summaryrefslogtreecommitdiff
path: root/rust/kernel/time.rs
diff options
context:
space:
mode:
Diffstat (limited to 'rust/kernel/time.rs')
-rw-r--r--rust/kernel/time.rs384
1 files changed, 310 insertions, 74 deletions
diff --git a/rust/kernel/time.rs b/rust/kernel/time.rs
index a8089a98da9e..6ea98dfcd027 100644
--- a/rust/kernel/time.rs
+++ b/rust/kernel/time.rs
@@ -24,6 +24,10 @@
//! C header: [`include/linux/jiffies.h`](srctree/include/linux/jiffies.h).
//! C header: [`include/linux/ktime.h`](srctree/include/linux/ktime.h).
+use core::marker::PhantomData;
+use core::ops;
+
+pub mod delay;
pub mod hrtimer;
/// The number of nanoseconds per microsecond.
@@ -49,26 +53,141 @@ pub fn msecs_to_jiffies(msecs: Msecs) -> Jiffies {
unsafe { bindings::__msecs_to_jiffies(msecs) }
}
+/// Trait for clock sources.
+///
+/// Selection of the clock source depends on the use case. In some cases the usage of a
+/// particular clock is mandatory, e.g. in network protocols, filesystems. In other
+/// cases the user of the clock has to decide which clock is best suited for the
+/// purpose. In most scenarios clock [`Monotonic`] is the best choice as it
+/// provides a accurate monotonic notion of time (leap second smearing ignored).
+pub trait ClockSource {
+ /// The kernel clock ID associated with this clock source.
+ ///
+ /// This constant corresponds to the C side `clockid_t` value.
+ const ID: bindings::clockid_t;
+
+ /// Get the current time from the clock source.
+ ///
+ /// The function must return a value in the range from 0 to `KTIME_MAX`.
+ fn ktime_get() -> bindings::ktime_t;
+}
+
+/// A monotonically increasing clock.
+///
+/// A nonsettable system-wide clock that represents monotonic time since as
+/// described by POSIX, "some unspecified point in the past". On Linux, that
+/// point corresponds to the number of seconds that the system has been
+/// running since it was booted.
+///
+/// The CLOCK_MONOTONIC clock is not affected by discontinuous jumps in the
+/// CLOCK_REAL (e.g., if the system administrator manually changes the
+/// clock), but is affected by frequency adjustments. This clock does not
+/// count time that the system is suspended.
+pub struct Monotonic;
+
+impl ClockSource for Monotonic {
+ const ID: bindings::clockid_t = bindings::CLOCK_MONOTONIC as bindings::clockid_t;
+
+ fn ktime_get() -> bindings::ktime_t {
+ // SAFETY: It is always safe to call `ktime_get()` outside of NMI context.
+ unsafe { bindings::ktime_get() }
+ }
+}
+
+/// A settable system-wide clock that measures real (i.e., wall-clock) time.
+///
+/// Setting this clock requires appropriate privileges. This clock is
+/// affected by discontinuous jumps in the system time (e.g., if the system
+/// administrator manually changes the clock), and by frequency adjustments
+/// performed by NTP and similar applications via adjtime(3), adjtimex(2),
+/// clock_adjtime(2), and ntp_adjtime(3). This clock normally counts the
+/// number of seconds since 1970-01-01 00:00:00 Coordinated Universal Time
+/// (UTC) except that it ignores leap seconds; near a leap second it may be
+/// adjusted by leap second smearing to stay roughly in sync with UTC. Leap
+/// second smearing applies frequency adjustments to the clock to speed up
+/// or slow down the clock to account for the leap second without
+/// discontinuities in the clock. If leap second smearing is not applied,
+/// the clock will experience discontinuity around leap second adjustment.
+pub struct RealTime;
+
+impl ClockSource for RealTime {
+ const ID: bindings::clockid_t = bindings::CLOCK_REALTIME as bindings::clockid_t;
+
+ fn ktime_get() -> bindings::ktime_t {
+ // SAFETY: It is always safe to call `ktime_get_real()` outside of NMI context.
+ unsafe { bindings::ktime_get_real() }
+ }
+}
+
+/// A monotonic that ticks while system is suspended.
+///
+/// A nonsettable system-wide clock that is identical to CLOCK_MONOTONIC,
+/// except that it also includes any time that the system is suspended. This
+/// allows applications to get a suspend-aware monotonic clock without
+/// having to deal with the complications of CLOCK_REALTIME, which may have
+/// discontinuities if the time is changed using settimeofday(2) or similar.
