summaryrefslogtreecommitdiff
path: root/drivers/mtd/nand/rtc_from4.c
diff options
context:
space:
mode:
Diffstat (limited to 'drivers/mtd/nand/rtc_from4.c')
-rw-r--r--drivers/mtd/nand/rtc_from4.c624
1 files changed, 0 insertions, 624 deletions
diff --git a/drivers/mtd/nand/rtc_from4.c b/drivers/mtd/nand/rtc_from4.c
deleted file mode 100644
index e55b5cfbe145..000000000000
--- a/drivers/mtd/nand/rtc_from4.c
+++ /dev/null
@@ -1,624 +0,0 @@
-/*
- * drivers/mtd/nand/rtc_from4.c
- *
- * Copyright (C) 2004 Red Hat, Inc.
- *
- * Derived from drivers/mtd/nand/spia.c
- * Copyright (C) 2000 Steven J. Hill (sjhill@realitydiluted.com)
- *
- * This program is free software; you can redistribute it and/or modify
- * it under the terms of the GNU General Public License version 2 as
- * published by the Free Software Foundation.
- *
- * Overview:
- * This is a device driver for the AG-AND flash device found on the
- * Renesas Technology Corp. Flash ROM 4-slot interface board (FROM_BOARD4),
- * which utilizes the Renesas HN29V1G91T-30 part.
- * This chip is a 1 GBibit (128MiB x 8 bits) AG-AND flash device.
- */
-
-#include <linux/delay.h>
-#include <linux/kernel.h>
-#include <linux/init.h>
-#include <linux/slab.h>
-#include <linux/rslib.h>
-#include <linux/bitrev.h>
-#include <linux/module.h>
-#include <linux/mtd/mtd.h>
-#include <linux/mtd/nand.h>
-#include <linux/mtd/partitions.h>
-#include <asm/io.h>
-
-/*
- * MTD structure for Renesas board
- */
-static struct mtd_info *rtc_from4_mtd = NULL;
-
-#define RTC_FROM4_MAX_CHIPS 2
-
-/* HS77x9 processor register defines */
-#define SH77X9_BCR1 ((volatile unsigned short *)(0xFFFFFF60))
-#define SH77X9_BCR2 ((volatile unsigned short *)(0xFFFFFF62))
-#define SH77X9_WCR1 ((volatile unsigned short *)(0xFFFFFF64))
-#define SH77X9_WCR2 ((volatile unsigned short *)(0xFFFFFF66))
-#define SH77X9_MCR ((volatile unsigned short *)(0xFFFFFF68))
-#define SH77X9_PCR ((volatile unsigned short *)(0xFFFFFF6C))
-#define SH77X9_FRQCR ((volatile unsigned short *)(0xFFFFFF80))
-
-/*
- * Values specific to the Renesas Technology Corp. FROM_BOARD4 (used with HS77x9 processor)
- */
-/* Address where flash is mapped */
-#define RTC_FROM4_FIO_BASE 0x14000000
-
-/* CLE and ALE are tied to address lines 5 & 4, respectively */
-#define RTC_FROM4_CLE (1 << 5)
-#define RTC_FROM4_ALE (1 << 4)
-
-/* address lines A24-A22 used for chip selection */
-#define RTC_FROM4_NAND_ADDR_SLOT3 (0x00800000)
-#define RTC_FROM4_NAND_ADDR_SLOT4 (0x00C00000)
-#define RTC_FROM4_NAND_ADDR_FPGA (0x01000000)
-/* mask address lines A24-A22 used for chip selection */
-#define RTC_FROM4_NAND_ADDR_MASK (RTC_FROM4_NAND_ADDR_SLOT3 | RTC_FROM4_NAND_ADDR_SLOT4 | RTC_FROM4_NAND_ADDR_FPGA)
-
-/* FPGA status register for checking device ready (bit zero) */
-#define RTC_FROM4_FPGA_SR (RTC_FROM4_NAND_ADDR_FPGA | 0x00000002)
-#define RTC_FROM4_DEVICE_READY 0x0001
-
-/* FPGA Reed-Solomon ECC Control register */
-
-#define RTC_FROM4_RS_ECC_CTL (RTC_FROM4_NAND_ADDR_FPGA | 0x00000050)
-#define RTC_FROM4_RS_ECC_CTL_CLR (1 << 7)
-#define RTC_FROM4_RS_ECC_CTL_GEN (1 << 6)
