Age | Commit message (Collapse) | Author |
|
commit ded9477984690d026e46dd75e8157392cea3f13f upstream.
For LPAE, we have the following means for encoding writable or dirty
ptes:
L_PTE_DIRTY L_PTE_RDONLY
!pte_dirty && !pte_write 0 1
!pte_dirty && pte_write 0 1
pte_dirty && !pte_write 1 1
pte_dirty && pte_write 1 0
So we can't distinguish between writeable clean ptes and read only
ptes. This can cause problems with ptes being incorrectly flagged as
read only when they are writeable but not dirty.
This patch renumbers L_PTE_RDONLY from AP[2] to a software bit #58,
and adds additional logic to set AP[2] whenever the pte is read only
or not dirty. That way we can distinguish between clean writeable ptes
and read only ptes.
HugeTLB pages will use this new logic automatically.
We need to add some logic to Transparent HugePages to ensure that they
correctly interpret the revised pgprot permissions (L_PTE_RDONLY has
moved and no longer matches PMD_SECT_AP2). In the process of revising
THP, the names of the PMD software bits have been prefixed with L_ to
make them easier to distinguish from their hardware bit counterparts.
Signed-off-by: Steve Capper <steve.capper@linaro.org>
Reviewed-by: Will Deacon <will.deacon@arm.com>
Signed-off-by: Russell King <rmk+kernel@arm.linux.org.uk>
[hpy: Backported to 3.14
- adjust the context ]
Signed-off-by: Hou Pengyang <houpengyang@huawei.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
commit 8e64806672466392acf19e14427d1c29df3e58b9 upstream.
Commit e1a5848e3398 ("ARM: 7924/1: mm: don't bother with reserved ttbr0
when running with LPAE") removed the use of the reserved TTBR0 value
for LPAE systems, since the ASID is held in the TTBR and can be updated
atomicly with the pgd of the next mm.
Unfortunately, this patch forgot to update flush_context, which
deliberately avoids marking the local active ASID as allocated, since we
used to switch via ASID zero and didn't need to allocate the ASID of
the previous mm. The side-effect of this is that we can allocate the
same ASID to the next mm and, between flushing the local TLB and updating
TTBR0, we can perform speculative TLB fills for userspace nG mappings
using the page table of the previous mm.
The consequence of this is that the next mm can erroneously hit some
mappings of the previous mm. Note that this was made significantly
harder to hit by a391263cd84e ("ARM: 8203/1: mm: try to re-use old ASID
assignments following a rollover") but is still theoretically possible.
This patch fixes the problem by removing the code from flush_context
that forces the allocated ASID to zero for the local CPU. Many thanks
to the Broadcom guys for tracking this one down.
Fixes: e1a5848e3398 ("ARM: 7924/1: mm: don't bother with reserved ttbr0 when running with LPAE")
Reported-by: Raymond Ngun <rngun@broadcom.com>
Tested-by: Raymond Ngun <rngun@broadcom.com>
Reviewed-by: Gregory Fong <gregory.0xf0@gmail.com>
Signed-off-by: Will Deacon <will.deacon@arm.com>
Signed-off-by: Russell King <rmk+kernel@arm.linux.org.uk>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
commit 6b076991dca9817e75c37e2f0db6d52611ea42fa upstream.
When setting up the CMA region, we must ensure that the old section
mappings are flushed from the TLB before replacing them with page
tables, otherwise we can suffer from mismatched aliases if the CPU
speculatively prefetches from these mappings at an inopportune time.
A mismatched alias can occur when the TLB contains a section mapping,
but a subsequent prefetch causes it to load a page table mapping,
resulting in the possibility of the TLB containing two matching
mappings for the same virtual address region.
Acked-by: Will Deacon <will.deacon@arm.com>
Signed-off-by: Russell King <rmk+kernel@arm.linux.org.uk>
Cc: Hou Pengyang <houpengyang@huawei.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
commit 995ab5189d1d7264e79e665dfa032a19b3ac646e upstream.
Under extremely rare conditions, in an MPCore node consisting of at
least 3 CPUs, two CPUs trying to perform a STREX to data on the same
shared cache line can enter a livelock situation.
This patch enables the HW mechanism that overcomes the bug. This fixes
the incorrect setup of the STREX backoff delay bit due to a wrong
description in the specification.
Note that enabling the STREX backoff delay mechanism is done by
leaving the bit *cleared*, while the bit was currently being set by
the proc-v7.S code.
[Thomas: adapt to latest mainline, slightly reword the commit log, add
stable markers.]
Fixes: de4901933f6d ("arm: mm: Add support for PJ4B cpu and init routines")
Signed-off-by: Nadav Haklai <nadavh@marvell.com>
Signed-off-by: Thomas Petazzoni <thomas.petazzoni@free-electrons.com>
Acked-by: Gregory CLEMENT <gregory.clement@free-electrons.com>
Acked-by: Jason Cooper <jason@lakedaemon.net>
Signed-off-by: Russell King <rmk+kernel@arm.linux.org.uk>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
commit ef59a20ba375aeb97b3150a118318884743452a8 upstream.
