summaryrefslogtreecommitdiff
path: root/arch/arm64/kernel/smp.c
AgeCommit message (Collapse)Author
2020-11-24arm64: smp: Tell RCU about CPUs that fail to come onlineWill Deacon
[ Upstream commit 04e613ded8c26489b3e0f9101b44462f780d1a35 ] Commit ce3d31ad3cac ("arm64/smp: Move rcu_cpu_starting() earlier") ensured that RCU is informed early about incoming CPUs that might end up calling into printk() before they are online. However, if such a CPU fails the early CPU feature compatibility checks in check_local_cpu_capabilities(), then it will be powered off or parked without informing RCU, leading to an endless stream of stalls: | rcu: INFO: rcu_preempt detected stalls on CPUs/tasks: | rcu: 2-O...: (0 ticks this GP) idle=002/1/0x4000000000000000 softirq=0/0 fqs=2593 | (detected by 0, t=5252 jiffies, g=9317, q=136) | Task dump for CPU 2: | task:swapper/2 state:R running task stack: 0 pid: 0 ppid: 1 flags:0x00000028 | Call trace: | ret_from_fork+0x0/0x30 Ensure that the dying CPU invokes rcu_report_dead() prior to being powered off or parked. Cc: Qian Cai <cai@redhat.com> Cc: "Paul E. McKenney" <paulmck@kernel.org> Reviewed-by: Paul E. McKenney <paulmck@kernel.org> Suggested-by: Qian Cai <cai@redhat.com> Link: https://lore.kernel.org/r/20201105222242.GA8842@willie-the-truck Link: https://lore.kernel.org/r/20201106103602.9849-3-will@kernel.org Signed-off-by: Will Deacon <will@kernel.org> Signed-off-by: Sasha Levin <sashal@kernel.org>
2020-11-10arm64/smp: Move rcu_cpu_starting() earlierQian Cai
[ Upstream commit ce3d31ad3cac765484463b4f5a0b6b1f8f1a963e ] The call to rcu_cpu_starting() in secondary_start_kernel() is not early enough in the CPU-hotplug onlining process, which results in lockdep splats as follows: WARNING: suspicious RCU usage ----------------------------- kernel/locking/lockdep.c:3497 RCU-list traversed in non-reader section!! other info that might help us debug this: RCU used illegally from offline CPU! rcu_scheduler_active = 1, debug_locks = 1 no locks held by swapper/1/0. Call trace: dump_backtrace+0x0/0x3c8 show_stack+0x14/0x60 dump_stack+0x14c/0x1c4 lockdep_rcu_suspicious+0x134/0x14c __lock_acquire+0x1c30/0x2600 lock_acquire+0x274/0xc48 _raw_spin_lock+0xc8/0x140 vprintk_emit+0x90/0x3d0 vprintk_default+0x34/0x40 vprintk_func+0x378/0x590 printk+0xa8/0xd4 __cpuinfo_store_cpu+0x71c/0x868 cpuinfo_store_cpu+0x2c/0xc8 secondary_start_kernel+0x244/0x318 This is avoided by moving the call to rcu_cpu_starting up near the beginning of the secondary_start_kernel() function. Signed-off-by: Qian Cai <cai@redhat.com> Acked-by: Paul E. McKenney <paulmck@kernel.org> Link: https://lore.kernel.org/lkml/160223032121.7002.1269740091547117869.tip-bot2@tip-bot2/ Link: https://lore.kernel.org/r/20201028182614.13655-1-cai@redhat.com Signed-off-by: Will Deacon <will@kernel.org> Signed-off-by: Sasha Levin <sashal@kernel.org>
2020-09-03arm64: Fix __cpu_logical_map undefined issueKefeng Wang