-#define RTC_FROM4_RS_ECC_CTL_FD_E (1 << 5)
-
-/* FPGA Reed-Solomon ECC code base */
-#define RTC_FROM4_RS_ECC (RTC_FROM4_NAND_ADDR_FPGA | 0x00000060)
-#define RTC_FROM4_RS_ECCN (RTC_FROM4_NAND_ADDR_FPGA | 0x00000080)
-
-/* FPGA Reed-Solomon ECC check register */
-#define RTC_FROM4_RS_ECC_CHK (RTC_FROM4_NAND_ADDR_FPGA | 0x00000070)
-#define RTC_FROM4_RS_ECC_CHK_ERROR (1 << 7)
-
-#define ERR_STAT_ECC_AVAILABLE 0x20
-
-/* Undefine for software ECC */
-#define RTC_FROM4_HWECC 1
-
-/* Define as 1 for no virtual erase blocks (in JFFS2) */
-#define RTC_FROM4_NO_VIRTBLOCKS 0
-
-/*
- * Module stuff
- */
-static void __iomem *rtc_from4_fio_base = (void *)P2SEGADDR(RTC_FROM4_FIO_BASE);
-
-static const struct mtd_partition partition_info[] = {
- {
- .name = "Renesas flash partition 1",
- .offset = 0,
- .size = MTDPART_SIZ_FULL},
-};
-
-#define NUM_PARTITIONS 1
-
-/*
- * hardware specific flash bbt decriptors
- * Note: this is to allow debugging by disabling
- * NAND_BBT_CREATE and/or NAND_BBT_WRITE
- *
- */
-static uint8_t bbt_pattern[] = { 'B', 'b', 't', '0' };
-static uint8_t mirror_pattern[] = { '1', 't', 'b', 'B' };
-
-static struct nand_bbt_descr rtc_from4_bbt_main_descr = {
- .options = NAND_BBT_LASTBLOCK | NAND_BBT_CREATE | NAND_BBT_WRITE
- | NAND_BBT_2BIT | NAND_BBT_VERSION | NAND_BBT_PERCHIP,
- .offs = 40,
- .len = 4,
- .veroffs = 44,
- .maxblocks = 4,
- .pattern = bbt_pattern
-};
-
-static struct nand_bbt_descr rtc_from4_bbt_mirror_descr = {
- .options = NAND_BBT_LASTBLOCK | NAND_BBT_CREATE | NAND_BBT_WRITE
- | NAND_BBT_2BIT | NAND_BBT_VERSION | NAND_BBT_PERCHIP,
- .offs = 40,
- .len = 4,
- .veroffs = 44,
- .maxblocks = 4,
- .pattern = mirror_pattern
-};
-
-#ifdef RTC_FROM4_HWECC
-
-/* the Reed Solomon control structure */
-static struct rs_control *rs_decoder;
-
-/*
- * hardware specific Out Of Band information
- */
-static struct nand_ecclayout rtc_from4_nand_oobinfo = {
- .eccbytes = 32,
- .eccpos = {
- 0, 1, 2, 3, 4, 5, 6, 7,
- 8, 9, 10, 11, 12, 13, 14, 15,
- 16, 17, 18, 19, 20, 21, 22, 23,
- 24, 25, 26, 27, 28, 29, 30, 31},
- .oobfree = {{32, 32}}
-};
-
-#endif
-
-/*
- * rtc_from4_hwcontrol - hardware specific access to control-lines
- * @mtd: MTD device structure
- * @cmd: hardware control command
- *
- * Address lines (A5 and A4) are used to control Command and Address Latch
- * Enable on this board, so set the read/write address appropriately.
- *
- * Chip Enable is also controlled by the Chip Select (CS5) and
- * Address lines (A24-A22), so no action is required here.
- *
- */
-static void rtc_from4_hwcontrol(struct mtd_info *mtd, int cmd,
- unsigned int ctrl)
-{
- struct nand_chip *chip = (mtd->priv);
-
- if (cmd == NAND_CMD_NONE)
- return;
-
- if (ctrl & NAND_CLE)
- writeb(cmd, chip->IO_ADDR_W | RTC_FROM4_CLE);
- else
- writeb(cmd, chip->IO_ADDR_W | RTC_FROM4_ALE);
-}
-
-/*
- * rtc_from4_nand_select_chip - hardware specific chip select
- * @mtd: MTD device structure
- * @chip: Chip to select (0 == slot 3, 1 == slot 4)
- *
- * The chip select is based on address lines A24-A22.