According to the manuals I have, XScale auxiliary register should be
reached with opc_2 = 1 instead of crn = 1. cpu_xscale_proc_init
correctly uses c1, c0, 1 arguments, but cpu_xscale_do_suspend and
cpu_xscale_do_resume use c1, c1, 0. Correct suspend/resume functions to
also use c1, c0, 1.
The issue was primarily noticed thanks to qemu reporing "unsupported
instruction" on the pxa suspend path. Confirmed in PXA210/250 and PXA255
XScale Core manuals and in PXA270 and PXA320 Developers Guides.
Harware tested by me on tosa (pxa255). Robert confirmed on pxa270 board.
Tested-by: Robert Jarzmik <robert.jarzmik@free.fr>
Signed-off-by: Dmitry Eremin-Solenikov <dbaryshkov@gmail.com>
Acked-by: Robert Jarzmik <robert.jarzmik@free.fr>
Signed-off-by: Russell King <rmk+kernel@arm.linux.org.uk>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
commit 08b964ff3c51b10aaf2e6ba639f40054c09f0f7a upstream.
The kuser helpers page is not set up on non-MMU systems, so it does
not make sense to allow CONFIG_KUSER_HELPERS to be enabled when
CONFIG_MMU=n. Allowing it to be set on !MMU results in an oops in
set_tls (used in execve and the arm_syscall trap handler):
Unhandled exception: IPSR = 00000005 LR = fffffff1
CPU: 0 PID: 1 Comm: swapper Not tainted 3.18.0-rc1-00041-ga30465a #216
task: 8b838000 ti: 8b82a000 task.ti: 8b82a000
PC is at flush_thread+0x32/0x40
LR is at flush_thread+0x21/0x40
pc : [<8f00157a>] lr : [<8f001569>] psr: 4100000b
sp : 8b82be20 ip : 00000000 fp : 8b83c000
r10: 00000001 r9 : 88018c84 r8 : 8bb85000
r7 : 8b838000 r6 : 00000000 r5 : 8bb77400 r4 : 8b82a000
r3 : ffff0ff0 r2 : 8b82a000 r1 : 00000000 r0 : 88020354
xPSR: 4100000b
CPU: 0 PID: 1 Comm: swapper Not tainted 3.18.0-rc1-00041-ga30465a #216
[<8f002bc1>] (unwind_backtrace) from [<8f002033>] (show_stack+0xb/0xc)
[<8f002033>] (show_stack) from [<8f00265b>] (__invalid_entry+0x4b/0x4c)
As best I can tell this issue existed for the set_tls ARM syscall
before commit fbfb872f5f41 "ARM: 8148/1: flush TLS and thumbee
register state during exec" consolidated the TLS manipulation code
into the set_tls helper function, but now that we're using it to flush
register state during execve, !MMU users encounter the oops at the
first exec.
Prevent CONFIG_MMU=n configurations from enabling
CONFIG_KUSER_HELPERS.
Fixes: fbfb872f5f41 (ARM: 8148/1: flush TLS and thumbee register state during exec)
Signed-off-by: Nathan Lynch <nathan_lynch@mentor.com>
Reported-by: Stefan Agner <stefan@agner.ch>
Acked-by: Uwe Kleine-König <u.kleine-koenig@pengutronix.de>
Signed-off-by: Russell King <rmk+kernel@arm.linux.org.uk>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
commit 5ca918e5e3f9df4634077c06585c42bc6a8d699a upstream.
The alignment fixup incorrectly decodes faulting ARM VLDn/VSTn
instructions (where the optional alignment hint is given but incorrect)
as LDR/STR, leading to register corruption. Detect these and correctly
treat them as unhandled, so that userspace gets the fault it expects.
Reported-by: Simon Hosie <simon.hosie@arm.com>
Signed-off-by: Robin Murphy <robin.murphy@arm.com>
Signed-off-by: Russell King <rmk+kernel@arm.linux.org.uk>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
commit 85868313177700d20644263a782351262d2aff84 upstream.
The ARMv6 and ARMv7 early abort handlers clear the exclusive monitors
upon entry to the kernel, but this is redundant:
- We clear the monitors on every exception return since commit
200b812d0084 ("Clear the exclusive monitor when returning from an
exception"), so this is not necessary to ensure the monitors are
cleared before returning from a fault handler.
- Any dummy STREX will target a temporary scratch area in memory, and
may succeed or fail without corrupting useful data. Its status value
will not be used.
- Any other STREX in the kernel must be preceded by an LDREX, which
will initialise the monitors consistently and will not depend on the
earlier state of the monitors.
Therefore we have no reason to care about the initial state of the
exclusive monitors when a data abort is taken, and clearing the monitors
prior to exception return (as we already do) is sufficient.
This patch removes the redundant clearing of the exclusive monitors from
the early abort handlers.
Signed-off-by: Mark Rutland <mark.rutland@arm.com>
Acked-by: Will Deacon <will.deacon@arm.com>
Signed-off-by: Russell King <rmk+kernel@arm.linux.org.uk>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
commit 811a2407a3cf7bbd027fbe92d73416f17485a3d8 upstream.
On LPAE, each level 1 (pgd) page table entry maps 1GiB, and the level 2
(pmd) entries map 2MiB.
When the identity mapping is created on LPAE, the pgd pointers are copied
from the swapper_pg_dir. If we find that we need to modify the contents
of a pmd, we allocate a new empty pmd table and insert it into the
appropriate 1GB slot, before then filling it with the identity mapping.
