Age | Commit message (Collapse) | Author |
|
commit 7d79cee2c6540ea64dd917a14e2fd63d4ac3d3c0 upstream.
It is necessary to explicitly set both SLC_AUX_RGN_START1 and SLC_AUX_RGN_END1
which hold MSB bits of the physical address correspondingly of region start
and end otherwise SLC region operation is executed in unpredictable manner
Without this patch, SLC flushes on HSDK (IOC disabled) were taking
seconds.
Reported-by: Vladimir Kondratiev <vladimir.kondratiev@intel.com>
Signed-off-by: Alexey Brodkin <abrodkin@synopsys.com>
Signed-off-by: Vineet Gupta <vgupta@synopsys.com>
[vgupta: PAR40 regs only written if PAE40 exist]
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
commit ecd43afdbe72017aefe48080631eb625e177ef4d upstream.
This is not exposed to userspace debugers yet, which can be done
independently as a seperate patch !
Signed-off-by: Vineet Gupta <vgupta@synopsys.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
commit 36425cd67052e3becf325fd4d3ba5691791ef7e4 upstream.
commit 3c7c7a2fc8811bc ("ARC: Don't use "+l" inline asm constraint")
modified the inline assembly to setup LP_COUNT register manually and NOT
rely on gcc to do it (with the +l inline assembler contraint hint, now
being retired in the compiler)
However the fix was flawed as we didn't add LP_COUNT to asm clobber list,
meaning gcc doesn't know that LP_COUNT or zero-delay-loops are in action
in the inline asm.
This resulted in some fun - as nested ZOL loops were being generared
| mov lp_count,250000 ;16 # tmp235,
| lp .L__GCC__LP14 # <======= OUTER LOOP (gcc generated)
| .L14:
| ld r2, [r5] # MEM[(volatile u32 *)prephitmp_43], w
| dmb 1
| breq r2, -1, @.L21 #, w,,
| bbit0 r2,1,@.L13 # w,,
| ld r4,[r7] ;25 # loops_per_jiffy, loops_per_jiffy
| mpymu r3,r4,r6 #, loops_per_jiffy, tmp234
|
| mov lp_count, r3 # <====== INNER LOOP (from inline asm)
| lp 1f
| nop
| 1:
| nop_s
| .L__GCC__LP14: ; loop end, start is @.L14 #,
This caused issues with drivers relying on sane behaviour of udelay
friends.
With LP_COUNT added to clobber list, gcc doesn't generate the outer
loop in say above case.
Addresses STAR 9001146134
Reported-by: Joao Pinto <jpinto@synopsys.com>
Fixes: 3c7c7a2fc8811bc ("ARC: Don't use "+l" inline asm constraint")
Signed-off-by: Vineet Gupta <vgupta@synopsys.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
commit 08fe007968b2b45e831daf74899f79a54d73f773 upstream.
An ARC700 customer reported linux boot crashes when upgrading to bigger
L1 dcache (64K from 32K). Turns out they had an aliasing VIPT config and
current code only assumed 2 colours, while theirs had 4. So default to 4
colours and complain if there are fewer. Ideally this needs to be a
Kconfig option, but heck that's too much of hassle for a single user.
Signed-off-by: Vineet Gupta <vgupta@synopsys.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
commit 3c7c7a2fc8811bc7097479f69acf2527693d7562 upstream.
Apparenty this is coming in the way of gcc fix which inhibits the usage
of LP_COUNT as a gpr.
Signed-off-by: Vineet Gupta <vgupta@synopsys.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
commit 05d9d0b96e53c52a113fd783c0c97c830c8dc7af upstream.
Al reported potential issue with ARC get_user() as it wasn't clearing
out destination pointer in case of fault due to bad address etc.
