diff options
Diffstat (limited to 'fs/xfs/xfs_inode.c')
-rw-r--r-- | fs/xfs/xfs_inode.c | 3876 |
1 files changed, 3876 insertions, 0 deletions
diff --git a/fs/xfs/xfs_inode.c b/fs/xfs/xfs_inode.c new file mode 100644 index 000000000000..43c632ab86ad --- /dev/null +++ b/fs/xfs/xfs_inode.c @@ -0,0 +1,3876 @@ +/* + * Copyright (c) 2000-2003 Silicon Graphics, Inc. All Rights Reserved. + * + * This program is free software; you can redistribute it and/or modify it + * under the terms of version 2 of the GNU General Public License as + * published by the Free Software Foundation. + * + * This program is distributed in the hope that it would be useful, but + * WITHOUT ANY WARRANTY; without even the implied warranty of + * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. + * + * Further, this software is distributed without any warranty that it is + * free of the rightful claim of any third person regarding infringement + * or the like. Any license provided herein, whether implied or + * otherwise, applies only to this software file. Patent licenses, if + * any, provided herein do not apply to combinations of this program with + * other software, or any other product whatsoever. + * + * You should have received a copy of the GNU General Public License along + * with this program; if not, write the Free Software Foundation, Inc., 59 + * Temple Place - Suite 330, Boston MA 02111-1307, USA. + * + * Contact information: Silicon Graphics, Inc., 1600 Amphitheatre Pkwy, + * Mountain View, CA 94043, or: + * + * http://www.sgi.com + * + * For further information regarding this notice, see: + * + * http://oss.sgi.com/projects/GenInfo/SGIGPLNoticeExplan/ + */ + +#include "xfs.h" +#include "xfs_macros.h" +#include "xfs_types.h" +#include "xfs_inum.h" +#include "xfs_log.h" +#include "xfs_trans.h" +#include "xfs_trans_priv.h" +#include "xfs_sb.h" +#include "xfs_ag.h" +#include "xfs_dir.h" +#include "xfs_dir2.h" +#include "xfs_dmapi.h" +#include "xfs_mount.h" +#include "xfs_alloc_btree.h" +#include "xfs_bmap_btree.h" +#include "xfs_ialloc_btree.h" +#include "xfs_btree.h" +#include "xfs_imap.h" +#include "xfs_alloc.h" +#include "xfs_ialloc.h" +#include "xfs_attr_sf.h" +#include "xfs_dir_sf.h" +#include "xfs_dir2_sf.h" +#include "xfs_dinode.h" +#include "xfs_inode_item.h" +#include "xfs_inode.h" +#include "xfs_bmap.h" +#include "xfs_buf_item.h" +#include "xfs_rw.h" +#include "xfs_error.h" +#include "xfs_bit.h" +#include "xfs_utils.h" +#include "xfs_dir2_trace.h" +#include "xfs_quota.h" +#include "xfs_mac.h" +#include "xfs_acl.h" + + +kmem_zone_t *xfs_ifork_zone; +kmem_zone_t *xfs_inode_zone; +kmem_zone_t *xfs_chashlist_zone; + +/* + * Used in xfs_itruncate(). This is the maximum number of extents + * freed from a file in a single transaction. + */ +#define XFS_ITRUNC_MAX_EXTENTS 2 + +STATIC int xfs_iflush_int(xfs_inode_t *, xfs_buf_t *); +STATIC int xfs_iformat_local(xfs_inode_t *, xfs_dinode_t *, int, int); +STATIC int xfs_iformat_extents(xfs_inode_t *, xfs_dinode_t *, int); +STATIC int xfs_iformat_btree(xfs_inode_t *, xfs_dinode_t *, int); + + +#ifdef DEBUG +/* + * Make sure that the extents in the given memory buffer + * are valid. + */ +STATIC void +xfs_validate_extents( + xfs_bmbt_rec_t *ep, + int nrecs, + int disk, + xfs_exntfmt_t fmt) +{ + xfs_bmbt_irec_t irec; + xfs_bmbt_rec_t rec; + int i; + + for (i = 0; i < nrecs; i++) { + rec.l0 = get_unaligned((__uint64_t*)&ep->l0); + rec.l1 = get_unaligned((__uint64_t*)&ep->l1); + if (disk) + xfs_bmbt_disk_get_all(&rec, &irec); + else + xfs_bmbt_get_all(&rec, &irec); + if (fmt == XFS_EXTFMT_NOSTATE) + ASSERT(irec.br_state == XFS_EXT_NORM); + ep++; + } +} +#else /* DEBUG */ +#define xfs_validate_extents(ep, nrecs, disk, fmt) +#endif /* DEBUG */ + +/* + * Check that none of the inode's in the buffer have a next + * unlinked field of 0. + */ +#if defined(DEBUG) +void +xfs_inobp_check( + xfs_mount_t *mp, + xfs_buf_t *bp) +{ + int i; + int j; + xfs_dinode_t *dip; + + j = mp->m_inode_cluster_size >> mp->m_sb.sb_inodelog; + + for (i = 0; i < j; i++) { + dip = (xfs_dinode_t *)xfs_buf_offset(bp, + i * mp->m_sb.sb_inodesize); + if (!dip->di_next_unlinked) { + xfs_fs_cmn_err(CE_ALERT, mp, + "Detected a bogus zero next_unlinked field in incore inode buffer 0x%p. About to pop an ASSERT.", + bp); + ASSERT(dip->di_next_unlinked); + } + } +} +#endif + +/* + * called from bwrite on xfs inode buffers + */ +void +xfs_inobp_bwcheck(xfs_buf_t *bp) +{ + xfs_mount_t *mp; + int i; + int j; + xfs_dinode_t *dip; + + ASSERT(XFS_BUF_FSPRIVATE3(bp, void *) != NULL); + + mp = XFS_BUF_FSPRIVATE3(bp, xfs_mount_t *); + + + j = mp->m_inode_cluster_size >> mp->m_sb.sb_inodelog; + + for (i = 0; i < j; i++) { + dip = (xfs_dinode_t *) xfs_buf_offset(bp, + i * mp->m_sb.sb_inodesize); + if (INT_GET(dip->di_core.di_magic, ARCH_CONVERT) != XFS_DINODE_MAGIC) { + cmn_err(CE_WARN, +"Bad magic # 0x%x in XFS inode buffer 0x%Lx, starting blockno %Ld, offset 0x%x", + INT_GET(dip->di_core.di_magic, ARCH_CONVERT), + (__uint64_t)(__psunsigned_t) bp, + (__int64_t) XFS_BUF_ADDR(bp), + xfs_buf_offset(bp, i * mp->m_sb.sb_inodesize)); + xfs_fs_cmn_err(CE_WARN, mp, + "corrupt, unmount and run xfs_repair"); + } + if (!dip->di_next_unlinked) { + cmn_err(CE_WARN, +"Bad next_unlinked field (0) in XFS inode buffer 0x%p, starting blockno %Ld, offset 0x%x", + (__uint64_t)(__psunsigned_t) bp, + (__int64_t) XFS_BUF_ADDR(bp), + xfs_buf_offset(bp, i * mp->m_sb.sb_inodesize)); + xfs_fs_cmn_err(CE_WARN, mp, + "corrupt, unmount and run xfs_repair"); + } + } + + return; +} + +/* + * This routine is called to map an inode number within a file + * system to the buffer containing the on-disk version of the + * inode. It returns a pointer to the buffer containing the + * on-disk inode in the bpp parameter, and in the dip parameter + * it returns a pointer to the on-disk inode within that buffer. + * + * If a non-zero error is returned, then the contents of bpp and + * dipp are undefined. + * + * Use xfs_imap() to determine the size and location of the + * buffer to read from disk. + */ +int +xfs_inotobp( + xfs_mount_t *mp, + xfs_trans_t *tp, + xfs_ino_t ino, + xfs_dinode_t **dipp, + xfs_buf_t **bpp, + int *offset) +{ + int di_ok; + xfs_imap_t imap; + xfs_buf_t *bp; + int error; + xfs_dinode_t *dip; + + /* + * Call the space managment code to find the location of the + * inode on disk. + */ + imap.im_blkno = 0; + error = xfs_imap(mp, tp, ino, &imap, XFS_IMAP_LOOKUP); + if (error != 0) { + cmn_err(CE_WARN, + "xfs_inotobp: xfs_imap() returned an " + "error %d on %s. Returning error.", error, mp->m_fsname); + return error; + } + + /* + * If the inode number maps to a block outside the bounds of the + * file system then return NULL rather than calling read_buf + * and panicing when we get an error from the driver. + */ + if ((imap.im_blkno + imap.im_len) > + XFS_FSB_TO_BB(mp, mp->m_sb.sb_dblocks)) { + cmn_err(CE_WARN, + "xfs_inotobp: inode number (%d + %d) maps to a block outside the bounds " + "of the file system %s. Returning EINVAL.", + imap.im_blkno, imap.im_len,mp->m_fsname); + return XFS_ERROR(EINVAL); + } + + /* + * Read in the buffer. If tp is NULL, xfs_trans_read_buf() will + * default to just a read_buf() call. + */ + error = xfs_trans_read_buf(mp, tp, mp->m_ddev_targp, imap.im_blkno, + (int)imap.im_len, XFS_BUF_LOCK, &bp); + + if (error) { + cmn_err(CE_WARN, + "xfs_inotobp: xfs_trans_read_buf() returned an " + "error %d on %s. Returning error.", error, mp->m_fsname); + return error; + } + dip = (xfs_dinode_t *)xfs_buf_offset(bp, 0); + di_ok = + INT_GET(dip->di_core.di_magic, ARCH_CONVERT) == XFS_DINODE_MAGIC && + XFS_DINODE_GOOD_VERSION(INT_GET(dip->di_core.di_version, ARCH_CONVERT)); + if (unlikely(XFS_TEST_ERROR(!di_ok, mp, XFS_ERRTAG_ITOBP_INOTOBP, + XFS_RANDOM_ITOBP_INOTOBP))) { + XFS_CORRUPTION_ERROR("xfs_inotobp", XFS_ERRLEVEL_LOW, mp, dip); + xfs_trans_brelse(tp, bp); + cmn_err(CE_WARN, + "xfs_inotobp: XFS_TEST_ERROR() returned an " + "error on %s. Returning EFSCORRUPTED.", mp->m_fsname); + return XFS_ERROR(EFSCORRUPTED); + } + + xfs_inobp_check(mp, bp); + + /* + * Set *dipp to point to the on-disk inode in the buffer. + */ + *dipp = (xfs_dinode_t *)xfs_buf_offset(bp, imap.im_boffset); + *bpp = bp; + *offset = imap.im_boffset; + return 0; +} + + +/* + * This routine is called to map an inode to the buffer containing + * the on-disk version of the inode. It returns a pointer to the + * buffer containing the on-disk inode in the bpp parameter, and in + * the dip parameter it returns a pointer to the on-disk inode within + * that buffer. + * + * If a non-zero error is returned, then the contents of bpp and + * dipp are undefined. + * + * If the inode is new and has not yet been initialized, use xfs_imap() + * to determine the size and location of the buffer to read from disk. + * If the inode has already been mapped to its buffer and read in once, + * then use the mapping information stored in the inode rather than + * calling xfs_imap(). This allows us to avoid the overhead of looking + * at the inode btree for small block file systems (see xfs_dilocate()). + * We can tell whether the inode has been mapped in before by comparing + * its disk block address to 0. Only uninitialized inodes will have + * 0 for the disk block address. + */ +int +xfs_itobp( + xfs_mount_t *mp, + xfs_trans_t *tp, + xfs_inode_t *ip, + xfs_dinode_t **dipp, + xfs_buf_t **bpp, + xfs_daddr_t bno) +{ + xfs_buf_t *bp; + int error; + xfs_imap_t imap; +#ifdef __KERNEL__ + int i; + int ni; +#endif + + if (ip->i_blkno == (xfs_daddr_t)0) { + /* + * Call the space management code to find the location of the + * inode on disk. + */ + imap.im_blkno = bno; + error = xfs_imap(mp, tp, ip->i_ino, &imap, XFS_IMAP_LOOKUP); + if (error != 0) { + return error; + } + + /* + * If the inode number maps to a block outside the bounds + * of the file system then return NULL rather than calling + * read_buf and panicing when we get an error from the + * driver. + */ + if ((imap.im_blkno + imap.im_len) > + XFS_FSB_TO_BB(mp, mp->m_sb.sb_dblocks)) { +#ifdef DEBUG + xfs_fs_cmn_err(CE_ALERT, mp, "xfs_itobp: " + "(imap.im_blkno (0x%llx) " + "+ imap.im_len (0x%llx)) > " + " XFS_FSB_TO_BB(mp, " + "mp->m_sb.sb_dblocks) (0x%llx)", + (unsigned long long) imap.im_blkno, + (unsigned long long) imap.im_len, + XFS_FSB_TO_BB(mp, mp->m_sb.sb_dblocks)); +#endif /* DEBUG */ + return XFS_ERROR(EINVAL); + } + + /* + * Fill in the fields in the inode that will be used to + * map the inode to its buffer from now on. + */ + ip->i_blkno = imap.im_blkno; + ip->i_len = imap.im_len; + ip->i_boffset = imap.im_boffset; + } else { + /* + * We've already mapped the inode once, so just use the + * mapping that we saved the first time. + */ + imap.im_blkno = ip->i_blkno; + imap.im_len = ip->i_len; + imap.im_boffset = ip->i_boffset; + } + ASSERT(bno == 0 || bno == imap.im_blkno); + + /* + * Read in the buffer. If tp is NULL, xfs_trans_read_buf() will + * default to just a read_buf() call. + */ + error = xfs_trans_read_buf(mp, tp, mp->m_ddev_targp, imap.im_blkno, + (int)imap.im_len, XFS_BUF_LOCK, &bp); + + if (error) { +#ifdef DEBUG + xfs_fs_cmn_err(CE_ALERT, mp, "xfs_itobp: " + "xfs_trans_read_buf() returned error %d, " + "imap.im_blkno 0x%llx, imap.im_len 0x%llx", + error, (unsigned long long) imap.im_blkno, + (unsigned long long) imap.im_len); +#endif /* DEBUG */ + return error; + } +#ifdef __KERNEL__ + /* + * Validate the magic number and version of every inode in the buffer + * (if DEBUG kernel) or the first inode in the buffer, otherwise. + */ +#ifdef DEBUG + ni = BBTOB(imap.im_len) >> mp->m_sb.sb_inodelog; +#else + ni = 1; +#endif + for (i = 0; i < ni; i++) { + int di_ok; + xfs_dinode_t *dip; + + dip = (xfs_dinode_t *)xfs_buf_offset(bp, + (i << mp->m_sb.sb_inodelog)); + di_ok = INT_GET(dip->di_core.di_magic, ARCH_CONVERT) == XFS_DINODE_MAGIC && + XFS_DINODE_GOOD_VERSION(INT_GET(dip->di_core.di_version, ARCH_CONVERT)); + if (unlikely(XFS_TEST_ERROR(!di_ok, mp, XFS_ERRTAG_ITOBP_INOTOBP, + XFS_RANDOM_ITOBP_INOTOBP))) { +#ifdef DEBUG + prdev("bad inode magic/vsn daddr %lld #%d (magic=%x)", + mp->m_ddev_targp, + (unsigned long long)imap.im_blkno, i, + INT_GET(dip->di_core.di_magic, ARCH_CONVERT)); +#endif + XFS_CORRUPTION_ERROR("xfs_itobp", XFS_ERRLEVEL_HIGH, + mp, dip); + xfs_trans_brelse(tp, bp); + return XFS_ERROR(EFSCORRUPTED); + } + } +#endif /* __KERNEL__ */ + + xfs_inobp_check(mp, bp); + + /* + * Mark the buffer as an inode buffer now that it looks good + */ + XFS_BUF_SET_VTYPE(bp, B_FS_INO); + + /* + * Set *dipp to point to the on-disk inode in the buffer. + */ + *dipp = (xfs_dinode_t *)xfs_buf_offset(bp, imap.im_boffset); + *bpp = bp; + return 0; +} + +/* + * Move inode type and inode format specific information from the + * on-disk inode to the in-core inode. For fifos, devs, and sockets + * this means set if_rdev to the proper value. For files, directories, + * and symlinks this means to bring in the in-line data or extent + * pointers. For a file in B-tree format, only the root is immediately + * brought in-core. The rest will be in-lined in if_extents when it + * is first referenced (see xfs_iread_extents()). + */ +STATIC int +xfs_iformat( + xfs_inode_t *ip, + xfs_dinode_t *dip) +{ + xfs_attr_shortform_t *atp; + int size; + int error; + xfs_fsize_t di_size; + ip->i_df.if_ext_max = + XFS_IFORK_DSIZE(ip) / (uint)sizeof(xfs_bmbt_rec_t); + error = 0; + + if (unlikely( + INT_GET(dip->di_core.di_nextents, ARCH_CONVERT) + + INT_GET(dip->di_core.di_anextents, ARCH_CONVERT) > + INT_GET(dip->di_core.di_nblocks, ARCH_CONVERT))) { + xfs_fs_cmn_err(CE_WARN, ip->i_mount, + "corrupt dinode %Lu, extent total = %d, nblocks = %Lu." + " Unmount and run xfs_repair.", + (unsigned long long)ip->i_ino, + (int)(INT_GET(dip->di_core.di_nextents, ARCH_CONVERT) + + INT_GET(dip->di_core.di_anextents, ARCH_CONVERT)), + (unsigned long long) + INT_GET(dip->di_core.di_nblocks, ARCH_CONVERT)); + XFS_CORRUPTION_ERROR("xfs_iformat(1)", XFS_ERRLEVEL_LOW, + ip->i_mount, dip); + return XFS_ERROR(EFSCORRUPTED); + } + + if (unlikely(INT_GET(dip->di_core.di_forkoff, ARCH_CONVERT) > ip->i_mount->m_sb.sb_inodesize)) { + xfs_fs_cmn_err(CE_WARN, ip->i_mount, + "corrupt dinode %Lu, forkoff = 0x%x." + " Unmount and run xfs_repair.", + (unsigned long long)ip->i_ino, + (int)(INT_GET(dip->di_core.di_forkoff, ARCH_CONVERT))); + XFS_CORRUPTION_ERROR("xfs_iformat(2)", XFS_ERRLEVEL_LOW, + ip->i_mount, dip); + return XFS_ERROR(EFSCORRUPTED); + } + + switch (ip->i_d.di_mode & S_IFMT) { + case S_IFIFO: + case S_IFCHR: + case S_IFBLK: + case S_IFSOCK: + if (unlikely(INT_GET(dip->di_core.di_format, ARCH_CONVERT) != XFS_DINODE_FMT_DEV)) { + XFS_CORRUPTION_ERROR("xfs_iformat(3)", XFS_ERRLEVEL_LOW, + ip->i_mount, dip); + return XFS_ERROR(EFSCORRUPTED); + } + ip->i_d.di_size = 0; + ip->i_df.if_u2.if_rdev = INT_GET(dip->di_u.di_dev, ARCH_CONVERT); + break; + + case S_IFREG: + case S_IFLNK: + case S_IFDIR: + switch (INT_GET(dip->di_core.di_format, ARCH_CONVERT)) { + case XFS_DINODE_FMT_LOCAL: + /* + * no local regular files yet + */ + if (unlikely((INT_GET(dip->di_core.di_mode, ARCH_CONVERT) & S_IFMT) == S_IFREG)) { + xfs_fs_cmn_err(CE_WARN, ip->i_mount, + "corrupt inode (local format for regular file) %Lu. Unmount and run xfs_repair.", + (unsigned long long) ip->i_ino); + XFS_CORRUPTION_ERROR("xfs_iformat(4)", + XFS_ERRLEVEL_LOW, + ip->i_mount, dip); + return XFS_ERROR(EFSCORRUPTED); + } + + di_size = INT_GET(dip->di_core.di_size, ARCH_CONVERT); + if (unlikely(di_size > XFS_DFORK_DSIZE(dip, ip->i_mount))) { + xfs_fs_cmn_err(CE_WARN, ip->i_mount, + "corrupt inode %Lu (bad size %Ld for local inode). Unmount and run xfs_repair.", + (unsigned long long) ip->i_ino, + (long long) di_size); + XFS_CORRUPTION_ERROR("xfs_iformat(5)", + XFS_ERRLEVEL_LOW, + ip->i_mount, dip); + return XFS_ERROR(EFSCORRUPTED); + } + + size = (int)di_size; + error = xfs_iformat_local(ip, dip, XFS_DATA_FORK, size); + break; + case XFS_DINODE_FMT_EXTENTS: + error = xfs_iformat_extents(ip, dip, XFS_DATA_FORK); + break; + case XFS_DINODE_FMT_BTREE: + error = xfs_iformat_btree(ip, dip, XFS_DATA_FORK); + break; + default: + XFS_ERROR_REPORT("xfs_iformat(6)", XFS_ERRLEVEL_LOW, + ip->i_mount); + return XFS_ERROR(EFSCORRUPTED); + } + break; + + default: + XFS_ERROR_REPORT("xfs_iformat(7)", XFS_ERRLEVEL_LOW, ip->i_mount); + return XFS_ERROR(EFSCORRUPTED); + } + if (error) { + return error; + } + if (!XFS_DFORK_Q(dip)) + return 0; + ASSERT(ip->i_afp == NULL); + ip->i_afp = kmem_zone_zalloc(xfs_ifork_zone, KM_SLEEP); + ip->i_afp->if_ext_max = + XFS_IFORK_ASIZE(ip) / (uint)sizeof(xfs_bmbt_rec_t); + switch (INT_GET(dip->di_core.di_aformat, ARCH_CONVERT)) { + case XFS_DINODE_FMT_LOCAL: + atp = (xfs_attr_shortform_t *)XFS_DFORK_APTR(dip); + size = (int)INT_GET(atp->hdr.totsize, ARCH_CONVERT); + error = xfs_iformat_local(ip, dip, XFS_ATTR_FORK, size); + break; + case XFS_DINODE_FMT_EXTENTS: + error = xfs_iformat_extents(ip, dip, XFS_ATTR_FORK); + break; + case XFS_DINODE_FMT_BTREE: + error = xfs_iformat_btree(ip, dip, XFS_ATTR_FORK); + break; + default: + error = XFS_ERROR(EFSCORRUPTED); + break; + } + if (error) { + kmem_zone_free(xfs_ifork_zone, ip->i_afp); + ip->i_afp = NULL; + xfs_idestroy_fork(ip, XFS_DATA_FORK); + } + return error; +} + +/* + * The file is in-lined in the on-disk inode. + * If it fits into if_inline_data, then copy + * it there, otherwise allocate a buffer for it + * and copy the data there. Either way, set + * if_data to point at the data. + * If we allocate a buffer for the data, make + * sure that its size is a multiple of 4 and + * record the real size in i_real_bytes. + */ +STATIC int +xfs_iformat_local( + xfs_inode_t *ip, + xfs_dinode_t *dip, + int whichfork, + int size) +{ + xfs_ifork_t *ifp; + int real_size; + + /* + * If the size is unreasonable, then something + * is wrong and we just bail out rather than crash in + * kmem_alloc() or memcpy() below. + */ + if (unlikely(size > XFS_DFORK_SIZE(dip, ip->i_mount, whichfork))) { + xfs_fs_cmn_err(CE_WARN, ip->i_mount, + "corrupt inode %Lu (bad size %d for local fork, size = %d). Unmount and run xfs_repair.", + (unsigned long long) ip->i_ino, size, + XFS_DFORK_SIZE(dip, ip->i_mount, whichfork)); + XFS_CORRUPTION_ERROR("xfs_iformat_local", XFS_ERRLEVEL_LOW, + ip->i_mount, dip); + return XFS_ERROR(EFSCORRUPTED); + } + ifp = XFS_IFORK_PTR(ip, whichfork); + real_size = 0; + if (size == 0) + ifp->if_u1.if_data = NULL; + else if (size <= sizeof(ifp->if_u2.if_inline_data)) + ifp->if_u1.if_data = ifp->if_u2.if_inline_data; + else { + real_size = roundup(size, 4); + ifp->if_u1.if_data = kmem_alloc(real_size, KM_SLEEP); + } + ifp->if_bytes = size; + ifp->if_real_bytes = real_size; + if (size) + memcpy(ifp->if_u1.if_data, XFS_DFORK_PTR(dip, whichfork), size); + ifp->if_flags &= ~XFS_IFEXTENTS; + ifp->if_flags |= XFS_IFINLINE; + return 0; +} + +/* + * The file consists of a set of extents all + * of which fit into the on-disk inode. + * If there are few enough extents to fit into + * the if_inline_ext, then copy them there. + * Otherwise allocate a buffer for them and copy + * them into it. Either way, set if_extents + * to point at the extents. + */ +STATIC int +xfs_iformat_extents( + xfs_inode_t *ip, + xfs_dinode_t *dip, + int whichfork) +{ + xfs_bmbt_rec_t *ep, *dp; + xfs_ifork_t *ifp; + int nex; + int real_size; + int size; + int i; + + ifp = XFS_IFORK_PTR(ip, whichfork); + nex = XFS_DFORK_NEXTENTS(dip, whichfork); + size = nex * (uint)sizeof(xfs_bmbt_rec_t); + + /* + * If the number of extents is unreasonable, then something + * is wrong and we just bail out rather than crash in + * kmem_alloc() or memcpy() below. + */ + if (unlikely(size < 0 || size > XFS_DFORK_SIZE(dip, ip->i_mount, whichfork))) { + xfs_fs_cmn_err(CE_WARN, ip->i_mount, + "corrupt inode %Lu ((a)extents = %d). Unmount and run xfs_repair.", + (unsigned long long) ip->i_ino, nex); + XFS_CORRUPTION_ERROR("xfs_iformat_extents(1)", XFS_ERRLEVEL_LOW, + ip->i_mount, dip); + return XFS_ERROR(EFSCORRUPTED); + } + + real_size = 0; + if (nex == 0) + ifp->if_u1.if_extents = NULL; + else if (nex <= XFS_INLINE_EXTS) + ifp->if_u1.if_extents = ifp->if_u2.if_inline_ext; + else { + ifp->if_u1.if_extents = kmem_alloc(size, KM_SLEEP); + ASSERT(ifp->if_u1.if_extents != NULL); + real_size = size; + } + ifp->if_bytes = size; + ifp->if_real_bytes = real_size; + if (size) { + dp = (xfs_bmbt_rec_t *) XFS_DFORK_PTR(dip, whichfork); + xfs_validate_extents(dp, nex, 1, XFS_EXTFMT_INODE(ip)); + ep = ifp->if_u1.if_extents; + for (i = 0; i < nex; i++, ep++, dp++) { + ep->l0 = INT_GET(get_unaligned((__uint64_t*)&dp->l0), + ARCH_CONVERT); + ep->l1 = INT_GET(get_unaligned((__uint64_t*)&dp->l1), + ARCH_CONVERT); + } + xfs_bmap_trace_exlist("xfs_iformat_extents", ip, nex, + whichfork); + if (whichfork != XFS_DATA_FORK || + XFS_EXTFMT_INODE(ip) == XFS_EXTFMT_NOSTATE) + if (unlikely(xfs_check_nostate_extents( + ifp->if_u1.if_extents, nex))) { + XFS_ERROR_REPORT("xfs_iformat_extents(2)", + XFS_ERRLEVEL_LOW, + ip->i_mount); + return XFS_ERROR(EFSCORRUPTED); + } + } + ifp->if_flags |= XFS_IFEXTENTS; + return 0; +} + +/* + * The file has too many extents to fit into + * the inode, so they are in B-tree format. + * Allocate a buffer for the root of the B-tree + * and copy the root into it. The i_extents + * field will remain NULL until all of the + * extents are read in (when they are needed). + */ +STATIC int +xfs_iformat_btree( + xfs_inode_t *ip, + xfs_dinode_t *dip, + int whichfork) +{ + xfs_bmdr_block_t *dfp; + xfs_ifork_t *ifp; + /* REFERENCED */ + int nrecs; + int size; + + ifp = XFS_IFORK_PTR(ip, whichfork); + dfp = (xfs_bmdr_block_t *)XFS_DFORK_PTR(dip, whichfork); + size = XFS_BMAP_BROOT_SPACE(dfp); + nrecs = XFS_BMAP_BROOT_NUMRECS(dfp); + + /* + * blow out if -- fork has less extents than can fit in + * fork (fork shouldn't be a btree format), root btree + * block has more records than can fit into the fork, + * or the number of extents is greater than the number of + * blocks. + */ + if (unlikely(XFS_IFORK_NEXTENTS(ip, whichfork) <= ifp->if_ext_max + || XFS_BMDR_SPACE_CALC(nrecs) > + XFS_DFORK_SIZE(dip, ip->i_mount, whichfork) + || XFS_IFORK_NEXTENTS(ip, whichfork) > ip->i_d.di_nblocks)) { + xfs_fs_cmn_err(CE_WARN, ip->i_mount, + "corrupt inode %Lu (btree). Unmount and run xfs_repair.", + (unsigned long long) ip->i_ino); + XFS_ERROR_REPORT("xfs_iformat_btree", XFS_ERRLEVEL_LOW, + ip->i_mount); + return XFS_ERROR(EFSCORRUPTED); + } + + ifp->if_broot_bytes = size; + ifp->if_broot = kmem_alloc(size, KM_SLEEP); + ASSERT(ifp->if_broot != NULL); + /* + * Copy and convert from the on-disk structure + * to the in-memory structure. + */ + xfs_bmdr_to_bmbt(dfp, XFS_DFORK_SIZE(dip, ip->i_mount, whichfork), + ifp->if_broot, size); + ifp->if_flags &= ~XFS_IFEXTENTS; + ifp->if_flags |= XFS_IFBROOT; + + return 0; +} + +/* + * xfs_xlate_dinode_core - translate an xfs_inode_core_t between ondisk + * and native format + * + * buf = on-disk representation + * dip = native representation + * dir = direction - +ve -> disk to native + * -ve -> native to disk + */ +void +xfs_xlate_dinode_core( + xfs_caddr_t buf, + xfs_dinode_core_t *dip, + int dir) +{ + xfs_dinode_core_t *buf_core = (xfs_dinode_core_t *)buf; + xfs_dinode_core_t *mem_core = (xfs_dinode_core_t *)dip; + xfs_arch_t arch = ARCH_CONVERT; + + ASSERT(dir); + + INT_XLATE(buf_core->di_magic, mem_core->di_magic, dir, arch); + INT_XLATE(buf_core->di_mode, mem_core->di_mode, dir, arch); + INT_XLATE(buf_core->di_version, mem_core->di_version, dir, arch); + INT_XLATE(buf_core->di_format, mem_core->di_format, dir, arch); + INT_XLATE(buf_core->di_onlink, mem_core->di_onlink, dir, arch); + INT_XLATE(buf_core->di_uid, mem_core->di_uid, dir, arch); + INT_XLATE(buf_core->di_gid, mem_core->di_gid, dir, arch); + INT_XLATE(buf_core->di_nlink, mem_core->di_nlink, dir, arch); + INT_XLATE(buf_core->di_projid, mem_core->di_projid, dir, arch); + + if (dir > 0) { + memcpy(mem_core->di_pad, buf_core->di_pad, + sizeof(buf_core->di_pad)); + } else { + memcpy(buf_core->di_pad, mem_core->di_pad, + sizeof(buf_core->di_pad)); + } + + INT_XLATE(buf_core->di_flushiter, mem_core->di_flushiter, dir, arch); + + INT_XLATE(buf_core->di_atime.t_sec, mem_core->di_atime.t_sec, + dir, arch); + INT_XLATE(buf_core->di_atime.t_nsec, mem_core->di_atime.t_nsec, + dir, arch); + INT_XLATE(buf_core->di_mtime.t_sec, mem_core->di_mtime.t_sec, + dir, arch); + INT_XLATE(buf_core->di_mtime.t_nsec, mem_core->di_mtime.t_nsec, + dir, arch); + INT_XLATE(buf_core->di_ctime.t_sec, mem_core->di_ctime.t_sec, + dir, arch); + INT_XLATE(buf_core->di_ctime.t_nsec, mem_core->di_ctime.t_nsec, + dir, arch); + INT_XLATE(buf_core->di_size, mem_core->di_size, dir, arch); + INT_XLATE(buf_core->di_nblocks, mem_core->di_nblocks, dir, arch); + INT_XLATE(buf_core->di_extsize, mem_core->di_extsize, dir, arch); + INT_XLATE(buf_core->di_nextents, mem_core->di_nextents, dir, arch); + INT_XLATE(buf_core->di_anextents, mem_core->di_anextents, dir, arch); + INT_XLATE(buf_core->di_forkoff, mem_core->di_forkoff, dir, arch); + INT_XLATE(buf_core->di_aformat, mem_core->di_aformat, dir, arch); + INT_XLATE(buf_core->di_dmevmask, mem_core->di_dmevmask, dir, arch); + INT_XLATE(buf_core->di_dmstate, mem_core->di_dmstate, dir, arch); + INT_XLATE(buf_core->di_flags, mem_core->di_flags, dir, arch); + INT_XLATE(buf_core->di_gen, mem_core->di_gen, dir, arch); +} + +STATIC uint +_xfs_dic2xflags( + xfs_dinode_core_t *dic, + __uint16_t di_flags) +{ + uint flags = 0; + + if (di_flags & XFS_DIFLAG_ANY) { + if (di_flags & XFS_DIFLAG_REALTIME) + flags |= XFS_XFLAG_REALTIME; + if (di_flags & XFS_DIFLAG_PREALLOC) + flags |= XFS_XFLAG_PREALLOC; + if (di_flags & XFS_DIFLAG_IMMUTABLE) + flags |= XFS_XFLAG_IMMUTABLE; + if (di_flags & XFS_DIFLAG_APPEND) + flags |= XFS_XFLAG_APPEND; + if (di_flags & XFS_DIFLAG_SYNC) + flags |= XFS_XFLAG_SYNC; + if (di_flags & XFS_DIFLAG_NOATIME) + flags |= XFS_XFLAG_NOATIME; + if (di_flags & XFS_DIFLAG_NODUMP) + flags |= XFS_XFLAG_NODUMP; + if (di_flags & XFS_DIFLAG_RTINHERIT) + flags |= XFS_XFLAG_RTINHERIT; + if (di_flags & XFS_DIFLAG_PROJINHERIT) + flags |= XFS_XFLAG_PROJINHERIT; + if (di_flags & XFS_DIFLAG_NOSYMLINKS) + flags |= XFS_XFLAG_NOSYMLINKS; + } + + return flags; +} + +uint +xfs_ip2xflags( + xfs_inode_t *ip) +{ + xfs_dinode_core_t *dic = &ip->i_d; + + return _xfs_dic2xflags(dic, dic->di_flags) | + (XFS_CFORK_Q(dic) ? XFS_XFLAG_HASATTR : 0); +} + +uint +xfs_dic2xflags( + xfs_dinode_core_t *dic) +{ + return _xfs_dic2xflags(dic, INT_GET(dic->di_flags, ARCH_CONVERT)) | + (XFS_CFORK_Q_DISK(dic) ? XFS_XFLAG_HASATTR : 0); +} + +/* + * Given a mount structure and an inode number, return a pointer + * to a newly allocated in-core inode coresponding to the given + * inode number. + * + * Initialize the inode's attributes and extent pointers if it + * already has them (it will not if the inode has no links). + */ +int +xfs_iread( + xfs_mount_t *mp, + xfs_trans_t *tp, + xfs_ino_t ino, + xfs_inode_t **ipp, + xfs_daddr_t bno) +{ + xfs_buf_t *bp; + xfs_dinode_t *dip; + xfs_inode_t *ip; + int error; + + ASSERT(xfs_inode_zone != NULL); + + ip = kmem_zone_zalloc(xfs_inode_zone, KM_SLEEP); + ip->i_ino = ino; + ip->i_mount = mp; + + /* + * Get pointer's to the on-disk inode and the buffer containing it. + * If the inode number refers to a block outside the file system + * then xfs_itobp() will return NULL. In this case we should + * return NULL as well. Set i_blkno to 0 so that xfs_itobp() will + * know that this is a new incore inode. + */ + error = xfs_itobp(mp, tp, ip, &dip, &bp, bno); + + if (error != 0) { + kmem_zone_free(xfs_inode_zone, ip); + return error; + } + + /* + * Initialize inode's trace buffers. + * Do this before xfs_iformat in case it adds entries. + */ +#ifdef XFS_BMAP_TRACE + ip->i_xtrace = ktrace_alloc(XFS_BMAP_KTRACE_SIZE, KM_SLEEP); +#endif +#ifdef XFS_BMBT_TRACE + ip->i_btrace = ktrace_alloc(XFS_BMBT_KTRACE_SIZE, KM_SLEEP); +#endif +#ifdef XFS_RW_TRACE + ip->i_rwtrace = ktrace_alloc(XFS_RW_KTRACE_SIZE, KM_SLEEP); +#endif +#ifdef XFS_ILOCK_TRACE + ip->i_lock_trace = ktrace_alloc(XFS_ILOCK_KTRACE_SIZE, KM_SLEEP); +#endif +#ifdef XFS_DIR2_TRACE + ip->i_dir_trace = ktrace_alloc(XFS_DIR2_KTRACE_SIZE, KM_SLEEP); +#endif + + /* + * If we got something that isn't an inode it means someone + * (nfs or dmi) has a stale handle. + */ + if (INT_GET(dip->di_core.di_magic, ARCH_CONVERT) != XFS_DINODE_MAGIC) { + kmem_zone_free(xfs_inode_zone, ip); + xfs_trans_brelse(tp, bp); +#ifdef DEBUG + xfs_fs_cmn_err(CE_ALERT, mp, "xfs_iread: " + "dip->di_core.di_magic (0x%x) != " + "XFS_DINODE_MAGIC (0x%x)", + INT_GET(dip->di_core.di_magic, ARCH_CONVERT), + XFS_DINODE_MAGIC); +#endif /* DEBUG */ + return XFS_ERROR(EINVAL); + } + + /* + * If the on-disk inode is already linked to a directory + * entry, copy all of the inode into the in-core inode. + * xfs_iformat() handles copying in the inode format + * specific information. + * Otherwise, just get the truly permanent information. + */ + if (dip->di_core.di_mode) { + xfs_xlate_dinode_core((xfs_caddr_t)&dip->di_core, + &(ip->i_d), 1); + error = xfs_iformat(ip, dip); + if (error) { + kmem_zone_free(xfs_inode_zone, ip); + xfs_trans_brelse(tp, bp); +#ifdef DEBUG + xfs_fs_cmn_err(CE_ALERT, mp, "xfs_iread: " + "xfs_iformat() returned error %d", + error); +#endif /* DEBUG */ + return error; + } + } else { + ip->i_d.di_magic = INT_GET(dip->di_core.di_magic, ARCH_CONVERT); + ip->i_d.di_version = INT_GET(dip->di_core.di_version, ARCH_CONVERT); + ip->i_d.di_gen = INT_GET(dip->di_core.di_gen, ARCH_CONVERT); + ip->i_d.di_flushiter = INT_GET(dip->di_core.di_flushiter, ARCH_CONVERT); + /* + * Make sure to pull in the mode here as well in + * case the inode is released without being used. + * This ensures that xfs_inactive() will see that + * the inode is already free and not try to mess + * with the uninitialized part of it. + */ + ip->i_d.di_mode = 0; + /* + * Initialize the per-fork minima and maxima for a new + * inode here. xfs_iformat will do it for old inodes. + */ + ip->i_df.if_ext_max = + XFS_IFORK_DSIZE(ip) / (uint)sizeof(xfs_bmbt_rec_t); + } + + INIT_LIST_HEAD(&ip->i_reclaim); + + /* + * The inode format changed when we moved the link count and + * made it 32 bits long. If this is an old format inode, + * convert it in memory to look like a new one. If it gets + * flushed to disk we will convert back before flushing or + * logging it. We zero out the new projid field and the old link + * count field. We'll handle clearing the pad field (the remains + * of the old uuid field) when we actually convert the inode to + * the new format. We don't change the version number so that we + * can distinguish this from a real new format inode. + */ + if (ip->i_d.di_version == XFS_DINODE_VERSION_1) { + ip->i_d.di_nlink = ip->i_d.di_onlink; + ip->i_d.di_onlink = 0; + ip->i_d.di_projid = 0; + } + + ip->i_delayed_blks = 0; + + /* + * Mark the buffer containing the inode as something to keep + * around for a while. This helps to keep recently accessed + * meta-data in-core longer. + */ + XFS_BUF_SET_REF(bp, XFS_INO_REF); + + /* + * Use xfs_trans_brelse() to release the buffer containing the + * on-disk inode, because it was acquired with xfs_trans_read_buf() + * in xfs_itobp() above. If tp is NULL, this is just a normal + * brelse(). If we're within a transaction, then xfs_trans_brelse() + * will only release the buffer if it is not dirty within the + * transaction. It will be OK to release the buffer in this case, + * because inodes on disk are never destroyed and we will be + * locking the new in-core inode before putting it in the hash + * table where other processes can find it. Thus we don't have + * to worry about the inode being changed just because we released + * the buffer. + */ + xfs_trans_brelse(tp, bp); + *ipp = ip; + return 0; +} + +/* + * Read in extents from a btree-format inode. + * Allocate and fill in if_extents. Real work is done in xfs_bmap.c. + */ +int +xfs_iread_extents( + xfs_trans_t *tp, + xfs_inode_t *ip, + int whichfork) +{ + int error; + xfs_ifork_t *ifp; + size_t size; + + if (unlikely(XFS_IFORK_FORMAT(ip, whichfork) != XFS_DINODE_FMT_BTREE)) { + XFS_ERROR_REPORT("xfs_iread_extents", XFS_ERRLEVEL_LOW, + ip->i_mount); + return XFS_ERROR(EFSCORRUPTED); + } + size = XFS_IFORK_NEXTENTS(ip, whichfork) * (uint)sizeof(xfs_bmbt_rec_t); + ifp = XFS_IFORK_PTR(ip, whichfork); + /* + * We know that the size is valid (it's checked in iformat_btree) + */ + ifp->if_u1.if_extents = kmem_alloc(size, KM_SLEEP); + ASSERT(ifp->if_u1.if_extents != NULL); + ifp->if_lastex = NULLEXTNUM; + ifp->if_bytes = ifp->if_real_bytes = (int)size; + ifp->if_flags |= XFS_IFEXTENTS; + error = xfs_bmap_read_extents(tp, ip, whichfork); + if (error) { + kmem_free(ifp->if_u1.if_extents, size); + ifp->if_u1.if_extents = NULL; + ifp->if_bytes = ifp->if_real_bytes = 0; + ifp->if_flags &= ~XFS_IFEXTENTS; + return error; + } + xfs_validate_extents((xfs_bmbt_rec_t *)ifp->if_u1.if_extents, + XFS_IFORK_NEXTENTS(ip, whichfork), 0, XFS_EXTFMT_INODE(ip)); + return 0; +} + +/* + * Allocate an inode on disk and return a copy of its in-core version. + * The in-core inode is locked exclusively. Set mode, nlink, and rdev + * appropriately within the inode. The uid and gid for the inode are + * set according to the contents of the given cred structure. + * + * Use xfs_dialloc() to allocate the on-disk inode. If xfs_dialloc() + * has a free inode available, call xfs_iget() + * to obtain the in-core version of the allocated inode. Finally, + * fill in the inode and log its initial contents. In this case, + * ialloc_context would be set to NULL and call_again set to false. + * + * If xfs_dialloc() does not have an available inode, + * it will replenish its supply by doing an allocation. Since we can + * only do one allocation within a transaction without deadlocks, we + * must commit the current transaction before returning the inode itself. + * In this case, therefore, we will set call_again to true and return. + * The caller should then commit the current transaction, start a new + * transaction, and call xfs_ialloc() again to actually get the inode. + * + * To ensure that some other process does not grab the inode that + * was allocated during the first call to xfs_ialloc(), this routine + * also returns the [locked] bp pointing to the head of the freelist + * as ialloc_context. The caller should hold this buffer across + * the commit and pass it back into this routine on the second call. + */ +int +xfs_ialloc( + xfs_trans_t *tp, + xfs_inode_t *pip, + mode_t mode, + nlink_t nlink, + xfs_dev_t rdev, + cred_t *cr, + xfs_prid_t prid, + int okalloc, + xfs_buf_t **ialloc_context, + boolean_t *call_again, + xfs_inode_t **ipp) +{ + xfs_ino_t ino; + xfs_inode_t *ip; + vnode_t *vp; + uint flags; + int error; + + /* + * Call the space management code to pick + * the on-disk inode to be allocated. + */ + error = xfs_dialloc(tp, pip->i_ino, mode, okalloc, + ialloc_context, call_again, &ino); + if (error != 0) { + return error; + } + if (*call_again || ino == NULLFSINO) { + *ipp = NULL; + return 0; + } + ASSERT(*ialloc_context == NULL); + + /* + * Get the in-core inode with the lock held exclusively. + * This is because we're setting fields here we need + * to prevent others from looking at until we're done. + */ + error = xfs_trans_iget(tp->t_mountp, tp, ino, + IGET_CREATE, XFS_ILOCK_EXCL, &ip); + if (error != 0) { + return error; + } + ASSERT(ip != NULL); + + vp = XFS_ITOV(ip); + vp->v_type = IFTOVT(mode); + ip->i_d.di_mode = (__uint16_t)mode; + ip->i_d.di_onlink = 0; + ip->i_d.di_nlink = nlink; + ASSERT(ip->i_d.di_nlink == nlink); + ip->i_d.di_uid = current_fsuid(cr); + ip->i_d.di_gid = current_fsgid(cr); + ip->i_d.di_projid = prid; + memset(&(ip->i_d.di_pad[0]), 0, sizeof(ip->i_d.di_pad)); + + /* + * If the superblock version is up to where we support new format + * inodes and this is currently an old format inode, then change + * the inode version number now. This way we only do the conversion + * here rather than here and in the flush/logging code. + */ + if (XFS_SB_VERSION_HASNLINK(&tp->t_mountp->m_sb) && + ip->i_d.di_version == XFS_DINODE_VERSION_1) { + ip->i_d.di_version = XFS_DINODE_VERSION_2; + /* + * We've already zeroed the old link count, the projid field, + * and the pad field. + */ + } + + /* + * Project ids won't be stored on disk if we are using a version 1 inode. + */ + if ( (prid != 0) && (ip->i_d.di_version == XFS_DINODE_VERSION_1)) + xfs_bump_ino_vers2(tp, ip); + + if (XFS_INHERIT_GID(pip, vp->v_vfsp)) { + ip->i_d.di_gid = pip->i_d.di_gid; + if ((pip->i_d.di_mode & S_ISGID) && (mode & S_IFMT) == S_IFDIR) { + ip->i_d.di_mode |= S_ISGID; + } + } + + /* + * If the group ID of the new file does not match the effective group + * ID or one of the supplementary group IDs, the S_ISGID bit is cleared + * (and only if the irix_sgid_inherit compatibility variable is set). + */ + if ((irix_sgid_inherit) && + (ip->i_d.di_mode & S_ISGID) && + (!in_group_p((gid_t)ip->i_d.di_gid))) { + ip->i_d.di_mode &= ~S_ISGID; + } + + ip->i_d.di_size = 0; + ip->i_d.di_nextents = 0; + ASSERT(ip->i_d.di_nblocks == 0); + xfs_ichgtime(ip, XFS_ICHGTIME_CHG|XFS_ICHGTIME_ACC|XFS_ICHGTIME_MOD); + /* + * di_gen will have been taken care of in xfs_iread. + */ + ip->i_d.di_extsize = 0; + ip->i_d.di_dmevmask = 0; + ip->i_d.di_dmstate = 0; + ip->i_d.di_flags = 0; + flags = XFS_ILOG_CORE; + switch (mode & S_IFMT) { + case S_IFIFO: + case S_IFCHR: + case S_IFBLK: + case S_IFSOCK: + ip->i_d.di_format = XFS_DINODE_FMT_DEV; + ip->i_df.if_u2.if_rdev = rdev; + ip->i_df.if_flags = 0; + flags |= XFS_ILOG_DEV; + break; + case S_IFREG: + case S_IFDIR: + if (unlikely(pip->i_d.di_flags & XFS_DIFLAG_ANY)) { + if (pip->i_d.di_flags & XFS_DIFLAG_RTINHERIT) { + if ((mode & S_IFMT) == S_IFDIR) { + ip->i_d.di_flags |= XFS_DIFLAG_RTINHERIT; + } else { + ip->i_d.di_flags |= XFS_DIFLAG_REALTIME; + ip->i_iocore.io_flags |= XFS_IOCORE_RT; + } + } + if ((pip->i_d.di_flags & XFS_DIFLAG_NOATIME) && + xfs_inherit_noatime) + ip->i_d.di_flags |= XFS_DIFLAG_NOATIME; + if ((pip->i_d.di_flags & XFS_DIFLAG_NODUMP) && + xfs_inherit_nodump) + ip->i_d.di_flags |= XFS_DIFLAG_NODUMP; + if ((pip->i_d.di_flags & XFS_DIFLAG_SYNC) && + xfs_inherit_sync) + ip->i_d.di_flags |= XFS_DIFLAG_SYNC; + if ((pip->i_d.di_flags & XFS_DIFLAG_NOSYMLINKS) && + xfs_inherit_nosymlinks) + ip->i_d.di_flags |= XFS_DIFLAG_NOSYMLINKS; + } + /* FALLTHROUGH */ + case S_IFLNK: + ip->i_d.di_format = XFS_DINODE_FMT_EXTENTS; + ip->i_df.if_flags = XFS_IFEXTENTS; + ip->i_df.if_bytes = ip->i_df.if_real_bytes = 0; + ip->i_df.if_u1.if_extents = NULL; + break; + default: + ASSERT(0); + } + /* + * Attribute fork settings for new inode. + */ + ip->i_d.di_aformat = XFS_DINODE_FMT_EXTENTS; + ip->i_d.di_anextents = 0; + + /* + * Log the new values stuffed into the inode. + */ + xfs_trans_log_inode(tp, ip, flags); + + /* now that we have a v_type we can set Linux inode ops (& unlock) */ + VFS_INIT_VNODE(XFS_MTOVFS(tp->t_mountp), vp, XFS_ITOBHV(ip), 1); + + *ipp = ip; + return 0; +} + +/* + * Check to make sure that there are no blocks allocated to the + * file beyond the size of the file. We don't check this for + * files with fixed size extents or real time extents, but we + * at least do it for regular files. + */ +#ifdef DEBUG +void +xfs_isize_check( + xfs_mount_t *mp, + xfs_inode_t *ip, + xfs_fsize_t isize) +{ + xfs_fileoff_t map_first; + int nimaps; + xfs_bmbt_irec_t imaps[2]; + + if ((ip->i_d.di_mode & S_IFMT) != S_IFREG) + return; + + if ( ip->i_d.di_flags & XFS_DIFLAG_REALTIME ) + return; + + nimaps = 2; + map_first = XFS_B_TO_FSB(mp, (xfs_ufsize_t)isize); + /* + * The filesystem could be shutting down, so bmapi may return + * an error. + */ + if (xfs_bmapi(NULL, ip, map_first, + (XFS_B_TO_FSB(mp, + (xfs_ufsize_t)XFS_MAXIOFFSET(mp)) - + map_first), + XFS_BMAPI_ENTIRE, NULL, 0, imaps, &nimaps, + NULL)) + return; + ASSERT(nimaps == 1); + ASSERT(imaps[0].br_startblock == HOLESTARTBLOCK); +} +#endif /* DEBUG */ + +/* + * Calculate the last possible buffered byte in a file. This must + * include data that was buffered beyond the EOF by the write code. + * This also needs to deal with overflowing the xfs_fsize_t type + * which can happen for sizes near the limit. + * + * We also need to take into account any blocks beyond the EOF. It + * may be the case that they were buffered by a write which failed. + * In that case the pages will still be in memory, but the inode size + * will never have been updated. + */ +xfs_fsize_t +xfs_file_last_byte( + xfs_inode_t *ip) +{ + xfs_mount_t *mp; + xfs_fsize_t last_byte; + xfs_fileoff_t last_block; + xfs_fileoff_t size_last_block; + int error; + + ASSERT(ismrlocked(&(ip->i_iolock), MR_UPDATE | MR_ACCESS)); + + mp = ip->i_mount; + /* + * Only check for blocks beyond the EOF if the extents have + * been read in. This eliminates the need for the inode lock, + * and it also saves us from looking when it really isn't + * necessary. + */ + if (ip->i_df.if_flags & XFS_IFEXTENTS) { + error = xfs_bmap_last_offset(NULL, ip, &last_block, + XFS_DATA_FORK); + if (error) { + last_block = 0; + } + } else { + last_block = 0; + } + size_last_block = XFS_B_TO_FSB(mp, (xfs_ufsize_t)ip->i_d.di_size); + last_block = XFS_FILEOFF_MAX(last_block, size_last_block); + + last_byte = XFS_FSB_TO_B(mp, last_block); + if (last_byte < 0) { + return XFS_MAXIOFFSET(mp); + } + last_byte += (1 << mp->m_writeio_log); + if (last_byte < 0) { + return XFS_MAXIOFFSET(mp); + } + return last_byte; +} + +#if defined(XFS_RW_TRACE) +STATIC void +xfs_itrunc_trace( + int tag, + xfs_inode_t *ip, + int flag, + xfs_fsize_t new_size, + xfs_off_t toss_start, + xfs_off_t toss_finish) +{ + if (ip->i_rwtrace == NULL) { + return; + } + + ktrace_enter(ip->i_rwtrace, + (void*)((long)tag), + (void*)ip, + (void*)(unsigned long)((ip->i_d.di_size >> 32) & 0xffffffff), + (void*)(unsigned long)(ip->i_d.di_size & 0xffffffff), + (void*)((long)flag), + (void*)(unsigned long)((new_size >> 32) & 0xffffffff), + (void*)(unsigned long)(new_size & 0xffffffff), + (void*)(unsigned long)((toss_start >> 32) & 0xffffffff), + (void*)(unsigned long)(toss_start & 