However, if the 1GB slot covers the kernel lowmem mappings, we obliterate
those mappings.
When replacing a PMD, first copy the old PMD contents to the new PMD, so
that we preserve the existing mappings, particularly the mappings of the
kernel itself.
[rewrote commit message and added code comment -- rmk]
Fixes: ae2de101739c ("ARM: LPAE: Add identity mapping support for the 3-level page table format")
Signed-off-by: Konstantin Khlebnikov <k.khlebnikov@samsung.com>
Signed-off-by: Russell King <rmk+kernel@arm.linux.org.uk>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
commit 823a19cd3b91b0729d7417f1848413846be61712 upstream.
If init_mm.brk is not section aligned, the LPAE fixup code will miss
updating the final PMD. Fix this by aligning map_end.
Fixes: a77e0c7b2774 ("ARM: mm: Recreate kernel mappings in early_paging_init()")
Signed-off-by: Russell King <rmk+kernel@arm.linux.org.uk>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
commit 86f40622af7329375e38f282f6c0aab95f3e5f72 upstream.
When enable LPAE and big-endian in a hisilicon board, while specify
mem=384M mem=512M@7680M, will get bad page state:
Freeing unused kernel memory: 180K (c0466000 - c0493000)
BUG: Bad page state in process init pfn:fa442
page:c7749840 count:0 mapcount:-1 mapping: (null) index:0x0
page flags: 0x40000400(reserved)
Modules linked in:
CPU: 0 PID: 1 Comm: init Not tainted 3.10.27+ #66
[<c000f5f0>] (unwind_backtrace+0x0/0x11c) from [<c000cbc4>] (show_stack+0x10/0x14)
[<c000cbc4>] (show_stack+0x10/0x14) from [<c009e448>] (bad_page+0xd4/0x104)
[<c009e448>] (bad_page+0xd4/0x104) from [<c009e520>] (free_pages_prepare+0xa8/0x14c)
[<c009e520>] (free_pages_prepare+0xa8/0x14c) from [<c009f8ec>] (free_hot_cold_page+0x18/0xf0)
[<c009f8ec>] (free_hot_cold_page+0x18/0xf0) from [<c00b5444>] (handle_pte_fault+0xcf4/0xdc8)
[<c00b5444>] (handle_pte_fault+0xcf4/0xdc8) from [<c00b6458>] (handle_mm_fault+0xf4/0x120)
[<c00b6458>] (handle_mm_fault+0xf4/0x120) from [<c0013754>] (do_page_fault+0xfc/0x354)
[<c0013754>] (do_page_fault+0xfc/0x354) from [<c0008400>] (do_DataAbort+0x2c/0x90)
[<c0008400>] (do_DataAbort+0x2c/0x90) from [<c0008fb4>] (__dabt_usr+0x34/0x40)
The bad pfn:fa442 is not system memory(mem=384M mem=512M@7680M), after debugging,
I find in page fault handler, will get wrong pfn from pte just after set pte,
as follow:
do_anonymous_page()
{
...
set_pte_at(mm, address, page_table, entry);
//debug code
pfn = pte_pfn(entry);
pr_info("pfn:0x%lx, pte:0x%llxn", pfn, pte_val(entry));
//read out the pte just set
new_pte = pte_offset_map(pmd, address);
new_pfn = pte_pfn(*new_pte);
pr_info("new pfn:0x%lx, new pte:0x%llxn", pfn, pte_val(entry));
...
}
pfn: 0x1fa4f5, pte:0xc00001fa4f575f
new_pfn:0xfa4f5, new_pte:0xc00000fa4f5f5f //new pfn/pte is wrong.
The bug is happened in cpu_v7_set_pte_ext(ptep, pte):
An LPAE PTE is a 64bit quantity, passed to cpu_v7_set_pte_ext in the r2 and r3 registers.
On an LE kernel, r2 contains the LSB of the PTE, and r3 the MSB.
On a BE kernel, the assignment is reversed.
Unfortunately, the current code always assumes the LE case,
leading to corruption of the PTE when clearing/setting bits.
This patch fixes this issue much like it has been done already in the
cpu_v7_switch_mm case.
Signed-off-by: Jianguo Wu <wujianguo@huawei.com>
Acked-by: Marc Zyngier <marc.zyngier@arm.com>
Acked-by: Will Deacon <will.deacon@arm.com>
Signed-off-by: Russell King <rmk+kernel@arm.linux.org.uk>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
commit c177c81e09e517bbf75b67762cdab1b83aba6976 upstream.
Currently hugepage migration is available for all archs which support
pmd-level hugepage, but testing is done only for x86_64 and there're
bugs for other archs. So to avoid breaking such archs, this patch
limits the availability strictly to x86_64 until developers of other
archs get interested in enabling this feature.
Simply disabling hugepage migration on non-x86_64 archs is not enough to
fix the reported problem where sys_move_pages() hits the BUG_ON() in
follow_page(FOLL_GET), so let's fix this by checking if hugepage
migration is supported in vma_migratable().