+pub struct BootTime;
+
+impl ClockSource for BootTime {
+ const ID: bindings::clockid_t = bindings::CLOCK_BOOTTIME as bindings::clockid_t;
+
+ fn ktime_get() -> bindings::ktime_t {
+ // SAFETY: It is always safe to call `ktime_get_boottime()` outside of NMI context.
+ unsafe { bindings::ktime_get_boottime() }
+ }
+}
+
+/// International Atomic Time.
+///
+/// A system-wide clock derived from wall-clock time but counting leap seconds.
+///
+/// This clock is coupled to CLOCK_REALTIME and will be set when CLOCK_REALTIME is
+/// set, or when the offset to CLOCK_REALTIME is changed via adjtimex(2). This
+/// usually happens during boot and **should** not happen during normal operations.
+/// However, if NTP or another application adjusts CLOCK_REALTIME by leap second
+/// smearing, this clock will not be precise during leap second smearing.
+///
+/// The acronym TAI refers to International Atomic Time.
+pub struct Tai;
+
+impl ClockSource for Tai {
+ const ID: bindings::clockid_t = bindings::CLOCK_TAI as bindings::clockid_t;
+
+ fn ktime_get() -> bindings::ktime_t {
+ // SAFETY: It is always safe to call `ktime_get_tai()` outside of NMI context.
+ unsafe { bindings::ktime_get_clocktai() }
+ }
+}
+
/// A specific point in time.
///
/// # Invariants
///
/// The `inner` value is in the range from 0 to `KTIME_MAX`.
#[repr(transparent)]
-#[derive(Copy, Clone, PartialEq, PartialOrd, Eq, Ord)]
-pub struct Instant {
+#[derive(PartialEq, PartialOrd, Eq, Ord)]
+pub struct Instant<C: ClockSource> {
inner: bindings::ktime_t,
+ _c: PhantomData<C>,
+}
+
+impl<C: ClockSource> Clone for Instant<C> {
+ fn clone(&self) -> Self {
+ *self
+ }
}
-impl Instant {
- /// Get the current time using `CLOCK_MONOTONIC`.
+impl<C: ClockSource> Copy for Instant<C> {}
+
+impl<C: ClockSource> Instant<C> {
+ /// Get the current time from the clock source.
#[inline]
pub fn now() -> Self {
- // INVARIANT: The `ktime_get()` function returns a value in the range
+ // INVARIANT: The `ClockSource::ktime_get()` function returns a value in the range
// from 0 to `KTIME_MAX`.
Self {
- // SAFETY: It is always safe to call `ktime_get()` outside of NMI context.
- inner: unsafe { bindings::ktime_get() },
+ inner: C::ktime_get(),
+ _c: PhantomData,
}
}
@@ -77,83 +196,84 @@ impl Instant {
pub fn elapsed(&self) -> Delta {
Self::now() - *self
}
+
+ #[inline]
+ pub(crate) fn as_nanos(&self) -> i64 {
+ self.inner
+ }
+
+ /// Create an [`Instant`] from a `ktime_t` without checking if it is non-negative.
+ ///
+ /// # Panics
+ ///
+ /// On debug builds, this function will panic if `ktime` is not in the range from 0 to
+ /// `KTIME_MAX`.
+ ///
+ /// # Safety
+ ///
+ /// The caller promises that `ktime` is in the range from 0 to `KTIME_MAX`.
+ #[inline]
+ pub(crate) unsafe fn from_ktime(ktime: bindings::ktime_t) -> Self {
+ debug_assert!(ktime >= 0);
+
+ // INVARIANT: Our safety contract ensures that `ktime` is in the range from 0 to
+ // `KTIME_MAX`.
+ Self {
+ inner: ktime,
+ _c: PhantomData,
+ }
+ }
}
-impl core::ops::Sub for Instant {
+impl<C: ClockSource> ops::Sub for Instant<C> {
type Output = Delta;
// By the type invariant, it never overflows.
#[inline]
- fn sub(self, other: Instant) -> Delta {
+ fn sub(self, other: Instant<C>) -> Delta {
Delta {
nanos: self.inner - other.inner,
}
}
}
-/// An identifier for a clock. Used when specifying clock sources.