0xffffffff), + (void*)(unsigned long)((toss_finish >> 32) & 0xffffffff), + (void*)(unsigned long)(toss_finish & 0xffffffff), + (void*)(unsigned long)current_cpu(), + (void*)0, + (void*)0, + (void*)0, + (void*)0); +} +#else +#define xfs_itrunc_trace(tag, ip, flag, new_size, toss_start, toss_finish) +#endif + +/* + * Start the truncation of the file to new_size. The new size + * must be smaller than the current size. This routine will + * clear the buffer and page caches of file data in the removed + * range, and xfs_itruncate_finish() will remove the underlying + * disk blocks. + * + * The inode must have its I/O lock locked EXCLUSIVELY, and it + * must NOT have the inode lock held at all. This is because we're + * calling into the buffer/page cache code and we can't hold the + * inode lock when we do so. + * + * The flags parameter can have either the value XFS_ITRUNC_DEFINITE + * or XFS_ITRUNC_MAYBE. The XFS_ITRUNC_MAYBE value should be used + * in the case that the caller is locking things out of order and + * may not be able to call xfs_itruncate_finish() with the inode lock + * held without dropping the I/O lock. If the caller must drop the + * I/O lock before calling xfs_itruncate_finish(), then xfs_itruncate_start() + * must be called again with all the same restrictions as the initial + * call. + */ +void +xfs_itruncate_start( + xfs_inode_t *ip, + uint flags, + xfs_fsize_t new_size) +{ + xfs_fsize_t last_byte; + xfs_off_t toss_start; + xfs_mount_t *mp; + vnode_t *vp; + + ASSERT(ismrlocked(&ip->i_iolock, MR_UPDATE) != 0); + ASSERT((new_size == 0) || (new_size <= ip->i_d.di_size)); + ASSERT((flags == XFS_ITRUNC_DEFINITE) || + (flags == XFS_ITRUNC_MAYBE)); + + mp = ip->i_mount; + vp = XFS_ITOV(ip); + /* + * Call VOP_TOSS_PAGES() or VOP_FLUSHINVAL_PAGES() to get rid of pages and buffers + * overlapping the region being removed. We have to use + * the less efficient VOP_FLUSHINVAL_PAGES() in the case that the + * caller may not be able to finish the truncate without + * dropping the inode's I/O lock. Make sure + * to catch any pages brought in by buffers overlapping + * the EOF by searching out beyond the isize by our + * block size. We round new_size up to a block boundary + * so that we don't toss things on the same block as + * new_size but before it. + * + * Before calling VOP_TOSS_PAGES() or VOP_FLUSHINVAL_PAGES(), make sure to + * call remapf() over the same region if the file is mapped. + * This frees up mapped file references to the pages in the + * given range and for the VOP_FLUSHINVAL_PAGES() case it ensures + * that we get the latest mapped changes flushed out. + */ + toss_start = XFS_B_TO_FSB(mp, (xfs_ufsize_t)new_size); + toss_start = XFS_FSB_TO_B(mp, toss_start); + if (toss_start < 0) { + /* + * The place to start tossing is beyond our maximum + * file size, so there is no way that the data extended + * out there. + */ + return; + } + last_byte = xfs_file_last_byte(ip); + xfs_itrunc_trace(XFS_ITRUNC_START, ip, flags, new_size, toss_start, + last_byte); + if (last_byte > toss_start) { + if (flags & XFS_ITRUNC_DEFINITE) { + VOP_TOSS_PAGES(vp, toss_start, -1, FI_REMAPF_LOCKED); + } else { + VOP_FLUSHINVAL_PAGES(vp, toss_start, -1, FI_REMAPF_LOCKED); + } + } + +#ifdef DEBUG + if (new_size == 0) { + ASSERT(VN_CACHED(vp) == 0); + } +#endif +} + +/* + * Shrink the file to the given new_size. The new + * size must be smaller than the current size. + * This will free up the underlying blocks + * in the removed range after a call to xfs_itruncate_start() + * or xfs_atruncate_start(). + * + * The transaction passed to this routine must have made + * a permanent log reservation of at least XFS_ITRUNCATE_LOG_RES. + * This routine may commit the given transaction and + * start new ones, so make sure everything involved in + * the transaction is tidy before calling here. + * Some transaction will be returned to the caller to be + * committed. The incoming transaction must already include + * the inode, and both inode locks must be held exclusively. + * The inode must also be "held" within the transaction. On + * return the inode will be "held" within the returned transaction. + * This routine does NOT require any disk space to be reserved + * for it within the transaction. + * + * The fork parameter must be either xfs_attr_fork or xfs_data_fork, + * and it indicates the fork which is to be truncated. For the + * attribute fork we only support truncation to size 0. + * + * We use the sync parameter to indicate whether or not the first + * transaction we perform might have to be synchronous. For the attr fork, + * it needs to be so if the unlink of the inode is not yet known to be + * permanent in the log. This keeps us from freeing and reusing the + * blocks of the attribute fork before the unlink of the inode becomes + * permanent. + * + * For the data fork, we normally have to run synchronously if we're + * being called out of the inactive path or we're being called + * out of the create path where we're truncating an existing file. + * Either way, the truncate needs to be sync so blocks don't reappear + * in the file with altered data in case of a crash. wsync filesystems + * can run the first case async because anything that shrinks the inode + * has to run sync so by the time we're called here from inactive, the + * inode size is permanently set to 0. + * + * Calls from the truncate path always need to be sync unless we're + * in a wsync filesystem and the file has already been unlinked. + * + * The caller is responsible for correctly setting the sync parameter. + * It gets too hard for us to guess here which path we're being called + * out of just based on inode state. + */ +int +xfs_itruncate_finish( + xfs_trans_t **tp, + xfs_inode_t *ip, + xfs_fsize_t new_size, + int fork, + int sync) +{ + xfs_fsblock_t first_block; + xfs_fileoff_t first_unmap_block; + xfs_fileoff_t last_block; + xfs_filblks_t unmap_len=0; + xfs_mount_t *mp; + xfs_trans_t *ntp; + int done; + int committed; + xfs_bmap_free_t free_list; + int error; + + ASSERT(ismrlocked(&ip->i_iolock, MR_UPDATE) != 0); + ASSERT(ismrlocked(&ip->i_lock, MR_UPDATE) != 0); + ASSERT((new_size == 0) || (new_size <= ip->i_d.di_size)); + ASSERT(*tp != NULL); + ASSERT((*tp)->t_flags & XFS_TRANS_PERM_LOG_RES); + ASSERT(ip->i_transp == *tp); + ASSERT(ip->i_itemp != NULL); + ASSERT(ip->i_itemp->ili_flags & XFS_ILI_HOLD); + + + ntp = *tp; + mp = (ntp)->t_mountp; + ASSERT(! XFS_NOT_DQATTACHED(mp, ip)); + + /* + * We only support truncating the entire attribute fork. + */ + if (fork == XFS_ATTR_FORK) { + new_size = 0LL; + } + first_unmap_block = XFS_B_TO_FSB(mp, (xfs_ufsize_t)new_size); + xfs_itrunc_trace(XFS_ITRUNC_FINISH1, ip, 0, new_size, 0, 0); + /* + * The first thing we do is set the size to new_size permanently + * on disk. This way we don't have to worry about anyone ever + * being able to look at the data being freed even in the face + * of a crash. What we're getting around here is the case where + * we free a block, it is allocated to another file, it is written + * to, and then we crash. If the new data gets written to the + * file but the log buffers containing the free and reallocation + * don't, then we'd end up with garbage in the blocks being freed. + * As long as we make the new_size permanent before actually + * freeing any blocks it doesn't matter if they get writtten to. + * + * The callers must signal into us whether or not the size + * setting here must be synchronous. There are a few cases + * where it doesn't have to be synchronous. Those cases + * occur if the file is unlinked and we know the unlink is + * permanent or if the blocks being truncated are guaranteed + * to be beyond the inode eof (regardless of the link count) + * and the eof value is permanent. Both of these cases occur + * only on wsync-mounted filesystems. In those cases, we're + * guaranteed that no user will ever see the data in the blocks + * that are being truncated so the truncate can run async. + * In the free beyond eof case, the file may wind up with + * more blocks allocated to it than it needs if we crash + * and that won't get fixed until the next time the file + * is re-opened and closed but that's ok as that shouldn't + * be too many blocks. + * + * However, we can't just make all wsync xactions run async + * because there's one call out of the create path that needs + * to run sync where it's truncating an existing file to size + * 0 whose size is > 0. + * + * It's probably possible to come up with a test in this + * routine that would correctly distinguish all the above + * cases from the values of the function parameters and the + * inode state but for sanity's sake, I've decided to let the + * layers above just tell us. It's simpler to correctly figure + * out in the layer above exactly under what conditions we + * can run async and I think it's easier for others read and + * follow the logic in case something has to be changed. + * cscope is your friend -- rcc. + * + * The attribute fork is much simpler. + * + * For the attribute fork we allow the caller to tell us whether + * the unlink of the inode that led to this call is yet permanent + * in the on disk log. If it is not and we will be freeing extents + * in this inode then we make the first transaction synchronous + * to make sure that the unlink is permanent by the time we free + * the blocks. + */ + if (fork == XFS_DATA_FORK) { + if (ip->i_d.di_nextents > 0) { + ip->i_d.di_size = new_size; + xfs_trans_log_inode(ntp, ip, XFS_ILOG_CORE); + } + } else if (sync) { + ASSERT(!(mp->m_flags & XFS_MOUNT_WSYNC)); + if (ip->i_d.di_anextents > 0) + xfs_trans_set_sync(ntp); + } + ASSERT(fork == XFS_DATA_FORK || + (fork == XFS_ATTR_FORK && + ((sync && !(mp->m_flags & XFS_MOUNT_WSYNC)) || + (sync == 0 && (mp->m_flags & XFS_MOUNT_WSYNC))))); + + /* + * Since it is possible for space to become allocated beyond + * the end of the file (in a crash where the space is allocated + * but the inode size is not yet updated), simply remove any + * blocks which show up between the new EOF and the maximum + * possible file size. If the first block to be removed is + * beyond the maximum file size (ie it is the same as last_block), + * then there is nothing to do. + */ + last_block = XFS_B_TO_FSB(mp, (xfs_ufsize_t)XFS_MAXIOFFSET(mp)); + ASSERT(first_unmap_block <= last_block); + done = 0; + if (last_block == first_unmap_block) { + done = 1; + } else { + unmap_len = last_block - first_unmap_block + 1; + } + while (!done) { + /* + * Free up up to XFS_ITRUNC_MAX_EXTENTS. xfs_bunmapi() + * will tell us whether it freed the entire range or + * not. If this is a synchronous mount (wsync), + * then we can tell bunmapi to keep all the + * transactions asynchronous since the unlink + * transaction that made this inode inactive has + * already hit the disk. There's no danger of + * the freed blocks being reused, there being a + * crash, and the reused blocks suddenly reappearing + * in this file with garbage in them once recovery + * runs. + */ + XFS_BMAP_INIT(&free_list, &first_block); + error = xfs_bunmapi(ntp, ip, first_unmap_block, + unmap_len, + XFS_BMAPI_AFLAG(fork) | + (sync ? 0 : XFS_BMAPI_ASYNC), + XFS_ITRUNC_MAX_EXTENTS, + &first_block, &free_list, &done); + if (error) { + /* + * If the bunmapi call encounters an error, + * return to the caller where the transaction + * can be properly aborted. We just need to + * make sure we're not holding any resources + * that we were not when we came in. + */ + xfs_bmap_cancel(&free_list); + return error; + } + + /* + * Duplicate the transaction that has the permanent + * reservation and commit the old transaction. + */ + error = xfs_bmap_finish(tp, &free_list, first_block, + &committed); + ntp = *tp; + if (error) { + /* + * If the bmap finish call encounters an error, + * return to the caller where the transaction + * can be properly aborted. We just need to + * make sure we're not holding any resources + * that we were not when we came in. + * + * Aborting from this point might lose some + * blocks in the file system, but oh well. + */ + xfs_bmap_cancel(&free_list); + if (committed) { + /* + * If the passed in transaction committed + * in xfs_bmap_finish(), then we want to + * add the inode to this one before returning. + * This keeps things simple for the higher + * level code, because it always knows that + * the inode is locked and held in the + * transaction that returns to it whether + * errors occur or not. We don't mark the + * inode dirty so that this transaction can + * be easily aborted if possible. + */ + xfs_trans_ijoin(ntp, ip, + XFS_ILOCK_EXCL | XFS_IOLOCK_EXCL); + xfs_trans_ihold(ntp, ip); + } + return error; + } + + if (committed) { + /* + * The first xact was committed, + * so add the inode to the new one. + * Mark it dirty so it will be logged + * and moved forward in the log as + * part of every commit. + */ + xfs_trans_ijoin(ntp, ip, + XFS_ILOCK_EXCL | XFS_IOLOCK_EXCL); + xfs_trans_ihold(ntp, ip); + xfs_trans_log_inode(ntp, ip, XFS_ILOG_CORE); + } + ntp = xfs_trans_dup(ntp); + (void) xfs_trans_commit(*tp, 0, NULL); + *tp = ntp; + error = xfs_trans_reserve(ntp, 0, XFS_ITRUNCATE_LOG_RES(mp), 0, + XFS_TRANS_PERM_LOG_RES, + XFS_ITRUNCATE_LOG_COUNT); + /* + * Add the inode being truncated to the next chained + * transaction. + */ + xfs_trans_ijoin(ntp, ip, XFS_ILOCK_EXCL | XFS_IOLOCK_EXCL); + xfs_trans_ihold(ntp, ip); + if (error) + return (error); + } + /* + * Only update the size in the case of the data fork, but + * always re-log the inode so that our permanent transaction + * can keep on rolling it forward in the log. + */ + if (fork == XFS_DATA_FORK) { + xfs_isize_check(mp, ip, new_size); + ip->i_d.di_size = new_size; + } + xfs_trans_log_inode(ntp, ip, XFS_ILOG_CORE); + ASSERT((new_size != 0) || + (fork == XFS_ATTR_FORK) || + (ip->i_delayed_blks == 0)); + ASSERT((new_size != 0) || + (fork == XFS_ATTR_FORK) || + (ip->i_d.di_nextents == 0)); + xfs_itrunc_trace(XFS_ITRUNC_FINISH2, ip, 0, new_size, 0, 0); + return 0; +} + + +/* + * xfs_igrow_start + * + * Do the first part of growing a file: zero any data in the last + * block that is beyond the old EOF. We need to do this before + * the inode is joined to the transaction to modify the i_size. + * That way we can drop the inode lock and call into the buffer + * cache to get the buffer mapping the EOF. + */ +int +xfs_igrow_start( + xfs_inode_t *ip, + xfs_fsize_t new_size, + cred_t *credp) +{ + xfs_fsize_t isize; + int error; + + ASSERT(ismrlocked(&(ip->i_lock), MR_UPDATE) != 0); + ASSERT(ismrlocked(&(ip->i_iolock), MR_UPDATE) != 0); + ASSERT(new_size > ip->i_d.di_size); + + error = 0; + isize = ip->i_d.di_size; + /* + * Zero any pages that may have been created by + * xfs_write_file() beyond the end of the file + * and any blocks between the old and new file sizes. + */ + error = xfs_zero_eof(XFS_ITOV(ip), &ip->i_iocore, new_size, isize, + new_size); + return error; +} + +/* + * xfs_igrow_finish + * + * This routine is called to extend the size of a file. + * The inode must have both the iolock and the ilock locked + * for update and it must be a part of the current transaction. + * The xfs_igrow_start() function must have been called previously. + * If the change_flag is not zero, the inode change timestamp will + * be updated. + */ +void +xfs_igrow_finish( + xfs_trans_t *tp, + xfs_inode_t *ip, + xfs_fsize_t new_size, + int change_flag) +{ + ASSERT(ismrlocked(&(ip->i_lock), MR_UPDATE) != 0); + ASSERT(ismrlocked(&(ip->i_iolock), MR_UPDATE) != 0); + ASSERT(ip->i_transp == tp); + ASSERT(new_size > ip->i_d.di_size); + + /* + * Update the file size. Update the inode change timestamp + * if change_flag set. + */ + ip->i_d.di_size = new_size; + if (change_flag) + xfs_ichgtime(ip, XFS_ICHGTIME_CHG); + xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE); + +} + + +/* + * This is called when the inode's link count goes to 0. + * We place the on-disk inode on a list in the AGI. It + * will be pulled from this list when the inode is freed. + */ +int +xfs_iunlink( + xfs_trans_t *tp, + xfs_inode_t *ip) +{ + xfs_mount_t *mp; + xfs_agi_t *agi; + xfs_dinode_t *dip; + xfs_buf_t *agibp; + xfs_buf_t *ibp; + xfs_agnumber_t agno; + xfs_daddr_t agdaddr; + xfs_agino_t agino; + short bucket_index; + int offset; + int error; + int agi_ok; + + ASSERT(ip->i_d.di_nlink == 0); + ASSERT(ip->i_d.di_mode != 0); + ASSERT(ip->i_transp == tp); + + mp = tp->t_mountp; + + agno = XFS_INO_TO_AGNO(mp, ip->i_ino); + agdaddr = XFS_AG_DADDR(mp, agno, XFS_AGI_DADDR(mp)); + + /* + * Get the agi buffer first. It ensures lock ordering + * on the list. + */ + error = xfs_trans_read_buf(mp, tp, mp->m_ddev_targp, agdaddr, + XFS_FSS_TO_BB(mp, 1), 0, &agibp); + if (error) { + return error; + } + /* + * Validate the magic number of the agi block. + */ + agi = XFS_BUF_TO_AGI(agibp); + agi_ok = + INT_GET(agi->agi_magicnum, ARCH_CONVERT) == XFS_AGI_MAGIC && + XFS_AGI_GOOD_VERSION(INT_GET(agi->agi_versionnum, ARCH_CONVERT)); + if (unlikely(XFS_TEST_ERROR(!agi_ok, mp, XFS_ERRTAG_IUNLINK, + XFS_RANDOM_IUNLINK))) { + XFS_CORRUPTION_ERROR("xfs_iunlink", XFS_ERRLEVEL_LOW, mp, agi); + xfs_trans_brelse(tp, agibp); + return XFS_ERROR(EFSCORRUPTED); + } + /* + * Get the index into the agi hash table for the + * list this inode will go on. + */ + agino = XFS_INO_TO_AGINO(mp, ip->i_ino); + ASSERT(agino != 0); + bucket_index = agino % XFS_AGI_UNLINKED_BUCKETS; + ASSERT(agi->agi_unlinked[bucket_index]); + ASSERT(INT_GET(agi->agi_unlinked[bucket_index], ARCH_CONVERT) != agino); + + if (INT_GET(agi->agi_unlinked[bucket_index], ARCH_CONVERT) != NULLAGINO) { + /* + * There is already another inode in the bucket we need + * to add ourselves to. Add us at the front of the list. + * Here we put the head pointer into our next pointer, + * and then we fall through to point the head at us. + */ + error = xfs_itobp(mp, tp, ip, &dip, &ibp, 0); + if (error) { + return error; + } + ASSERT(INT_GET(dip->di_next_unlinked, ARCH_CONVERT) == NULLAGINO); + ASSERT(dip->di_next_unlinked); + /* both on-disk, don't endian flip twice */ + dip->di_next_unlinked = agi->agi_unlinked[bucket_index]; + offset = ip->i_boffset + + offsetof(xfs_dinode_t, di_next_unlinked); + xfs_trans_inode_buf(tp, ibp); + xfs_trans_log_buf(tp, ibp, offset, + (offset + sizeof(xfs_agino_t) - 1)); + xfs_inobp_check(mp, ibp); + } + + /* + * Point the bucket head pointer at the inode being inserted. + */ + ASSERT(agino != 0); + INT_SET(agi->agi_unlinked[bucket_index], ARCH_CONVERT, agino); + offset = offsetof(xfs_agi_t, agi_unlinked) + + (sizeof(xfs_agino_t) * bucket_index); + xfs_trans_log_buf(tp, agibp, offset, + (offset + sizeof(xfs_agino_t) - 1)); + return 0; +} + +/* + * Pull the on-disk inode from the AGI unlinked list. + */ +STATIC int +xfs_iunlink_remove( + xfs_trans_t *tp, + xfs_inode_t *ip) +{ + xfs_ino_t next_ino; + xfs_mount_t *mp; + xfs_agi_t *agi; + xfs_dinode_t *dip; + xfs_buf_t *agibp; + xfs_buf_t *ibp; + xfs_agnumber_t agno; + xfs_daddr_t agdaddr; + xfs_agino_t agino; + xfs_agino_t next_agino; + xfs_buf_t *last_ibp; + xfs_dinode_t *last_dip; + short bucket_index; + int offset, last_offset; + int error; + int agi_ok; + + /* + * First pull the on-disk inode from the AGI unlinked list. + */ + mp = tp->t_mountp; + + agno = XFS_INO_TO_AGNO(mp, ip->i_ino); + agdaddr = XFS_AG_DADDR(mp, agno, XFS_AGI_DADDR(mp)); + + /* + * Get the agi buffer first. It ensures lock ordering + * on the list. + */ + error = xfs_trans_read_buf(mp, tp, mp->m_ddev_targp, agdaddr, + XFS_FSS_TO_BB(mp, 1), 0, &agibp); + if (error) { + cmn_err(CE_WARN, + "xfs_iunlink_remove: xfs_trans_read_buf() returned an error %d on %s. Returning error.", + error, mp->m_fsname); + return error; + } + /* + * Validate the magic number of the agi block. + */ + agi = XFS_BUF_TO_AGI(agibp); + agi_ok = + INT_GET(agi->agi_magicnum, ARCH_CONVERT) == XFS_AGI_MAGIC && + XFS_AGI_GOOD_VERSION(INT_GET(agi->agi_versionnum, ARCH_CONVERT)); + if (unlikely(XFS_TEST_ERROR(!agi_ok, mp, XFS_ERRTAG_IUNLINK_REMOVE, + XFS_RANDOM_IUNLINK_REMOVE))) { + XFS_CORRUPTION_ERROR("xfs_iunlink_remove", XFS_ERRLEVEL_LOW, + mp, agi); + xfs_trans_brelse(tp, agibp); + cmn_err(CE_WARN, + "xfs_iunlink_remove: XFS_TEST_ERROR() returned an error on %s. Returning EFSCORRUPTED.", + mp->m_fsname); + return XFS_ERROR(EFSCORRUPTED); + } + /* + * Get the index into the agi hash table for the + * list this inode will go on. + */ + agino = XFS_INO_TO_AGINO(mp, ip->i_ino); + ASSERT(agino != 0); + bucket_index = agino % XFS_AGI_UNLINKED_BUCKETS; + ASSERT(INT_GET(agi->agi_unlinked[bucket_index], ARCH_CONVERT) != NULLAGINO); + ASSERT(agi->agi_unlinked[bucket_index]); + + if (INT_GET(agi->agi_unlinked[bucket_index], ARCH_CONVERT) == agino) { + /* + * We're at the head of the list. Get the inode's + * on-disk buffer to see if there is anyone after us + * on the list. Only modify our next pointer if it + * is not already NULLAGINO. This saves us the overhead + * of dealing with the buffer when there is no need to + * change it. + */ + error = xfs_itobp(mp, tp, ip, &dip, &ibp, 0); + if (error) { + cmn_err(CE_WARN, + "xfs_iunlink_remove: xfs_itobp() returned an error %d on %s. Returning error.", + error, mp->m_fsname); + return error; + } + next_agino = INT_GET(dip->di_next_unlinked, ARCH_CONVERT); + ASSERT(next_agino != 0); + if (next_agino != NULLAGINO) { + INT_SET(dip->di_next_unlinked, ARCH_CONVERT, NULLAGINO); + offset = ip->i_boffset + + offsetof(xfs_dinode_t, di_next_unlinked); + xfs_trans_inode_buf(tp, ibp); + xfs_trans_log_buf(tp, ibp, offset, + (offset + sizeof(xfs_agino_t) - 1)); + xfs_inobp_check(mp, ibp); + } else { + xfs_trans_brelse(tp, ibp); + } + /* + * Point the bucket head pointer at the next inode. + */ + ASSERT(next_agino != 0); + ASSERT(next_agino != agino); + INT_SET(agi->agi_unlinked[bucket_index], ARCH_CONVERT, next_agino); + offset = offsetof(xfs_agi_t, agi_unlinked) + + (sizeof(xfs_agino_t) * bucket_index); + xfs_trans_log_buf(tp, agibp, offset, + (offset + sizeof(xfs_agino_t) - 1)); + } else { + /* + * We need to search the list for the inode being freed. + */ + next_agino = INT_GET(agi->agi_unlinked[bucket_index], ARCH_CONVERT); + last_ibp = NULL; + while (next_agino != agino) { + /* + * If the last inode wasn't the one pointing to + * us, then release its buffer since we're not + * going to do anything with it. + */ + if (last_ibp != NULL) { + xfs_trans_brelse(tp, last_ibp); + } + next_ino = XFS_AGINO_TO_INO(mp, agno, next_agino); + error = xfs_inotobp(mp, tp, next_ino, &last_dip, + &last_ibp, &last_offset); + if (error) { + cmn_err(CE_WARN, + "xfs_iunlink_remove: xfs_inotobp() returned an error %d on %s. Returning error.", + error, mp->m_fsname); + return error; + } + next_agino = INT_GET(last_dip->di_next_unlinked, ARCH_CONVERT); + ASSERT(next_agino != NULLAGINO); + ASSERT(next_agino != 0); + } + /* + * Now last_ibp points to the buffer previous to us on + * the unlinked list. Pull us from the list. + */ + error = xfs_itobp(mp, tp, ip, &dip, &ibp, 0); + if (error) { + cmn_err(CE_WARN, + "xfs_iunlink_remove: xfs_itobp() returned an error %d on %s. Returning error.", + error, mp->m_fsname); + return error; + } + next_agino = INT_GET(dip->di_next_unlinked, ARCH_CONVERT); + ASSERT(next_agino != 0); + ASSERT(next_agino != agino); + if (next_agino != NULLAGINO) { + INT_SET(dip->di_next_unlinked, ARCH_CONVERT, NULLAGINO); + offset = ip->i_boffset + + offsetof(xfs_dinode_t, di_next_unlinked); + xfs_trans_inode_buf(tp, ibp); + xfs_trans_log_buf(tp, ibp, offset, + (offset + sizeof(xfs_agino_t) - 1)); + xfs_inobp_check(mp, ibp); + } else { + xfs_trans_brelse(tp, ibp); + } + /* + * Point the previous inode on the list to the next inode. + */ + INT_SET(last_dip->di_next_unlinked, ARCH_CONVERT, next_agino); + ASSERT(next_agino != 0); + offset = last_offset + offsetof(xfs_dinode_t, di_next_unlinked); + xfs_trans_inode_buf(tp, last_ibp); + xfs_trans_log_buf(tp, last_ibp, offset, + (offset + sizeof(xfs_agino_t) - 1)); + xfs_inobp_check(mp, last_ibp); + } + return 0; +} + +static __inline__ int xfs_inode_clean(xfs_inode_t *ip) +{ + return (((ip->i_itemp == NULL) || + !(ip->i_itemp->ili_format.ilf_fields & XFS_ILOG_ALL)) && + (ip->i_update_core == 0)); +} + +void +xfs_ifree_cluster( + xfs_inode_t *free_ip, + xfs_trans_t *tp, + xfs_ino_t inum) +{ + xfs_mount_t *mp = free_ip->i_mount; + int blks_per_cluster; + int nbufs; + int ninodes; + int i, j, found, pre_flushed; + xfs_daddr_t blkno; + xfs_buf_t *bp; + xfs_ihash_t *ih; + xfs_inode_t *ip, **ip_found; + xfs_inode_log_item_t *iip; + xfs_log_item_t *lip; + SPLDECL(s); + + if (mp->m_sb.sb_blocksize >= XFS_INODE_CLUSTER_SIZE(mp)) { + blks_per_cluster = 1; + ninodes = mp->m_sb.sb_inopblock; + nbufs = XFS_IALLOC_BLOCKS(mp); + } else { + blks_per_cluster = XFS_INODE_CLUSTER_SIZE(mp) / + mp->m_sb.sb_blocksize; + ninodes = blks_per_cluster * mp->m_sb.sb_inopblock; + nbufs = XFS_IALLOC_BLOCKS(mp) / blks_per_cluster; + } + + ip_found = kmem_alloc(ninodes * sizeof(xfs_inode_t *), KM_NOFS); + + for (j = 0; j < nbufs; j++, inum += ninodes) { + blkno = XFS_AGB_TO_DADDR(mp, XFS_INO_TO_AGNO(mp, inum), + XFS_INO_TO_AGBNO(mp, inum)); + + + /* + * Look for each inode in memory and attempt to lock it, + * we can be racing with flush and tail pushing here. + * any inode we get the locks on, add to an array of + * inode items to process later. + * + * The get the buffer lock, we could beat a flush + * or tail pushing thread to the lock here, in which + * case they will go looking for the inode buffer + * and fail, we need some other form of interlock + * here. + */ + found = 0; + for (i = 0; i < ninodes; i++) { + ih = XFS_IHASH(mp, inum + i); + read_lock(&ih->ih_lock); + for (ip = ih->ih_next; ip != NULL; ip = ip->i_next) { + if (ip->i_ino == inum + i) + break; + } + + /* Inode not in memory or we found it already, + * nothing to do + */ + if (!ip || (ip->i_flags & XFS_ISTALE)) { + read_unlock(&ih->ih_lock); + continue; + } + + if (xfs_inode_clean(ip)) { + read_unlock(&ih->ih_lock); + continue; + } + + /* If we can get the locks then add it to the + * list, otherwise by the time we get the bp lock + * below it will already be attached to the + * inode buffer. + */ + + /* This inode will already be locked - by us, lets + * keep it that way. + */ + + if (ip == free_ip) { + if (xfs_iflock_nowait(ip)) { + ip->i_flags |= XFS_ISTALE; + + if (xfs_inode_clean(ip)) { + xfs_ifunlock(ip); + } else { + ip_found[found++] = ip; + } + } + read_unlock(&ih->ih_lock); + continue; + } + + if (xfs_ilock_nowait(ip, XFS_ILOCK_EXCL)) { + if (xfs_iflock_nowait(ip)) { + ip->i_flags |= XFS_ISTALE; + + if (xfs_inode_clean(ip)) { + xfs_ifunlock(ip); + xfs_iunlock(ip, XFS_ILOCK_EXCL); + } else { + ip_found[found++] = ip; + } + } else { + xfs_iunlock(ip, XFS_ILOCK_EXCL); + } + } + + read_unlock(&ih->ih_lock); + } + + bp = xfs_trans_get_buf(tp, mp->m_ddev_targp, blkno, + mp->m_bsize * blks_per_cluster, + XFS_BUF_LOCK); + + pre_flushed = 0; + lip = XFS_BUF_FSPRIVATE(bp, xfs_log_item_t *); + while (lip) { + if (lip->li_type == XFS_LI_INODE) { + iip = (xfs_inode_log_item_t *)lip; + ASSERT(iip->ili_logged == 1); + lip->li_cb = (void(*)(xfs_buf_t*,xfs_log_item_t*)) xfs_istale_done; + AIL_LOCK(mp,s); + iip->ili_flush_lsn = iip->ili_item.li_lsn; + AIL_UNLOCK(mp, s); + iip->ili_inode->i_flags |= XFS_ISTALE; + pre_flushed++; + } + lip = lip->li_bio_list; + } + + for (i = 0; i < found; i++) { + ip = ip_found[i]; + iip = ip->i_itemp; + + if (!iip) { + ip->i_update_core = 0; + xfs_ifunlock(ip); + xfs_iunlock(ip, XFS_ILOCK_EXCL); + continue; + } + + iip->ili_last_fields = iip->ili_format.ilf_fields; + iip->ili_format.ilf_fields = 0; + iip->ili_logged = 1; + AIL_LOCK(mp,s); + iip->ili_flush_lsn = iip->ili_item.li_lsn; + AIL_UNLOCK(mp, s); + + xfs_buf_attach_iodone(bp, + (void(*)(xfs_buf_t*,xfs_log_item_t*)) + xfs_istale_done, (xfs_log_item_t *)iip); + if (ip != free_ip) { + xfs_iunlock(ip, XFS_ILOCK_EXCL); + } + } + + if (found || pre_flushed) + xfs_trans_stale_inode_buf(tp, bp); + xfs_trans_binval(tp, bp); + } + + kmem_free(ip_found, ninodes * sizeof(xfs_inode_t *)); +} + +/* + * This is