Signed-off-by: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com>
Reported-by: Michael Ellerman <mpe@ellerman.id.au>
Tested-by: Michael Ellerman <mpe@ellerman.id.au>
Acked-by: Hugh Dickins <hughd@google.com>
Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org>
Cc: Tony Luck <tony.luck@intel.com>
Cc: Russell King <rmk@arm.linux.org.uk>
Cc: Martin Schwidefsky <schwidefsky@de.ibm.com>
Cc: James Hogan <james.hogan@imgtec.com>
Cc: Ralf Baechle <ralf@linux-mips.org>
Cc: David Miller <davem@davemloft.net>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
commit b6ccb9803e90c16b212cf4ed62913a7591e79a39 upstream.
CPU_32v6 currently selects CPU_USE_DOMAINS if CPU_V6 and MMU. This is
because ARM 1136 r0pX CPUs lack the v6k extensions, and therefore do
not have hardware thread registers. The lack of these registers requires
the kernel to update the vectors page at each context switch in order to
write a new TLS pointer. This write must be done via the userspace
mapping, since aliasing caches can lead to expensive flushing when using
kmap. Finally, this requires the vectors page to be mapped r/w for
kernel and r/o for user, which has implications for things like put_user
which must trigger CoW appropriately when targetting user pages.
The upshot of all this is that a v6/v7 kernel makes use of domains to
segregate kernel and user memory accesses. This has the nasty
side-effect of making device mappings executable, which has been
observed to cause subtle bugs on recent cores (e.g. Cortex-A15
performing a speculative instruction fetch from the GIC and acking an
interrupt in the process).
This patch solves this problem by removing the remaining domain support
from ARMv6. A new memory type is added specifically for the vectors page
which allows that page (and only that page) to be mapped as user r/o,
kernel r/w. All other user r/o pages are mapped also as kernel r/o.
Patch co-developed with Russell King.
Signed-off-by: Will Deacon <will.deacon@arm.com>
Signed-off-by: Russell King <rmk+kernel@arm.linux.org.uk>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
Pull ARM fixes from Russell King:
"A number of ARM updates for -rc, covering mostly ARM specific code,
but with one change to modpost.c to allow Thumb section mismatches to
be detected.
ARM changes include reporting when an attempt is made to boot a LPAE
kernel on hardware which does not support LPAE, rather than just being
silent about it.
A number of other minor fixes are included too"
* 'fixes' of git://ftp.arm.linux.org.uk/~rmk/linux-arm:
ARM: 7992/1: boot: compressed: ignore bswapsdi2.S
ARM: 7991/1: sa1100: fix compile problem on Collie
ARM: fix noMMU kallsyms symbol filtering
ARM: 7980/1: kernel: improve error message when LPAE config doesn't match CPU
ARM: 7964/1: Detect section mismatches in thumb relocations
ARM: 7963/1: mm: report both sections from PMD
|
|
git://git.linaro.org/people/mszyprowski/linux-dma-mapping
Pull DMA-mapping fixes from Marek Szyprowski:
"This contains fixes for incorrect atomic test in dma-mapping subsystem
for ARM and x86 architecture"
* 'fixes-for-v3.14' of git://git.linaro.org/people/mszyprowski/linux-dma-mapping:
x86: dma-mapping: fix GFP_ATOMIC macro usage
ARM: dma-mapping: fix GFP_ATOMIC macro usage
|
|
On 2-level page table systems, the PMD has 2 section entries. Report
these, otherwise ARM_PTDUMP will miss reporting permission changes on
odd section boundaries.
Signed-off-by: Kees Cook <keescook@chromium.org>
Acked-by: Catalin Marinas <catalin.marinas@arm.com>
Tested-by: Steve Capper <steve.capper@linaro.org>
Signed-off-by: Russell King <rmk+kernel@arm.linux.org.uk>
|
|
GFP_ATOMIC is not a single gfp flag, but a macro which expands to the other
flags and LACK of __GFP_WAIT flag. To check if caller wanted to perform an
atomic allocation, the code must test __GFP_WAIT flag presence. This patch
fixes the issue introduced in v3.6-rc5
Signed-off-by: Marek Szyprowski <m.szyprowski@samsung.com>
CC: stable@vger.kernel.org
|
|
During __v{6,7}_setup, we invalidate the TLBs since we are about to
enable the MMU on return to head.S. Unfortunately, without a subsequent
dsb instruction, the invalidation is not guaranteed to have completed by
the time we write to the sctlr, potentially exposing us to junk/stale
translations cached in the TLB.
This patch reworks the init functions so that the dsb used to ensure
completion of cache/predictor maintenance is also used to ensure
completion of the TLB invalidation.
Cc: <stable@vger.kernel.org>
Reported-by: Albin Tonnerre <Albin.Tonnerre@arm.com>
Signed-off-by: Will Deacon <will.deacon@arm.com>
Signed-off-by: Russell King <rmk+kernel@arm.linux.org.uk>
|
|
The stage-2 memory attributes are distinct from the Hyp memory
attributes and the Stage-1 memory attributes. We were using the stage-1
memory attributes for stage-2 mappings causing device mappings to be
mapped as normal memory. Add the S2 equivalent defines for memory
attributes and fix the comments explaining the defines while at it.
Add a prot_pte_s2 field to the mem_type struct and fill out the field
for device mappings accordingly.