-///
-///
-/// Selection of the clock depends on the use case. In some cases the usage of a
-/// particular clock is mandatory, e.g. in network protocols, filesystems.In other
-/// cases the user of the clock has to decide which clock is best suited for the
-/// purpose. In most scenarios clock [`ClockId::Monotonic`] is the best choice as it
-/// provides a accurate monotonic notion of time (leap second smearing ignored).
-#[derive(Clone, Copy, PartialEq, Eq, Debug)]
-#[repr(u32)]
-pub enum ClockId {
- /// A settable system-wide clock that measures real (i.e., wall-clock) time.
- ///
- /// Setting this clock requires appropriate privileges. This clock is
- /// affected by discontinuous jumps in the system time (e.g., if the system
- /// administrator manually changes the clock), and by frequency adjustments
- /// performed by NTP and similar applications via adjtime(3), adjtimex(2),
- /// clock_adjtime(2), and ntp_adjtime(3). This clock normally counts the
- /// number of seconds since 1970-01-01 00:00:00 Coordinated Universal Time
- /// (UTC) except that it ignores leap seconds; near a leap second it may be
- /// adjusted by leap second smearing to stay roughly in sync with UTC. Leap
- /// second smearing applies frequency adjustments to the clock to speed up
- /// or slow down the clock to account for the leap second without
- /// discontinuities in the clock. If leap second smearing is not applied,
- /// the clock will experience discontinuity around leap second adjustment.
- RealTime = bindings::CLOCK_REALTIME,
- /// A monotonically increasing clock.
- ///
- /// A nonsettable system-wide clock that represents monotonic time since—as
- /// described by POSIX—"some unspecified point in the past". On Linux, that
- /// point corresponds to the number of seconds that the system has been
- /// running since it was booted.
- ///
- /// The CLOCK_MONOTONIC clock is not affected by discontinuous jumps in the
- /// CLOCK_REAL (e.g., if the system administrator manually changes the
- /// clock), but is affected by frequency adjustments. This clock does not
- /// count time that the system is suspended.
- Monotonic = bindings::CLOCK_MONOTONIC,
- /// A monotonic that ticks while system is suspended.
- ///
- /// A nonsettable system-wide clock that is identical to CLOCK_MONOTONIC,
- /// except that it also includes any time that the system is suspended. This
- /// allows applications to get a suspend-aware monotonic clock without
- /// having to deal with the complications of CLOCK_REALTIME, which may have
- /// discontinuities if the time is changed using settimeofday(2) or similar.
- BootTime = bindings::CLOCK_BOOTTIME,
- /// International Atomic Time.
- ///
- /// A system-wide clock derived from wall-clock time but counting leap seconds.
- ///
- /// This clock is coupled to CLOCK_REALTIME and will be set when CLOCK_REALTIME is
- /// set, or when the offset to CLOCK_REALTIME is changed via adjtimex(2). This
- /// usually happens during boot and **should** not happen during normal operations.
- /// However, if NTP or another application adjusts CLOCK_REALTIME by leap second
- /// smearing, this clock will not be precise during leap second smearing.
- ///
- /// The acronym TAI refers to International Atomic Time.
- TAI = bindings::CLOCK_TAI,
+impl<T: ClockSource> ops::Add<Delta> for Instant<T> {
+ type Output = Self;
+
+ #[inline]
+ fn add(self, rhs: Delta) -> Self::Output {
+ // INVARIANT: With arithmetic over/underflow checks enabled, this will panic if we overflow
+ // (e.g. go above `KTIME_MAX`)
+ let res = self.inner + rhs.nanos;
+
+ // INVARIANT: With overflow checks enabled, we verify here that the value is >= 0