called to return an inode to the inode free list. + * The inode should already be truncated to 0 length and have + * no pages associated with it. This routine also assumes that + * the inode is already a part of the transaction. + * + * The on-disk copy of the inode will have been added to the list + * of unlinked inodes in the AGI. We need to remove the inode from + * that list atomically with respect to freeing it here. + */ +int +xfs_ifree( + xfs_trans_t *tp, + xfs_inode_t *ip, + xfs_bmap_free_t *flist) +{ + int error; + int delete; + xfs_ino_t first_ino; + + ASSERT(ismrlocked(&ip->i_lock, MR_UPDATE)); + ASSERT(ip->i_transp == tp); + ASSERT(ip->i_d.di_nlink == 0); + ASSERT(ip->i_d.di_nextents == 0); + ASSERT(ip->i_d.di_anextents == 0); + ASSERT((ip->i_d.di_size == 0) || + ((ip->i_d.di_mode & S_IFMT) != S_IFREG)); + ASSERT(ip->i_d.di_nblocks == 0); + + /* + * Pull the on-disk inode from the AGI unlinked list. + */ + error = xfs_iunlink_remove(tp, ip); + if (error != 0) { + return error; + } + + error = xfs_difree(tp, ip->i_ino, flist, &delete, &first_ino); + if (error != 0) { + return error; + } + ip->i_d.di_mode = 0; /* mark incore inode as free */ + ip->i_d.di_flags = 0; + ip->i_d.di_dmevmask = 0; + ip->i_d.di_forkoff = 0; /* mark the attr fork not in use */ + ip->i_df.if_ext_max = + XFS_IFORK_DSIZE(ip) / (uint)sizeof(xfs_bmbt_rec_t); + ip->i_d.di_format = XFS_DINODE_FMT_EXTENTS; + ip->i_d.di_aformat = XFS_DINODE_FMT_EXTENTS; + /* + * Bump the generation count so no one will be confused + * by reincarnations of this inode. + */ + ip->i_d.di_gen++; + xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE); + + if (delete) { + xfs_ifree_cluster(ip, tp, first_ino); + } + + return 0; +} + +/* + * Reallocate the space for if_broot based on the number of records + * being added or deleted as indicated in rec_diff. Move the records + * and pointers in if_broot to fit the new size. When shrinking this + * will eliminate holes between the records and pointers created by + * the caller. When growing this will create holes to be filled in + * by the caller. + * + * The caller must not request to add more records than would fit in + * the on-disk inode root. If the if_broot is currently NULL, then + * if we adding records one will be allocated. The caller must also + * not request that the number of records go below zero, although + * it can go to zero. + * + * ip -- the inode whose if_broot area is changing + * ext_diff -- the change in the number of records, positive or negative, + * requested for the if_broot array. + */ +void +xfs_iroot_realloc( + xfs_inode_t *ip, + int rec_diff, + int whichfork) +{ + int cur_max; + xfs_ifork_t *ifp; + xfs_bmbt_block_t *new_broot; + int new_max; + size_t new_size; + char *np; + char *op; + + /* + * Handle the degenerate case quietly. + */ + if (rec_diff == 0) { + return; + } + + ifp = XFS_IFORK_PTR(ip, whichfork); + if (rec_diff > 0) { + /* + * If there wasn't any memory allocated before, just + * allocate it now and get out. + */ + if (ifp->if_broot_bytes == 0) { + new_size = (size_t)XFS_BMAP_BROOT_SPACE_CALC(rec_diff); + ifp->if_broot = (xfs_bmbt_block_t*)kmem_alloc(new_size, + KM_SLEEP); + ifp->if_broot_bytes = (int)new_size; + return; + } + + /* + * If there is already an existing if_broot, then we need + * to realloc() it and shift the pointers to their new + * location. The records don't change location because + * they are kept butted up against the btree block header. + */ + cur_max = XFS_BMAP_BROOT_MAXRECS(ifp->if_broot_bytes); + new_max = cur_max + rec_diff; + new_size = (size_t)XFS_BMAP_BROOT_SPACE_CALC(new_max); + ifp->if_broot = (xfs_bmbt_block_t *) + kmem_realloc(ifp->if_broot, + new_size, + (size_t)XFS_BMAP_BROOT_SPACE_CALC(cur_max), /* old size */ + KM_SLEEP); + op = (char *)XFS_BMAP_BROOT_PTR_ADDR(ifp->if_broot, 1, + ifp->if_broot_bytes); + np = (char *)XFS_BMAP_BROOT_PTR_ADDR(ifp->if_broot, 1, + (int)new_size); + ifp->if_broot_bytes = (int)new_size; + ASSERT(ifp->if_broot_bytes <= + XFS_IFORK_SIZE(ip, whichfork) + XFS_BROOT_SIZE_ADJ); + memmove(np, op, cur_max * (uint)sizeof(xfs_dfsbno_t)); + return; + } + + /* + * rec_diff is less than 0. In this case, we are shrinking the + * if_broot buffer. It must already exist. If we go to zero + * records, just get rid of the root and clear the status bit. + */ + ASSERT((ifp->if_broot != NULL) && (ifp->if_broot_bytes > 0)); + cur_max = XFS_BMAP_BROOT_MAXRECS(ifp->if_broot_bytes); + new_max = cur_max + rec_diff; + ASSERT(new_max >= 0); + if (new_max > 0) + new_size = (size_t)XFS_BMAP_BROOT_SPACE_CALC(new_max); + else + new_size = 0; + if (new_size > 0) { + new_broot = (xfs_bmbt_block_t *)kmem_alloc(new_size, KM_SLEEP); + /* + * First copy over the btree block header. + */ + memcpy(new_broot, ifp->if_broot, sizeof(xfs_bmbt_block_t)); + } else { + new_broot = NULL; + ifp->if_flags &= ~XFS_IFBROOT; + } + + /* + * Only copy the records and pointers if there are any. + */ + if (new_max > 0) { + /* + * First copy the records. + */ + op = (char *)XFS_BMAP_BROOT_REC_ADDR(ifp->if_broot, 1, + ifp->if_broot_bytes); + np = (char *)XFS_BMAP_BROOT_REC_ADDR(new_broot, 1, + (int)new_size); + memcpy(np, op, new_max * (uint)sizeof(xfs_bmbt_rec_t)); + + /* + * Then copy the pointers. + */ + op = (char *)XFS_BMAP_BROOT_PTR_ADDR(ifp->if_broot, 1, + ifp->if_broot_bytes); + np = (char *)XFS_BMAP_BROOT_PTR_ADDR(new_broot, 1, + (int)new_size); + memcpy(np, op, new_max * (uint)sizeof(xfs_dfsbno_t)); + } + kmem_free(ifp->if_broot, ifp->if_broot_bytes); + ifp->if_broot = new_broot; + ifp->if_broot_bytes = (int)new_size; + ASSERT(ifp->if_broot_bytes <= + XFS_IFORK_SIZE(ip, whichfork) + XFS_BROOT_SIZE_ADJ); + return; +} + + +/* + * This is called when the amount of space needed for if_extents + * is increased or decreased. The change in size is indicated by + * the number of extents that need to be added or deleted in the + * ext_diff parameter. + * + * If the amount of space needed has decreased below the size of the + * inline buffer, then switch to using the inline buffer. Otherwise, + * use kmem_realloc() or kmem_alloc() to adjust the size of the buffer + * to what is needed. + * + * ip -- the inode whose if_extents area is changing + * ext_diff -- the change in the number of extents, positive or negative, + * requested for the if_extents array. + */ +void +xfs_iext_realloc( + xfs_inode_t *ip, + int ext_diff, + int whichfork) +{ + int byte_diff; + xfs_ifork_t *ifp; + int new_size; + uint rnew_size; + + if (ext_diff == 0) { + return; + } + + ifp = XFS_IFORK_PTR(ip, whichfork); + byte_diff = ext_diff * (uint)sizeof(xfs_bmbt_rec_t); + new_size = (int)ifp->if_bytes + byte_diff; + ASSERT(new_size >= 0); + + if (new_size == 0) { + if (ifp->if_u1.if_extents != ifp->if_u2.if_inline_ext) { + ASSERT(ifp->if_real_bytes != 0); + kmem_free(ifp->if_u1.if_extents, ifp->if_real_bytes); + } + ifp->if_u1.if_extents = NULL; + rnew_size = 0; + } else if (new_size <= sizeof(ifp->if_u2.if_inline_ext)) { + /* + * If the valid extents can fit in if_inline_ext, + * copy them from the malloc'd vector and free it. + */ + if (ifp->if_u1.if_extents != ifp->if_u2.if_inline_ext) { + /* + * For now, empty files are format EXTENTS, + * so the if_extents pointer is null. + */ + if (ifp->if_u1.if_extents) { + memcpy(ifp->if_u2.if_inline_ext, + ifp->if_u1.if_extents, new_size); + kmem_free(ifp->if_u1.if_extents, + ifp->if_real_bytes); + } + ifp->if_u1.if_extents = ifp->if_u2.if_inline_ext; + } + rnew_size = 0; + } else { + rnew_size = new_size; + if ((rnew_size & (rnew_size - 1)) != 0) + rnew_size = xfs_iroundup(rnew_size); + /* + * Stuck with malloc/realloc. + */ + if (ifp->if_u1.if_extents == ifp->if_u2.if_inline_ext) { + ifp->if_u1.if_extents = (xfs_bmbt_rec_t *) + kmem_alloc(rnew_size, KM_SLEEP); + memcpy(ifp->if_u1.if_extents, ifp->if_u2.if_inline_ext, + sizeof(ifp->if_u2.if_inline_ext)); + } else if (rnew_size != ifp->if_real_bytes) { + ifp->if_u1.if_extents = (xfs_bmbt_rec_t *) + kmem_realloc(ifp->if_u1.if_extents, + rnew_size, + ifp->if_real_bytes, + KM_NOFS); + } + } + ifp->if_real_bytes = rnew_size; + ifp->if_bytes = new_size; +} + + +/* + * This is called when the amount of space needed for if_data + * is increased or decreased. The change in size is indicated by + * the number of bytes that need to be added or deleted in the + * byte_diff parameter. + * + * If the amount of space needed has decreased below the size of the + * inline buffer, then switch to using the inline buffer. Otherwise, + * use kmem_realloc() or kmem_alloc() to adjust the size of the buffer + * to what is needed. + * + * ip -- the inode whose if_data area is changing + * byte_diff -- the change in the number of bytes, positive or negative, + * requested for the if_data array. + */ +void +xfs_idata_realloc( + xfs_inode_t *ip, + int byte_diff, + int whichfork) +{ + xfs_ifork_t *ifp; + int new_size; + int real_size; + + if (byte_diff == 0) { + return; + } + + ifp = XFS_IFORK_PTR(ip, whichfork); + new_size = (int)ifp->if_bytes + byte_diff; + ASSERT(new_size >= 0); + + if (new_size == 0) { + if (ifp->if_u1.if_data != ifp->if_u2.if_inline_data) { + kmem_free(ifp->if_u1.if_data, ifp->if_real_bytes); + } + ifp->if_u1.if_data = NULL; + real_size = 0; + } else if (new_size <= sizeof(ifp->if_u2.if_inline_data)) { + /* + * If the valid extents/data can fit in if_inline_ext/data, + * copy them from the malloc'd vector and free it. + */ + if (ifp->if_u1.if_data == NULL) { + ifp->if_u1.if_data = ifp->if_u2.if_inline_data; + } else if (ifp->if_u1.if_data != ifp->if_u2.if_inline_data) { + ASSERT(ifp->if_real_bytes != 0); + memcpy(ifp->if_u2.if_inline_data, ifp->if_u1.if_data, + new_size); + kmem_free(ifp->if_u1.if_data, ifp->if_real_bytes); + ifp->if_u1.if_data = ifp->if_u2.if_inline_data; + } + real_size = 0; + } else { + /* + * Stuck with malloc/realloc. + * For inline data, the underlying buffer must be + * a multiple of 4 bytes in size so that it can be + * logged and stay on word boundaries. We enforce + * that here. + */ + real_size = roundup(new_size, 4); + if (ifp->if_u1.if_data == NULL) { + ASSERT(ifp->if_real_bytes == 0); + ifp->if_u1.if_data = kmem_alloc(real_size, KM_SLEEP); + } else if (ifp->if_u1.if_data != ifp->if_u2.if_inline_data) { + /* + * Only do the realloc if the underlying size + * is really changing. + */ + if (ifp->if_real_bytes != real_size) { + ifp->if_u1.if_data = + kmem_realloc(ifp->if_u1.if_data, + real_size, + ifp->if_real_bytes, + KM_SLEEP); + } + } else { + ASSERT(ifp->if_real_bytes == 0); + ifp->if_u1.if_data = kmem_alloc(real_size, KM_SLEEP); + memcpy(ifp->if_u1.if_data, ifp->if_u2.if_inline_data, + ifp->if_bytes); + } + } + ifp->if_real_bytes = real_size; + ifp->if_bytes = new_size; + ASSERT(ifp->if_bytes <= XFS_IFORK_SIZE(ip, whichfork)); +} + + + + +/* + * Map inode to disk block and offset. + * + * mp -- the mount point structure for the current file system + * tp -- the current transaction + * ino -- the inode number of the inode to be located + * imap -- this structure is filled in with the information necessary + * to retrieve the given inode from disk + * flags -- flags to pass to xfs_dilocate indicating whether or not + * lookups in the inode btree were OK or not + */ +int +xfs_imap( + xfs_mount_t *mp, + xfs_trans_t *tp, + xfs_ino_t ino, + xfs_imap_t *imap, + uint flags) +{ + xfs_fsblock_t fsbno; + int len; + int off; + int error; + + fsbno = imap->im_blkno ? + XFS_DADDR_TO_FSB(mp, imap->im_blkno) : NULLFSBLOCK; + error = xfs_dilocate(mp, tp, ino, &fsbno, &len, &off, flags); + if (error != 0) { + return error; + } + imap->im_blkno = XFS_FSB_TO_DADDR(mp, fsbno); + imap->im_len = XFS_FSB_TO_BB(mp, len); + imap->im_agblkno = XFS_FSB_TO_AGBNO(mp, fsbno); + imap->im_ioffset = (ushort)off; + imap->im_boffset = (ushort)(off << mp->m_sb.sb_inodelog); + return 0; +} + +void +xfs_idestroy_fork( + xfs_inode_t *ip, + int whichfork) +{ + xfs_ifork_t *ifp; + + ifp = XFS_IFORK_PTR(ip, whichfork); + if (ifp->if_broot != NULL) { + kmem_free(ifp->if_broot, ifp->if_broot_bytes); + ifp->if_broot = NULL; + } + + /* + * If the format is local, then we can't have an extents + * array so just look for an inline data array. If we're + * not local then we may or may not have an extents list, + * so check and free it up if we do. + */ + if (XFS_IFORK_FORMAT(ip, whichfork) == XFS_DINODE_FMT_LOCAL) { + if ((ifp->if_u1.if_data != ifp->if_u2.if_inline_data) && + (ifp->if_u1.if_data != NULL)) { + ASSERT(ifp->if_real_bytes != 0); + kmem_free(ifp->if_u1.if_data, ifp->if_real_bytes); + ifp->if_u1.if_data = NULL; + ifp->if_real_bytes = 0; + } + } else if ((ifp->if_flags & XFS_IFEXTENTS) && + (ifp->if_u1.if_extents != NULL) && + (ifp->if_u1.if_extents != ifp->if_u2.if_inline_ext)) { + ASSERT(ifp->if_real_bytes != 0); + kmem_free(ifp->if_u1.if_extents, ifp->if_real_bytes); + ifp->if_u1.if_extents = NULL; + ifp->if_real_bytes = 0; + } + ASSERT(ifp->if_u1.if_extents == NULL || + ifp->if_u1.if_extents == ifp->if_u2.if_inline_ext); + ASSERT(ifp->if_real_bytes == 0); + if (whichfork == XFS_ATTR_FORK) { + kmem_zone_free(xfs_ifork_zone, ip->i_afp); + ip->i_afp = NULL; + } +} + +/* + * This is called free all the memory associated with an inode. + * It must free the inode itself and any buffers allocated for + * if_extents/if_data and if_broot. It must also free the lock + * associated with the inode. + */ +void +xfs_idestroy( + xfs_inode_t *ip) +{ + + switch (ip->i_d.di_mode & S_IFMT) { + case S_IFREG: + case S_IFDIR: + case S_IFLNK: + xfs_idestroy_fork(ip, XFS_DATA_FORK); + break; + } + if (ip->i_afp) + xfs_idestroy_fork(ip, XFS_ATTR_FORK); + mrfree(&ip->i_lock); + mrfree(&ip->i_iolock); + freesema(&ip->i_flock); +#ifdef XFS_BMAP_TRACE + ktrace_free(ip->i_xtrace); +#endif +#ifdef XFS_BMBT_TRACE + ktrace_free(ip->i_btrace); +#endif +#ifdef XFS_RW_TRACE + ktrace_free(ip->i_rwtrace); +#endif +#ifdef XFS_ILOCK_TRACE + ktrace_free(ip->i_lock_trace); +#endif +#ifdef XFS_DIR2_TRACE + ktrace_free(ip->i_dir_trace); +#endif + if (ip->i_itemp) { + /* XXXdpd should be able to assert this but shutdown + * is leaving the AIL behind. */ + ASSERT(((ip->i_itemp->ili_item.li_flags & XFS_LI_IN_AIL) == 0) || + XFS_FORCED_SHUTDOWN(ip->i_mount)); + xfs_inode_item_destroy(ip); + } + kmem_zone_free(xfs_inode_zone, ip); +} + + +/* + * Increment the pin count of the given buffer. + * This value is protected by ipinlock spinlock in the mount structure. + */ +void +xfs_ipin( + xfs_inode_t *ip) +{ + ASSERT(ismrlocked(&ip->i_lock, MR_UPDATE)); + + atomic_inc(&ip->i_pincount); +} + +/* + * Decrement the pin count of the given inode, and wake up + * anyone in xfs_iwait_unpin() if the count goes to 0. The + * inode must have been previoulsy pinned with a call to xfs_ipin(). + */ +void +xfs_iunpin( + xfs_inode_t *ip) +{ + ASSERT(atomic_read(&ip->i_pincount) > 0); + + if (atomic_dec_and_test(&ip->i_pincount)) { + vnode_t *vp = XFS_ITOV_NULL(ip); + + /* make sync come back and flush this inode */ + if (vp) { + struct inode *inode = LINVFS_GET_IP(vp); + + if (!