Cc: <stable@vger.kernel.org> [3.9+]
Acked-by: Marc Zyngier <marc.zyngier@arm.com>
Acked-by: Catalin Marinas <catalin.marinas@arm.com>
Signed-off-by: Christoffer Dall <christoffer.dall@linaro.org>
Signed-off-by: Russell King <rmk+kernel@arm.linux.org.uk>
|
|
|
|
Commit 65939301acdb (arm: set initrd_start/initrd_end for fdt scan)
caused the FDT initrd_start and initrd_end to override the
phys_initrd_start and phys_initrd_size set by the initrd= kernel
parameter. With this patch initrd_start and initrd_end will be
overridden if phys_initrd_start and phys_initrd_size are set by the
kernel initrd= parameter.
Fixes: 65939301acdb (arm: set initrd_start/initrd_end for fdt scan)
Signed-off-by: Ben Peddell <klightspeed@killerwolves.net>
Acked-by: Jason Cooper <jason@lakedaemon.net>
Signed-off-by: Russell King <rmk+kernel@arm.linux.org.uk>
|
|
Pull ARM updates from Russell King:
"In this set, we have:
- Refactoring of some of the old StrongARM-1100 GPIO code to make
things simpler by Dmitry Eremin-Solenikov
- Read-only and non-executable support for modules on ARM from Laura
Abbot
- Removal of unnecessary set_drvdata() calls in AMBA code
- Some non-executable support for kernel lowmem mappings at the 1MB
section granularity, and dumping of kernel page tables via debugfs
- Some improvements for the timer/clock code on Footbridge platforms,
and cleanup some of the LED code there
- Fix fls/ffs() signatures to match x86 to prevent build warnings,
particularly where these are used with min/max() macros
- Avoid using the bootmem allocator on ARM (patches from Santosh
Shilimkar)
- Various asid/unaligned access updates from Will Deacon"
* 'for-linus' of git://ftp.arm.linux.org.uk/~rmk/linux-arm: (51 commits)
ARM: SMP implementations are not supposed to return from smp_ops.cpu_die()
ARM: ignore memory below PHYS_OFFSET
Fix select-induced Kconfig warning for ZBOOT_ROM
ARM: fix ffs/fls implementations to match x86
ARM: 7935/1: sa1100: collie: add gpio-keys configuration
ARM: 7932/1: bcm: Add DEBUG_LL console support
ARM: 7929/1: Remove duplicate SCHED_HRTICK config option
ARM: 7928/1: kconfig: select HAVE_EFFICIENT_UNALIGNED_ACCESS for CPUv6+ && MMU
ARM: 7927/1: dcache: select DCACHE_WORD_ACCESS for big-endian CPUs
ARM: 7926/1: mm: flesh out and fix the comments in the ASID allocator
ARM: 7925/1: mm: keep track of last ASID allocation to improve bitmap searching
ARM: 7924/1: mm: don't bother with reserved ttbr0 when running with LPAE
ARM: PCI: add legacy IDE IRQ implementation
ARM: footbridge: cleanup LEDs code
ARM: pgd allocation: retry on failure
ARM: footbridge: add one-shot mode for DC21285 timer
ARM: footbridge: add sched_clock implementation
ARM: 7922/1: l2x0: add Marvell Tauros3 support
ARM: 7877/1: use built-in byte swap function
ARM: 7921/1: mcpm: remove redundant dsb instructions prior to sev
...
|
|
Switch to memblock interfaces for early memory allocator instead of
bootmem allocator. No functional change in beahvior than what it is in
current code from bootmem users points of view.
Archs already converted to NO_BOOTMEM now directly use memblock
interfaces instead of bootmem wrappers build on top of memblock. And
the archs which still uses bootmem, these new apis just fallback to
exiting bootmem APIs.
Signed-off-by: Santosh Shilimkar <santosh.shilimkar@ti.com>
Cc: "Rafael J. Wysocki" <rjw@sisk.pl>
Cc: Arnd Bergmann <arnd@arndb.de>
Cc: Christoph Lameter <cl@linux-foundation.org>
Cc: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Cc: Grygorii Strashko <grygorii.strashko@ti.com>
Cc: H. Peter Anvin <hpa@zytor.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
Cc: Konrad Rzeszutek Wilk <konrad.wilk@oracle.com>
Cc: Michal Hocko <mhocko@suse.cz>
Cc: Paul Walmsley <paul@pwsan.com>
Cc: Pavel Machek <pavel@ucw.cz>
Cc: Russell King <linux@arm.linux.org.uk>
Cc: Tejun Heo <tj@kernel.org>
Cc: Tony Lindgren <tony@atomide.com>
Cc: Yinghai Lu <yinghai@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
Commit 4b59e6c47309 ("mm, show_mem: suppress page counts in
non-blockable contexts") introduced SHOW_MEM_FILTER_PAGE_COUNT to
suppress PFN walks on large memory machines. Commit c78e93630d15 ("mm:
do not walk all of system memory during show_mem") avoided a PFN walk in
the generic show_mem helper which removes the requirement for
SHOW_MEM_FILTER_PAGE_COUNT in that case.