[ Upstream commit eaecca9e7710281be7c31d892c9f447eafd7ddd9 ] The __cpu_logical_map undefined issue occued when the new tegra194-cpufreq drvier building as a module. ERROR: modpost: "__cpu_logical_map" [drivers/cpufreq/tegra194-cpufreq.ko] undefined! The driver using cpu_logical_map() macro which will expand to __cpu_logical_map, we can't access it in a drvier. Let's turn cpu_logical_map() into a C wrapper and export it to fix the build issue. Also create a function set_cpu_logical_map(cpu, hwid) when assign a value to cpu_logical_map(cpu). Reported-by: Hulk Robot <hulkci@huawei.com> Signed-off-by: Kefeng Wang <wangkefeng.wang@huawei.com> Signed-off-by: Catalin Marinas <catalin.marinas@arm.com> Signed-off-by: Sasha Levin <sashal@kernel.org>
2020-03-25arm64: smp: fix crash_smp_send_stop() behaviourCristian Marussi
commit f50b7dacccbab2b9e3ef18f52a6dcc18ed2050b9 upstream. On a system configured to trigger a crash_kexec() reboot, when only one CPU is online and another CPU panics while starting-up, crash_smp_send_stop() will fail to send any STOP message to the other already online core, resulting in fail to freeze and registers not properly saved. Moreover even if the proper messages are sent (case CPUs > 2) it will similarly fail to account for the booting CPU when executing the final stop wait-loop, so potentially resulting in some CPU not been waited for shutdown before rebooting. A tangible effect of this behaviour can be observed when, after a panic with kexec enabled and loaded, on the following reboot triggered by kexec, the cpu that could not be successfully stopped fails to come back online: [ 362.291022] ------------[ cut here ]------------ [ 362.291525] kernel BUG at arch/arm64/kernel/cpufeature.c:886! [ 362.292023] Internal error: Oops - BUG: 0 [#1] PREEMPT SMP [ 362.292400] Modules linked in: [ 362.292970] CPU: 3 PID: 0 Comm: swapper/3 Kdump: loaded Not tainted 5.6.0-rc4-00003-gc780b890948a #105 [ 362.293136] Hardware name: Foundation-v8A (DT) [ 362.293382] pstate: 200001c5 (nzCv dAIF -PAN -UAO) [ 362.294063] pc : has_cpuid_feature+0xf0/0x348 [ 362.294177] lr : verify_local_elf_hwcaps+0x84/0xe8 [ 362.294280] sp : ffff800011b1bf60 [ 362.294362] x29: ffff800011b1bf60 x28: 0000000000000000 [ 362.294534] x27: 0000000000000000 x26: 0000000000000000 [ 362.294631] x25: 0000000000000000 x24: ffff80001189a25c [ 362.294718] x23: 0000000000000000 x22: 0000000000000000 [ 362.294803] x21: ffff8000114aa018 x20: ffff800011156a00 [ 362.294897] x19: ffff800010c944a0 x18: 0000000000000004 [ 362.294987] x17: 0000000000000000 x16: 0000000000000000 [ 362.295073] x15: 00004e53b831ae3c x14: 00004e53b831ae3c [ 362.295165] x13: 0000000000000384 x12: 0000000000000000 [ 362.295251] x11: 0000000000000000 x10: 00400032b5503510 [ 362.295334] x9 : 0000000000000000 x8 : ffff800010c7e204 [ 362.295426] x7 : 00000000410fd0f0 x6 : 0000000000000001 [ 362.295508] x5 : 00000000410fd0f0 x4 : 0000000000000000 [ 362.295592] x3 : 0000000000000000 x2 : ffff8000100939d8 [ 362.295683] x1 : 0000000000180420 x0 : 0000000000180480 [ 362.296011] Call trace: [ 362.296257] has_cpuid_feature+0xf0/0x348 [ 362.296350] verify_local_elf_hwcaps+0x84/0xe8 [ 362.296424] check_local_cpu_capabilities+0x44/0x128 [ 362.296497] secondary_start_kernel+0xf4/0x188 [ 362.296998] Code: 52805001 72a00301 6b01001f 54000ec0 (d4210000) [ 362.298652] SMP: stopping secondary CPUs [ 362.300615] Starting crashdump kernel... [ 362.301168] Bye! [ 0.000000] Booting Linux on physical CPU 0x0000000003 [0x410fd0f0] [ 0.000000] Linux version 5.6.0-rc4-00003-gc780b890948a (crimar01@e120937-lin) (gcc version 8.3.0 (GNU Toolchain for the A-profile Architecture 8.3-2019.03 (arm-rel-8.36))) #105 SMP PREEMPT Fri Mar 6 17:00:42 GMT 2020 [ 0.000000] Machine model: Foundation-v8A [ 0.000000] earlycon: pl11 at MMIO 0x000000001c090000 (options '') [ 0.000000] printk: bootconsole [pl11] enabled ..... [ 0.138024] rcu: Hierarchical SRCU implementation. [ 0.153472] its@2f020000: unable to locate ITS domain [ 0.154078] its@2f020000: Unable to locate ITS domain [ 0.157541] EFI services will not be available. [ 0.175395] smp: Bringing up secondary CPUs ... [ 0.209182] psci: failed to boot CPU1 (-22) [ 0.209377] CPU1: failed to boot: -22 [ 0.274598] Detected PIPT I-cache on CPU2 [ 0.278707] GICv3: CPU2: found redistributor 1 region 0:0x000000002f120000 [ 0.285212] CPU2: Booted secondary processor 0x0000000001 [0x410fd0f0] [ 0.369053] Detected PIPT I-cache on CPU3 [ 0.372947] GICv3: CPU3: found redistributor 2 region 0:0x000000002f140000 [ 0.378664] CPU3: Booted secondary processor 0x0000000002 [0x410fd0f0] [ 0.401707] smp: Brought up 1 node, 3 CPUs [ 0.404057] SMP: Total of 3 processors activated. Make crash_smp_send_stop() account also for the online status of the calling CPU while evaluating how many CPUs are effectively online: this way the right number of STOPs is sent and all other stopped-cores's registers are properly saved. Fixes: 78fd584cdec05 ("arm64: kdump: implement machine_crash_shutdown()") Acked-by: Mark Rutland <mark.rutland@arm.com> Signed-off-by: Cristian Marussi <cristian.marussi@arm.com> Signed-off-by: Will Deacon <will@kernel.org> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2020-03-25arm64: smp: fix smp_send_stop() behaviourCristian Marussi
commit d0bab0c39e32d39a8c5cddca72e5b4a3059fe050 upstream. On a system with only one CPU online, when another one CPU panics while starting-up, smp_send_stop() will fail to send any STOP message to the other already online core, resulting in a system still responsive and alive at the end of the panic procedure. [ 186.700083] CPU3: shutdown [ 187.075462] CPU2: shutdown [ 187.162869] CPU1: shutdown [ 188.689998] ------------[ cut here ]------------ [ 188.691645] kernel BUG at arch/arm64/kernel/cpufeature.c:886! [ 188.692079] Internal error: Oops - BUG: 0 [#1] PREEMPT SMP [ 188.692444] Modules linked in: [ 188.693031] CPU: 3 PID: 0 Comm: swapper/3 Not tainted 5.6.0-rc4-00001-g338d25c35a98 #104 [ 188.693175] Hardware name: Foundation-v8A (DT) [ 188.693492] pstate: 200001c5 (nzCv dAIF -PAN -UAO) [ 188.694183] pc : has_cpuid_feature+0xf0/0x348 [ 188.694311] lr : verify_local_elf_hwcaps+0x84/0xe8 [ 188.694410] sp : ffff800011b1bf60 [ 188.694536] x29: ffff800011b1bf60 x28: 