- * This driver uses flash slots 3 and 4 (A23-A22).
- *
- */
-static void rtc_from4_nand_select_chip(struct mtd_info *mtd, int chip)
-{
- struct nand_chip *this = mtd->priv;
-
- this->IO_ADDR_R = (void __iomem *)((unsigned long)this->IO_ADDR_R & ~RTC_FROM4_NAND_ADDR_MASK);
- this->IO_ADDR_W = (void __iomem *)((unsigned long)this->IO_ADDR_W & ~RTC_FROM4_NAND_ADDR_MASK);
-
- switch (chip) {
-
- case 0: /* select slot 3 chip */
- this->IO_ADDR_R = (void __iomem *)((unsigned long)this->IO_ADDR_R | RTC_FROM4_NAND_ADDR_SLOT3);
- this->IO_ADDR_W = (void __iomem *)((unsigned long)this->IO_ADDR_W | RTC_FROM4_NAND_ADDR_SLOT3);
- break;
- case 1: /* select slot 4 chip */
- this->IO_ADDR_R = (void __iomem *)((unsigned long)this->IO_ADDR_R | RTC_FROM4_NAND_ADDR_SLOT4);
- this->IO_ADDR_W = (void __iomem *)((unsigned long)this->IO_ADDR_W | RTC_FROM4_NAND_ADDR_SLOT4);
- break;
-
- }
-}
-
-/*
- * rtc_from4_nand_device_ready - hardware specific ready/busy check
- * @mtd: MTD device structure
- *
- * This board provides the Ready/Busy state in the status register
- * of the FPGA. Bit zero indicates the RDY(1)/BSY(0) signal.
- *
- */
-static int rtc_from4_nand_device_ready(struct mtd_info *mtd)
-{
- unsigned short status;
-
- status = *((volatile unsigned short *)(rtc_from4_fio_base + RTC_FROM4_FPGA_SR));
-
- return (status & RTC_FROM4_DEVICE_READY);
-
-}
-
-/*
- * deplete - code to perform device recovery in case there was a power loss
- * @mtd: MTD device structure
- * @chip: Chip to select (0 == slot 3, 1 == slot 4)
- *
- * If there was a sudden loss of power during an erase operation, a
- * "device recovery" operation must be performed when power is restored
- * to ensure correct operation. This routine performs the required steps
- * for the requested chip.
- *
- * See page 86 of the data sheet for details.
- *
- */
-static void deplete(struct mtd_info *mtd, int chip)
-{
- struct nand_chip *this = mtd->priv;
-
- /* wait until device is ready */
- while (!this->dev_ready(mtd)) ;
-
- this->select_chip(mtd, chip);
-
- /* Send the commands for device recovery, phase 1 */
- this->cmdfunc(mtd, NAND_CMD_DEPLETE1, 0x0000, 0x0000);
- this->cmdfunc(mtd, NAND_CMD_DEPLETE2, -1, -1);
-
- /* Send the commands for device recovery, phase 2 */
- this->cmdfunc(mtd, NAND_CMD_DEPLETE1, 0x0000, 0x0004);
- this->cmdfunc(mtd, NAND_CMD_DEPLETE2, -1, -1);
-
-}
-
-#ifdef RTC_FROM4_HWECC
-/*
- * rtc_from4_enable_hwecc - hardware specific hardware ECC enable function
- * @mtd: MTD device structure
- * @mode: I/O mode; read or write
- *
- * enable hardware ECC for data read or write
- *
- */
-static void rtc_from4_enable_hwecc(struct mtd_info *mtd, int mode)
-{
- volatile unsigned short *rs_ecc_ctl = (volatile unsigned short *)(rtc_from4_fio_base + RTC_FROM4_RS_ECC_CTL);
- unsigned short status;
-
- switch (mode) {
- case NAND_ECC_READ:
- status = RTC_FROM4_RS_ECC_CTL_CLR | RTC_FROM4_RS_ECC_CTL_FD_E;
-
- *rs_ecc_ctl = status;
- break;
-
- case NAND_ECC_READSYN:
- status = 0x00;
-
- *rs_ecc_ctl = status;
- break;
-
- case NAND_ECC_WRITE:
- status = RTC_FROM4_RS_ECC_CTL_CLR | RTC_FROM4_RS_ECC_CTL_GEN | RTC_FROM4_RS_ECC_CTL_FD_E;
-
- *rs_ecc_ctl = status;
- break;
-
- default:
- BUG();
- break;
- }
-
-}
-
-/*
- * rtc_from4_calculate_ecc - hardware specific code to read ECC code
- * @mtd: MTD device structure
- * @dat: buffer containing the data to generate ECC codes
- * @ecc_code ECC codes calculated
- *
- * The ECC code is calculated by the FPGA. All we have to do is read the values
- * from the FPGA registers.
