 - bit)); + +} + +/** + * mil_ecc_read_page() - MTD Interface ecc.read_page(). + * + * @mtd: A pointer to the owning MTD. + * @nand: A pointer to the owning NAND Flash MTD. + * @buf: A pointer to the destination buffer. + */ +static int mil_ecc_read_page(struct mtd_info *mtd, + struct nand_chip *nand, uint8_t *buf) +{ + struct gpmi_nfc_data *this = nand->priv; + struct device *dev = this->dev; + struct nfc_hal *nfc = this->nfc; + struct nfc_geometry *nfc_geo = &this->nfc_geometry; + struct mil *mil = &this->mil; + void *payload_virt = 0; + dma_addr_t payload_phys = ~0; + void *auxiliary_virt = 0; + dma_addr_t auxiliary_phys = ~0; + unsigned int i; + unsigned char *status; + unsigned int failed; + unsigned int corrected; + int error = 0; + + DEBUG(MTD_DEBUG_LEVEL2, "[gpmi_nfc ecc_read_page]\n"); + + gpmi_nfc_add_event("> mil_ecc_read_page", 1); + + /* + * Set up DMA. + * + * Notice that we don't try to use the caller's buffer as the auxiliary. + * We need to do a lot of fiddling to deliver the OOB, so there's no + * point. + */ + + error = mil_incoming_buffer_dma_begin(this, buf, mtd->writesize, + mil->payload_virt, mil->payload_phys, + nfc_geo->payload_size_in_bytes, + &payload_virt, &payload_phys); + + if (error) { + dev_err(dev, "[%s] Inadequate DMA buffer\n", __func__); + error = -ENOMEM; + goto exit_payload; + } + + auxiliary_virt = mil->auxiliary_virt; + auxiliary_phys = mil->auxiliary_phys; + + /* Ask the NFC. */ + + error = nfc->read_page(this, mil->current_chip, + payload_phys, auxiliary_phys); + + if (error) { + dev_err(dev, "[%s] Error in ECC-based read: %d\n", + __func__, error); + goto exit_nfc; + } + + /* Handle block mark swapping. */ + + mil_handle_block_mark_swapping(this, payload_virt, auxiliary_virt); + + /* Loop over status bytes, accumulating ECC status. */ + + failed = 0; + corrected = 0; + + status = ((unsigned char *) auxiliary_virt) + + nfc_geo->auxiliary_status_offset; + + for (i = 0; i < nfc_geo->ecc_chunk_count; i++, status++) { + + if ((*status == 0x00) || (*status == 0xff)) + continue; + + if (*status == 0xfe) { + failed++; + continue; + } + + corrected += *status; + + } + + /* Propagate ECC status to the owning MTD. */ + + mtd->ecc_stats.failed += failed; + mtd->ecc_stats.corrected += corrected; + + /* + * It's time to deliver the OOB bytes. See mil_ecc_read_oob() for + * details about our policy for delivering the OOB. + * + * We fill the caller's buffer with set bits, and then copy the block + * mark to th caller's buffer. Note that, if block mark swapping was + * necessary, it has already been done, so we can rely on the first + * byte of the auxiliary buffer to contain the block mark. + */ + + memset(nand->oob_poi, ~0, mtd->oobsize); + + nand->oob_poi[0] = ((uint8_t *) auxiliary_virt)[0]; + + /* Return. */ + +exit_nfc: + mil_incoming_buffer_dma_end(this, buf, mtd->writesize, + mil->payload_virt, mil->payload_phys, + nfc_geo->payload_size_in_bytes, + payload_virt, payload_phys); +exit_payload: + + gpmi_nfc_add_event("< mil_ecc_read_page", -1); + + return error; + +} + +/** + * mil_ecc_write_page() - MTD Interface ecc.write_page(). + * + * @mtd: A pointer to the owning MTD. + * @nand: A pointer to the owning NAND Flash MTD. + * @buf: A pointer to the source buffer. + */ +static void mil_ecc_write_page(struct mtd_info *mtd, + struct nand_chip *nand, const uint8_t *buf) +{ + struct gpmi_nfc_data *this = nand->priv; + struct device *dev = this->dev; + struct nfc_hal *nfc = this->nfc; + struct nfc_geometry *nfc_geo = &this->nfc_geometry; + struct boot_rom_helper *rom = this->rom; + struct mil *mil = &this->mil; + const void *payload_virt = 0; + dma_addr_t payload_phys = ~0; + const void *auxiliary_virt = 0; + dma_addr_t auxiliary_phys = ~0; + int error; + + DEBUG(MTD_DEBUG_LEVEL2, "[gpmi_nfc ecc_write_page]\n"); + + gpmi_nfc_add_event("> mil_ecc_write_page", 1); + + /* Set up DMA. */ + + if (rom->swap_block_mark) { + + /* + * If control arrives here, we're doing block mark swapping. + * Since we can't modify the caller's buffers, we must copy them + * into our own. + */ + + memcpy(mil->payload_virt, buf, mtd->writesize); + payload_virt = mil->payload_virt; + payload_phys = mil->payload_phys; + + memcpy(mil->auxiliary_virt, nand->oob_poi, mtd->oobsize); + auxiliary_virt = mil->auxiliary_virt; + auxiliary_phys = mil->auxiliary_phys; + + /* Handle block mark swapping. */ + + mil_handle_block_mark_swapping(this, + (void *) payload_virt, (void *) auxiliary_virt); + + } else { + + /* + * If control arrives here, we're not doing block mark swapping, + * so we can to try and use the caller's buffers. + */ + + error = mil_outgoing_buffer_dma_begin(this, + buf, mtd->writesize, + mil->payload_virt, mil->payload_phys, + nfc_geo->payload_size_in_bytes, + &payload_virt, &payload_phys); + + if (error) { + dev_err(dev, "[%s] Inadequate payload DMA buffer\n", + __func__); + goto exit_payload; + } + + error = mil_outgoing_buffer_dma_begin(this, + nand->oob_poi, mtd->oobsize, + mil->auxiliary_virt, mil->auxiliary_phys, + nfc_geo->auxiliary_size_in_bytes, + &auxiliary_virt, &auxiliary_phys); + + if (error) { + dev_err(dev, "[%s] Inadequate auxiliary DMA buffer\n", + __func__); + goto exit_auxiliary; + } + + } + + /* Ask the NFC. */ + + error = nfc->send_page(this, mil->current_chip, + payload_phys, auxiliary_phys); + + if (error) + dev_err(dev, "[%s] Error in ECC-based write: %d\n", + __func__, error); + + /* Return. */ + + if (!rom->swap_block_mark) + mil_outgoing_buffer_dma_end(this, nand->oob_poi, mtd->oobsize, + mil->auxiliary_virt, mil->auxiliary_phys, + nfc_geo->auxiliary_size_in_bytes, + auxiliary_virt, auxiliary_phys); +exit_auxiliary: + if (!rom->swap_block_mark) + mil_outgoing_buffer_dma_end(this, buf, mtd->writesize, + mil->payload_virt, mil->payload_phys, + nfc_geo->payload_size_in_bytes, + payload_virt, payload_phys); +exit_payload: + + gpmi_nfc_add_event("< mil_ecc_write_page", -1); + +} + +/** + * mil_hook_read_oob() - Hooked MTD Interface read_oob(). + * + * This function is a veneer that replaces the function originally installed by + * the NAND Flash MTD code. See the description of the raw_oob_mode field in + * struct mil for more information about this. + * + * @mtd: A pointer to the MTD. + * @from: The starting address to read. + * @ops: Describes the operation. + */ +static int mil_hook_read_oob(struct mtd_info *mtd, + loff_t from, struct mtd_oob_ops *ops) +{ + register struct nand_chip *chip = mtd->priv; + struct gpmi_nfc_data *this = chip->priv; + struct mil *mil = &this->mil; + int ret; + + mil->raw_oob_mode = ops->mode == MTD_OOB_RAW; + ret = mil->hooked_read_oob(mtd, from, ops); + mil->raw_oob_mode = false; + return ret; +} + +/** + * mil_hook_write_oob() - Hooked MTD Interface write_oob(). + * + * This function is a veneer that replaces the function originally installed by + * the NAND Flash MTD code. See the description of the raw_oob_mode field in + * struct mil for more information about this. + * + * @mtd: A pointer to the MTD. + * @to: The starting address to write. + * @ops: Describes the operation. + */ +static int mil_hook_write_oob(struct mtd_info *mtd, + loff_t to, struct mtd_oob_ops *ops) +{ + register struct nand_chip *chip = mtd->priv; + struct gpmi_nfc_data *this = chip->priv; + struct mil *mil = &this->mil; + int ret; + + mil->raw_oob_mode = ops->mode == MTD_OOB_RAW; + ret = mil->hooked_write_oob(mtd, to, ops); + mil->raw_oob_mode = false; + return ret; +} + +/** + * mil_hook_block_markbad() - Hooked MTD Interface block_markbad(). + * + * This function is a veneer that replaces the function originally installed by + * the NAND Flash MTD code. See the description of the marking_a_bad_block field + * in struct mil for more information about this. + * + * @mtd: A pointer to the MTD. + * @ofs: Byte address of the block to mark. + */ +static int mil_hook_block_markbad(struct mtd_info *mtd, loff_t ofs) +{ + register struct nand_chip *chip = mtd->priv; + struct gpmi_nfc_data *this = chip->priv; + struct mil *mil = &this->mil; + int ret; + + mil->marking_a_bad_block = true; + ret = mil->hooked_block_markbad(mtd, ofs); + mil->marking_a_bad_block = false; + return ret; +} + +/** + * mil_ecc_read_oob() - MTD Interface ecc.read_oob(). + * + * There are several places in this driver where we have to handle the OOB and + * block marks. This is the function where things are the most complicated, so + * this is where we try to explain it all. All the other places refer back to + * here. + * + * These are the rules, in order of decreasing importance: + * + * 1) Nothing the caller does can be allowed to imperil the block mark, so all + * write operations take measures to protect it. + * + * 2) In read operations, the first byte of the OOB we return must reflect the + * true state of the block mark, no matter where that block mark appears in + * the physical page. + * + * 3) ECC-based read operations return an OOB full of set bits (since we never + * allow ECC-based writes to the OOB, it doesn't matter what ECC-based reads + * return). + * + * 4) "Raw" read operations return a direct view of the physical bytes in the + * page, using the conventional definition of which bytes are data and which + * are OOB. This gives the caller a way to see the actual, physical bytes + * in the page, without the distortions applied by our ECC engine. + * + * + * What we do for this specific read operation depends on two questions: + * + * 1) Are we doing a "raw" read, or an ECC-based read? + * + * 2) Are we using block mark swapping or transcription? + * + * There are four cases, illustrated by the following Karnaugh map: + * + * | Raw | ECC-based | + * -------------+-------------------------+-------------------------+ + * | Read the conventional | | + * | OOB at the end of the | | + * Swapping | page and return it. It | | + * | contains exactly what | | + * | we want. | Read the block mark and | + * -------------+-------------------------+ return it in a buffer | + * | Read the conventional | full of set bits. | + * | OOB at the end of the | | + * | page and also the block | | + * Transcribing | mark in the metadata. | | + * | Copy the block mark | | + * | into the first byte of | | + * | the OOB. | | + * -------------+-------------------------+-------------------------+ + * + * Note that we break rule #4 in the Transcribing/Raw case because we're not + * giving an accurate view of the actual, physical bytes in the page (we're + * overwriting the block mark). That's OK because it's more important to follow + * rule #2. + * + * It turns out that knowing whether we want an "ECC-based" or "raw" read is not + * easy. When reading a page, for example, the NAND Flash MTD code calls our + * ecc.read_page or ecc.read_page_raw function. Thus, the fact that MTD wants an + * ECC-based or raw view of the page is implicit in which function it calls + * (there is a similar pair of ECC-based/raw functions for writing). + * + * Since MTD assumes the OOB is not covered by ECC, there is no pair of + * ECC-based/raw functions for reading or or writing the OOB. The fact that the + * caller wants an ECC-based or raw view of the page is not propagated down to + * this driver. + * + * Since our OOB *is* covered by ECC, we need this information. So, we hook the + * ecc.read_oob and ecc.write_oob function pointers in the owning + * struct mtd_info with our own functions. These hook functions set the + * raw_oob_mode field so that, when control finally arrives here, we'll know + * what to do. + * + * @mtd: A pointer to the owning MTD. + * @nand: A pointer to the owning NAND Flash MTD. + * @page: The page number to read. + * @sndcmd: Indicates this function should send a command to the chip before + * reading the out-of-band bytes. This is only false for small page + * chips that support auto-increment. + */ +static int mil_ecc_read_oob(struct mtd_info *mtd, struct nand_chip *nand, + int page, int sndcmd) +{ + struct gpmi_nfc_data *this = nand->priv; + struct physical_geometry *physical = &this->physical_geometry; + struct mil *mil = &this->mil; + struct boot_rom_helper *rom = this->rom; + int block_mark_column; + + DEBUG(MTD_DEBUG_LEVEL2, "[gpmi_nfc ecc_read_oob] " + "page: 0x%06x, sndcmd: %s\n", page, sndcmd ? "Yes" : "No"); + + gpmi_nfc_add_event("> mil_ecc_read_oob", 1); + + /* + * First, fill in the OOB buffer. If we're doing a raw read, we need to + * get the bytes from the physical page. If we're not doing a raw read, + * we need to fill the buffer with set bits. + */ + + if (mil->raw_oob_mode) { + + /* + * If control arrives here, we're doing a "raw" read. Send the + * command to read the conventional OOB. + */ + + nand->cmdfunc(mtd, NAND_CMD_READ0, + physical->page_data_size_in_bytes, page); + + /* Read out the conventional OOB. */ + + nand->read_buf(mtd, nand->oob_poi, mtd->oobsize); + + } else { + + /* + * If control arrives here, we're not doing a "raw" read. Fill + * the OOB buffer with set bits. + */ + + memset(nand->oob_poi, ~0, mtd->oobsize); + + } + + /* + * Now, we want to make sure the block mark is correct. In the + * Swapping/Raw case, we already have it. Otherwise, we need to + * explicitly read it. + */ + + if (!