(inode->i_state & I_NEW)) + mark_inode_dirty_sync(inode); + } + + wake_up(&ip->i_ipin_wait); + } +} + +/* + * This is called to wait for the given inode to be unpinned. + * It will sleep until this happens. The caller must have the + * inode locked in at least shared mode so that the buffer cannot + * be subsequently pinned once someone is waiting for it to be + * unpinned. + */ +void +xfs_iunpin_wait( + xfs_inode_t *ip) +{ + xfs_inode_log_item_t *iip; + xfs_lsn_t lsn; + + ASSERT(ismrlocked(&ip->i_lock, MR_UPDATE | MR_ACCESS)); + + if (atomic_read(&ip->i_pincount) == 0) { + return; + } + + iip = ip->i_itemp; + if (iip && iip->ili_last_lsn) { + lsn = iip->ili_last_lsn; + } else { + lsn = (xfs_lsn_t)0; + } + + /* + * Give the log a push so we don't wait here too long. + */ + xfs_log_force(ip->i_mount, lsn, XFS_LOG_FORCE); + + wait_event(ip->i_ipin_wait, (atomic_read(&ip->i_pincount) == 0)); +} + + +/* + * xfs_iextents_copy() + * + * This is called to copy the REAL extents (as opposed to the delayed + * allocation extents) from the inode into the given buffer. It + * returns the number of bytes copied into the buffer. + * + * If there are no delayed allocation extents, then we can just + * memcpy() the extents into the buffer. Otherwise, we need to + * examine each extent in turn and skip those which are delayed. + */ +int +xfs_iextents_copy( + xfs_inode_t *ip, + xfs_bmbt_rec_t *buffer, + int whichfork) +{ + int copied; + xfs_bmbt_rec_t *dest_ep; + xfs_bmbt_rec_t *ep; +#ifdef XFS_BMAP_TRACE + static char fname[] = "xfs_iextents_copy"; +#endif + int i; + xfs_ifork_t *ifp; + int nrecs; + xfs_fsblock_t start_block; + + ifp = XFS_IFORK_PTR(ip, whichfork); + ASSERT(ismrlocked(&ip->i_lock, MR_UPDATE|MR_ACCESS)); + ASSERT(ifp->if_bytes > 0); + + nrecs = ifp->if_bytes / (uint)sizeof(xfs_bmbt_rec_t); + xfs_bmap_trace_exlist(fname, ip, nrecs, whichfork); + ASSERT(nrecs > 0); + + /* + * There are some delayed allocation extents in the + * inode, so copy the extents one at a time and skip + * the delayed ones. There must be at least one + * non-delayed extent. + */ + ep = ifp->if_u1.if_extents; + dest_ep = buffer; + copied = 0; + for (i = 0; i < nrecs; i++) { + start_block = xfs_bmbt_get_startblock(ep); + if (ISNULLSTARTBLOCK(start_block)) { + /* + * It's a delayed allocation extent, so skip it. + */ + ep++; + continue; + } + + /* Translate to on disk format */ + put_unaligned(INT_GET(ep->l0, ARCH_CONVERT), + (__uint64_t*)&dest_ep->l0); + put_unaligned(INT_GET(ep->l1, ARCH_CONVERT), + (__uint64_t*)&dest_ep->l1); + dest_ep++; + ep++; + copied++; + } + ASSERT(copied != 0); + xfs_validate_extents(buffer, copied, 1, XFS_EXTFMT_INODE(ip)); + + return (copied * (uint)sizeof(xfs_bmbt_rec_t)); +} + +/* + * Each of the following cases stores data into the same region + * of the on-disk inode, so only one of them can be valid at + * any given time. While it is possible to have conflicting formats + * and log flags, e.g. having XFS_ILOG_?DATA set when the fork is + * in EXTENTS format, this can only happen when the fork has + * changed formats after being modified but before being flushed. + * In these cases, the format always takes precedence, because the + * format indicates the current state of the fork. + */ +/*ARGSUSED*/ +STATIC int +xfs_iflush_fork( + xfs_inode_t *ip, + xfs_dinode_t *dip, + xfs_inode_log_item_t *iip, + int whichfork, + xfs_buf_t *bp) +{ + char *cp; + xfs_ifork_t *ifp; + xfs_mount_t *mp; +#ifdef XFS_TRANS_DEBUG + int first; +#endif + static const short brootflag[2] = + { XFS_ILOG_DBROOT, XFS_ILOG_ABROOT }; + static const short dataflag[2] = + { XFS_ILOG_DDATA, XFS_ILOG_ADATA }; + static const short extflag[2] = + { XFS_ILOG_DEXT, XFS_ILOG_AEXT }; + + if (iip == NULL) + return 0; + ifp = XFS_IFORK_PTR(ip, whichfork); + /* + * This can happen if we gave up in iformat in an error path, + * for the attribute fork. + */ + if (ifp == NULL) { + ASSERT(whichfork == XFS_ATTR_FORK); + return 0; + } + cp = XFS_DFORK_PTR(dip, whichfork); + mp = ip->i_mount; + switch (XFS_IFORK_FORMAT(ip, whichfork)) { + case XFS_DINODE_FMT_LOCAL: + if ((iip->ili_format.ilf_fields & dataflag[whichfork]) && + (ifp->if_bytes > 0)) { + ASSERT(ifp->if_u1.if_data != NULL); + ASSERT(ifp->if_bytes <= XFS_IFORK_SIZE(ip, whichfork)); + memcpy(cp, ifp->if_u1.if_data, ifp->if_bytes); + } + if (whichfork == XFS_DATA_FORK) { + if (unlikely(XFS_DIR_SHORTFORM_VALIDATE_ONDISK(mp, dip))) { + XFS_ERROR_REPORT("xfs_iflush_fork", + XFS_ERRLEVEL_LOW, mp); + return XFS_ERROR(EFSCORRUPTED); + } + } + break; + + case XFS_DINODE_FMT_EXTENTS: + ASSERT((ifp->if_flags & XFS_IFEXTENTS) || + !(iip->ili_format.ilf_fields & extflag[whichfork])); + ASSERT((ifp->if_u1.if_extents != NULL) || (ifp->if_bytes == 0)); + ASSERT((ifp->if_u1.if_extents == NULL) || (ifp->if_bytes > 0)); + if ((iip->ili_format.ilf_fields & extflag[whichfork]) && + (ifp->if_bytes > 0)) { + ASSERT(XFS_IFORK_NEXTENTS(ip, whichfork) > 0); + (void)xfs_iextents_copy(ip, (xfs_bmbt_rec_t *)cp, + whichfork); + } + break; + + case XFS_DINODE_FMT_BTREE: + if ((iip->ili_format.ilf_fields & brootflag[whichfork]) && + (ifp->if_broot_bytes > 0)) { + ASSERT(ifp->if_broot != NULL); + ASSERT(ifp->if_broot_bytes <= + (XFS_IFORK_SIZE(ip, whichfork) + + XFS_BROOT_SIZE_ADJ)); + xfs_bmbt_to_bmdr(ifp->if_broot, ifp->if_broot_bytes, + (xfs_bmdr_block_t *)cp, + XFS_DFORK_SIZE(dip, mp, whichfork)); + } + break; + + case XFS_DINODE_FMT_DEV: + if (iip->ili_format.ilf_fields & XFS_ILOG_DEV) { + ASSERT(whichfork == XFS_DATA_FORK); + INT_SET(dip->di_u.di_dev, ARCH_CONVERT, ip->i_df.if_u2.if_rdev); + } + break; + + case XFS_DINODE_FMT_UUID: + if (iip->ili_format.ilf_fields & XFS_ILOG_UUID) { + ASSERT(whichfork == XFS_DATA_FORK); + memcpy(&dip->di_u.di_muuid, &ip->i_df.if_u2.if_uuid, + sizeof(uuid_t)); + } + break; + + default: + ASSERT(0); + break; + } + + return 0; +} + +/* + * xfs_iflush() will write a modified inode's changes out to the + * inode's on disk home. The caller must have the inode lock held + * in at least shared mode and the inode flush semaphore must be + * held as well. The inode lock will still be held upon return from + * the call and the caller is free to unlock it. + * The inode flush lock will be unlocked when the inode reaches the disk. + * The flags indicate how the inode's buffer should be written out. + */ +int +xfs_iflush( + xfs_inode_t *ip, + uint flags) +{ + xfs_inode_log_item_t *iip; + xfs_buf_t *bp; + xfs_dinode_t *dip; + xfs_mount_t *mp; + int error; + /* REFERENCED */ + xfs_chash_t *ch; + xfs_inode_t *iq; + int clcount; /* count of inodes clustered */ + int bufwasdelwri; + enum { INT_DELWRI = (1 << 0), INT_ASYNC = (1 << 1) }; + SPLDECL(s); + + XFS_STATS_INC(xs_iflush_count); + + ASSERT(ismrlocked(&ip->i_lock, MR_UPDATE|MR_ACCESS)); + ASSERT(valusema(&ip->i_flock) <= 0); + ASSERT(ip->i_d.di_format != XFS_DINODE_FMT_BTREE || + ip->i_d.di_nextents > ip->i_df.if_ext_max); + + iip = ip->i_itemp; + mp = ip->i_mount; + + /* + * If the inode isn't dirty, then just release the inode + * flush lock and do nothing. + */ + if ((ip->i_update_core == 0) && + ((iip == NULL) || !(iip->ili_format.ilf_fields & XFS_ILOG_ALL))) { + ASSERT((iip != NULL) ? + !(iip->ili_item.li_flags & XFS_LI_IN_AIL) : 1); + xfs_ifunlock(ip); + return 0; + } + + /* + * We can't flush the inode until it is unpinned, so + * wait for it. We know noone new can pin it, because + * we are holding the inode lock shared and you need + * to hold it exclusively to pin the inode. + */ + xfs_iunpin_wait(ip); + + /* + * This may have been unpinned because the filesystem is shutting + * down forcibly. If that's the case we must not write this inode + * to disk, because the log record didn't make it to disk! + */ + if (XFS_FORCED_SHUTDOWN(mp)) { + ip->i_update_core = 0; + if (iip) + iip->ili_format.ilf_fields = 0; + xfs_ifunlock(ip); + return XFS_ERROR(EIO); + } + + /* + * Get the buffer containing the on-disk inode. + */ + error = xfs_itobp(mp, NULL, ip, &dip, &bp, 0); + if (error != 0) { + xfs_ifunlock(ip); + return error; + } + + /* + * Decide how buffer will be flushed out. This is done before + * the call to xfs_iflush_int because this field is zeroed by it. + */ + if (iip != NULL && iip->ili_format.ilf_fields != 0) { + /* + * Flush out the inode buffer according to the directions + * of the caller. In the cases where the caller has given + * us a choice choose the non-delwri case. This is because + * the inode is in the AIL and we need to get it out soon. + */ + switch (flags) { + case XFS_IFLUSH_SYNC: + case XFS_IFLUSH_DELWRI_ELSE_SYNC: + flags = 0; + break; + case XFS_IFLUSH_ASYNC: + case XFS_IFLUSH_DELWRI_ELSE_ASYNC: + flags = INT_ASYNC; + break; + case XFS_IFLUSH_DELWRI: + flags = INT_DELWRI; + break; + default: + ASSERT(0); + flags = 0; + break; + } + } else { + switch (flags) { + case XFS_IFLUSH_DELWRI_ELSE_SYNC: + case XFS_IFLUSH_DELWRI_ELSE_ASYNC: + case XFS_IFLUSH_DELWRI: + flags = INT_DELWRI; + break; + case XFS_IFLUSH_ASYNC: + flags = INT_ASYNC; + break; + case XFS_IFLUSH_SYNC: + flags = 0; + break; + default: + ASSERT(0); + flags = 0; + break; + } + } + + /* + * First flush out the inode that xfs_iflush was called with. + */ + error = xfs_iflush_int(ip, bp); + if (error) { + goto corrupt_out; + } + + /* + * inode clustering: + * see if other inodes can be gathered into this write + */ + + ip->i_chash->chl_buf = bp; + + ch = XFS_CHASH(mp, ip->i_blkno); + s = mutex_spinlock(&ch->ch_lock); + + clcount = 0; + for (iq = ip->i_cnext; iq != ip; iq = iq->i_cnext) { + /* + * Do an un-protected check to see if the inode is dirty and + * is a candidate for flushing. These checks will be repeated + * later after the appropriate locks are acquired. + */ + iip = iq->i_itemp; + if ((iq->i_update_core == 0) && + ((iip == NULL) || + !(iip->ili_format.ilf_fields & XFS_ILOG_ALL)) && + xfs_ipincount(iq) == 0) { + continue; + } + + /* + * Try to get locks. If any are unavailable, + * then this inode cannot be flushed and is skipped. + */ + + /* get inode locks (just i_lock) */ + if (xfs_ilock_nowait(iq, XFS_ILOCK_SHARED)) { + /* get inode flush lock */ + if (xfs_iflock_nowait(iq)) { + /* check if pinned */ + if (xfs_ipincount(iq) == 0) { + /* arriving here means that + * this inode can be flushed. + * first re-check that it's + * dirty + */ + iip = iq->i_itemp; + if ((iq->i_update_core != 0)|| + ((iip != NULL) && + (iip->ili_format.ilf_fields & XFS_ILOG_ALL))) { + clcount++; + error = xfs_iflush_int(iq, bp); + if (error) { + xfs_iunlock(iq, + XFS_ILOCK_SHARED); + goto cluster_corrupt_out; + } + } else { + xfs_ifunlock(iq); + } + } else { + xfs_ifunlock(iq); + } + } + xfs_iunlock(iq, XFS_ILOCK_SHARED); + } + } + mutex_spinunlock(&ch->ch_lock, s); + + if (clcount) { + XFS_STATS_INC(xs_icluster_flushcnt); + XFS_STATS_ADD(xs_icluster_flushinode, clcount); + } + + /* + * If the buffer is pinned then push on the log so we won't + * get stuck waiting in the write for too long. + */ + if (XFS_BUF_ISPINNED(bp)){ + xfs_log_force(mp, (xfs_lsn_t)0, XFS_LOG_FORCE); + } + + if (flags & INT_DELWRI) { + xfs_bdwrite(mp, bp); + } else if (flags & INT_ASYNC) { + xfs_bawrite(mp, bp); + } else { + error = xfs_bwrite(mp, bp); + } + return error; + +corrupt_out: + xfs_buf_relse(bp); + xfs_force_shutdown(mp, XFS_CORRUPT_INCORE); + xfs_iflush_abort(ip); + /* + * Unlocks the flush lock + */ + return XFS_ERROR(EFSCORRUPTED); + +cluster_corrupt_out: + /* Corruption detected in the clustering loop. Invalidate the + * inode buffer and shut down the filesystem. + */ + mutex_spinunlock(&ch->ch_lock, s); + + /* + * Clean up the buffer. If it was B_DELWRI, just release it -- + * brelse can handle it with no problems. If not, shut down the + * filesystem before releasing the buffer. + */ + if ((bufwasdelwri= XFS_BUF_ISDELAYWRITE(bp))) { + xfs_buf_relse(bp); + } + + xfs_force_shutdown(mp, XFS_CORRUPT_INCORE); + + if(!bufwasdelwri) { + /* + * Just like incore_relse: if we have b_iodone functions, + * mark the buffer as an error and call them. Otherwise + * mark it as stale and brelse. + */ + if (XFS_BUF_IODONE_FUNC(bp)) { + XFS_BUF_CLR_BDSTRAT_FUNC(bp); + XFS_BUF_UNDONE(bp); + XFS_BUF_STALE(bp); + XFS_BUF_SHUT(bp); + XFS_BUF_ERROR(bp,EIO); + xfs_biodone(bp); + } else { + XFS_BUF_STALE(bp); + xfs_buf_relse(bp); + } + } + + xfs_iflush_abort(iq); + /* + * Unlocks the flush lock + */ + return XFS_ERROR(EFSCORRUPTED); +} + + +STATIC int +xfs_iflush_int( + xfs_inode_t *ip, + xfs_buf_t *bp) +{ + xfs_inode_log_item_t *iip; + xfs_dinode_t *dip; + xfs_mount_t *mp; +#ifdef XFS_TRANS_DEBUG + int first; +#endif + SPLDECL(s); + + ASSERT(ismrlocked(&ip->i_lock, MR_UPDATE|MR_ACCESS)); + ASSERT(valusema(&ip->i_flock) <= 0); + ASSERT(ip->i_d.di_format != XFS_DINODE_FMT_BTREE || + ip->i_d.di_nextents > ip->i_df.if_ext_max); + + iip = ip->i_itemp; + mp = ip->i_mount; + + + /* + * If the inode isn't dirty, then just release the inode + * flush lock and do nothing. + */ + if ((ip->i_update_core == 0) && + ((iip == NULL) || !