- *
- * Note: We read from the inverted registers, since data is inverted before
- * the code is calculated. So all 0xff data (blank page) results in all 0xff rs code
- *
- */
-static void rtc_from4_calculate_ecc(struct mtd_info *mtd, const u_char *dat, u_char *ecc_code)
-{
- volatile unsigned short *rs_eccn = (volatile unsigned short *)(rtc_from4_fio_base + RTC_FROM4_RS_ECCN);
- unsigned short value;
- int i;
-
- for (i = 0; i < 8; i++) {
- value = *rs_eccn;
- ecc_code[i] = (unsigned char)value;
- rs_eccn++;
- }
- ecc_code[7] |= 0x0f; /* set the last four bits (not used) */
-}
-
-/*
- * rtc_from4_correct_data - hardware specific code to correct data using ECC code
- * @mtd: MTD device structure
- * @buf: buffer containing the data to generate ECC codes
- * @ecc1 ECC codes read
- * @ecc2 ECC codes calculated
- *
- * The FPGA tells us fast, if there's an error or not. If no, we go back happy
- * else we read the ecc results from the fpga and call the rs library to decode
- * and hopefully correct the error.
- *
- */
-static int rtc_from4_correct_data(struct mtd_info *mtd, const u_char *buf, u_char *ecc1, u_char *ecc2)
-{
- int i, j, res;
- unsigned short status;
- uint16_t par[6], syn[6];
- uint8_t ecc[8];
- volatile unsigned short *rs_ecc;
-
- status = *((volatile unsigned short *)(rtc_from4_fio_base + RTC_FROM4_RS_ECC_CHK));
-
- if (!(status & RTC_FROM4_RS_ECC_CHK_ERROR)) {
- return 0;
- }
-
- /* Read the syndrome pattern from the FPGA and correct the bitorder */
- rs_ecc = (volatile unsigned short *)(rtc_from4_fio_base + RTC_FROM4_RS_ECC);
- for (i = 0; i < 8; i++) {
- ecc[i] = bitrev8(*rs_ecc);
- rs_ecc++;
- }
-
- /* convert into 6 10bit syndrome fields */
- par[5] = rs_decoder->index_of[(((uint16_t) ecc[0] >> 0) & 0x0ff) | (((uint16_t) ecc[1] << 8) & 0x300)];
- par[4] = rs_decoder->index_of[(((uint16_t) ecc[1] >> 2) & 0x03f) | (((uint16_t) ecc[2] << 6) & 0x3c0)];
- par[3] = rs_decoder->index_of[(((uint16_t) ecc[2] >> 4) & 0x00f) | (((uint16_t) ecc[3] << 4) & 0x3f0)];
- par[2] = rs_decoder->index_of[(((uint16_t) ecc[3] >> 6) & 0x003) | (((uint16_t) ecc[4] << 2) & 0x3fc)];
- par[1] = rs_decoder->index_of[(((uint16_t) ecc[5] >> 0) & 0x0ff) | (((uint16_t) ecc[6] << 8) & 0x300)];
- par[0] = (((uint16_t) ecc[6] >> 2) & 0x03f) | (((uint16_t) ecc[7] << 6) & 0x3c0);
-
- /* Convert to computable syndrome */
- for (i = 0; i < 6; i++) {
- syn[i] = par[0];
- for (j = 1; j < 6; j++)
- if (par[j] != rs_decoder->nn)
- syn[i] ^= rs_decoder->alpha_to[rs_modnn(rs_decoder, par[j] + i * j)];
-
- /* Convert to index form */
- syn[i] = rs_decoder->index_of[syn[i]];
- }
-
- /* Let the library code do its magic. */
- res = decode_rs8(rs_decoder, (uint8_t *) buf, par, 512, syn, 0, NULL, 0xff, NULL);
- if (res > 0) {
- pr_debug("rtc_from4_correct_data: " "ECC corrected %d errors on read\n", res);
- }
- return res;
-}
-
-/**
- * rtc_from4_errstat - perform additional error status checks
- * @mtd: MTD device structure
- * @this: NAND chip structure
- * @state: state or the operation
- * @status: status code returned from read status
- * @page: startpage inside the chip, must be called with (page & this->pagemask)
- *
- * Perform additional error status checks on erase and write failures
- * to determine if errors are correctable. For this device, correctable
- * 1-bit errors on erase and write are considered acceptable.