(rom->swap_block_mark && mil->raw_oob_mode)) { + + /* First, figure out where the block mark is. */ + + if (rom->swap_block_mark) + block_mark_column = physical->page_data_size_in_bytes; + else + block_mark_column = 0; + + /* Send the command to read the block mark. */ + + nand->cmdfunc(mtd, NAND_CMD_READ0, block_mark_column, page); + + /* Read the block mark into the first byte of the OOB buffer. */ + + nand->oob_poi[0] = nand->read_byte(mtd); + + } + + /* + * Return true, indicating that the next call to this function must send + * a command. + */ + + gpmi_nfc_add_event("< mil_ecc_read_oob", -1); + + return true; + +} + +/** + * mil_ecc_write_oob() - MTD Interface ecc.write_oob(). + * + * @mtd: A pointer to the owning MTD. + * @nand: A pointer to the owning NAND Flash MTD. + * @page: The page number to write. + */ +static int mil_ecc_write_oob(struct mtd_info *mtd, + struct nand_chip *nand, int page) +{ + struct gpmi_nfc_data *this = nand->priv; + struct device *dev = this->dev; + struct physical_geometry *physical = &this->physical_geometry; + struct mil *mil = &this->mil; + struct boot_rom_helper *rom = this->rom; + uint8_t block_mark = 0; + int block_mark_column; + int status; + int error = 0; + + DEBUG(MTD_DEBUG_LEVEL2, + "[gpmi_nfc ecc_write_oob] page: 0x%06x\n", page); + + gpmi_nfc_add_event("> mil_ecc_write_oob", -1); + + /* + * There are fundamental incompatibilities between the i.MX GPMI NFC and + * the NAND Flash MTD model that make it essentially impossible to write + * the out-of-band bytes. + * + * We permit *ONE* exception. If the *intent* of writing the OOB is to + * mark a block bad, we can do that. + */ + + if (!mil->marking_a_bad_block) { + dev_emerg(dev, "This driver doesn't support writing the OOB\n"); + WARN_ON(1); + error = -EIO; + goto exit; + } + + /* + * If control arrives here, we're marking a block bad. First, figure out + * where the block mark is. + * + * If we're using swapping, the block mark is in the conventional + * location. Otherwise, we're using transcription, and the block mark + * appears in the first byte of the page. + */ + + if (rom->swap_block_mark) + block_mark_column = physical->page_data_size_in_bytes; + else + block_mark_column = 0; + + /* Write the block mark. */ + + nand->cmdfunc(mtd, NAND_CMD_SEQIN, block_mark_column, page); + nand->write_buf(mtd, &block_mark, 1); + nand->cmdfunc(mtd, NAND_CMD_PAGEPROG, -1, -1); + + status = nand->waitfunc(mtd, nand); + + /* Check if it worked. */ + + if (status & NAND_STATUS_FAIL) + error = -EIO; + + /* Return. */ + +exit: + + gpmi_nfc_add_event("< mil_ecc_write_oob", -1); + + return error; + +} + +/** + * mil_block_bad - Claims all blocks are good. + * + * In principle, this function is *only* called when the NAND Flash MTD system + * isn't allowed to keep an in-memory bad block table, so it is forced to ask + * the driver for bad block information. + * + * In fact, we permit the NAND Flash MTD system to have an in-memory BBT, so + * this function is *only* called when we take it away. + * + * We take away the in-memory BBT when the user sets the "ignorebad" parameter, + * which indicates that all blocks should be reported good. + * + * Thus, this function is only called when we want *all* blocks to look good, + * so it *always* return success. + * + * @mtd: Ignored. + * @ofs: Ignored. + * @getchip: Ignored. + */ +static int mil_block_bad(struct mtd_info *mtd, loff_t ofs, int getchip) +{ + return 0; +} + +/** + * mil_set_physical_geometry() - Set up the physical medium geometry. + * + * This function retrieves the physical geometry information discovered by + * nand_scan(), corrects it, and records it in the per-device data structure. + * + * @this: Per-device data. + */ +static int mil_set_physical_geometry(struct gpmi_nfc_data *this) +{ + struct mil *mil = &this->mil; + struct physical_geometry *physical = &this->physical_geometry; + struct nand_chip *nand = &mil->nand; + struct nand_device_info *info = &this->device_info; + unsigned int block_size_in_pages; + unsigned int chip_size_in_blocks; + unsigned int chip_size_in_pages; + uint64_t medium_size_in_bytes; + + /* + * Record the number of physical chips that MTD found. + */ + + physical->chip_count = nand->numchips; + + /* + * We know the total size of a page. We need to break that down into the + * data size and OOB size. The data size is the largest power of two + * that will fit in the given page size. The OOB size is what's left + * over. + */ + + physical->page_data_size_in_bytes = + 1 << (fls(info->page_total_size_in_bytes) - 1); + + physical->page_oob_size_in_bytes = + info->page_total_size_in_bytes - + physical->page_data_size_in_bytes; + + /* + * Now that we know the page data size, we can multiply this by the + * number of pages in a block to compute the block size. + */ + + physical->block_size_in_bytes = + physical->page_data_size_in_bytes * info->block_size_in_pages; + + /* Get the chip size. */ + + physical->chip_size_in_bytes = info->chip_size_in_bytes; + + /* Compute some interesting facts. */ + + block_size_in_pages = + physical->block_size_in_bytes >> + (fls(physical->page_data_size_in_bytes) - 1); + chip_size_in_pages = + physical->chip_size_in_bytes >> + (fls(physical->page_data_size_in_bytes) - 1); + chip_size_in_blocks = + physical->chip_size_in_bytes >> + (fls(physical->block_size_in_bytes) - 1); + medium_size_in_bytes = + physical->chip_size_in_bytes * physical->chip_count; + + /* Report. */ + + #if defined(DETAILED_INFO) + + pr_info("-----------------\n"); + pr_info("Physical Geometry\n"); + pr_info("-----------------\n"); + pr_info("Chip Count : %d\n", physical->chip_count); + pr_info("Page Data Size in Bytes: %u (0x%x)\n", + physical->page_data_size_in_bytes, + physical->page_data_size_in_bytes); + pr_info("Page OOB Size in Bytes : %u\n", + physical->page_oob_size_in_bytes); + pr_info("Block Size in Bytes : %u (0x%x)\n", + physical->block_size_in_bytes, + physical->block_size_in_bytes); + pr_info("Block Size in Pages : %u (0x%x)\n", + block_size_in_pages, + block_size_in_pages); + pr_info("Chip Size in Bytes : %llu (0x%llx)\n", + physical->chip_size_in_bytes, + physical->chip_size_in_bytes); + pr_info("Chip Size in Pages : %u (0x%x)\n", + chip_size_in_pages, chip_size_in_pages); + pr_info("Chip Size in Blocks : %u (0x%x)\n", + chip_size_in_blocks, chip_size_in_blocks); + pr_info("Medium Size in Bytes : %llu (0x%llx)\n", + medium_size_in_bytes, medium_size_in_bytes); + + #endif + + /* Return success. */ + + return 0; + +} + +/** + * mil_set_nfc_geometry() - Set up the NFC geometry. + * + * This function calls the NFC HAL to select an NFC geometry that is compatible + * with the medium's physical geometry. + * + * @this: Per-device data. + */ +static int mil_set_nfc_geometry(struct gpmi_nfc_data *this) +{ + struct nfc_hal *nfc = this->nfc; +#if defined(DETAILED_INFO) + struct nfc_geometry *geo = &this->nfc_geometry; +#endif + /* Set the NFC geometry. */ + + if (nfc->set_geometry(this)) + return !0; + + /* Report. */ + + #if defined(DETAILED_INFO) + + pr_info("------------\n"); + pr_info("NFC Geometry\n"); + pr_info("------------\n"); + pr_info("ECC Algorithm : %s\n", geo->ecc_algorithm); + pr_info("ECC Strength : %u\n", geo->ecc_strength); + pr_info("Page Size in Bytes : %u\n", geo->page_size_in_bytes); + pr_info("Metadata Size in Bytes : %u\n", geo->metadata_size_in_bytes); + pr_info("ECC Chunk Size in Bytes: %u\n", geo->ecc_chunk_size_in_bytes); + pr_info("ECC Chunk Count : %u\n", geo->ecc_chunk_count); + pr_info("Payload Size in Bytes : %u\n", geo->payload_size_in_bytes); + pr_info("Auxiliary Size in Bytes: %u\n", geo->auxiliary_size_in_bytes); + pr_info("Auxiliary Status Offset: %u\n", geo->auxiliary_status_offset); + pr_info("Block Mark Byte Offset : %u\n", geo->block_mark_byte_offset); + pr_info("Block Mark Bit Offset : %u\n", geo->block_mark_bit_offset); + + #endif + + /* Return success. */ + + return 0; + +} + +/** + * mil_set_boot_rom_helper_geometry() - Set up the Boot ROM Helper geometry. + * + * @this: Per-device data. + */ +static int mil_set_boot_rom_helper_geometry(struct gpmi_nfc_data *this) +{ + struct boot_rom_helper *rom = this->rom; +#if defined(DETAILED_INFO) + struct boot_rom_geometry *geo = &this->rom_geometry; +#endif + + /* Set the Boot ROM Helper geometry. */ + + if (rom->set_geometry(this)) + return !0; + + /* Report. */ + + #if defined(DETAILED_INFO) + + pr_info("-----------------\n"); + pr_info("Boot ROM Geometry\n"); + pr_info("-----------------\n"); + pr_info("Boot Area Count : %u\n", geo->boot_area_count); + pr_info("Boot Area Size in Bytes : %u (0x%x)\n", + geo->boot_area_size_in_bytes, geo->boot_area_size_in_bytes); + pr_info("Stride Size in Pages : %u\n", geo->stride_size_in_pages); + pr_info("Search Area Stride Exponent: %u\n", + geo->search_area_stride_exponent); + + #endif + + /* Return success. */ + + return 0; + +} + +/** + * mil_set_mtd_geometry() - Set up the MTD geometry. + * + * This function adjusts the owning MTD data structures to match the logical + * geometry we've chosen. + * + * @this: Per-device data. + */ +static int mil_set_mtd_geometry(struct gpmi_nfc_data *this) +{ + struct physical_geometry *physical = &this->physical_geometry; + struct mil *mil = &this->mil; + struct nand_ecclayout *layout = &mil->oob_layout; + struct nand_chip *nand = &mil->nand; + struct mtd_info *mtd = &mil->mtd; + + /* Configure the struct nand_ecclayout. */ + + layout->eccbytes = 0; + layout->oobavail = physical->page_oob_size_in_bytes; + layout->oobfree[0].offset = 0; + layout->oobfree[0].length = physical->page_oob_size_in_bytes; + + /* Configure the struct mtd_info. */ + + mtd->size = nand->numchips * physical->chip_size_in_bytes; + mtd->erasesize = physical->block_size_in_bytes; + mtd->writesize = physical->page_data_size_in_bytes; + mtd->ecclayout = layout; + mtd->oobavail = mtd->ecclayout->oobavail; + mtd->oobsize = mtd->ecclayout->oobavail + mtd->ecclayout->eccbytes; + mtd->subpage_sft = 0; /* We don't support sub-page writing. */ + + /* Configure the struct nand_chip. */ + + nand->chipsize = physical->chip_size_in_bytes; + nand->page_shift = ffs(mtd->writesize) - 1; + nand->pagemask = (nand->chipsize >> nand->page_shift) - 1; + nand->subpagesize = mtd->writesize >> mtd->subpage_sft; + nand->phys_erase_shift = ffs(mtd->erasesize) - 1; + nand->bbt_erase_shift = nand->phys_erase_shift; + nand->oob_poi = nand->buffers->databuf + mtd->writesize; + nand->ecc.layout = layout; + if (nand->chipsize & 0xffffffff) + nand->chip_shift = ffs((unsigned) nand->chipsize) - 1; + else + nand->chip_shift = + ffs((unsigned) (nand->chipsize >> 32)) + 32 - 1; + + /* Return success. */ + + return 0; + +} + +/** + * mil_set_geometry() - Set up the medium geometry. + * + * @this: Per-device data. + */ +static int mil_set_geometry(struct gpmi_nfc_data *this) +{ + struct device *dev = this->dev; + struct nfc_geometry *nfc_geo = &this->nfc_geometry; + struct mil *mil = &this->mil; + + + /* Free the memory for read ID case */ + if (mil->page_buffer_virt && virt_addr_valid(mil->page_buffer_virt)) + dma_free_coherent(dev, nfc_geo->payload_size_in_bytes, + mil->page_buffer_virt, mil->page_buffer_phys); + + /* Set up the various layers of geometry, in this specific order. */ + + if (mil_set_physical_geometry(this)) + return -ENXIO; + + if (mil_set_nfc_geometry(this)) + return -ENXIO; + + if (mil_set_boot_rom_helper_geometry(this)) + return -ENXIO; + + if (mil_set_mtd_geometry(this)) + return -ENXIO; + + /* + * Allocate the page buffer. + * + * Both the payload buffer and the auxiliary buffer must appear on + * 32-bit boundaries. We presume the size of the payload buffer is a + * power of two and is much larger than four, which guarantees the + * auxiliary buffer will appear on a 32-bit boundary. + */ + + mil->page_buffer_size = nfc_geo->payload_size_in_bytes + + nfc_geo->auxiliary_size_in_bytes; + + mil->page_buffer_virt = + dma_alloc_coherent(dev, mil->page_buffer_size, + &mil->page_buffer_phys, GFP_DMA); + + if (!mil->page_buffer_virt) + return -ENOMEM; + + /* Slice up the page buffer. */ + + mil->payload_virt = mil->page_buffer_virt; + mil->payload_phys = mil->page_buffer_phys; + + mil->auxiliary_virt = ((char *) mil->payload_virt) + + nfc_geo->payload_size_in_bytes; + mil->auxiliary_phys = mil->payload_phys + + nfc_geo->payload_size_in_bytes; + + /* Return success. */ + + return 0; + +} + +/** + * mil_pre_bbt_scan() - Prepare for the BBT scan. + * + * @this: Per-device data. + */ +static int mil_pre_bbt_scan(struct gpmi_nfc_data *this) +{ + struct device *dev = this->dev; + struct physical_geometry *physical = &this->physical_geometry; + struct boot_rom_helper *rom = this->rom; + struct mil *mil = &this->mil; + struct nand_chip *nand = &mil->nand; + struct mtd_info *mtd = &mil->mtd; + unsigned int block_count; + unsigned int block; + int chip; + int page; + loff_t byte; + uint8_t block_mark; + int error; + + /* + * Check if we can use block mark swapping, which enables us to leave + * the block marks where they are. If so, we don't need to do anything + * at all. + */ + + if (rom->swap_block_mark) + return 0; + + /* + * If control arrives here, we can't use block mark swapping, which + * means we're forced to use transcription. First, scan for the + * transcription stamp. If we find it, then we don't have to do + * anything -- the block marks are already transcribed. + */ + + if (rom->check_transcription_stamp(this)) + return 0; + + /* + * If control arrives here, we couldn't find a transcription stamp, so + * so we presume the block marks are in the conventional location. + */ + + pr_info("Transcribing bad block marks...\n"); + + /* Compute the number of blocks in the entire medium. */ + + block_count = + physical->chip_size_in_bytes >> nand->phys_erase_shift; + + /* + * Loop over all the blocks in the medium, transcribing block marks as + * we go. + */ + + for (block = 0; block < block_count; block++) { + + /* + * Compute the chip, page and byte addresses for this block's + * conventional mark. + */ + + chip = block >> (nand->chip_shift - nand->phys_erase_shift); + page = block << (nand->phys_erase_shift - nand->page_shift); + byte = block << nand->phys_erase_shift; + + /* Select the chip. */ + + nand->select_chip(mtd, chip); + + /* Send the command to read the conventional block mark. */ + + nand->cmdfunc(mtd, NAND_CMD_READ0, + physical->page_data_size_in_bytes, page); + + /* Read the conventional block mark. */ + + block_mark = nand->read_byte(mtd); + + /* + * Check if the block is marked bad. If so, we need to mark it + * again, but this time the result will be a mark in the + * location where we transcribe block marks. + * + * Notice that we have to explicitly set the marking_a_bad_block + * member before we call through the block_markbad function + * pointer in the owning struct nand_chip. If we could call + * though the block_markbad function pointer in the owning + * struct mtd_info, which we have hooked, then this would be + * taken care of for us. Unfortunately, we can't because that + * higher-level code path will do things like consulting the + * in-memory bad block table -- which doesn't even exist yet! + * So, we have to call at a lower level and handle some details + * ourselves. + */ + + if (block_mark != 0xff) { + pr_info("Transcribing mark in block %u\n", block); + mil->marking_a_bad_block = true; + error = nand->block_markbad(mtd, byte); + mil->marking_a_bad_block = false; + if (error) + dev_err(dev, "Failed to mark block bad with " + "error %d\n", error); + } + + /* Deselect the chip. */ + + nand->select_chip(mtd, -1); + + } + + /* Write the stamp that indicates we've transcribed the block marks. */ + + rom->write_transcription_stamp(this); + + /* Return success. */ + + return 0; + +} + +/** + * mil_scan_bbt() - MTD Interface scan_bbt(). + * + * The HIL calls this function once, when it initializes the NAND Flash MTD. + * + * Nominally, the purpose of this function is to look for or create the bad + * block table. In fact, since the HIL calls this function at the very end of + * the initialization process started by nand_scan(), and the HIL doesn't have a + * more formal mechanism, everyone "hooks" this function to continue the + * initialization process. + * + * At this point, the physical NAND Flash chips have been identified and + * counted, so we know the physical geometry. This enables us to make some + * important configuration decisions. + * + * The return value of this function propogates directly back to this driver's + * call to nand_scan(). Anything other than zero will cause this driver to + * tear everything down and declare failure. + * + * @mtd: A pointer to the owning MTD. + */ +static int mil_scan_bbt(struct mtd_info *mtd) +{ + struct nand_chip *nand = mtd->priv; + struct gpmi_nfc_data *this = nand->priv; + struct nfc_hal *nfc = this->nfc; + struct mil *mil = &this->mil; + int saved_chip_number; + uint8_t id_bytes[NAND_DEVICE_ID_BYTE_COUNT]; + struct nand_device_info *info; + struct gpmi_nfc_timing timing; + int error; + + DEBUG(MTD_DEBUG_LEVEL2, "[gpmi_nfc scan_bbt] \n"); + + /* + * Tell MTD users that the out-of-band area can't be written. + * + * This flag is not part of the standard kernel source tree. It comes + * from a patch that touches both MTD and JFFS2. + * + * The problem is that, without this patch, JFFS2 believes it can write + * the data area and the out-of-band area separately. This is wrong for + * two reasons: + * + * 1) Our NFC distributes out-of-band bytes throughout the page, + * intermingled with the data, and covered by the same ECC. + * Thus, it's not possible to write the out-of-band bytes and + * data bytes separately. + * + * 2) Large page (MLC) Flash chips don't support partial page + * writes. You must write the entire page at a time. Thus, even + * if our NFC didn't force you to write out-of-band and data + * bytes together, it would *still* be a bad idea to do + * otherwise. + */ + + mtd->flags &= ~MTD_OOB_WRITEABLE; + + /* + * MTD identified the attached NAND Flash devices, but we have a much + * better database that we want to consult. First, we need to gather all + * the ID bytes from the first chip (MTD only read the first two). + */ + + saved_chip_number = mil->current_chip; + nand->select_chip(mtd, 0); + + nand->cmdfunc(mtd, NAND_CMD_READID, 0, -1); + nand->read_buf(mtd, id_bytes, NAND_DEVICE_ID_BYTE_COUNT); + + nand->select_chip(mtd, saved_chip_number); + + /* Look up this device in our database. */ + + info = nand_device_get_info(id_bytes); + + /* Check if we understand this device. */ + + if (!info) { + pr_err("Unrecognized NAND Flash device.\n"); + return !0; + } + + /* Display the information we discovered. */ + + #if defined(DETAILED_INFO) + pr_info("-----------------------------\n"); + pr_info("NAND Flash Device Information\n"); + pr_info("-----------------------------\n"); + nand_device_print_info(info); + #endif + + /* + * Copy the device info into the per-device data. We can't just keep + * the pointer because that storage is reclaimed after initialization. + */ + + this->device_info = *info; + this->device_info.description = kstrdup(info->description, GFP_KERNEL); + + /* Set up geometry. */ + + error = mil_set_geometry(this); + + if (error) + return error; + + /* Set up timing. */ + + timing.data_setup_in_ns = info->data_setup_in_ns; + timing.data_hold_in_ns = info->data_hold_in_ns; + timing.address_setup_in_ns = info->address_setup_in_ns; + timing.gpmi_sample_delay_in_ns = info->gpmi_sample_delay_in_ns; + timing.tREA_in_ns = info->tREA_in_ns; + timing.tRLOH_in_ns = info->tRLOH_in_ns; + timing.tRHOH_in_ns = info->tRHOH_in_ns; + + error = nfc->set_timing(this, &timing); + + if (error) + return error; + + /* Prepare for the BBT scan. */ + + error = mil_pre_bbt_scan(this); + + if (error) + return error; + + /* We use the reference implementation for bad block management. */ + + error = nand_default_bbt(mtd); + + if (error) + return error; + + /* Return success. */ + + return 0; + +} + +/** + * mil_boot_areas_init() - Initializes boot areas. + * + * @this: Per-device data. + */ +static int mil_boot_areas_init(struct gpmi_nfc_data *this) +{ + struct device *dev = this->dev; + struct physical_geometry *physical = &this->physical_geometry; + struct boot_rom_geometry *rom = &this->rom_geometry; + struct mil *mil = &this->mil; + struct mtd_info *mtd = &mil->mtd; + struct nand_chip *nand = &mil->nand; + int mtd_support_is_adequate; + unsigned int i; + struct mtd_partition partitions[4]; + struct mtd_info *search_mtd; + struct mtd_info *chip_0_remainder_mtd = 0; + struct mtd_info *medium_remainder_mtd = 0; + struct mtd_info *concatenate[2]; + + /* + * Here we declare the static strings we use to name partitions. We use + * static strings because, as of 2.6.31, the partitioning code *always* + * registers the partition MTDs it creates and leaves behind *no* other + * trace of its work. So, once we've created a partition, we must search + * the master MTD table to find the MTDs we created. Since we're using + * static strings, we can simply search the master table for an MTD with + * a name field pointing to a known address. + */ + + static char *chip_0_boot_name = "gpmi-nfc-0-boot"; + static char *chip_0_remainder_name = "gpmi-nfc-0-remainder"; + static char *chip_1_boot_name = "gpmi-nfc-1-boot"; + static char *medium_remainder_name = "gpmi-nfc-remainder"; + static char *general_use_name = "gpmi-nfc-general-use"; + + /* Check if we're protecting the boot areas.