0000000000000000 [ 188.694707] x27: 0000000000000000 x26: 0000000000000000 [ 188.694801] x25: 0000000000000000 x24: ffff80001189a25c [ 188.694905] x23: 0000000000000000 x22: 0000000000000000 [ 188.694996] x21: ffff8000114aa018 x20: ffff800011156a38 [ 188.695089] x19: ffff800010c944a0 x18: 0000000000000004 [ 188.695187] x17: 0000000000000000 x16: 0000000000000000 [ 188.695280] x15: 0000249dbde5431e x14: 0262cbe497efa1fa [ 188.695371] x13: 0000000000000002 x12: 0000000000002592 [ 188.695472] x11: 0000000000000080 x10: 00400032b5503510 [ 188.695572] x9 : 0000000000000000 x8 : ffff800010c80204 [ 188.695659] x7 : 00000000410fd0f0 x6 : 0000000000000001 [ 188.695750] x5 : 00000000410fd0f0 x4 : 0000000000000000 [ 188.695836] x3 : 0000000000000000 x2 : ffff8000100939d8 [ 188.695919] x1 : 0000000000180420 x0 : 0000000000180480 [ 188.696253] Call trace: [ 188.696410] has_cpuid_feature+0xf0/0x348 [ 188.696504] verify_local_elf_hwcaps+0x84/0xe8 [ 188.696591] check_local_cpu_capabilities+0x44/0x128 [ 188.696666] secondary_start_kernel+0xf4/0x188 [ 188.697150] Code: 52805001 72a00301 6b01001f 54000ec0 (d4210000) [ 188.698639] ---[ end trace 3f12ca47652f7b72 ]--- [ 188.699160] Kernel panic - not syncing: Attempted to kill the idle task! [ 188.699546] Kernel Offset: disabled [ 188.699828] CPU features: 0x00004,20c02008 [ 188.700012] Memory Limit: none [ 188.700538] ---[ end Kernel panic - not syncing: Attempted to kill the idle task! ]--- [root@arch ~]# echo Helo Helo [root@arch ~]# cat /proc/cpuinfo | grep proce processor : 0 Make smp_send_stop() account also for the online status of the calling CPU while evaluating how many CPUs are effectively online: this way, the right number of STOPs is sent, so enforcing a proper freeze of the system at the end of panic even under the above conditions. Fixes: 08e875c16a16c ("arm64: SMP support") Reported-by: Dave Martin <Dave.Martin@arm.com> Acked-by: Mark Rutland <mark.rutland@arm.com> Signed-off-by: Cristian Marussi <cristian.marussi@arm.com> Signed-off-by: Will Deacon <will@kernel.org> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2019-08-27arm64: smp: Treat unknown boot failures as being 'stuck in kernel'Will Deacon
When we fail to bring a secondary CPU online and it fails in an unknown state, we should assume the worst and increment 'cpus_stuck_in_kernel' so that things like kexec() are disabled. Reviewed-by: Mark Rutland <mark.rutland@arm.com> Signed-off-by: Will Deacon <will@kernel.org>
2019-08-27arm64: smp: Don't enter kernel with NULL stack pointer or task structWill Deacon
Although SMP bringup is inherently racy, we can significantly reduce the window during which secondary CPUs can unexpectedly enter the kernel by sanity checking the 'stack' and 'task' fields of the 'secondary_data' structure. If the booting CPU gave up waiting for us, then they will have been cleared to NULL and we should spin in a WFE; WFI loop instead. Reviewed-by: Mark Rutland <mark.rutland@arm.com> Signed-off-by: Will Deacon <will@kernel.org>
2019-08-27arm64: smp: Increase secondary CPU boot timeout valueWill Deacon