- *
- * note: see pages 34..37 of data sheet for details.
- *
- */
-static int rtc_from4_errstat(struct mtd_info *mtd, struct nand_chip *this,
- int state, int status, int page)
-{
- int er_stat = 0;
- int rtn, retlen;
- size_t len;
- uint8_t *buf;
- int i;
-
- this->cmdfunc(mtd, NAND_CMD_STATUS_CLEAR, -1, -1);
-
- if (state == FL_ERASING) {
-
- for (i = 0; i < 4; i++) {
- if (!(status & 1 << (i + 1)))
- continue;
- this->cmdfunc(mtd, (NAND_CMD_STATUS_ERROR + i + 1),
- -1, -1);
- rtn = this->read_byte(mtd);
- this->cmdfunc(mtd, NAND_CMD_STATUS_RESET, -1, -1);
-
- /* err_ecc_not_avail */
- if (!(rtn & ERR_STAT_ECC_AVAILABLE))
- er_stat |= 1 << (i + 1);
- }
-
- } else if (state == FL_WRITING) {
-
- unsigned long corrected = mtd->ecc_stats.corrected;
-
- /* single bank write logic */
- this->cmdfunc(mtd, NAND_CMD_STATUS_ERROR, -1, -1);
- rtn = this->read_byte(mtd);
- this->cmdfunc(mtd, NAND_CMD_STATUS_RESET, -1, -1);
-
- if (!(rtn & ERR_STAT_ECC_AVAILABLE)) {
- /* err_ecc_not_avail */
- er_stat |= 1 << 1;
- goto out;
- }
-
- len = mtd->writesize;
- buf = kmalloc(len, GFP_KERNEL);
- if (!buf) {
- er_stat = 1;
- goto out;
- }
-
- /* recovery read */
- rtn = nand_do_read(mtd, page, len, &retlen, buf);
-
- /* if read failed or > 1-bit error corrected */
- if (rtn || (mtd->ecc_stats.corrected - corrected) > 1)
- er_stat |= 1 << 1;
- kfree(buf);
- }
-out:
- rtn = status;
- if (er_stat == 0) { /* if ECC is available */
- rtn = (status & ~NAND_STATUS_FAIL); /* clear the error bit */
- }
-
- return rtn;
-}
-#endif
-
-/*
- * Main initialization routine
- */
-static int __init rtc_from4_init(void)
-{
- struct nand_chip *this;
- unsigned short bcr1, bcr2, wcr2;
- int i;
- int ret;
-
- /* Allocate memory for MTD device structure and private data */
- rtc_from4_mtd = kmalloc(sizeof(struct mtd_info) + sizeof(struct nand_chip), GFP_KERNEL);
- if (!rtc_from4_mtd) {
- printk("Unable to allocate Renesas NAND MTD device structure.\n");
- return -ENOMEM;
- }
-
- /* Get pointer to private data */
- this = (struct nand_chip *)(&rtc_from4_mtd[1]);
-
- /* Initialize structures */
- memset(rtc_from4_mtd, 0, sizeof(struct mtd_info));
- memset(this, 0, sizeof(struct nand_chip));
-
- /* Link the private data with the MTD structure */
- rtc_from4_mtd->priv = this;
- rtc_from4_mtd->owner = THIS_MODULE;
-
- /* set area 5 as PCMCIA mode to clear the spec of tDH(Data hold time;9ns min) */
- bcr1 = *SH77X9_BCR1 & ~0x0002;
- bcr1 |= 0x0002;
- *SH77X9_BCR1 = bcr1;
-
- /* set */
- bcr2 = *SH77X9_BCR2 & ~0x0c00;
- bcr2 |= 0x0800;
- *SH77X9_BCR2 = bcr2;
-
- /* set area 5 wait states */
- wcr2 = *SH77X9_WCR2 & ~0x1c00;
- wcr2 |= 0x1c00;
- *SH77X9_WCR2 = wcr2;
-
- /* Set address of NAND IO lines */
- this->IO_ADDR_R = rtc_from4_fio_base;
- this->IO_ADDR_W = rtc_from4_fio_base;
- /* Set address of hardware control function */
- this->cmd_ctrl = rtc_from4_hwcontrol;
- /* Set address of chip select function */