*/ + + if (!rom->boot_area_count) { + + /* + * If control arrives here, we're not protecting the boot areas. + * In this case, there are not boot area partitons, and the main + * MTD is the general use MTD. + */ + + mil->general_use_mtd = &mil->mtd; + + return 0; + + } + + /* + * If control arrives here, we're protecting the boot areas. Check if we + * have the MTD support we need. + */ + + pr_info("Boot area protection is enabled.\n"); + + if (rom->boot_area_count > 1) { + + /* + * If the Boot ROM wants more than one boot area, then we'll + * need to create partitions *and* concatenate them. + */ + + #if defined(CONFIG_MTD_PARTITIONS) && defined(CONFIG_MTD_CONCAT) + mtd_support_is_adequate = true; + #else + mtd_support_is_adequate = false; + #endif + + } else if (rom->boot_area_count == 1) { + + /* + * If the Boot ROM wants only one boot area, then we only need + * to create partitions -- we don't need to concatenate them. + */ + + #if defined(CONFIG_MTD_PARTITIONS) + mtd_support_is_adequate = true; + #else + mtd_support_is_adequate = false; + #endif + + } else { + + /* + * If control arrives here, we're protecting the boot area, but + * somehow the boot area count was set to zero. This doesn't + * make any sense. + */ + + dev_err(dev, "Internal error: boot area count is " + "incorrectly set to zero."); + return -ENXIO; + + } + + if (!mtd_support_is_adequate) { + dev_err(dev, "Configured MTD support is inadequate to " + "protect the boot area(s)."); + return -ENXIO; + } + + /* + * If control arrives here, we're protecting boot areas and we have + * everything we need to do so. + * + * We have special code to handle the case for one boot area. + * + * The code that handles "more than one" boot area actually only handles + * two. We *could* write the general case, but that would take a lot of + * time to both write and test -- and, right now, we don't have a chip + * that cares. + */ + + /* Check if a boot area is larger than a single chip. */ + + if (rom->boot_area_size_in_bytes > physical->chip_size_in_bytes) { + dev_emerg(dev, "Boot area size is larger than a chip"); + return -ENXIO; + } + + if (rom->boot_area_count == 1) { + +#if defined(CONFIG_MTD_PARTITIONS) + + /* + * We partition the medium like so: + * + * +------+----------------------------------------------------+ + * | Boot | General Use | + * +------+----------------------------------------------------+ + */ + + /* Chip 0 Boot */ + + partitions[0].name = chip_0_boot_name; + partitions[0].offset = 0; + partitions[0].size = rom->boot_area_size_in_bytes; + partitions[0].mask_flags = 0; + + /* General Use */ + + partitions[1].name = general_use_name; + partitions[1].offset = rom->boot_area_size_in_bytes; + partitions[1].size = MTDPART_SIZ_FULL; + partitions[1].mask_flags = 0; + + /* Construct and register the partitions. */ + + add_mtd_partitions(mtd, partitions, 2); + + /* Find the general use MTD. */ + + for (i = 0; i < MAX_MTD_DEVICES; i++) { + + /* Get the current MTD so we can examine it. */ + + search_mtd = get_mtd_device(0, i); + + /* Check if we got nonsense. */ + + if ((!search_mtd) || (search_mtd == ERR_PTR(-ENODEV))) + continue; + + /* Check if the current MTD is one of our remainders. */ + + if (search_mtd->name == general_use_name) + mil->general_use_mtd = search_mtd; + + /* Put the MTD back. We only wanted a quick look. */ + + put_mtd_device(search_mtd); + + } + + if (!mil->general_use_mtd) { + dev_emerg(dev, "Can't find general use MTD"); + BUG(); + } + +#endif + + } else if (rom->boot_area_count == 2) { + +#if defined(CONFIG_MTD_PARTITIONS) && defined(CONFIG_MTD_CONCAT) + + /* + * If control arrives here, there is more than one boot area. + * We partition the medium and concatenate the remainders like + * so: + * + * --- Chip 0 --- --- Chip 1 --- ... ------- Chip N ------- + * / \ / \ + * +----+----------+----+--------------- ... ------------------+ + * |Boot|Remainder |Boot| Remainder | + * +----+----------+----+--------------- ... ------------------+ + * | | / / + * | | / / + * | | / / + * | |/ / + * +----------+----------- ... ----------------------+ + * | General Use | + * +---------------------- ... ----------------------+ + * + * Notice that the results we leave in the master MTD table + * look like this: + * + * * Chip 0 Boot Area + * * Chip 1 Boot Area + * * General Use + * + * Some user space programs expect the boot partitions to + * appear first. This is naive, but let's try not to cause + * any trouble, where we can avoid it. + */ + + /* Chip 0 Boot */ + + partitions[0].name = chip_0_boot_name; + partitions[0].offset = 0; + partitions[0].size = rom->boot_area_size_in_bytes; + partitions[0].mask_flags = 0; + + /* Chip 1 Boot */ + + partitions[1].name = chip_1_boot_name; + partitions[1].offset = nand->chipsize; + partitions[1].size = rom->boot_area_size_in_bytes; + partitions[1].mask_flags = 0; + + /* Chip 0 Remainder */ + + partitions[2].name = chip_0_remainder_name; + partitions[2].offset = rom->boot_area_size_in_bytes; + partitions[2].size = nand->chipsize - + rom->boot_area_size_in_bytes; + partitions[2].mask_flags = 0; + + /* Medium Remainder */ + + partitions[3].name = medium_remainder_name; + partitions[3].offset = nand->chipsize + + rom->boot_area_size_in_bytes; + partitions[3].size = MTDPART_SIZ_FULL; + partitions[3].mask_flags = 0; + + /* Construct and register the partitions. */ + + add_mtd_partitions(mtd, partitions, 4); + + /* Find the remainder partitions. */ + + for (i = 0; i < MAX_MTD_DEVICES; i++) { + + /* Get the current MTD so we can examine it. */ + + search_mtd = get_mtd_device(0, i); + + /* Check if we got nonsense. */ + + if ((!search_mtd) || (search_mtd == ERR_PTR(-ENODEV))) + continue; + + /* Check if the current MTD is one of our remainders. */ + + if (search_mtd->name == chip_0_remainder_name) + chip_0_remainder_mtd = search_mtd; + + if (search_mtd->name == medium_remainder_name) + medium_remainder_mtd = search_mtd; + + /* Put the MTD back. We only wanted a quick look. */ + + put_mtd_device(search_mtd); + + } + + if (!chip_0_remainder_mtd || !medium_remainder_mtd) { + dev_emerg(dev, "Can't find remainder partitions"); + BUG(); + } + + /* + * Unregister the remainder MTDs. Note that we are *not* + * destroying these MTDs -- we're just removing from the + * globally-visible list. There's no need for anyone to see + * these. + */ + + del_mtd_device(chip_0_remainder_mtd); + del_mtd_device(medium_remainder_mtd); + + /* Concatenate the remainders and register the result. */ + + concatenate[0] = chip_0_remainder_mtd; + concatenate[1] = medium_remainder_mtd; + + mil->general_use_mtd = mtd_concat_create(concatenate, + 2, general_use_name); + + add_mtd_device(mil->general_use_mtd); + +#endif + + } else { + dev_err(dev, "Boot area count greater than two is " + "unimplemented.\n"); + return -ENXIO; + } + + /* Return success. */ + + return 0; + +} + +/** + * mil_boot_areas_exit() - Shuts down boot areas. + * + * @this: Per-device data. + */ +static void mil_boot_areas_exit(struct gpmi_nfc_data *this) +{ + struct boot_rom_geometry *rom = &this->rom_geometry; + struct mil *mil = &this->mil; + struct mtd_info *mtd = &mil->mtd; + + /* Check if we're protecting the boot areas.*/ + + if (!rom->boot_area_count) { + + /* + * If control arrives here, we're not protecting the boot areas. + * That means we never created any boot area partitions, and the + * general use MTD is just the main MTD. + */ + + mil->general_use_mtd = 0; + + return; + + } + + /* + * If control arrives here, we're protecting the boot areas. + * + * Start by checking if there is more than one boot area. If so, then + * we both partitioned the medium and then concatenated some of the + * partitions to form the general use MTD. The first step is to get rid + * of the concatenation. + */ + + #if defined(CONFIG_MTD_PARTITIONS) && defined(CONFIG_MTD_CONCAT) + if (rom->boot_area_count > 1) { + del_mtd_device(mil->general_use_mtd); + mtd_concat_destroy(mil->general_use_mtd); + } + #endif + + /* + * At this point, we're left only with the partitions of the main MTD. + * Delete them. + */ + + #if defined(CONFIG_MTD_PARTITIONS) + del_mtd_partitions(mtd); + #endif + + /* The general use MTD no longer exists. */ + + mil->general_use_mtd = 0; + +} + +/** + * mil_construct_ubi_partitions() - Constructs partitions for UBI. + * + * MTD uses a 64-bit value to express the size of MTDs, but UBI is still using + * a 32-bit value. For this reason, UBI can't work on top of an MTD with size + * greater than 2GiB. In this function, we examine the general use MTD and, if + * it's larger than 2GiB, we construct a set of partitions for that MTD such + * that none are too large for UBI to comprehend. + * + * @this: Per-device data. + */ +static void mil_construct_ubi_partitions(struct gpmi_nfc_data *this) +{ +#if defined(CONFIG_MTD_PARTITIONS) + struct device *dev = this->dev; + struct mil *mil = &this->mil; + unsigned int partition_count; + struct mtd_partition *partitions; + unsigned int name_size; + char *names; + unsigned int memory_block_size; + unsigned int i; + + static const char *name_prefix = "gpmi-nfc-ubi-"; + + /* + * If the general use MTD isn't larger than 2GiB, we have nothing to do. + */ + + if (mil->general_use_mtd->size <= SZ_2G) + return; + + /* + * If control arrives here, the general use MTD is larger than 2GiB. We + * need to split it up into some number of partitions. Find out how many + * 2GiB partitions we'll be creating. + */ + + partition_count = mil->general_use_mtd->size >> 31; + + /* + * If the MTD size doesn't evenly divide by 2GiB, we'll need another + * partition to hold the extra. + */ + + if (mil->general_use_mtd->size & ((1 << 30) - 1)) + partition_count++; + + /* + * We're going to allocate a single memory block to contain all the + * partition structures and their names. Calculate how large it must be. + */ + + name_size = strlen(name_prefix) + 4; + + memory_block_size = (sizeof(*partitions) + name_size) * partition_count; + + /* + * Attempt to allocate the block. + */ + + partitions = kzalloc(memory_block_size, GFP_KERNEL); + + if (!partitions) { + dev_err(dev, "Could not allocate memory for UBI partitions.\n"); + return; + } + + names = (char *)(partitions + partition_count); + + /* Loop over partitions, filling in the details. */ + + for (i = 0; i < partition_count; i++) { + + partitions[i].name = names; + partitions[i].size = SZ_2G; + partitions[i].offset = MTDPART_OFS_NXTBLK; + + sprintf(names, "%s%u", name_prefix, i); + names += name_size; + + } + + /* Adjust the last partition to take up the remainder. */ + + partitions[i - 1].size = MTDPART_SIZ_FULL; + + /* Record everything in the device data structure. */ + + mil->partitions = partitions; + mil->partition_count = partition_count; + mil->ubi_partition_memory = partitions; + +#endif +} + +/** + * mil_partitions_init() - Initializes partitions. + * + * @this: Per-device data. + */ +static int mil_partitions_init(struct gpmi_nfc_data *this) +{ + struct gpmi_nfc_platform_data *pdata = this->pdata; + struct mil *mil = &this->mil; + struct mtd_info *mtd = &mil->mtd; + int error; + + /* + * Set up the boot areas. When this function returns, if there has been + * no error, the boot area partitions (if any) will have been created + * and registered. Also, the general_use_mtd field will point to an MTD + * we can use. + */ + + error = mil_boot_areas_init(this); + + if (error) + return error; + + /* + * If we've been told to, register the MTD that represents the entire + * medium. Normally, we don't register the main MTD because we only want + * to expose the medium through the boot area partitions and the general + * use partition. + * + * We do this *after* setting up the boot areas because, for historical + * reasons, we like the lowest-numbered MTDs to be the boot areas. + */ + + if (register_main_mtd) { + pr_info("Registering the main MTD.