Verified using following
| {
| u32 bogus1 = 0xdeadbeef;
| u64 bogus2 = 0xdead;
| int rc1, rc2;
|
| pr_info("Orig values %x %llx\n", bogus1, bogus2);
| rc1 = get_user(bogus1, (u32 __user *)0x40000000);
| rc2 = get_user(bogus2, (u64 __user *)0x50000000);
| pr_info("access %d %d, new values %x %llx\n",
| rc1, rc2, bogus1, bogus2);
| }
| [ARCLinux]# insmod /mnt/kernel-module/qtn.ko
| Orig values deadbeef dead
| access -14 -14, new values 0 0
Reported-by: Al Viro <viro@ZenIV.linux.org.uk>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: linux-snps-arc@lists.infradead.org
Cc: linux-kernel@vger.kernel.org
Signed-off-by: Vineet Gupta <vgupta@synopsys.com>
Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
commit 1c3c909303924d30145601f47b6c058fdd2cbc2e upstream.
| CC mm/memory.o
| In file included from ../mm/memory.c:53:0:
| ../include/linux/pfn_t.h: In function ‘pfn_t_pte’:
| ../include/linux/pfn_t.h:78:2: error: conversion to non-scalar type requested
| return pfn_pte(pfn_t_to_pfn(pfn), pgprot);
With STRICT_MM_TYPECHECKS pte_t is a struct and the offending code
forces a cast which ends up shifting a struct and hence the gcc warning.
Note that in recent past some of the arches (aarch64, s390) made
STRICT_MM_TYPECHECKS default, but we don't for ARC as this leads to slightly
worse generated code, given ARC ABI definition of returning structs
(which pte_t would become)
Quoting from ARC ABI...
"Results of type struct are returned in a caller-supplied temporary
variable whose address is passed in r0.
For such functions, the arguments are shifted so that they are
passed in r1 and up."
So
- struct to be returned would be allocated on stack requiring extra
code at call sites
- callee updates stack memory to facilitate the return (vs. simple
MOV into return reg r0)
Hence STRICT_MM_TYPECHECKS is not enabled by default for ARC
Signed-off-by: Vineet Gupta <vgupta@synopsys.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
commit 18b43e89d295cc65151c505c643c98fb2c320e59 upstream.
trace_hardirqs_on_caller() in lockdep.c expects to be called before, not
after interrupts are actually enabled.
The following comment in kernel/locking/lockdep.c substantiates this
claim:
"
/*
* We're enabling irqs and according to our state above irqs weren't
* already enabled, yet we find the hardware thinks they are in fact
* enabled.. someone messed up their IRQ state tracing.
*/
"
An example can be found in include/linux/irqflags.h:
do { trace_hardirqs_on(); raw_local_irq_enable(); } while (0)
Without this change, we hit the following DEBUG_LOCKS_WARN_ON.
[ 7.760000] ------------[ cut here ]------------
[ 7.760000] WARNING: CPU: 0 PID: 1 at kernel/locking/lockdep.c:2711 resume_user_mode_begin+0x48/0xf0
[ 7.770000] DEBUG_LOCKS_WARN_ON(!irqs_disabled())
[ 7.780000] Modules linked in:
[ 7.780000] CPU: 0 PID: 1 Comm: init Not tainted 4.7.0-00003-gc668bb9-dirty #366
[ 7.790000]
[ 7.790000] Stack Trace:
[ 7.790000] arc_unwind_core.constprop.1+0xa4/0x118
[ 7.800000] warn_slowpath_fmt+0x72/0x158
[ 7.800000] resume_user_mode_begin+0x48/0xf0
[ 7.810000] ---[ end trace 6f6a7a8fae20d2f0 ]---
Signed-off-by: Daniel Mentz <danielmentz@google.com>
Signed-off-by: Vineet Gupta <vgupta@synopsys.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
commit 86147e3cfa5e118b61e78f4f0bf29e920dcbd477 upstream.