(iip->ili_format.ilf_fields & XFS_ILOG_ALL))) { + xfs_ifunlock(ip); + return 0; + } + + /* set *dip = inode's place in the buffer */ + dip = (xfs_dinode_t *)xfs_buf_offset(bp, ip->i_boffset); + + /* + * Clear i_update_core before copying out the data. + * This is for coordination with our timestamp updates + * that don't hold the inode lock. They will always + * update the timestamps BEFORE setting i_update_core, + * so if we clear i_update_core after they set it we + * are guaranteed to see their updates to the timestamps. + * I believe that this depends on strongly ordered memory + * semantics, but we have that. We use the SYNCHRONIZE + * macro to make sure that the compiler does not reorder + * the i_update_core access below the data copy below. + */ + ip->i_update_core = 0; + SYNCHRONIZE(); + + if (XFS_TEST_ERROR(INT_GET(dip->di_core.di_magic,ARCH_CONVERT) != XFS_DINODE_MAGIC, + mp, XFS_ERRTAG_IFLUSH_1, XFS_RANDOM_IFLUSH_1)) { + xfs_cmn_err(XFS_PTAG_IFLUSH, CE_ALERT, mp, + "xfs_iflush: Bad inode %Lu magic number 0x%x, ptr 0x%p", + ip->i_ino, (int) INT_GET(dip->di_core.di_magic, ARCH_CONVERT), dip); + goto corrupt_out; + } + if (XFS_TEST_ERROR(ip->i_d.di_magic != XFS_DINODE_MAGIC, + mp, XFS_ERRTAG_IFLUSH_2, XFS_RANDOM_IFLUSH_2)) { + xfs_cmn_err(XFS_PTAG_IFLUSH, CE_ALERT, mp, + "xfs_iflush: Bad inode %Lu, ptr 0x%p, magic number 0x%x", + ip->i_ino, ip, ip->i_d.di_magic); + goto corrupt_out; + } + if ((ip->i_d.di_mode & S_IFMT) == S_IFREG) { + if (XFS_TEST_ERROR( + (ip->i_d.di_format != XFS_DINODE_FMT_EXTENTS) && + (ip->i_d.di_format != XFS_DINODE_FMT_BTREE), + mp, XFS_ERRTAG_IFLUSH_3, XFS_RANDOM_IFLUSH_3)) { + xfs_cmn_err(XFS_PTAG_IFLUSH, CE_ALERT, mp, + "xfs_iflush: Bad regular inode %Lu, ptr 0x%p", + ip->i_ino, ip); + goto corrupt_out; + } + } else if ((ip->i_d.di_mode & S_IFMT) == S_IFDIR) { + if (XFS_TEST_ERROR( + (ip->i_d.di_format != XFS_DINODE_FMT_EXTENTS) && + (ip->i_d.di_format != XFS_DINODE_FMT_BTREE) && + (ip->i_d.di_format != XFS_DINODE_FMT_LOCAL), + mp, XFS_ERRTAG_IFLUSH_4, XFS_RANDOM_IFLUSH_4)) { + xfs_cmn_err(XFS_PTAG_IFLUSH, CE_ALERT, mp, + "xfs_iflush: Bad directory inode %Lu, ptr 0x%p", + ip->i_ino, ip); + goto corrupt_out; + } + } + if (XFS_TEST_ERROR(ip->i_d.di_nextents + ip->i_d.di_anextents > + ip->i_d.di_nblocks, mp, XFS_ERRTAG_IFLUSH_5, + XFS_RANDOM_IFLUSH_5)) { + xfs_cmn_err(XFS_PTAG_IFLUSH, CE_ALERT, mp, + "xfs_iflush: detected corrupt incore inode %Lu, total extents = %d, nblocks = %Ld, ptr 0x%p", + ip->i_ino, + ip->i_d.di_nextents + ip->i_d.di_anextents, + ip->i_d.di_nblocks, + ip); + goto corrupt_out; + } + if (XFS_TEST_ERROR(ip->i_d.di_forkoff > mp->m_sb.sb_inodesize, + mp, XFS_ERRTAG_IFLUSH_6, XFS_RANDOM_IFLUSH_6)) { + xfs_cmn_err(XFS_PTAG_IFLUSH, CE_ALERT, mp, + "xfs_iflush: bad inode %Lu, forkoff 0x%x, ptr 0x%p", + ip->i_ino, ip->i_d.di_forkoff, ip); + goto corrupt_out; + } + /* + * bump the flush iteration count, used to detect flushes which + * postdate a log record during recovery. + */ + + ip->i_d.di_flushiter++; + + /* + * Copy the dirty parts of the inode into the on-disk + * inode. We always copy out the core of the inode, + * because if the inode is dirty at all the core must + * be. + */ + xfs_xlate_dinode_core((xfs_caddr_t)&(dip->di_core), &(ip->i_d), -1); + + /* Wrap, we never let the log put out DI_MAX_FLUSH */ + if (ip->i_d.di_flushiter == DI_MAX_FLUSH) + ip->i_d.di_flushiter = 0; + + /* + * If this is really an old format inode and the superblock version + * has not been updated to support only new format inodes, then + * convert back to the old inode format. If the superblock version + * has been updated, then make the conversion permanent. + */ + ASSERT(ip->i_d.di_version == XFS_DINODE_VERSION_1 || + XFS_SB_VERSION_HASNLINK(&mp->m_sb)); + if (ip->i_d.di_version == XFS_DINODE_VERSION_1) { + if (!XFS_SB_VERSION_HASNLINK(&mp->m_sb)) { + /* + * Convert it back. + */ + ASSERT(ip->i_d.di_nlink <= XFS_MAXLINK_1); + INT_SET(dip->di_core.di_onlink, ARCH_CONVERT, ip->i_d.di_nlink); + } else { + /* + * The superblock version has already been bumped, + * so just make the conversion to the new inode + * format permanent. + */ + ip->i_d.di_version = XFS_DINODE_VERSION_2; + INT_SET(dip->di_core.di_version, ARCH_CONVERT, XFS_DINODE_VERSION_2); + ip->i_d.di_onlink = 0; + dip->di_core.di_onlink = 0; + memset(&(ip->i_d.di_pad[0]), 0, sizeof(ip->i_d.di_pad)); + memset(&(dip->di_core.di_pad[0]), 0, + sizeof(dip->di_core.di_pad)); + ASSERT(ip->i_d.di_projid == 0); + } + } + + if (xfs_iflush_fork(ip, dip, iip, XFS_DATA_FORK, bp) == EFSCORRUPTED) { + goto corrupt_out; + } + + if (XFS_IFORK_Q(ip)) { + /* + * The only error from xfs_iflush_fork is on the data fork. + */ + (void) xfs_iflush_fork(ip, dip, iip, XFS_ATTR_FORK, bp); + } + xfs_inobp_check(mp, bp); + + /* + * We've recorded everything logged in the inode, so we'd + * like to clear the ilf_fields bits so we don't log and + * flush things unnecessarily. However, we can't stop + * logging all this information until the data we've copied + * into the disk buffer is written to disk. If we did we might + * overwrite the copy of the inode in the log with all the + * data after re-logging only part of it, and in the face of + * a crash we wouldn't have all the data we need to recover. + * + * What we do is move the bits to the ili_last_fields field. + * When logging the inode, these bits are moved back to the + * ilf_fields field. In the xfs_iflush_done() routine we + * clear ili_last_fields, since we know that the information + * those bits represent is permanently on disk. As long as + * the flush completes before the inode is logged again, then + * both ilf_fields and ili_last_fields will be cleared. + * + * We can play with the ilf_fields bits here, because the inode + * lock must be held exclusively in order to set bits there + * and the flush lock protects the ili_last_fields bits. + * Set ili_logged so the flush done + * routine can tell whether or not to look in the AIL. + * Also, store the current LSN of the inode so that we can tell + * whether the item has moved in the AIL from xfs_iflush_done(). + * In order to read the lsn we need the AIL lock, because + * it is a 64 bit value that cannot be read atomically. + */ + if (iip != NULL && iip->ili_format.ilf_fields != 0) { + iip->ili_last_fields = iip->ili_format.ilf_fields; + iip->ili_format.ilf_fields = 0; + iip->ili_logged = 1; + + ASSERT(sizeof(xfs_lsn_t) == 8); /* don't lock if it shrinks */ + AIL_LOCK(mp,s); + iip->ili_flush_lsn = iip->ili_item.li_lsn; + AIL_UNLOCK(mp, s); + + /* + * Attach the function xfs_iflush_done to the inode's + * buffer. This will remove the inode from the AIL + * and unlock the inode's flush lock when the inode is + * completely written to disk. + */ + xfs_buf_attach_iodone(bp, (void(*)(xfs_buf_t*,xfs_log_item_t*)) + xfs_iflush_done, (xfs_log_item_t *)iip); + + ASSERT(XFS_BUF_FSPRIVATE(bp, void *) != NULL); + ASSERT(XFS_BUF_IODONE_FUNC(bp) != NULL); + } else { + /* + * We're flushing an inode which is not in the AIL and has + * not been logged but has i_update_core set. For this + * case we can use a B_DELWRI flush and immediately drop + * the inode flush lock because we can avoid the whole + * AIL state thing. It's OK to drop the flush lock now, + * because we've already locked the buffer and to do anything + * you really need both. + */ + if (iip != NULL) { + ASSERT(iip->ili_logged == 0); + ASSERT(iip->ili_last_fields == 0); + ASSERT((iip->ili_item.li_flags & XFS_LI_IN_AIL) == 0); + } + xfs_ifunlock(ip); + } + + return 0; + +corrupt_out: + return XFS_ERROR(EFSCORRUPTED); +} + + +/* + * Flush all inactive inodes in mp. Return true if no user references + * were found, false otherwise. + */ +int +xfs_iflush_all( + xfs_mount_t *mp, + int flag) +{ + int busy; + int done; + int purged; + xfs_inode_t *ip; + vmap_t vmap; + vnode_t *vp; + + busy = done = 0; + while (!done) { + purged = 0; + XFS_MOUNT_ILOCK(mp); + ip = mp->m_inodes; + if (ip == NULL) { + break; + } + do { + /* Make sure we skip markers inserted by sync */ + if (ip->i_mount == NULL) { + ip = ip->i_mnext; + continue; + } + + /* + * It's up to our caller to purge the root + * and quota vnodes later. + */ + vp = XFS_ITOV_NULL(ip); + + if (!vp) { + XFS_MOUNT_IUNLOCK(mp); + xfs_finish_reclaim(ip, 0, XFS_IFLUSH_ASYNC); + purged = 1; + break; + } + + if (vn_count(vp) != 0) { + if (vn_count(vp) == 1 && + (ip == mp->m_rootip || + (mp->m_quotainfo && + (ip->i_ino == mp->m_sb.sb_uquotino || + ip->i_ino == mp->m_sb.sb_gquotino)))) { + + ip = ip->i_mnext; + continue; + } + if (!(flag & XFS_FLUSH_ALL)) { + busy = 1; + done = 1; + break; + } + /* + * Ignore busy inodes but continue flushing + * others. + */ + ip = ip->i_mnext; + continue; + } + /* + * Sample vp mapping while holding mp locked on MP + * systems, so we don't purge a reclaimed or + * nonexistent vnode. We break from the loop + * since we know that we modify + * it by pulling ourselves from it in xfs_reclaim() + * called via vn_purge() below. Set ip to the next + * entry in the list anyway so we'll know below + * whether we reached the end or not. + */ + VMAP(vp, vmap); + XFS_MOUNT_IUNLOCK(mp); + + vn_purge(vp, &vmap); + + purged = 1; + break; + } while (ip != mp->m_inodes); + /* + * We need to distinguish between when we exit the loop + * after a purge and when we simply hit the end of the + * list. We can't use the (ip == mp->m_inodes) test, + * because when we purge an inode at the start of the list + * the next inode on the list becomes mp->m_inodes. That + * would cause such a test to bail out early. The purged + * variable tells us how we got out of the loop. + */ + if (!purged) { + done = 1; + } + } + XFS_MOUNT_IUNLOCK(mp); + return !busy; +} + + +/* + * xfs_iaccess: check accessibility of inode for mode. + */ +int +xfs_iaccess( + xfs_inode_t *ip, + mode_t mode, + cred_t *cr) +{ + int error; + mode_t orgmode = mode; + struct inode *inode = LINVFS_GET_IP(XFS_ITOV(ip)); + + if (mode & S_IWUSR) { + umode_t imode = inode->i_mode; + + if (IS_RDONLY(inode) && + (S_ISREG(imode) || S_ISDIR(imode) || S_ISLNK(imode))) + return XFS_ERROR(EROFS); + + if (IS_IMMUTABLE(inode)) + return XFS_ERROR(EACCES); + } + + /* + * If there's an Access Control List it's used instead of + * the mode bits. + */ + if ((error = _ACL_XFS_IACCESS(ip, mode, cr)) != -1) + return error ? XFS_ERROR(error) : 0; + + if (current_fsuid(cr) != ip->i_d.di_uid) { + mode >>= 3; + if (!in_group_p((gid_t)ip->i_d.di_gid)) + mode >>= 3; + } + + /* + * If the DACs are ok we don't need any capability check. + */ + if ((ip->i_d.di_mode & mode) == mode) + return 0; + /* + * Read/write DACs are always overridable. + * Executable DACs are overridable if at least one exec bit is set. + */ + if (!(orgmode & S_IXUSR) || + (inode->i_mode & S_IXUGO) || S_ISDIR(inode->i_mode)) + if (capable_cred(cr, CAP_DAC_OVERRIDE)) + return 0; + + if ((orgmode == S_IRUSR) || + (S_ISDIR(inode->i_mode) && (!(orgmode & S_IWUSR)))) { + if (capable_cred(cr, CAP_DAC_READ_SEARCH)) + return 0; +#ifdef NOISE + cmn_err(CE_NOTE, "Ick: mode=%o, orgmode=%o", mode, orgmode); +#endif /* NOISE */ + return XFS_ERROR(EACCES); + } + return XFS_ERROR(EACCES); +} + +/* + * xfs_iroundup: round up argument to next power of two + */ +uint +xfs_iroundup( + uint v) +{ + int i; + uint m; + + if ((v & (v - 1)) == 0) + return v; + ASSERT((v & 0x80000000) == 0); + if ((v & (v + 1)) == 0) + return v + 1; + for (i = 0, m = 1; i < 31; i++, m <<= 1) { + if (v & m) + continue; + v |= m; + if ((v & (v + 1)) == 0) + return v + 1; + } + ASSERT(0); + return( 0 ); +} + +/* + * Change the requested timestamp in the given inode. + * We don't lock across timestamp updates, and we don't log them but + * we do record the fact that there is dirty information in core. + * + * NOTE -- callers MUST combine XFS_ICHGTIME_MOD or XFS_ICHGTIME_CHG + * with XFS_ICHGTIME_ACC to be sure that access time + * update will take. Calling first with XFS_ICHGTIME_ACC + * and then XFS_ICHGTIME_MOD may fail to modify the access + * timestamp if the filesystem is mounted noacctm. + */ +void +xfs_ichgtime(xfs_inode_t *ip, + int flags) +{ + timespec_t tv; + vnode_t *vp = XFS_ITOV(ip); + struct inode *inode = LINVFS_GET_IP(vp); + + /* + * We're not supposed to change timestamps in readonly-mounted + * filesystems. Throw it away if anyone asks us. + */ + if (unlikely(vp->v_vfsp->vfs_flag & VFS_RDONLY)) + return; + + /* + * Don't update access timestamps on reads if mounted "noatime" + * Throw it away if anyone asks us. + */ + if ((ip->i_mount->m_flags & XFS_MOUNT_NOATIME || IS_NOATIME(inode)) && + ((flags & (XFS_ICHGTIME_ACC|XFS_ICHGTIME_MOD|XFS_ICHGTIME_CHG)) + == XFS_ICHGTIME_ACC)) + return; + + nanotime(&tv); + if (flags & XFS_ICHGTIME_MOD) { + VN_MTIMESET(vp, &tv); + ip->i_d.di_mtime.t_sec = (__int32_t)tv.tv_sec; + ip->i_d.di_mtime.t_nsec = (__int32_t)tv.tv_nsec; + } + if (flags & XFS_ICHGTIME_ACC) { + VN_ATIMESET(vp, &tv); + ip->i_d.di_atime.t_sec = (__int32_t)tv.tv_sec; + ip->i_d.di_atime.t_nsec = (__int32_t)tv.tv_nsec; + } + if (flags & XFS_ICHGTIME_CHG) { + VN_CTIMESET(vp, &tv); + ip->i_d.di_ctime.t_sec = (__int32_t)tv.tv_sec; + ip->i_d.di_ctime.t_nsec = (__int32_t)tv.tv_nsec; + } + + /* + * We update the i_update_core field _after_ changing + * the timestamps in order to coordinate properly with + * xfs_iflush() so that we don't lose timestamp updates. + * This keeps us from having to hold the inode lock + * while doing this. We use the SYNCHRONIZE macro to + * ensure that the compiler does not reorder the update + * of i_update_core above the timestamp updates above. + */ + SYNCHRONIZE(); + ip->i_update_core = 1; + if (!(inode->i_state & I_LOCK)) + mark_inode_dirty_sync(inode); +} + +#ifdef XFS_ILOCK_TRACE +ktrace_t *xfs_ilock_trace_buf; + +void +xfs_ilock_trace(xfs_inode_t *ip, int lock, unsigned int lockflags, inst_t *ra) +{ + ktrace_enter(ip->i_lock_trace, + (void *)ip, + (void *)(unsigned long)lock, /* 1 = LOCK, 3=UNLOCK, etc */ + (void *)(unsigned long)lockflags, /* XFS_ILOCK_EXCL etc */ + (void *)ra, /* caller of ilock */ + (void *)(unsigned long)current_cpu(), + (void *)(unsigned long)current_pid(), + NULL,NULL,NULL,NULL,NULL,NULL,NULL,NULL,NULL,NULL); +} +#endif |