\n"); + add_mtd_device(mtd); + } + +#if defined(CONFIG_MTD_PARTITIONS) + + /* + * If control arrives here, partitioning is available. + * + * There are three possible sets of partitions we might apply, in order + * of decreasing priority: + * + * 1) Partitions dynamically discovered from sources defined by the + * platform. These can come from, for example, the command line or + * a partition table. + * + * 2) Partitions attached to the platform data. + * + * 3) Partitions we generate to deal with limitations in UBI. + * + * Recall that the pointer to the general use MTD *may* just point to + * the main MTD. + */ + + /* + * First, try to get partition information from the sources defined by + * the platform. + */ + + if (pdata->partition_source_types) + mil->partition_count = + parse_mtd_partitions(mil->general_use_mtd, + pdata->partition_source_types, + &mil->partitions, 0); + + /* + * Check if we got anything. If not, then accept whatever partitions are + * attached to the platform data. + */ + + if ((mil->partition_count <= 0) && (pdata->partitions)) { + mil->partition_count = mil->partition_count; + mil->partitions = mil->partitions; + } + + /* + * If we still don't have any partitions to apply, then we might want to + * apply some of our own, to account for UBI's limitations. + */ + + if (!mil->partition_count) + mil_construct_ubi_partitions(this); + + /* If we came up with any partitions, apply them. */ + + if (mil->partition_count) + add_mtd_partitions(mil->general_use_mtd, + mil->partitions, + mil->partition_count); + +#endif + + /* Return success. */ + + return 0; + +} + +/** + * mil_partitions_exit() - Shuts down partitions. + * + * @this: Per-device data. + */ +static void mil_partitions_exit(struct gpmi_nfc_data *this) +{ + struct mil *mil = &this->mil; + struct mtd_info *mtd = &mil->mtd; + + /* Check if we applied any partitions to the general use MTD. */ + + #if defined(CONFIG_MTD_PARTITIONS) + + if (mil->partition_count) + del_mtd_partitions(mil->general_use_mtd); + + kfree(mil->ubi_partition_memory); + + #endif + + /* + * If we were told to register the MTD that represents the entire + * medium, unregister it now. Note that this does *not* "destroy" the + * MTD - it merely unregisters it. That's important because all our + * other MTDs depend on this one. + */ + + if (register_main_mtd) + del_mtd_device(mtd); + + /* Tear down the boot areas. */ + + mil_boot_areas_exit(this); + +} + +/** + * gpmi_nfc_mil_init() - Initializes the MTD Interface Layer. + * + * @this: Per-device data. + */ +int gpmi_nfc_mil_init(struct gpmi_nfc_data *this) +{ + struct device *dev = this->dev; + struct gpmi_nfc_platform_data *pdata = this->pdata; + struct mil *mil = &this->mil; + struct mtd_info *mtd = &mil->mtd; + struct nand_chip *nand = &mil->nand; + static struct nand_ecclayout fake_ecc_layout; + int error = 0; + + /* Initialize MIL data. */ + + mil->current_chip = -1; + mil->command_length = 0; + + mil->page_buffer_virt = 0; + mil->page_buffer_phys = ~0; + mil->page_buffer_size = 0; + + /* Initialize the MTD data structures. */ + + mtd->priv = nand; + mtd->name = "gpmi-nfc-main"; + mtd->owner = THIS_MODULE; + nand->priv = this; + + /* + * Signal Control + */ + + nand->cmd_ctrl = mil_cmd_ctrl; + + /* + * Chip Control + * + * We rely on the reference implementations of: + * - cmdfunc + * - waitfunc + */ + + nand->dev_ready = mil_dev_ready; + nand->select_chip = mil_select_chip; + + /* + * Low-level I/O + * + * We don't support a 16-bit NAND Flash bus, so we don't implement + * read_word. + * + * We rely on the reference implentation of verify_buf. + */ + + nand->read_byte = mil_read_byte; + nand->read_buf = mil_read_buf; + nand->write_buf = mil_write_buf; + + /* + * ECC Control + * + * None of these functions are necessary for us: + * - ecc.hwctl + * - ecc.calculate + * - ecc.correct + */ + + /* + * ECC-aware I/O + * + * We rely on the reference implementations of: + * - ecc.read_page_raw + * - ecc.write_page_raw + */ + + nand->ecc.read_page = mil_ecc_read_page; + nand->ecc.write_page = mil_ecc_write_page; + + /* + * High-level I/O + * + * We rely on the reference implementations of: + * - write_page + * - erase_cmd + */ + + nand->ecc.read_oob = mil_ecc_read_oob; + nand->ecc.write_oob = mil_ecc_write_oob; + + /* + * Bad Block Management + * + * We rely on the reference implementations of: + * - block_bad + * - block_markbad + */ + + nand->block_bad = mil_block_bad; + nand->scan_bbt = mil_scan_bbt; + + /* + * Error Recovery Functions + * + * We don't fill in the errstat function pointer because it's optional + * and we don't have a need for it. + */ + + /* + * Set up NAND Flash options. Specifically: + * + * - Disallow partial page writes. + */ + + nand->options |= NAND_NO_SUBPAGE_WRITE; + + /* + * Tell the NAND Flash MTD system that we'll be handling ECC with our + * own hardware. It turns out that we still have to fill in the ECC size + * because the MTD code will divide by it -- even though it doesn't + * actually care. + */ + + nand->ecc.mode = NAND_ECC_HW; + nand->ecc.size = 1; + + /* + * Install a "fake" ECC layout. + * + * We'll be calling nand_scan() to do the final MTD setup. If we haven't + * already chosen an ECC layout, then nand_scan() will choose one based + * on the part geometry it discovers. Unfortunately, it doesn't make + * good choices. It would be best if we could install the correct ECC + * layout now, before we call nand_scan(). We can't do that because we + * don't know the medium geometry yet. Here, we install a "fake" ECC + * layout just to stop nand_scan() from trying to pick one for itself. + * Later, when we know the medium geometry, we'll install the correct + * one. + * + * Of course, this tactic depends critically on the MTD code not doing + * an I/O operation that depends on the ECC layout being sensible. This + * is in fact the case. + */ + + memset(&fake_ecc_layout, 0, sizeof(fake_ecc_layout)); + + nand->ecc.layout = &fake_ecc_layout; + + /* Allocate a command buffer. */ + + mil->cmd_virt = + dma_alloc_coherent(dev, + MIL_COMMAND_BUFFER_SIZE, &mil->cmd_phys, GFP_DMA); + + if (!mil->cmd_virt) { + error = -ENOMEM; + goto exit_cmd_allocation; + } + + + /* Allocate buf read ID case */ + this->nfc_geometry.payload_size_in_bytes = 1024; + mil->page_buffer_virt = + dma_alloc_coherent(dev, + this->nfc_geometry.payload_size_in_bytes, + &mil->page_buffer_phys, GFP_DMA); + + if (!mil->page_buffer_virt) { + error = -ENOMEM; + goto exit_buf_allocation; + } + + /* Slice up the page buffer. */ + mil->payload_virt = mil->page_buffer_virt; + mil->payload_phys = mil->page_buffer_phys; + + /* + * Ask the NAND Flash system to scan for chips. + * + * This will fill in reference implementations for all the members of + * the MTD structures that we didn't set, and will make the medium fully + * usable. + */ + + pr_info("Scanning for NAND Flash chips...\n"); + + error = nand_scan(mtd, pdata->max_chip_count); + + if (error) { + dev_err(dev, "Chip scan failed\n"); + goto exit_nand_scan; + } + + /* + * Hook some operations at the MTD level. See the descriptions of the + * saved function pointer fields for details about why we hook these. + */ + + mil->hooked_read_oob = mtd->read_oob; + mtd->read_oob = mil_hook_read_oob; + + mil->hooked_write_oob = mtd->write_oob; + mtd->write_oob = mil_hook_write_oob; + + mil->hooked_block_markbad = mtd->block_markbad; + mtd->block_markbad = mil_hook_block_markbad; + + /* Construct partitions as necessary. */ + + error = mil_partitions_init(this); + + if (error) + goto exit_partitions; + + /* Return success. */ + + return 0; + + /* Control arrives here if something went wrong. */ + +exit_partitions: + nand_release(&mil->mtd); +exit_nand_scan: + dma_free_coherent(dev, + this->nfc_geometry.payload_size_in_bytes, + mil->page_buffer_virt, mil->page_buffer_phys); + mil->page_buffer_virt = 0; + mil->page_buffer_phys = ~0; +exit_buf_allocation: + dma_free_coherent(dev, MIL_COMMAND_BUFFER_SIZE, + mil->cmd_virt, mil->cmd_phys); + mil->cmd_virt = 0; + mil->cmd_phys = ~0; +exit_cmd_allocation: + + return error; + +} + +/** + * gpmi_nfc_mil_exit() - Shuts down the MTD Interface Layer. + * + * @this: Per-device data. + */ +void gpmi_nfc_mil_exit(struct gpmi_nfc_data *this) +{ + struct device *dev = this->dev; + struct mil *mil = &this->mil; + + /* Shut down partitions as necessary. */ + + mil_partitions_exit(this); + + /* Get MTD to let go of our MTD. */ + + nand_release(&mil->mtd); + + /* Free the page buffer, if it's been allocated. */ + + if (mil->page_buffer_virt) + dma_free_coherent(dev, mil->page_buffer_size, + mil->page_buffer_virt, mil->page_buffer_phys); + + mil->page_buffer_size = 0; + mil->page_buffer_virt = 0; + mil->page_buffer_phys = ~0; + + /* Free the command buffer, if it's been allocated. */ + + if (mil->cmd_virt) + dma_free_coherent(dev, MIL_COMMAND_BUFFER_SIZE, + mil->cmd_virt, mil->cmd_phys); + + mil->cmd_virt = 0; + mil->cmd_phys = ~0; + +} diff --git a/drivers/mtd/nand/gpmi-nfc/gpmi-nfc-rom-common.c b/drivers/mtd/nand/gpmi-nfc/gpmi-nfc-rom-common.c new file mode 100644 index 000000000000..0cd0b39141fd --- /dev/null +++ b/drivers/mtd/nand/gpmi-nfc/gpmi-nfc-rom-common.c @@ -0,0 +1,59 @@ +/* + * Freescale GPMI NFC NAND Flash Driver + * + * Copyright (C) 2010 Freescale Semiconductor, Inc. + * Copyright (C) 2008 Embedded Alley Solutions, Inc. + * + * This program is free software; you can redistribute it and/or modify + * it under the terms of the GNU General Public License as published by + * the Free Software Foundation; either version 2 of the License, or + * (at your option) any later version. + * + * This program is distributed in the hope that it will be useful, + * but WITHOUT ANY WARRANTY; without even the implied warranty of + * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the + * GNU General Public License for more details. + * + * You should have received a copy of the GNU General Public License along + * with this program; if not, write to the Free Software Foundation, Inc., + * 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA. + */ + +#include "gpmi-nfc.h" + +/** + * gpmi_nfc_rom_helper_set_geometry() - Sets geometry for the Boot ROM Helper. + * + * @this: Per-device data. + */ +int gpmi_nfc_rom_helper_set_geometry(struct gpmi_nfc_data *this) +{ + struct boot_rom_geometry *geometry = &this->rom_geometry; + + /* + * Set the boot block stride size. + * + * In principle, we should be reading this from the OTP bits, since + * that's where the ROM is going to get it. In fact, we don't have any + * way to read the OTP bits, so we go with the default and hope for the + * best. + */ + + geometry->stride_size_in_pages = 64; + + /* + * Set the search area stride exponent. + * + * In principle, we should be reading this from the OTP bits, since + * that's where the ROM is going to get it. In fact, we don't have any + * way to read the OTP bits, so we go with the default and hope for the + * best. + */ + + geometry->search_area_stride_exponent = 2; + + /* Return success. */ + + return 0; + +} diff --git a/drivers/mtd/nand/gpmi-nfc/gpmi-nfc-rom-v0.c b/drivers/mtd/nand/gpmi-nfc/gpmi-nfc-rom-v0.c new file mode 100644 index 000000000000..35321cc25546 --- /dev/null +++ b/drivers/mtd/nand/gpmi-nfc/gpmi-nfc-rom-v0.c @@ -0,0 +1,297 @@ +/* + * Freescale GPMI NFC NAND Flash Driver + * + * Copyright (C) 2010 Freescale Semiconductor, Inc. + * Copyright (C) 2008 Embedded Alley Solutions, Inc. + * + * This program is free software; you can redistribute it and/or modify + * it under the terms of the GNU General Public License as published by + * the Free Software Foundation; either version 2 of the License, or + * (at your option) any later version. + * + * This program is distributed in the hope that it will be useful, + * but WITHOUT ANY WARRANTY; without even the implied warranty of + * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the + * GNU General Public License for more details. + * + * You should have received a copy of the GNU General Public License along + * with this program; if not, write to the Free Software Foundation, Inc., + * 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA. + */ + +#include "gpmi-nfc.h" + +/* + * Useful variables for Boot ROM Helper version 0. + */ + +static const char *fingerprint = "STMP"; + +/** + * set_geometry() - Sets geometry for the Boot ROM Helper. + * + * @this: Per-device data. + */ +static int set_geometry(struct gpmi_nfc_data *this) +{ + struct gpmi_nfc_platform_data *pdata = this->pdata; + struct physical_geometry *physical = &this->physical_geometry; + struct boot_rom_geometry *geometry = &this->rom_geometry; + int error; + + /* Version-independent geometry. */ + + error = gpmi_nfc_rom_helper_set_geometry(this); + + if (error) + return error; + + /* + * Check if the platform data indicates we are to protect the boot area. + */ + + if (!pdata->boot_area_size_in_bytes) { + geometry->boot_area_count = 0; + geometry->boot_area_size_in_bytes = 0; + return 0; + } + + /* + * If control arrives here, we are supposed to set up partitions to + * protect the boot areas. In this version of the ROM, the number of + * boot areas and their size depends on the number of chips. + */ + + if (physical->chip_count == 1) { + geometry->boot_area_count = 1; + geometry->boot_area_size_in_bytes = + pdata->boot_area_size_in_bytes * 2; + } else { + geometry->boot_area_count = 2; + geometry->boot_area_size_in_bytes = + pdata->boot_area_size_in_bytes; + } + + /* Return success. */ + + return 0; + +} + +/** + * check_transcription_stamp() - Checks for a transcription stamp. + * + * Returns 0 if a stamp is not found. + * + * @this: Per-device data. + */ +static int check_transcription_stamp(struct gpmi_nfc_data *this) +{ + struct physical_geometry *physical = &this->physical_geometry; + struct boot_rom_geometry *rom_geo = &this->rom_geometry; + struct mil *mil = &this->mil; + struct mtd_info *mtd = &mil->mtd; + struct nand_chip *nand = &mil->nand; + unsigned int search_area_size_in_strides; + unsigned int stride; + unsigned int page; + loff_t byte; + uint8_t *buffer = nand->buffers->databuf; + int saved_chip_number; + int found_an_ncb_fingerprint = false; + + /* Compute the number of strides in a search area. */ + + search_area_size_in_strides = 1 << rom_geo->search_area_stride_exponent; + + /* Select chip 0. */ + + saved_chip_number = mil->current_chip; + nand->select_chip(mtd, 0); + + /* + * Loop through the first search area, looking for the NCB fingerprint. + */ + + pr_info("Scanning for an NCB fingerprint...\n"); + + for (stride = 0; stride < search_area_size_in_strides; stride++) { + + /* Compute the page and byte addresses. */ + + page = stride * rom_geo->stride_size_in_pages; + byte = page * physical->page_data_size_in_bytes; + + pr_info(" Looking for a fingerprint in page 0x%x\n", page); + + /* + * Read the NCB fingerprint. The fingerprint is four bytes long + * and starts in the 12th byte of the page. + */ + + nand->cmdfunc(mtd, NAND_CMD_READ0, 12, page); + nand->read_buf(mtd, buffer, strlen(fingerprint)); + + /* Look for the fingerprint. */ + + if (!memcmp(buffer, fingerprint, + strlen(fingerprint))) { + found_an_ncb_fingerprint = true; + break; + } + + } + + /* Deselect chip 0. */ + + nand->select_chip(mtd, saved_chip_number); + + /* Return. */ + + if (found_an_ncb_fingerprint) + pr_info(" Found a fingerprint\n"); + else + pr_info(" No fingerprint found\n"); + + return found_an_ncb_fingerprint; + +} + +/** + * write_transcription_stamp() - Writes a transcription stamp. + * + * @this: Per-device data. + */ +static int write_transcription_stamp(struct gpmi_nfc_data *this) +{ + struct device *dev = this->dev; + struct physical_geometry *physical = &this->physical_geometry; + struct boot_rom_geometry *rom_geo = &this->rom_geometry; + struct mil *mil = &this->mil; + struct mtd_info *mtd = &mil->mtd; + struct nand_chip *nand = &mil->nand; + unsigned int block_size_in_pages; + unsigned int search_area_size_in_strides; + unsigned int search_area_size_in_pages; + unsigned int search_area_size_in_blocks; + unsigned int block; + unsigned int stride; + unsigned int page; + loff_t byte; + uint8_t *buffer = nand->buffers->databuf; + int saved_chip_number; + int status; + + /* Compute the search area geometry. */ + + block_size_in_pages = physical->block_size_in_bytes >> + (ffs(physical->page_data_size_in_bytes) - 1); + + search_area_size_in_strides = 1 << rom_geo->search_area_stride_exponent; + + search_area_size_in_pages = search_area_size_in_strides * + rom_geo->stride_size_in_pages; + + search_area_size_in_blocks = + (search_area_size_in_pages + (block_size_in_pages - 1)) / + /*-------------------------------------------------------*/ + block_size_in_pages; + + #if defined(DETAILED_INFO) + + pr_info("--------------------\n"); + pr_info("Search Area Geometry\n"); + pr_info("--------------------\n"); + pr_info("Search Area Size in Blocks : %u", search_area_size_in_blocks); + pr_info("Search Area Size in Strides: %u", search_area_size_in_strides); + pr_info("Search Area Size in Pages : %u", search_area_size_in_pages); + + #endif + + /* Select chip 0. */ + + saved_chip_number = mil->current_chip; + nand->select_chip(mtd, 0); + + /* Loop over blocks in the first search area, erasing them. */ + + pr_info("Erasing the search area...\n"); + + for (block = 0; block < search_area_size_in_blocks; block++) { + + /* Compute the page address. */ + + page = block * block_size_in_pages; + + /* Erase this block. */ + + pr_info(" Erasing block 0x%x\n", block); + + nand->cmdfunc(mtd, NAND_CMD_ERASE1, -1, page); + nand->cmdfunc(mtd, NAND_CMD_ERASE2, -1, -1); + + /* Wait for the erase to finish. */ + + status = nand->waitfunc(mtd, nand); + + if (status & NAND_STATUS_FAIL) + dev_err(dev, "[%s] Erase failed.\n", __func__); + + } + + /* Write the NCB fingerprint into the page buffer. */ + + memset(buffer, ~0, mtd->writesize); + memset(nand->oob_poi, ~0, mtd->oobsize); + + memcpy(buffer + 12, fingerprint, strlen(fingerprint)); + + /* Loop through the first search area, writing NCB fingerprints. */ + + pr_info("Writing NCB fingerprints...\n"); + + for (stride = 0; stride < search_area_size_in_strides; stride++) { + + /* Compute the page and byte addresses. */ + + page = stride * rom_geo->stride_size_in_pages; + byte = page * physical->page_data_size_in_bytes; + + /* Write the first page of the current stride. */ + + pr_info(" Writing an NCB fingerprint in page 0x%x\n", page); + + nand->cmdfunc(mtd, NAND_CMD_SEQIN, 0x00, page); + nand->ecc.write_page_raw(mtd, nand, buffer); + nand->cmdfunc(mtd, NAND_CMD_PAGEPROG, -1, -1); + + /* Wait for the write to finish. */ + + status = nand->waitfunc(mtd, nand); + + if (status & NAND_STATUS_FAIL) + dev_err(dev, "[%s] Write failed.\n", __func__); + + } + + /* Deselect chip 0. */ + + nand->select_chip(mtd, saved_chip_number); + + /* Return success. */ + + return 0; + +} + +/* This structure represents the Boot ROM Helper for this version. */ + +struct boot_rom_helper gpmi_nfc_boot_rom_helper_v0 = { + .version = 0, + .description = "Single/dual-chip boot area, " + "no block mark swapping", + .swap_block_mark = false, + .set_geometry = set_geometry, + .check_transcription_stamp = check_transcription_stamp, + .write_transcription_stamp = write_transcription_stamp, +}; diff --git a/drivers/mtd/nand/gpmi-nfc/gpmi-nfc-rom-v1.c b/drivers/mtd/nand/gpmi-nfc/gpmi-nfc-rom-v1.c new file mode 100644 index 000000000000..49cb329ccdd4 --- /dev/null +++ b/drivers/mtd/nand/gpmi-nfc/gpmi-nfc-rom-v1.c @@ -0,0 +1,82 @@ +/* + * Freescale GPMI NFC NAND Flash Driver + * + * Copyright (C) 2010 Freescale Semiconductor, Inc. + * Copyright (C) 2008 Embedded Alley Solutions, Inc. + * + * This program is free software; you can redistribute it and/or modify + * it under the terms of the GNU General Public License as published by + * the Free Software Foundation; either version 2 of the License, or + * (at your option) any later version. + * + * This program is distributed in the hope that it will be useful, + * but WITHOUT ANY WARRANTY; without even the implied warranty of + * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the + * GNU General Public License for more details. + * + * You should have received a copy of the GNU General Public License along + * with this program; if not, write to the Free Software Foundation, Inc., + * 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA. + */ + +#include "gpmi-nfc.h" + +/** + * set_geometry() - Sets geometry for the Boot ROM Helper. + * + * @this: Per-device data. + */ +static int set_geometry(struct gpmi_nfc_data *this) +{ + struct gpmi_nfc_platform_data *pdata = this->pdata; + struct boot_rom_geometry *geometry = &this->rom_geometry; + int error; + + /* Version-independent geometry. */ + + error = gpmi_nfc_rom_helper_set_geometry(this); + + if (error) + return error; + + /* + * Check if the platform data indicates we are to protect the boot area. + */ + + if (!pdata->boot_area_size_in_bytes) { + geometry->boot_area_count = 0; + geometry->boot_area_size_in_bytes = 0; + return 0; + } + + /* + * If control arrives here, we are supposed to set up partitions to + * protect the boot areas. In this version of the ROM, we support only + * one boot area. + */ + + geometry->boot_area_count = 1; + + /* + * Use the platform's boot area size. + */ + + geometry->boot_area_size_in_bytes = pdata->boot_area_size_in_bytes; + + /* Return success. */ + + return 0; + +} + +/* This structure represents the Boot ROM Helper for this version. */ + +struct boot_rom_helper gpmi_nfc_boot_rom_helper_v1 = { + .version = 1, + .description = "Single-chip boot area, " + "block mark swapping supported", + .swap_block_mark = true, + .set_geometry = set_geometry, + .check_transcription_stamp = 0, + .write_transcription_stamp = 0, +}; diff --git a/drivers/mtd/nand/gpmi-nfc/gpmi-nfc.h b/drivers/mtd/nand/gpmi-nfc/gpmi-nfc.h new file mode 100644 index 000000000000..9b0074532917 --- /dev/null +++ b/drivers/mtd/nand/gpmi-nfc/gpmi-nfc.h @@ -0,0 +1,645 @@ +/* + * Freescale GPMI NFC NAND Flash Driver + * + * Copyright (C) 2010 Freescale Semiconductor, Inc. + * Copyright (C) 2008 Embedded Alley Solutions, Inc. + * + * This program is free software; you can redistribute it and/or modify + * it under the terms of the GNU General Public License as published by + * the Free Software Foundation; either version 2 of the License, or + * (at your option) any later version. + * + * This program is distributed