User mode callee regs are explicitly collected before signal delivery or
breakpoint trap. r25 is special for kernel as it serves as task pointer,
so user mode value is clobbered very early. It is saved in pt_regs where
generally only scratch (aka caller saved) regs are saved.
The code to access the corresponding pt_regs location had a subtle bug as
it was using load/store with scaling of offset, whereas the offset was already
byte wise correct. So fix this by replacing LD.AS with a standard LD
Signed-off-by: Liav Rehana <liavr@mellanox.com>
Reviewed-by: Alexey Brodkin <abrodkin@synopsys.com>
[vgupta: rewrote title and commit log]
Signed-off-by: Vineet Gupta <vgupta@synopsys.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
commit 20d780374c81cf237834af2202c26df2100ddd69 upstream.
ARC architecture has 2 instruction sets: ARCompact/ARCv2.
While same gcc supports compiling for either (using appropriate toggles),
we can't use the same toolchain to build kernel because libgcc needs
to be unique and the toolchian (uClibc based) is not multilibed.
uClibc toolchain is convenient since it allows all userspace and
kernel to be built with a single install for an ISA.
This however means 2 gnu installs (with same triplet prefix) are needed
for building for 2 ISA and need to be in PATH.
As developers we keep switching the builds, but would occassionally fail
to update the PATH leading to usage of wrong tools. And this would only
show up at the end of kernel build when linking incompatible libgcc.
So the initial solution was to have gcc define a special preprocessor macro
DEFAULT_CPU_xxx which is unique for default toolchain configuration.
Claudiu proposed using grep for an existing preprocessor macro which is
again uniquely defined per ISA.
Cc: Michal Marek <mmarek@suse.cz>
Suggested-by: Claudiu Zissulescu <claziss@synopsys.com>
Signed-off-by: Vineet Gupta <vgupta@synopsys.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
commit 3925a16ae980c79d1a8fd182d7f9487da1edd4dc upstream.
LTP madvise05 was generating mm splat
| [ARCLinux]# /sd/ltp/testcases/bin/madvise05
| BUG: Bad page map in process madvise05 pte:80e08211 pmd:9f7d4000
| page:9fdcfc90 count:1 mapcount:-1 mapping: (null) index:0x0 flags: 0x404(referenced|reserved)
| page dumped because: bad pte
| addr:200b8000 vm_flags:00000070 anon_vma: (null) mapping: (null) index:1005c
| file: (null) fault: (null) mmap: (null) readpage: (null)
| CPU: 2 PID: 6707 Comm: madvise05
And for newer kernels, the system was rendered unusable afterwards.
The problem was mprotect->pte_modify() clearing PTE_SPECIAL (which is
set to identify the special zero page wired to the pte).
When pte was finally unmapped, special casing for zero page was not
done, and instead it was treated as a "normal" page, tripping on the
map counts etc.
This fixes ARC STAR 9001053308
Signed-off-by: Vineet Gupta <vgupta@synopsys.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
commit e5bc0478ab6cf565619224536d75ecb2aedca43b upstream.
While reviewing a different change to asm-generic/io.h Arnd spotted that
ARC ioread32 and ioread32be both of which come from asm-generic versions
are not symmetrical in terms of calling the io barriers.
generic ioread32 -> ARC readl() [ has barriers]
generic ioread32be -> __be32_to_cpu(__raw_readl()) [ lacks barriers]
While generic ioread32be is being remediated to call readl(), that involves
a swab32(), causing double swaps on ioread32be() on Big Endian systems.
So provide our versions of big endian IO accessors to ensure io barrier
calls while also keeping them optimal
Suggested-by: Arnd Bergmann <arnd@arndb.de>
Acked-by: Arnd Bergmann <arnd@arndb.de>
Signed-off-by: Vineet Gupta <vgupta@synopsys.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
commit 2a41b6dc28dc71c1a3f1622612a26edc58f7561e upstream.
commit 80f420842ff42 removed the ARC bitops microoptimization but failed
to prune the comments to same effect
Fixes: 80f420842ff42 ("ARC: Make ARC bitops "safer" (add anti-optimization)")
Signed-off-by: Vineet Gupta <vgupta@synopsys.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
commit f778cc65717687a3d3f26dd21bef62cd059f1b8b upstream.
read{l,w}() write{l,w}() primitives should use le{16,32}_to_cpu() and
cpu_to_le{16,32}() respectively to ensure device registers are read
correctly in Big Endian CPU configuration.