This patch removes PFN walkers from the arch-specific implementations
that report on a per-node or per-zone granularity. ARM and unicore32
still do a PFN walk as they report memory usage on each bank which is a
much finer granularity where the debugging information may still be of
use. As the remaining arches doing PFN walks have relatively small
amounts of memory, this patch simply removes SHOW_MEM_FILTER_PAGE_COUNT.
[akpm@linux-foundation.org: fix parisc]
Signed-off-by: Mel Gorman <mgorman@suse.de>
Acked-by: David Rientjes <rientjes@google.com>
Cc: Tony Luck <tony.luck@intel.com>
Cc: Russell King <linux@arm.linux.org.uk>
Cc: James Bottomley <jejb@parisc-linux.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
|
|
for-next
|
|
git://git.kernel.org/pub/scm/linux/kernel/git/ssantosh/linux-keystone into devel-stable
|
|
This reverts commit 787b0d5c1ca7ff24feb6f92e4c7f4410ee7d81a8 since
it is no longer required after 7909/1 was applied, and it causes
build regressions when ARM_PATCH_PHYS_VIRT is disabled and DMA_ZONE
is enabled.
Signed-off-by: Russell King <rmk+kernel@arm.linux.org.uk>
|
|
The ASID allocator has to deal with some pretty horrible behaviours by
the CPU, so expand on some of the comments in there so I remember why
we can never allocate ASID zero to a userspace task.
Reviewed-by: Catalin Marinas <catalin.marinas@arm.com>
Signed-off-by: Will Deacon <will.deacon@arm.com>
Signed-off-by: Russell King <rmk+kernel@arm.linux.org.uk>
|
|
Since we only clear entries in the ASID bitmap on a rollover event, the
bitmap tends to consist of a block of consecutive set bits followed by
a block of consecutive clear bits. The exception to this rule is for
ASIDs which have been carried over from a previous generation, but
these are bound by the number of CPUs.
This patch optimises our bitmap searching strategy, so that we search
from the last successful allocation, rather than search from index 1
each time we allocate a new ASID.
Reviewed-by: Catalin Marinas <catalin.marinas@arm.com>
Signed-off-by: Will Deacon <will.deacon@arm.com>
Signed-off-by: Russell King <rmk+kernel@arm.linux.org.uk>
|
|
With the new ASID allocation algorithm, active ASIDs at the time of a
rollover event will be marked as reserved, so active mm_structs can
continue to operate with the same ASID as before. This in turn means
that we don't need to worry about allocating a new ASID to an mm that
is currently active (installed in TTBR0).
Since updating the pgd and ASID is atomic on LPAE systems (by virtue of
the two being fields in the same hardware register), we can dispose of
the reserved TTBR0 and rely on whatever tables we currently have live.
Reviewed-by: Catalin Marinas <catalin.marinas@arm.com>
Signed-off-by: Will Deacon <will.deacon@arm.com>
Signed-off-by: Russell King <rmk+kernel@arm.linux.org.uk>
|
|
When given a compound high page, __flush_dcache_page will only flush
the first page of the compound page repeatedly rather than the entire
set of constituent pages.
This error was introduced by:
0b19f93 ARM: mm: Add support for flushing HugeTLB pages.
This patch corrects the logic such that all constituent pages are now
flushed.
Cc: stable@vger.kernel.org # 3.10+
Signed-off-by: Steve Capper <steve.capper@linaro.org>
Acked-by: Will Deacon <will.deacon@arm.com>
Signed-off-by: Russell King <rmk+kernel@arm.linux.org.uk>
|
|
Make pgd allocation retry on failure; we really need this to succeed
otherwise fork() can trigger OOMs.
Signed-off-by: Russell King <rmk+kernel@arm.linux.org.uk>
|
|
This adds support for the Marvell Tauros3 cache controller which
is compatible with pl310 cache controller but broadcasts L1 cache
operations to L2 cache. While updating the binding documentation,
clean up the list of possible compatibles. Also reorder driver
compatibles to allow non-ARM derivated to be compatible to ARM
cache controller compatibles.
Signed-off-by: Sebastian Hesselbarth <sebastian.hesselbarth@gmail.com>
Reviewed-by: Mark Rutland <mark.rutland@arm.com>
Signed-off-by: Russell King <rmk+kernel@arm.linux.org.uk>
|
|
Set-associative caches on all v7 implementations map the index bits
to physical addresses LSBs and tag bits to MSBs. As the last level
of cache on current and upcoming ARM systems grows in size,
this means that under normal DRAM controller configurations, the
current v7 cache flush routine using set/way operations triggers a
DRAM memory controller precharge/activate for every cache line
writeback since the cache routine cleans lines by first fixing the
index and then looping through ways (index bits are mapped to lower
physical addresses on all v7 cache implementations; this means that,
with last level cache sizes in the order of MBytes, lines belonging
to the same set but different ways map to different DRAM pages).
Given the random content of cache tags, swapping the order between
indexes and ways loops do not prevent DRAM pages precharge and
activate cycles but at least, on average, improves the chances that
either multiple lines hit the same page or multiple lines belong to
different DRAM banks, improving throughput significantly.
This patch swaps the inner loops in the v7 cache flushing routine
to carry out the clean operations first on all sets belonging to
a given way (looping through sets) and then decrementing the way.