- this->select_chip = rtc_from4_nand_select_chip;
- /* command delay time (in us) */
- this->chip_delay = 100;
- /* return the status of the Ready/Busy line */
- this->dev_ready = rtc_from4_nand_device_ready;
-
-#ifdef RTC_FROM4_HWECC
- printk(KERN_INFO "rtc_from4_init: using hardware ECC detection.\n");
-
- this->ecc.mode = NAND_ECC_HW_SYNDROME;
- this->ecc.size = 512;
- this->ecc.bytes = 8;
- this->ecc.strength = 3;
- /* return the status of extra status and ECC checks */
- this->errstat = rtc_from4_errstat;
- /* set the nand_oobinfo to support FPGA H/W error detection */
- this->ecc.layout = &rtc_from4_nand_oobinfo;
- this->ecc.hwctl = rtc_from4_enable_hwecc;
- this->ecc.calculate = rtc_from4_calculate_ecc;
- this->ecc.correct = rtc_from4_correct_data;
-
- /* We could create the decoder on demand, if memory is a concern.
- * This way we have it handy, if an error happens
- *
- * Symbolsize is 10 (bits)
- * Primitve polynomial is x^10+x^3+1
- * first consecutive root is 0
- * primitve element to generate roots = 1
- * generator polinomial degree = 6
- */
- rs_decoder = init_rs(10, 0x409, 0, 1, 6);
- if (!rs_decoder) {
- printk(KERN_ERR "Could not create a RS decoder\n");
- ret = -ENOMEM;
- goto err_1;
- }
-#else
- printk(KERN_INFO "rtc_from4_init: using software ECC detection.\n");
-
- this->ecc.mode = NAND_ECC_SOFT;
-#endif
-
- /* set the bad block tables to support debugging */
- this->bbt_td = &rtc_from4_bbt_main_descr;
- this->bbt_md = &rtc_from4_bbt_mirror_descr;
-
- /* Scan to find existence of the device */
- if (nand_scan(rtc_from4_mtd, RTC_FROM4_MAX_CHIPS)) {
- ret = -ENXIO;
- goto err_2;
- }
-
- /* Perform 'device recovery' for each chip in case there was a power loss. */
- for (i = 0; i < this->numchips; i++) {
- deplete(rtc_from4_mtd, i);
- }
-
-#if RTC_FROM4_NO_VIRTBLOCKS
- /* use a smaller erase block to minimize wasted space when a block is bad */
- /* note: this uses eight times as much RAM as using the default and makes */
- /* mounts take four times as long. */
- rtc_from4_mtd->flags |= MTD_NO_VIRTBLOCKS;
-#endif
-
- /* Register the partitions */
- ret = mtd_device_register(rtc_from4_mtd, partition_info,
- NUM_PARTITIONS);
- if (ret)
- goto err_3;
-
- /* Return happy */
- return 0;
-err_3:
- nand_release(rtc_from4_mtd);
-err_2:
- free_rs(rs_decoder);
-err_1:
- kfree(rtc_from4_mtd);
- return ret;
-}
-
-module_init(rtc_from4_init);
-
-/*
- * Clean up routine
- */
-static void __exit rtc_from4_cleanup(void)
-{
- /* Release resource, unregister partitions */
- nand_release(rtc_from4_mtd);
-
- /* Free the MTD device structure */
- kfree(rtc_from4_mtd);
-
-#ifdef RTC_FROM4_HWECC
- /* Free the reed solomon resources */
- if (rs_decoder) {
- free_rs(rs_decoder);
- }
-#endif
-}
-
-module_exit(rtc_from4_cleanup);
-
-MODULE_LICENSE("GPL");
-MODULE_AUTHOR("d.marlin <dmarlin@redhat.com");
-MODULE_DESCRIPTION("Board-specific glue layer for AG-AND flash on Renesas FROM_BOARD4");