Per Arnd Bergmann
| Most drivers using readl() or readl_relaxed() expect those to perform byte
| swaps on big-endian architectures, as the registers tend to be fixed endian
This was needed for getting UART to work correctly on a Big Endian ARC.
The ARC accessors originally were fine, and the bug got introduced
inadventently by commit b8a033023994 ("ARCv2: barriers")
Fixes: b8a033023994 ("ARCv2: barriers")
Link: http://lkml.kernel.org/r/201603100845.30602.arnd@arndb.de
Cc: Alexey Brodkin <abrodkin@synopsys.com>
Cc: Arnd Bergmann <arnd@arndb.de>
Signed-off-by: Lada Trimasova <ltrimas@synopsys.com>
[vgupta: beefed up changelog, added Fixes/stable tags]
Signed-off-by: Vineet Gupta <vgupta@synopsys.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
commit bb143f814ea488769ca2e79e0b376139cb5f134b upstream.
ARConnect/MCIP Inter-Core-Interrupt module can't send interrupt to
local core. So use core intc capability to trigger software
interrupt to self, using an unsued IRQ #21.
This showed up as csd deadlock with LTP trace_sched on a dual core
system. This test acts as scheduler fuzzer, triggering all sorts of
schedulting activity. Trouble starts with IPI to self, which doesn't get
delivered (effectively lost due to H/w capability), but the msg intended
to be sent remain enqueued in per-cpu @ipi_data.
All subsequent IPIs to this core from other cores get elided due to the
IPI coalescing optimization in ipi_send_msg_one() where a pending msg
implies an IPI already sent and assumes other core is yet to ack it.
After the elided IPI, other core simply goes into csd_lock_wait()
but never comes out as this core never sees the interrupt.
Fixes STAR 9001008624
Cc: Peter Zijlstra <peterz@infradead.org>
Signed-off-by: Vineet Gupta <vgupta@synopsys.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
ARC700 cores with MMU v2 don't have IC_PTAG AUX register and so we only
define ARC_REG_IC_PTAG for MMU versions >= 3.
But current implementation of cache_line_loop_vX() routines assumes
availability of all of them (v2, v3 and v4) simultaneously.
And given undefined ARC_REG_IC_PTAG if CONFIG_MMU_VER=2 we're seeing
compilation problem:
---------------------------------->8-------------------------------
CC arch/arc/mm/cache.o
arch/arc/mm/cache.c: In function '__cache_line_loop_v3':
arch/arc/mm/cache.c:270:13: error: 'ARC_REG_IC_PTAG' undeclared (first use in this function)
aux_tag = ARC_REG_IC_PTAG;
^
arch/arc/mm/cache.c:270:13: note: each undeclared identifier is reported only once for each function it appears in
scripts/Makefile.build:258: recipe for target 'arch/arc/mm/cache.o' failed
---------------------------------->8-------------------------------
The simples fix is to have ARC_REG_IC_PTAG defined regardless MMU
version being used.
We don't use it in cache_line_loop_v2() anyways so who cares.
Signed-off-by: Alexey Brodkin <abrodkin@synopsys.com>
Signed-off-by: Vineet Gupta <vgupta@synopsys.com>
|
|
Makes it similar to smp_ops which also has callback with same name
Signed-off-by: Vineet Gupta <vgupta@synopsys.com>
|
|
This will better reflect its description i.e. "any needed setup..."
and not just do an "IPI request".