When many debug options are enabled simultaneously (e.g. PROVE_LOCKING, KMEMLEAK, DEBUG_PAGE_ALLOC, KASAN etc), it is possible for us to timeout when attempting to boot a secondary CPU and give up. Unfortunately, the CPU will /eventually/ appear, and sit in the background happily stuck in a recursive exception due to a NULL stack pointer. Increase the timeout to 5s, which will of course be enough for anybody. Reviewed-by: Mark Rutland <mark.rutland@arm.com> Signed-off-by: Will Deacon <will@kernel.org>
2019-07-29arm64: smp: Mark expected switch fall-throughAnders Roxell
When fall-through warnings was enabled by default the following warning was starting to show up: In file included from ../include/linux/kernel.h:15, from ../include/linux/list.h:9, from ../include/linux/kobject.h:19, from ../include/linux/of.h:17, from ../include/linux/irqdomain.h:35, from ../include/linux/acpi.h:13, from ../arch/arm64/kernel/smp.c:9: ../arch/arm64/kernel/smp.c: In function ‘__cpu_up’: ../include/linux/printk.h:302:2: warning: this statement may fall through [-Wimplicit-fallthrough=] printk(KERN_CRIT pr_fmt(fmt), ##__VA_ARGS__) ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ../arch/arm64/kernel/smp.c:156:4: note: in expansion of macro ‘pr_crit’ pr_crit("CPU%u: may not have shut down cleanly\n", cpu); ^~~~~~~ ../arch/arm64/kernel/smp.c:157:3: note: here case CPU_STUCK_IN_KERNEL: ^~~~ Rework so that the compiler doesn't warn about fall-through. Fixes: d93512ef0f0e ("Makefile: Globally enable fall-through warning") Signed-off-by: Anders Roxell <anders.roxell@linaro.org> Signed-off-by: Will Deacon <will@kernel.org>
2019-07-12arm64: move jump_label_init() before parse_early_param()Kees Cook
While jump_label_init() was moved earlier in the boot process in efd9e03facd0 ("arm64: Use static keys for CPU features"), it wasn't early enough for early params to use it. The old state of things was as described here... init/main.c calls out to arch-specific things before general jump label and early param handling: asmlinkage __visible void __init start_kernel(void) { ... setup_arch(&command_line); ... smp_prepare_boot_cpu(); ... /* parameters may set static keys */ jump_label_init(); parse_early_param(); ... } x86 setup_arch() wants those earlier, so it handles jump label and early param: void __init setup_arch(char **cmdline_p) { ... jump_label_init(); ... parse_early_param(); ... } arm64 setup_arch() only had early param: void __init setup_arch(char **cmdline_p) { ... parse_early_param(); ... } with jump label later in smp_prepare_boot_cpu(): void __init smp_prepare_boot_cpu(void) { ... jump_label_init(); ... } This moves arm64 jump_label_init() from smp_prepare_boot_cpu() to setup_arch(), as done already on x86, in preparation from early param usage in the init_on_alloc/free() series: https://lkml.kernel.org/r/1561572949.5154.81.camel@lca.pw Link: http://lkml.kernel.org/r/201906271003.005303B52@keescook Signed-off-by: Kees Cook <keescook@chromium.org> Acked-by: Ard Biesheuvel <ard.biesheuvel@linaro.org> Acked-by: Catalin Marinas <catalin.marinas@arm.com> Cc: Alexander Potapenko <glider@google.com> Cc: Qian Cai <cai@lca.pw> Cc: Will Deacon <will@kernel.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2019-07-08Merge tag 'arm64-upstream' of ↵Linus Torvalds