in the hope that it will be useful, + * but WITHOUT ANY WARRANTY; without even the implied warranty of + * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the + * GNU General Public License for more details. + * + * You should have received a copy of the GNU General Public License along + * with this program; if not, write to the Free Software Foundation, Inc., + * 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA. + */ + +#ifndef __DRIVERS_MTD_NAND_GPMI_NFC_H +#define __DRIVERS_MTD_NAND_GPMI_NFC_H + +/* Linux header files. */ + +#include <linux/err.h> +#include <linux/init.h> +#include <linux/module.h> +#include <linux/io.h> +#include <linux/interrupt.h> +#include <linux/clk.h> +#include <linux/delay.h> +#include <linux/platform_device.h> +#include <linux/dma-mapping.h> +#include <linux/mtd/mtd.h> +#include <linux/mtd/nand.h> +#include <linux/mtd/partitions.h> +#include <linux/mtd/concat.h> +#include <linux/gpmi-nfc.h> +#include <asm/sizes.h> + +/* Platform header files. */ + +#include <mach/system.h> +#include <mach/dmaengine.h> +#include <mach/clock.h> + +/* Driver header files. */ + +#include "../nand_device_info.h" + +/* + *------------------------------------------------------------------------------ + * Fundamental Macros + *------------------------------------------------------------------------------ + */ + +/* Define this macro to enable detailed information messages. */ + +#define DETAILED_INFO + +/* Define this macro to enable event reporting. */ + +/*#define EVENT_REPORTING*/ + +/* + *------------------------------------------------------------------------------ + * Fundamental Data Structures + *------------------------------------------------------------------------------ + */ + +/** + * struct resources - The collection of resources the driver needs. + * + * @gpmi_regs: A pointer to the GPMI registers. + * @bch_regs: A pointer to the BCH registers. + * @bch_interrupt: The BCH interrupt number. + * @dma_low_channel: The low DMA channel. + * @dma_high_channel: The high DMA channel. + * @dma_interrupt: The DMA interrupt number. + * @clock: A pointer to the struct clk for the NFC's clock. + */ + +struct resources { + void *gpmi_regs; + void *bch_regs; + unsigned int bch_low_interrupt; + unsigned int bch_high_interrupt; + unsigned int dma_low_channel; + unsigned int dma_high_channel; + unsigned int dma_low_interrupt; + unsigned int dma_high_interrupt; + struct clk *clock; +}; + +/** + * struct mil - State for the MTD Interface Layer. + * + * @nand: The NAND Flash MTD data structure that represents + * the NAND Flash medium. + * @mtd: The MTD data structure that represents the NAND + * Flash medium. + * @oob_layout: A structure that describes how bytes are laid out + * in the OOB. + * @general_use_mtd: A pointer to an MTD we export for general use. + * This *may* simply be a pointer to the mtd field, if + * we've been instructed NOT to protect the boot + * areas. + * @partitions: A pointer to a set of partitions applied to the + * general use MTD. + * @partition_count: The number of partitions. + * @ubi_partition_memory: If not NULL, a block of memory used to create a set + * of partitions that help with the problem that UBI + * can't handle an MTD larger than 2GiB. + * @current_chip: The chip currently selected by the NAND Fash MTD + * code. A negative value indicates that no chip is + * selected. + * @command_length: The length of the command that appears in the + * command buffer (see cmd_virt, below). + * @inject_ecc_error: Indicates the driver should inject a "fake" ECC + * error into the next read operation that uses ECC. + * User space programs can set this value through the + * sysfs node of the same name. If this value is less + * than zero, the driver will inject an uncorrectable + * ECC error. If this value is greater than zero, the + * driver will inject that number of correctable + * errors, capped by the maximum possible number of + * errors that could appear in a single read. + * @ignore_bad_block_marks: Indicates we are ignoring bad block marks. + * @saved_bbt: A saved pointer to the in-memory NAND Flash MTD bad + * block table. See show_device_ignorebad() for more + * details. + * @raw_oob_mode: Indicates the OOB is to be read/written in "raw" + * mode. See mil_ecc_read_oob() for details. + * @hooked_read_oob: A pointer to the ecc.read_oob() function we + * "hooked." See mil_ecc_read_oob() for details. + * @hooked_write_oob: A pointer to the ecc.write_oob() function pointer + * we "hooked." See mil_ecc_read_oob() for details. + * @marking_a_bad_block: Indicates the caller is marking a bad block. See + * mil_ecc_write_oob() for details. + * @hooked_block_markbad: A pointer to the block_markbad() function we + * we "hooked." See mil_ecc_write_oob() for details. + * @cmd_virt: A pointer to a DMA-coherent buffer in which we + * accumulate command bytes before we give them to the + * NFC layer. See mil_cmd_ctrl() for more details. + * @cmd_phys: The physical address for the cmd_virt buffer. + * @page_buffer_virt: A pointer to a DMA-coherent buffer we use for + * reading and writing pages. This buffer includes + * space for both the payload data and the auxiliary + * data (including status bytes, but not syndrome + * bytes). + * @page_buffer_phys: The physical address for the page_buffer_virt + * buffer. + * @page_buffer_size: The size of the page buffer. + * @payload_virt: A pointer to a location in the page buffer used + * for payload bytes. The size of this buffer is + * determined by struct nfc_geometry. + * @payload_phys: The physical address for payload_virt. + * @payload_size: The size of the payload area in the page buffer. + * @auxiliary_virt: A pointer to a location in the page buffer used + * for auxiliary bytes. The size of this buffer is + * determined by struct nfc_geometry. + * @auxiliary_phys: The physical address for auxiliary_virt. + * @auxiliary_size: The size of the auxiliary area in the page buffer. + */ + +#define MIL_COMMAND_BUFFER_SIZE (10) + +struct mil { + + /* MTD Data Structures */ + + struct nand_chip nand; + struct mtd_info mtd; + struct nand_ecclayout oob_layout; + + /* Partitioning and Boot Area Protection */ + + struct mtd_info *general_use_mtd; + struct mtd_partition *partitions; + unsigned int partition_count; + void *ubi_partition_memory; + + /* General-use Variables */ + + int current_chip; + unsigned int command_length; + int inject_ecc_error; + int ignore_bad_block_marks; + void *saved_bbt; + + /* MTD Function Pointer Hooks */ + + int raw_oob_mode; + int (*hooked_read_oob)(struct mtd_info *mtd, + loff_t from, struct mtd_oob_ops *ops); + int (*hooked_write_oob)(struct mtd_info *mtd, + loff_t to, struct mtd_oob_ops *ops); + + int marking_a_bad_block; + int (*hooked_block_markbad)(struct mtd_info *mtd, + loff_t ofs); + + /* DMA Buffers */ + + char *cmd_virt; + dma_addr_t cmd_phys; + + void *page_buffer_virt; + dma_addr_t page_buffer_phys; + unsigned int page_buffer_size; + + void *payload_virt; + dma_addr_t payload_phys; + + void *auxiliary_virt; + dma_addr_t auxiliary_phys; + +}; + +/** + * struct physical_geometry - Physical geometry description. + * + * This structure describes the physical geometry of the medium. + * + * @chip_count: The number of chips in the medium. + * @chip_size_in_bytes: The size, in bytes, of a single chip + * (excluding the out-of-band bytes). + * @block_size_in_bytes: The size, in bytes, of a single block + * (excluding the out-of-band bytes). + * @page_data_size_in_bytes: The size, in bytes, of the data area in a + * page (excluding the out-of-band bytes). + * @page_oob_size_in_bytes: The size, in bytes, of the out-of-band area + * in a page. + */ + +struct physical_geometry { + unsigned int chip_count; + uint64_t chip_size_in_bytes; + unsigned int block_size_in_bytes; + unsigned int page_data_size_in_bytes; + unsigned int page_oob_size_in_bytes; +}; + +/** + * struct nfc_geometry - NFC geometry description. + * + * This structure describes the NFC's view of the medium geometry. + * + * @ecc_algorithm: The human-readable name of the ECC algorithm + * (e.g., "Reed-Solomon" or "BCH"). + * @ecc_strength: A number that describes the strength of the ECC + * algorithm. + * @page_size_in_bytes: The size, in bytes, of a physical page, including + * both data and OOB. + * @metadata_size_in_bytes: The size, in bytes, of the metadata. + * @ecc_chunk_size_in_bytes: The size, in bytes, of a single ECC chunk. Note + * the first chunk in the page includes both data and + * metadata, so it's a bit larger than this value. + * @ecc_chunk_count: The number of ECC chunks in the page, + * @payload_size_in_bytes: The size, in bytes, of the payload buffer. + * @auxiliary_size_in_bytes: The size, in bytes, of the auxiliary buffer. + * @auxiliary_status_offset: The offset into the auxiliary buffer at which + * the ECC status appears. + * @block_mark_byte_offset: The byte offset in the ECC-based page view at + * which the underlying physical block mark appears. + * @block_mark_bit_offset: The bit offset into the ECC-based page view at + * which the underlying physical block mark appears. + */ + +struct nfc_geometry { + char *ecc_algorithm; + unsigned int ecc_strength; + unsigned int page_size_in_bytes; + unsigned int metadata_size_in_bytes; + unsigned int ecc_chunk_size_in_bytes; + unsigned int ecc_chunk_count; + unsigned int payload_size_in_bytes; + unsigned int auxiliary_size_in_bytes; + unsigned int auxiliary_status_offset; + unsigned int block_mark_byte_offset; + unsigned int block_mark_bit_offset; +}; + +/** + * struct boot_rom_geometry - Boot ROM geometry description. + * + * This structure encapsulates decisions made by the Boot ROM Helper. + * + * @boot_area_count: The number of boot areas. The first boot area + * appears at the beginning of chip 0, the next + * at the beginning of chip 1, etc. + * @boot_area_size_in_bytes: The size, in bytes, of each boot area. + * @stride_size_in_pages: The size of a boot block stride, in pages. + * @search_area_stride_exponent: The logarithm to base 2 of the size of a + * search area in boot block strides. + */ + +struct boot_rom_geometry { + unsigned int boot_area_count; + unsigned int boot_area_size_in_bytes; + unsigned int stride_size_in_pages; + unsigned int search_area_stride_exponent; +}; + +/** + * struct gpmi_nfc_data - i.MX NFC per-device data. + * + * Note that the "device" managed by this driver represents the NAND Flash + * controller *and* the NAND Flash medium behind it. Thus, the per-device data + * structure has information about the controller, the chips to which it is + * connected, and properties of the medium as a whole. + * + * @dev: A pointer to the owning struct device. + * @pdev: A pointer to the owning struct platform_device. + * @pdata: A pointer to the device's platform data. + * @resources: Information about system resources used by this driver. + * @device_info: A structure that contains detailed information about + * the NAND Flash device. + * @physical_geometry: A description of the medium's physical geometry. + * @nfc: A pointer to a structure that represents the underlying + * NFC hardware. + * @nfc_geometry: A description of the medium geometry as viewed by the + * NFC. + * @rom: A pointer to a structure that represents the underlying + * Boot ROM. + * @rom_geometry: A description of the medium geometry as viewed by the + * Boot ROM. + * @mil: A collection of information used by the MTD Interface + * Layer. + */ + +struct gpmi_nfc_data { + + /* System