Signed-off-by: Noam Camus <noamc@ezchip.com>
Acked-by: Vineet Gupta <vgupta@synopsys.com>
Signed-off-by: Vineet Gupta <vgupta@synopsys.com>
|
|
The fix which removed linear searching of dwarf (because binary lookup
data always exists) missed out on the fact that modules don't get the
binary lookup tables info. This caused unwinding out of modules to stop
working.
So add binary lookup header setup (equivalent of eh_frame_hdr setup) to
modules as well.
While at it, confine the header setup to within unwinder code,
reducing one API exposed out of unwinder code.
Fixes: 2e22502c080f ARC: dw2 unwind: Remove falllback linear search thru FDE entries
Cc: <stable@vger.kernel.org>
Signed-off-by: Vineet Gupta <vgupta@synopsys.com>
|
|
Although kernel doesn't support the multiple IRQ priority levels provided
by HS38x core intc yet, ensure that the default prio value is used
anyways by relevant code.
SLEEP insn needs to be provided the IRQ priority level which can
interrupt it. This needs to be the default level which maynot
necessarily be 0 as assumed by current code.
This change allows a kernel with ARCV2_IRQ_DEF_PRIO = 1 to boot fine.
Signed-off-by: Vineet Gupta <vgupta@synopsys.com>
|
|
No semantical changes, prepares for ARCv2 specific change in next commit
Signed-off-by: Vineet Gupta <vgupta@synopsys.com>
|
|
git://git.kernel.org/pub/scm/linux/kernel/git/vgupta/arc
Pull ARC fixes from Vineet Gupta:
"Found a couple of brown paper bag bugs with the prev pull request
(including a SMP build breakage report from Guenter). Since these are
urgent I also decided to send over a bunch of other pending fixes
which could have otherwise waited an rc or two.
Summary:
- A bunch of brown paper bag bugs (MAINTAINERS list email, SMP build
failure)
- cpu_relax() now compiler barrier for UP as well
- handling of userspace Bus Errors for ARCompact builds"
* tag 'arc-4.4-rc1-part2' of git://git.kernel.org/pub/scm/linux/kernel/git/vgupta/arc:
ARC: Fix silly typo in MAINTAINERS file
ARC: cpu_relax() to be compiler barrier even for UP
ARC: use ASL assembler mnemonic
ARC: [arcompact] Handle bus error from userspace as Interrupt not exception
ARC: remove extraneous header include
ARCv2: lib: memcpy: use local symbols
|
|
cpu_relax() on ARC has been barrier only for SMP (and no-op for UP). Per
recent discussions, it is safer to make it a compiler barrier
unconditionally.
Link: http://lkml.kernel.org/r/53A7D3AA.9020100@synopsys.com
Acked-by: Peter Zijlstra <peterz@infradead.org>
Signed-off-by: Vineet Gupta <vgupta@synopsys.com>
|
|
git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip
Pull locking changes from Ingo Molnar:
"The main changes in this cycle were:
- More gradual enhancements to atomic ops: new atomic*_read_ctrl()
ops, synchronize atomic_{read,set}() ordering requirements between
architectures, add atomic_long_t bitops. (Peter Zijlstra)
- Add _{relaxed|acquire|release}() variants for inc/dec atomics and
use them in various locking primitives: mutex, rtmutex, mcs, rwsem.