git://git.kernel.org/pub/scm/linux/kernel/git/arm64/linux Pull arm64 updates from Catalin Marinas: - arm64 support for syscall emulation via PTRACE_SYSEMU{,_SINGLESTEP} - Wire up VM_FLUSH_RESET_PERMS for arm64, allowing the core code to manage the permissions of executable vmalloc regions more strictly - Slight performance improvement by keeping softirqs enabled while touching the FPSIMD/SVE state (kernel_neon_begin/end) - Expose a couple of ARMv8.5 features to user (HWCAP): CondM (new XAFLAG and AXFLAG instructions for floating point comparison flags manipulation) and FRINT (rounding floating point numbers to integers) - Re-instate ARM64_PSEUDO_NMI support which was previously marked as BROKEN due to some bugs (now fixed) - Improve parking of stopped CPUs and implement an arm64-specific panic_smp_self_stop() to avoid warning on not being able to stop secondary CPUs during panic - perf: enable the ARM Statistical Profiling Extensions (SPE) on ACPI platforms - perf: DDR performance monitor support for iMX8QXP - cache_line_size() can now be set from DT or ACPI/PPTT if provided to cope with a system cache info not exposed via the CPUID registers - Avoid warning on hardware cache line size greater than ARCH_DMA_MINALIGN if the system is fully coherent - arm64 do_page_fault() and hugetlb cleanups - Refactor set_pte_at() to avoid redundant READ_ONCE(*ptep) - Ignore ACPI 5.1 FADTs reported as 5.0 (infer from the 'arm_boot_flags' introduced in 5.1) - CONFIG_RANDOMIZE_BASE now enabled in defconfig - Allow the selection of ARM64_MODULE_PLTS, currently only done via RANDOMIZE_BASE (and an erratum workaround), allowing modules to spill over into the vmalloc area - Make ZONE_DMA32 configurable * tag 'arm64-upstream' of git://git.kernel.org/pub/scm/linux/kernel/git/arm64/linux: (54 commits) perf: arm_spe: Enable ACPI/Platform automatic module loading arm_pmu: acpi: spe: Add initial MADT/SPE probing ACPI/PPTT: Add function to return ACPI 6.3 Identical tokens ACPI/PPTT: Modify node flag detection to find last IDENTICAL x86/entry: Simplify _TIF_SYSCALL_EMU handling arm64: rename dump_instr as dump_kernel_instr arm64/mm: Drop [PTE|PMD]_TYPE_FAULT arm64: Implement panic_smp_self_stop() arm64: Improve parking of stopped CPUs arm64: Expose FRINT capabilities to userspace arm64: Expose ARMv8.5 CondM capability to userspace arm64: defconfig: enable CONFIG_RANDOMIZE_BASE arm64: ARM64_MODULES_PLTS must depend on MODULES arm64: bpf: do not allocate executable memory arm64/kprobes: set VM_FLUSH_RESET_PERMS on kprobe instruction pages arm64/mm: wire up CONFIG_ARCH_HAS_SET_DIRECT_MAP arm64: module: create module allocations without exec permissions arm64: Allow user selection of ARM64_MODULE_PLTS acpi/arm64: ignore 5.1 FADTs that are reported as 5.0 arm64: Allow selecting Pseudo-NMI again ...