Interface */ + struct device *dev; + struct platform_device *pdev; + struct gpmi_nfc_platform_data *pdata; + + /* Resources */ + struct resources resources; + + /* Flash Hardware */ + struct nand_device_info device_info; + struct physical_geometry physical_geometry; + + /* NFC HAL */ + struct nfc_hal *nfc; + struct nfc_geometry nfc_geometry; + + /* Boot ROM Helper */ + struct boot_rom_helper *rom; + struct boot_rom_geometry rom_geometry; + + /* MTD Interface Layer */ + struct mil mil; + +}; + +/** + * struct gpmi_nfc_timing - GPMI NFC timing parameters. + * + * This structure contains the fundamental timing attributes for the NAND Flash + * bus and the GPMI NFC hardware. + * + * @data_setup_in_ns: The data setup time, in nanoseconds. Usually the + * maximum of tDS and tWP. A negative value + * indicates this characteristic isn't known. + * @data_hold_in_ns: The data hold time, in nanoseconds. Usually the + * maximum of tDH, tWH and tREH. A negative value + * indicates this characteristic isn't known. + * @address_setup_in_ns: The address setup time, in nanoseconds. Usually + * the maximum of tCLS, tCS and tALS. A negative + * value indicates this characteristic isn't known. + * @gpmi_sample_delay_in_ns: A GPMI-specific timing parameter. A negative value + * indicates this characteristic isn't known. + * @tREA_in_ns: tREA, in nanoseconds, from the data sheet. A + * negative value indicates this characteristic isn't + * known. + * @tRLOH_in_ns: tRLOH, in nanoseconds, from the data sheet. A + * negative value indicates this characteristic isn't + * known. + * @tRHOH_in_ns: tRHOH, in nanoseconds, from the data sheet. A + * negative value indicates this characteristic isn't + * known. + */ + +struct gpmi_nfc_timing { + int8_t data_setup_in_ns; + int8_t data_hold_in_ns; + int8_t address_setup_in_ns; + int8_t gpmi_sample_delay_in_ns; + int8_t tREA_in_ns; + int8_t tRLOH_in_ns; + int8_t tRHOH_in_ns; +}; + +/** + * struct gpmi_nfc_hardware_timing - GPMI NFC hardware timing parameters. + * + * This structure contains timing information expressed in a form directly + * usable by the GPMI NFC hardware. + * + * @data_setup_in_cycles: The data setup time, in cycles. + * @data_hold_in_cycles: The data hold time, in cycles. + * @address_setup_in_cycles: The address setup time, in cycles. + * @use_half_periods: Indicates the clock is running slowly, so the + * NFC DLL should use half-periods. + * @sample_delay_factor: The sample delay factor. + */ + +struct gpmi_nfc_hardware_timing { + uint8_t data_setup_in_cycles; + uint8_t data_hold_in_cycles; + uint8_t address_setup_in_cycles; + bool use_half_periods; + uint8_t sample_delay_factor; +}; + +/** + * struct nfc_hal - GPMI NFC HAL + * + * This structure embodies an abstract interface to the underlying NFC hardware. + * + * @version: The NFC hardware version. + * @description: A pointer to a human-readable description of + * the NFC hardware. + * @max_chip_count: The maximum number of chips the NFC can + * possibly support (this value is a constant for + * each NFC version). This may *not* be the actual + * number of chips connected. + * @max_data_setup_cycles: The maximum number of data setup cycles that + * can be expressed in the hardware. + * @internal_data_setup_in_ns: The time, in ns, that the NFC hardware requires + * for data read internal setup. In the Reference + * Manual, see the chapter "High-Speed NAND + * Timing" for more details. + * @max_sample_delay_factor: The maximum sample delay factor that can be + * expressed in the hardware. + * @max_dll_clock_period_in_ns: The maximum period of the GPMI clock that the + * sample delay DLL hardware can possibly work + * with (the DLL is unusable with longer periods). + * If the full-cycle period is greater than HALF + * this value, the DLL must be configured to use + * half-periods. + * @max_dll_delay_in_ns: The maximum amount of delay, in ns, that the + * DLL can implement. + * @dma_descriptors: A pool of DMA descriptors. + * @isr_dma_channel: The DMA channel with which the NFC HAL is + * working. We record this here so the ISR knows + * which DMA channel to acknowledge. + * @dma_done: The completion structure used for DMA + * interrupts. + * @bch_done: The completion structure used for BCH + * interrupts. + * @timing: The current timing configuration. + * @clock_frequency_in_hz: The clock frequency, in Hz, during the current + * I/O transaction. If no I/O transaction is in + * progress, this is the clock frequency during + * the most recent I/O transaction. + * @hardware_timing: The hardware timing configuration in effect + * during the current I/O transaction. If no I/O + * transaction is in progress, this is the + * hardware timing configuration during the most + * recent I/O transaction. + * @init: Initializes the NFC hardware and data + * structures. This function will be called after + * everything has been set up for communication + * with the NFC itself, but before the platform + * has set up off-chip communication. Thus, this + * function must not attempt to communicate with + * the NAND Flash hardware. + * @set_geometry: Configures the NFC hardware and data structures + * to match the physical NAND Flash geometry. + * @set_geometry: Configures the NFC hardware and data structures + * to match the physical NAND Flash geometry. + * @set_timing: Configures the NFC hardware and data structures + * to match the given NAND Flash bus timing. + * @get_timing: Returns the the clock frequency, in Hz, and + * the hardware timing configuration during the + * current I/O transaction. If no I/O transaction + * is in progress, this is the timing state during + * the most recent I/O transaction. + * @exit: Shuts down the NFC hardware and data + * structures. This function will be called after + * the platform has shut down off-chip + * communication but while communication with the + * NFC itself still works. + * @clear_bch: Clears a BCH interrupt (intended to be called + * by a more general interrupt handler to do + * device-specific clearing). + * @is_ready: Returns true if the given chip is ready. + * @begin: Begins an interaction with the NFC. This + * function must be called before *any* of the + * following functions so the NFC can prepare + * itself. + * @end: Ends interaction with the NFC. This function + * should be called to give the NFC a chance to, + * among other things, enter a lower-power state. + * @send_command: Sends the given buffer of command bytes. + * @send_data: Sends the given buffer of data bytes. + * @read_data: Reads data bytes into the given buffer. + * @send_page: Sends the given given data and OOB bytes, + * using the ECC engine. + * @read_page: Reads a page through the ECC engine and + * delivers the data and OOB bytes to the given + * buffers. + */ + +#define NFC_DMA_DESCRIPTOR_COUNT (4) + +struct nfc_hal { + + /* Hardware attributes. */ + + const unsigned int version; + const char *description; + const unsigned int max_chip_count; + const unsigned int max_data_setup_cycles; + const unsigned int internal_data_setup_in_ns; + const unsigned int max_sample_delay_factor; + const unsigned int max_dll_clock_period_in_ns; + const unsigned int max_dll_delay_in_ns; + + /* Working variables. */ + + struct mxs_dma_desc *dma_descriptors[NFC_DMA_DESCRIPTOR_COUNT]; + int isr_dma_channel; + struct completion dma_done; + struct completion bch_done; + struct gpmi_nfc_timing timing; + unsigned long clock_frequency_in_hz; + + /* Configuration functions. */ + + int (*init) (struct gpmi_nfc_data *); + int (*set_geometry)(struct gpmi_nfc_data *); + int (*set_timing) (struct gpmi_nfc_data *, + const struct gpmi_nfc_timing *); + void (*get_timing) (struct gpmi_nfc_data *, + unsigned long *clock_frequency_in_hz, + struct gpmi_nfc_hardware_timing *); + void (*exit) (struct gpmi_nfc_data *); + + /* Call these functions to begin and end I/O. */ + + void (*begin) (struct gpmi_nfc_data *); + void (*end) (struct gpmi_nfc_data *); + + /* Call these I/O functions only between begin() and end(). */ + + void (*clear_bch) (struct gpmi_nfc_data *); + int (*is_ready) (struct gpmi_nfc_data *, unsigned chip); + int (*send_command)(struct gpmi_nfc_data *, unsigned chip, + dma_addr_t buffer, unsigned length); + int (*send_data) (struct gpmi_nfc_data *, unsigned chip, + dma_addr_t buffer, unsigned length); + int (*read_data) (struct gpmi_nfc_data *, unsigned chip, + dma_addr_t buffer, unsigned length); + int (*send_page) (struct gpmi_nfc_data *, unsigned chip, + dma_addr_t payload, dma_addr_t auxiliary); + int (*read_page) (struct gpmi_nfc_data *, unsigned chip, + dma_addr_t payload, dma_addr_t auxiliary); +}; + +/** + * struct boot_rom_helper - Boot ROM Helper + * + * This structure embodies the interface to an object that assists the driver + * in making decisions that relate to the Boot ROM. + * + * @version: The Boot ROM version. + * @description: A pointer to a human-readable description of the + * Boot ROM. + * @swap_block_mark: Indicates that the Boot ROM will swap the block + * mark with the first byte of the OOB. + * @set_geometry: Configures the Boot ROM geometry. + * @check_transcription_stamp: Checks for a transcription stamp. This pointer + * is ignored if swap_block_mark is set. + * @write_transcription_stamp: Writes a transcription stamp. This pointer + * is ignored if swap_block_mark is set. + */ + +struct boot_rom_helper { + const unsigned int version; + const char *description; + const int swap_block_mark; + int (*set_geometry) (struct gpmi_nfc_data *); + int (*check_transcription_stamp)(struct gpmi_nfc_data *); + int (*write_transcription_stamp)(struct gpmi_nfc_data *); +}; + +/* + *------------------------------------------------------------------------------ + * External Symbols + *------------------------------------------------------------------------------ + */ + +/* Event Reporting */ + +#if defined(EVENT_REPORTING) + extern void gpmi_nfc_start_event_trace(char *description); + extern void gpmi_nfc_add_event(char *description, int delta); + extern void gpmi_nfc_stop_event_trace(char *description); + extern void gpmi_nfc_dump_event_trace(void); +#else + #define gpmi_nfc_start_event_trace(description) do {} while (0) + #define gpmi_nfc_add_event(description, delta) do {} while (0) + #define gpmi_nfc_stop_event_trace(description) do {} while (0) + #define gpmi_nfc_dump_event_trace() do {} while (0) +#endif + +/* NFC HAL Common Services */ + +extern irqreturn_t gpmi_nfc_bch_isr(int irq, void *cookie); +extern irqreturn_t gpmi_nfc_dma_isr(int irq, void *cookie); +extern int gpmi_nfc_dma_init(struct gpmi_nfc_data *this); +extern void gpmi_nfc_dma_exit(struct gpmi_nfc_data *this); +extern int gpmi_nfc_set_geometry(struct gpmi_nfc_data *this); +extern int gpmi_nfc_dma_go(struct gpmi_nfc_data *this, int dma_channel); +extern int gpmi_nfc_compute_hardware_timing(struct gpmi_nfc_data *this, + struct gpmi_nfc_hardware_timing *hw); + +/* NFC HAL Structures */ + +extern struct nfc_hal gpmi_nfc_hal_v0; +extern struct nfc_hal gpmi_nfc_hal_v1; +extern struct nfc_hal gpmi_nfc_hal_v2; + +/* Boot ROM Helper Common Services */ + +extern int gpmi_nfc_rom_helper_set_geometry(struct gpmi_nfc_data *this); + +/* Boot ROM Helper Structures */ + +extern struct boot_rom_helper gpmi_nfc_boot_rom_helper_v0; +extern struct boot_rom_helper gpmi_nfc_boot_rom_helper_v1; + +/* MTD Interface Layer */ + +extern int gpmi_nfc_mil_init(struct gpmi_nfc_data *this); +extern void gpmi_nfc_mil_exit(struct gpmi_nfc_data *this); + +#endif |