Benchmarks showed that by swapping the ordering in which sets and
ways are decremented in the v7 cache flushing routine, that uses
set/way operations, time required to flush caches is reduced
significantly, owing to improved writebacks throughput to the DRAM
controller.
Benchmarks results vary and depend heavily on the last level of
cache tag RAM content when cache is cleaned and invalidated, ranging
from 2x throughput when all tag RAM entries contain dirty lines
mapping to sequential pages of RAM to 1x (ie no improvement) when
all tag RAM accesses trigger a DRAM precharge/activate cycle, as the
current code implies on most DRAM controller configurations.
Acked-by: Catalin Marinas <catalin.marinas@arm.com>
Acked-by: Nicolas Pitre <nico@linaro.org>
Acked-by: Santosh Shilimkar <santosh.shilimkar@ti.com>
Reviewed-by: Dave Martin <Dave.Martin@arm.com>
Signed-off-by: Lorenzo Pieralisi <lorenzo.pieralisi@arm.com>
Signed-off-by: Russell King <rmk+kernel@arm.linux.org.uk>
|
|
The CMA region was being marked executable:
0xdc04e000-0xdc050000 8K RW x MEM/CACHED/WBRA
0xdc060000-0xdc100000 640K RW x MEM/CACHED/WBRA
0xdc4f5000-0xdc500000 44K RW x MEM/CACHED/WBRA
0xdcce9000-0xe0000000 52316K RW x MEM/CACHED/WBRA
This is mainly due to the badly worded MT_MEMORY_DMA_READY symbol, but
there are also a few other places in dma-mapping which should be
corrected to use the right constant. Fix all these places:
0xdc04e000-0xdc050000 8K RW NX MEM/CACHED/WBRA
0xdc060000-0xdc100000 640K RW NX MEM/CACHED/WBRA
0xdc280000-0xdc300000 512K RW NX MEM/CACHED/WBRA
0xdc6fc000-0xe0000000 58384K RW NX MEM/CACHED/WBRA
Signed-off-by: Russell King <rmk+kernel@arm.linux.org.uk>
|
|
Other architectures define various set_memory functions to allow
attributes to be changed (e.g. set_memory_x, set_memory_rw, etc.)
Currently, these functions are missing on ARM. Define these in an
appropriate manner for ARM.
Signed-off-by: Laura Abbott <lauraa@codeaurora.org>
Signed-off-by: Russell King <rmk+kernel@arm.linux.org.uk>
|
|
Add basic NX support for kernel lowmem mappings. We mark any section
which does not overlap kernel text as non-executable, preventing it
from being used to write code and then execute directly from there.
This does not change the alignment of the sections, so the kernel
image doesn't grow significantly via this change, so we can do this
without needing a config option.
Signed-off-by: Russell King <rmk+kernel@arm.linux.org.uk>
|
|
Document the permissions which the various MT_MEMORY* mapping types
will provide.
Signed-off-by: Russell King <rmk+kernel@arm.linux.org.uk>
|
|
This patch allows the kernel page tables to be dumped via a debugfs file,
allowing kernel developers to check the layout of the kernel page tables
and the verify the various permissions and type settings.
Signed-off-by: Russell King <rmk+kernel@arm.linux.org.uk>
|
|
Current code is using PHYS_OFFSET to calculate the arm_dma_limit which
will lead to wrong calculations in cases where PHYS_OFFSET is updated
runtime.
So fix the code by using __pv_phys_offset instead of PHYS_OFFSET.
Cc: Catalin Marinas <catalin.marinas@arm.com>
Cc: Nicolas Pitre <nicolas.pitre@linaro.org>
Signed-off-by: Santosh Shilimkar <santosh.shilimkar@ti.com>
Signed-off-by: Russell King <rmk+kernel@arm.linux.org.uk>
|
|
Peter reports that OMAP audio broke with the recent fix for these
checks, caused by OMAP audio using a 64-bit DMA mask. We should
allow 64-bit DMA masks even with 32-bit dma_addr_t if we can be sure
the amount of RAM we have won't allow the 32-bit dma_addr_t to
overflow. Unfortunately, the checks to detect overflow were not
correct.
Tested-by: Peter Ujfalusi <peter.ujfalusi@ti.com>
Signed-off-by: Russell King <rmk+kernel@arm.linux.org.uk>
|
|
Commit f6f91b0d9fd9 (ARM: allow kuser helpers to be removed from the
vector page) required two pages for the vectors code. Although the
code setting up the initial page tables was updated, the code which
allocates page tables for new processes wasn't, neither was the code
which tears down the mappings. Fix this.
Fixes: f6f91b0d9fd9 ("ARM: allow kuser helpers to be removed from the vector page")
Signed-off-by: Russell King <rmk+kernel@arm.linux.org.uk>
Cc: <stable@vger.kernel.org>
|
|
Some buses have negative offsets, which causes the DMA mask checks to
falsely fail. Fix this by using the actual amount of memory fitted in
the system.
Signed-off-by: Russell King <rmk+kernel@arm.linux.org.uk>
|
|
Now with dma_mask series merged and max*pfn has consistent meaning on ARM
as rest of the arch's thanks to RMK's mega series, lets switch ARM code
to NO_BOOTMEM. With NO_BOOTMEM change, now we use memblock allocator to
reserve space for crash kernel to have one less dependency with nobootmem
allocator wrapper.