+ #[cfg(CONFIG_RUST_OVERFLOW_CHECKS)]
+ assert!(res >= 0);
+
+ Self {
+ inner: res,
+ _c: PhantomData,
+ }
+ }
}
-impl ClockId {
- fn into_c(self) -> bindings::clockid_t {
- self as bindings::clockid_t
+impl<T: ClockSource> ops::Sub<Delta> for Instant<T> {
+ type Output = Self;
+
+ #[inline]
+ fn sub(self, rhs: Delta) -> Self::Output {
+ // INVARIANT: With arithmetic over/underflow checks enabled, this will panic if we overflow
+ // (e.g. go above `KTIME_MAX`)
+ let res = self.inner - rhs.nanos;
+
+ // INVARIANT: With overflow checks enabled, we verify here that the value is >= 0
+ #[cfg(CONFIG_RUST_OVERFLOW_CHECKS)]
+ assert!(res >= 0);
+
+ Self {
+ inner: res,
+ _c: PhantomData,
+ }
}
}
@@ -167,6 +287,78 @@ pub struct Delta {
nanos: i64,
}
+impl ops::Add for Delta {
+ type Output = Self;
+
+ #[inline]
+ fn add(self, rhs: Self) -> Self {
+ Self {
+ nanos: self.nanos + rhs.nanos,
+ }
+ }
+}
+
+impl ops::AddAssign for Delta {
+ #[inline]
+ fn add_assign(&mut self, rhs: Self) {
+ self.nanos += rhs.nanos;
+ }
+}
+
+impl ops::Sub for Delta {
+ type Output = Self;
+
+ #[inline]
+ fn sub(self, rhs: Self) -> Self::Output {
+ Self {
+ nanos: self.nanos - rhs.nanos,
+ }
+ }
+}
+
+impl ops::SubAssign for Delta {
+ #[inline]
+ fn sub_assign(&mut self, rhs: Self) {
+ self.nanos -= rhs.nanos;
+ }
+}
+
+impl ops::Mul<i64> for Delta {
+ type Output = Self;
+
+ #[inline]
+ fn mul(self, rhs: i64) -> Self::Output {
+ Self {
+ nanos: self.nanos * rhs,
+ }
+ }
+}
+
+impl ops::MulAssign<i64> for Delta {
+ #[inline]
+ fn mul_assign(&mut self, rhs: i64) {
+ self.nanos *= rhs;
+ }
+}
+
+impl ops::Div for Delta {
+ type Output = i64;
+
+ #[inline]
+ fn div(self, rhs: Self) -> Self::Output {
+ #[cfg(CONFIG_64BIT)]
+ {
+ self.nanos / rhs.nanos
+ }
+
+ #[cfg(not(CONFIG_64BIT))]
+ {
+ // SAFETY: This function is always safe to call regardless of the input values
+ unsafe { bindings::div64_s64(self.nanos, rhs.nanos) }
+ }
+ }
+}
+
impl Delta {
/// A span of time equal to zero.
pub const ZERO: Self = Self { nanos: 0 };
@@ -228,13 +420,57 @@ impl Delta {
/// Return the smallest number of microseconds greater than or equal
/// to the value in the [`Delta`].
#[inline]
- pub const fn as_micros_ceil(self) -> i64 {
- self.as_nanos().saturating_add(NSEC_PER_USEC - 1) / NSEC_PER_USEC
+ pub fn as_micros_ceil(self) -> i64 {
+ #[cfg(CONFIG_64BIT)]
+ {
+ self.as_nanos().saturating_add(NSEC_PER_USEC - 1) / NSEC_PER_USEC
+ }
+
+ #[cfg(not(CONFIG_64BIT))]
+ // SAFETY: It is always safe to call `ktime_to_us()` with any value.
+ unsafe {
+ bindings::ktime_to_us(self.as_nanos().saturating_add(NSEC_PER_USEC - 1))
+ }
}
/// Return the number of milliseconds in the [`Delta`].
#[inline]
- pub const fn as_millis(self) -> i64 {
- self.as_nanos() / NSEC_PER_MSEC
+ pub fn as_millis(self) -> i64 {
+ #[cfg(CONFIG_64BIT)]
+ {
+ self.as_nanos() / NSEC_PER_MSEC
+ }
+
+ #[cfg(not(CONFIG_64BIT))]
+ // SAFETY: It is always safe to call `ktime_to_ms()` with any value.
+ unsafe {
+ bindings::ktime_to_ms(self.as_nanos())
+ }
+ }
+
+ /// Return `self % dividend` where `dividend` is in nanoseconds.
+ ///
+ /// The kernel doesn't have any emulation for `s64 % s64` on 32 bit platforms, so this is
+ /// limited to 32 bit dividends.
+ #[inline]
+ pub fn rem_nanos(self, dividend: i32) -> Self {
+ #[cfg(CONFIG_64BIT)]
+ {
+ Self {
+ nanos: self.as_nanos() % i64::from(dividend),
+ }
+ }
+
+ #[cfg(not(CONFIG_64BIT))]
+ {
+ let mut rem = 0;
+
+ // SAFETY: `rem` is in the stack, so we can always provide a valid pointer to it.
+ unsafe { bindings::div_s64_rem(self.as_nanos(), dividend, &mut rem) };
+
+ Self {
+ nanos: i64::from(rem),
+ }
+ }
}
}