This enables weakly ordered architectures (such as arm64) to make
use of more locking related optimizations. (Davidlohr Bueso)
- Implement atomic[64]_{inc,dec}_relaxed() on ARM. (Will Deacon)
- Futex kernel data cache footprint micro-optimization. (Rasmus
Villemoes)
- pvqspinlock runtime overhead micro-optimization. (Waiman Long)
- misc smaller fixlets"
* 'locking-core-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip:
ARM, locking/atomics: Implement _relaxed variants of atomic[64]_{inc,dec}
locking/rwsem: Use acquire/release semantics
locking/mcs: Use acquire/release semantics
locking/rtmutex: Use acquire/release semantics
locking/mutex: Use acquire/release semantics
locking/asm-generic: Add _{relaxed|acquire|release}() variants for inc/dec atomics
atomic: Implement atomic_read_ctrl()
atomic, arch: Audit atomic_{read,set}()
atomic: Add atomic_long_t bitops
futex: Force hot variables into a single cache line
locking/pvqspinlock: Kick the PV CPU unconditionally when _Q_SLOW_VAL
locking/osq: Relax atomic semantics
locking/qrwlock: Rename ->lock to ->wait_lock
locking/Documentation/lockstat: Fix typo - lokcing -> locking
locking/atomics, cmpxchg: Privatize the inclusion of asm/cmpxchg.h
|
|
This is the first working implementation of 40-bit physical address
extension on ARCv2.
Signed-off-by: Alexey Brodkin <abrodkin@synopsys.com>
Signed-off-by: Vineet Gupta <vgupta@synopsys.com>
|
|
That way a single flip of phys_addr_t to 64 bit ensures all places
dealing with physical addresses get correct data
Signed-off-by: Vineet Gupta <vgupta@synopsys.com>
|
|
Implement kmap* API for ARC.
This enables
- permanent kernel maps (pkmaps): :kmap() API
- fixmap : kmap_atomic()
We use a very simple/uniform approach for both (unlike some of the other
arches). So fixmap doesn't use the customary compile time address stuff.
The important semantic is sleep'ability (pkmap) vs. not (fixmap) which
the API guarantees.
Note that this patch only enables highmem for subsequent PAE40 support
as there is no real highmem for ARC in pure 32-bit paradigm as explained
below.
ARC has 2:2 address split of the 32-bit address space with lower half
being translated (virtual) while upper half unstranslated
(0x8000_0000 to 0xFFFF_FFFF). kernel itself is linked at base of
unstranslated space (i.e. 0x8000_0000 onwards), which is mapped to say
DDR 0x0 by external Bus Glue logic (outside the core). So kernel can
potentially access 1.75G worth of memory directly w/o need for highmem.
(the top 256M is taken by uncached peripheral space from 0xF000_0000 to
0xFFFF_FFFF)
In PAE40, hardware can address memory beyond 4G (0x1_0000_0000) while
the logical/virtual addresses remain 32-bits. Thus highmem is required
for kernel proper to be able to access these pages for it's own purposes
(user space is agnostic to this anyways).
Signed-off-by: Alexey Brodkin <abrodkin@synopsys.com>
Signed-off-by: Vineet Gupta <vgupta@synopsys.com>
|
|
Before we plug in highmem support, some of code needs to be ready for it
- copy_user_highpage() needs to be using the kmap_atomic API
- mk_pte() can't assume page_address()
- do_page_fault() can't assume VMALLOC_END is end of kernel vaddr space
Signed-off-by: Alexey Brodkin <abrodkin@synopsys.com>
Signed-off-by: Vineet Gupta <vgupta@synopsys.com>
|
|
Signed-off-by: Alexey Brodkin <abrodkin@synopsys.com>
Signed-off-by: Vineet Gupta <vgupta@synopsys.com>
|
|
MCIP now registers it's own per cpu setup routine (for IPI IRQ request)
using smp_ops.init_irq_cpu().
So no need for platforms to do that. This now completely decouples
platforms from MCIP.
Signed-off-by: Vineet Gupta <vgupta@synopsys.com>
|
|
Note this is not part of platform owned static machine_desc,
but more of device owned plat_smp_ops (rather misnamed) which a IPI
provider or some such typically defines.
This will help us seperate out the IPI registration from platform
specific init_cpu_smp() into device specific init_irq_cpu()
Signed-off-by: Vineet Gupta <vgupta@synopsys.com>
|
|
This conveys better that it is called for each cpu
Signed-off-by: Vineet Gupta <vgupta@synopsys.com>
|
|
MCIP now registers it's own probe callback with smp_ops.init_early_smp()
which is called by ARC common code, so no need for platforms to do that.