Tested with both flat memory and sparse (faked) memory models with highmem
enabled.
Cc: Russell King <linux@arm.linux.org.uk>
Cc: Catalin Marinas <catalin.marinas@arm.com>
Cc: Nicolas Pitre <nicolas.pitre@linaro.org>
Signed-off-by: Santosh Shilimkar <santosh.shilimkar@ti.com>
|
|
If allowed by call to memblock_allow_resize() - The Memblock core will
try to allocate additional memory and rearrange its internal data in
case, if there are more then INIT_MEMBLOCK_REGIONS(128) memory regions
of any type have been allocated. If this happens before Low memory is
mapped (which is done now by map_lowmem()) the system will hang, because
the Memblock core will try to operate with virtual addresses which
aren't mapped yet.
In ARM code, the memblock resizing is allowed (memblock_allow_resize())
from arm_memblock_init() which is called before map_lowmem(), so
this may lead to an error as described above.
Hence, allow Memblock resizing later during init, from bootmem_init()
when all appropriate mappings are ready.
Cc: Russell King <linux@arm.linux.org.uk>
Cc: Catalin Marinas <catalin.marinas@arm.com>
Cc: Nicolas Pitre <nicolas.pitre@linaro.org>
Signed-off-by: Grygorii Strashko <grygorii.strashko@ti.com>
Signed-off-by: Santosh Shilimkar <santosh.shilimkar@ti.com>
|
|
With commit 26ba47b1 {ARM: 7805/1: mm: change max*pfn to include
the physical offset of memory}, the max_pfn already contain
PHYS_PFN_OFFSET, so it shouldn't be taken into account again.
While at it, use use set_max_mapnr() helper.
Cc: Russell King <linux@arm.linux.org.uk>
Cc: Catalin Marinas <catalin.marinas@arm.com>
Cc: Nicolas Pitre <nicolas.pitre@linaro.org>
Signed-off-by: Grygorii Strashko <grygorii.strashko@ti.com>
Signed-off-by: Santosh Shilimkar <santosh.shilimkar@ti.com>
|
|
Pull ARM fixes from Russell King:
"Some small fixes for this merge window, most of them quite self
explanatory - the biggest thing here is a fix for the ARMv7 LPAE
suspend/resume support"
* 'fixes' of git://git.linaro.org/people/rmk/linux-arm:
ARM: 7894/1: kconfig: select GENERIC_CLOCKEVENTS if HAVE_ARM_ARCH_TIMER
ARM: 7893/1: bitops: only emit .arch_extension mp if CONFIG_SMP
ARM: 7892/1: Fix warning for V7M builds
ARM: 7888/1: seccomp: not compatible with ARM OABI
ARM: 7886/1: make OABI default to off
ARM: 7885/1: Save/Restore 64-bit TTBR registers on LPAE suspend/resume
ARM: 7884/1: mm: Fix ECC mem policy printk
ARM: 7883/1: fix mov to mvn conversion in case of 64 bit phys_addr_t and BE
ARM: 7882/1: mm: fix __phys_to_virt to work with 64 bit phys_addr_t in BE case
ARM: 7881/1: __fixup_smp read of SCU config should do byteswap in BE case
ARM: Fix nommu.c build warning
|
|
We're going to introduce split page table lock for PMD level. Let's
rename existing split ptlock for PTE level to avoid confusion.
Signed-off-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Tested-by: Alex Thorlton <athorlton@sgi.com>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com>
Cc: "Eric W . Biederman" <ebiederm@xmission.com>
Cc: "Paul E . McKenney" <paulmck@linux.vnet.ibm.com>
Cc: Al Viro <viro@zeniv.linux.org.uk>
Cc: Andi Kleen <ak@linux.intel.com>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Cc: Dave Hansen <dave.hansen@intel.com>
Cc: Dave Jones <davej@redhat.com>
Cc: David Howells <dhowells@redhat.com>
Cc: Frederic Weisbecker <fweisbec@gmail.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Kees Cook <keescook@chromium.org>
Cc: Mel Gorman <mgorman@suse.de>
Cc: Michael Kerrisk <mtk.manpages@gmail.com>
Cc: Oleg Nesterov <oleg@redhat.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Rik van Riel <riel@redhat.com>
Cc: Robin Holt <robinmholt@gmail.com>
Cc: Sedat Dilek <sedat.dilek@gmail.com>
Cc: Srikar Dronamraju <srikar@linux.vnet.ibm.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Hugh Dickins <hughd@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
LPAE enabled kernels use the 64-bit version of TTBR0 and TTBR1
registers. If we're running an LPAE kernel, fill the upper half
of TTBR0 with 0 because we're setting it to the idmap here (the
idmap is guaranteed to be < 4Gb) and fully restore TTBR1 instead
of just restoring the lower 32 bits. Failure to do so can cause
failures on resume from suspend when these registers are only
half restored.
Signed-off-by: Mahesh Sivasubramanian <msivasub@codeaurora.org>
Signed-off-by: Stephen Boyd <sboyd@codeaurora.org>
Acked-by: Santosh Shilimkar <santosh.shilimkar@ti.com>
Signed-off-by: Russell King <rmk+kernel@arm.linux.org.uk>
|