This decouples the platforms and MCIP and helps confine MCIP details
to it's own file.
Signed-off-by: Vineet Gupta <vgupta@synopsys.com>
|
|
This adds a platform agnostic early SMP init hook which is called on
Master core before calling setup_processor()
setup_arch()
smp_init_cpus()
smp_ops.init_early_smp()
...
setup_processor()
How this helps:
- Used for one time init of certain SMP centric IP blocks, before
calling setup_processor() which probes various bits of core,
possibly including this block
- Currently platforms need to call this IP block init from their
init routines, which doesn't make sense as this is specific to ARC
core and not platform and otherwise requires copy/paste in all
(and hence a possible point of failure)
e.g. MCIP init is called from 2 platforms currently (axs10x and sim)
which will go away once we have this.
This change only adds the hooks but they are empty for now. Next commit
will populate them and remove the explicit init calls from platforms.
Signed-off-by: Vineet Gupta <vgupta@synopsys.com>
|
|
These are not in use for ARC platforms. Moreover DT mechanims exist to
probe them w/o explicit platform calls.
- clocksource drivers can use CLOCKSOURCE_OF_DECLARE()
- intc IRQCHIP_DECLARE() calls + cascading inside DT allows external
intc to be probed automatically
Signed-off-by: Vineet Gupta <vgupta@synopsys.com>
|
|
The reason this was not done so far was lack of genuine IPI_IRQ for
ARC700, as we don't have a SMP version of core yet (which might change
soon thx to EZChip). Nevertheles to increase the build coverage, we
need to allow CONFIG_SMP for ARC700 and still be able to run it on a
UP platform (nsim or AXS101) with a UP Device Tree (SMP-on-UP)
The build itself requires some define for IPI_IRQ and even a dummy
value is fine since that code won't run anyways.
Signed-off-by: Vineet Gupta <vgupta@synopsys.com>
|
|
Signed-off-by: Vineet Gupta <vgupta@synopsys.com>
|
|
Signed-off-by: Vineet Gupta <vgupta@synopsys.com>
|
|
This frees up some bits to hold more high level info such as PAE being
present, w/o increasing the size of already bloated cpuinfo struct
Signed-off-by: Vineet Gupta <vgupta@synopsys.com>
|
|
It was generating warnings when called as write_aux_reg(x, paddr >> 32)
Signed-off-by: Vineet Gupta <vgupta@synopsys.com>
|
|
The requirement is to
- Reenable Exceptions (AE cleared)
- Reenable Interrupts (E1/E2 set)
We need to do wiggle these bits into ERSTATUS and call RTIE.
Prev version used the pre-exception STATUS32 as starting point for what
goes into ERSTATUS. This required explicit fixups of U/DE/L bits.
Instead, use the current (in-exception) STATUS32 as starting point.
Being in exception handler U/DE/L can be safely assumed to be correct.
Only AE/E1/E2 need to be fixed.
So the new implementation is slightly better
-Avoids read form memory
-Is 4 bytes smaller for the typical 1 level of intr configuration
-Depicts the semantics more clearly
Signed-off-by: Vineet Gupta <vgupta@synopsys.com>
|
|
Historically this was done by ARC IDE driver, which is long gone.
IRQ core is pretty robust now and already checks if IRQs are enabled
in hard ISRs. Thus no point in checking this in arch code, for every
call of irq enabled.
Further if some driver does do that - let it bring down the system so we
notice/fix this sooner than covering up for sucker
This makes local_irq_enable() - for L1 only case atleast simple enough
so we can inline it.
Signed-off-by: Vineet Gupta <vgupta@synopsys.com>
|
|
Signed-off-by: Vineet Gupta <vgupta@synopsys.com>
|
|
Implement the TLB flush routine to evict a sepcific Super TLB entry,
vs. moving to a new ASID on every such flush.
Signed-off-by: Vineet Gupta <vgupta@synopsys.com>
|
|
MMUv4 in HS38x cores supports Super Pages which are basis for Linux THP
support.
Normal and Super pages can co-exist (ofcourse not overlap) in TLB with a
new bit "SZ" in TLB page desciptor to distinguish between them.
Super Page size is configurable in hardware (4K to 16M), but fixed once
RTL builds.
The exact THP size a Linx configuration will support is a function of:
- MMU page size (typical 8K, RTL fixed)
- software page walker address split between PGD:PTE:PFN (typical
11:8:13, but can be changed with 1 line)
So for above default, THP size supported is 8K * 256 = 2M
Default Page Walker is 2 levels, PGD:PTE:PFN, which in THP regime
reduces to 1 level (as PTE is folded into PGD and canonically referred
to as PMD).
Thus thp PMD accessors are implemented in terms of PTE (just like sparc)
Signed-off-by: Vineet Gupta <vgupta@synopsys.com>
|
|
Needed for THP, but will also come in handy for fast GUP later
Signed-off-by: Vineet Gupta <vgupta@synopsys.com>
|
|
No semantical changes
Signed-off-by: Vineet Gupta <vgupta@synopsys.com>
|
|
ARC is the only arch with unsigned long type (vs. struct page *).
Historically this was done to avoid the page_address() calls in various
arch hooks which need to get the virtual/logical address of the table.
Some arches alternately define it as pte_t *, and is as efficient as
unsigned long (generated code doesn't change)
Suggested-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Signed-off-by: Vineet Gupta <vgupta@synopsys.com>
|
|
changes
Signed-off-by: Ingo Molnar <mingo@kernel.org>
|
|
git://git.kernel.org/pub/scm/linux/kernel/git/cmetcalf/linux-tile
Pull strscpy string copy function implementation from Chris Metcalf.
Chris sent this during the merge window, but I waffled back and forth on
the pull request, which is why it's going in only now.
The new "strscpy()" function is definitely easier to use and more secure
than either strncpy() or strlcpy(), both of which are horrible nasty
interfaces that have serious and irredeemable problems.
strncpy() has a useless return value, and doesn't NUL-terminate an
overlong result. To make matters worse, it pads a short result with
zeroes, which is a performance disaster if you have big buffers.
strlcpy(), by contrast, is a mis-designed "fix" for strlcpy(), lacking
the insane NUL padding, but having a differently broken return value
which returns the original length of the source string. Which means
that it will read characters past the count from the source buffer, and
you have to trust the source to be properly terminated. It also makes
error handling fragile, since the test for overflow is unnecessarily
subtle.
strscpy() avoids both these problems, guaranteeing the NUL termination
(but not excessive padding) if the destination size wasn't zero, and
making the overflow condition very obvious by returning -E2BIG. It also
doesn't read past the size of the source, and can thus be used for
untrusted source data too.
So why did I waffle about this for so long?
Every time we introduce a new-and-improved interface, people start doing
these interminable series of trivial conversion patches.
And every time that happens, somebody does some silly mistake, and the
conversion patch to the improved interface actually makes things worse.
Because the patch is mindnumbing and trivial, nobody has the attention
span to look at it carefully, and it's usually done over large swatches
of source code which means that not every conversion gets tested.
So I'm pulling the strscpy() support because it *is* a better interface.
But I will refuse to pull mindless conversion patches. Use this in
places where it makes sense, but don't do trivial patches to fix things
that aren't actually known to be broken.
* 'strscpy' of git://git.kernel.org/pub/scm/linux/kernel/git/cmetcalf/linux-tile:
tile: use global strscpy() rather than private copy
string: provide strscpy()
Make asm/word-at-a-time.h available on all architectures
|