2019-06-25arm64: Implement panic_smp_self_stop()Aaro Koskinen
Currently arm64 uses the default implementation of panic_smp_self_stop() where the CPU runs in a cpu_relax() loop unable to receive IPIs anymore. As a result, when two CPUs panic() simultaneously we get "SMP: failed to stop secondary CPUs" warnings and extra delays before a reset, because smp_send_stop() still tries to stop the other paniced CPU. Provide an implementation of panic_smp_self_stop() that is identical to the IPI CPU stop handler, so that the online status of stopped CPUs gets properly updated. Acked-by: Will Deacon <will.deacon@arm.com> Signed-off-by: Aaro Koskinen <aaro.koskinen@nokia.com> Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
2019-06-25arm64: Improve parking of stopped CPUsJayachandran C
The current code puts the stopped cpus in an 'yield' instruction loop. Using a busy loop here is unnecessary, we can use the cpu_park_loop() function here to do a wfi/wfe. Signed-off-by: Jayachandran C <jnair@caviumnetworks.com> Signed-off-by: Aaro Koskinen <aaro.koskinen@nokia.com> Acked-by: Will Deacon <will.deacon@arm.com> Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
2019-06-21arm64: fix kernel stack overflow in kdump capture kernelWei Li
When enabling ARM64_PSEUDO_NMI feature in kdump capture kernel, it will report a kernel stack overflow exception: [ 0.000000] CPU features: detected: IRQ priority masking [ 0.000000] alternatives: patching kernel code [ 0.000000] Insufficient stack space to handle exception! [ 0.000000] ESR: 0x96000044 -- DABT (current EL) [ 0.000000] FAR: 0x0000000000000040 [ 0.000000] Task stack: [0xffff0000097f0000..0xffff0000097f4000] [ 0.000000] IRQ stack: [0x0000000000000000..0x0000000000004000] [ 0.000000] Overflow stack: [0xffff80002b7cf290..0xffff80002b7d0290] [ 0.000000] CPU: 0 PID: 0 Comm: swapper Not tainted 4.19.34-lw+ #3 [ 0.000000] pstate: 400003c5 (nZcv DAIF -PAN -UAO) [ 0.000000] pc : el1_sync+0x0/0xb8 [ 0.000000] lr : el1_irq+0xb8/0x140 [ 0.000000] sp : 0000000000000040 [ 0.000000] pmr_save: 00000070 [ 0.000000] x29: ffff0000097f3f60 x28: ffff000009806240 [ 0.000000] x27: 0000000080000000 x26: 0000000000004000 [ 0.000000] x25: 0000000000000000 x24: ffff000009329028 [ 0.000000] x23: 0000000040000005 x22: ffff000008095c6c [ 0.000000] x21: ffff0000097f3f70 x20: 0000000000000070 [ 0.000000] x19: ffff0000097f3e30 x18: ffffffffffffffff [ 0.000000] x17: 0000000000000000 x16: 0000000000000000 [ 0.000000] x15: ffff0000097f9708 x14: ffff000089a382ef [ 0.000000] x13: ffff000009a382fd x12: ffff000009824000 [ 0.000000] x11: ffff0000097fb7b0 x10: ffff000008730028 [ 0.000000] x9 : ffff000009440018 x8 : 000000000000000d [ 0.000000] x7 : 6b20676e69686374 x6 : 000000000000003b [ 0.000000] x5 : 0000000000000000 x4 : ffff000008093600 [ 0.000000] x3 : 0000000400000008 x2 : 7db2e689fc2b8e00 [ 0.000000] x1 : 0000000000000000 x0 : ffff0000097f3e30 [ 0.000000] Kernel panic - not syncing: kernel stack overflow [ 0.000000] CPU: 0 PID: 0 Comm: swapper Not tainted 4.19.34-lw+ #3 [ 0.000000] Call trace: [ 0.000000] dump_backtrace+0x0/0x1b8 [ 0.000000] show_stack+0x24/0x30 [ 0.000000] dump_stack+0xa8/0xcc [ 0.000000] panic+0x134/0x30c [ 0.000000] __stack_chk_fail+0x0/0x28 [ 0.000000] handle_bad_stack+0xfc/0x108 [ 0.000000] __bad_stack+0x90/0x94 [ 0.000000] el1_sync+0x0/0xb8 [ 0.000000] init_gic_priority_masking+0x4c/0x70 [ 0.000000] smp_prepare_boot_cpu+0x60/0x68 [ 0.000000] start_kernel+0x1e8/0x53c [ 0.000000] ---[ end Kernel panic - not syncing: kernel stack overflow ]--- The reason is init_gic_priority_masking() may unmask PSR.I while the irq stacks are not inited yet. Some "NMI" could be raised unfortunately and it will just go into this exception. In this patch, we just write the PMR in smp_prepare_boot_cpu(), and delay unmasking PSR.I after irq stacks inited in init_IRQ(). Fixes: e79321883842 ("arm64: Switch to PMR masking when starting CPUs") Cc: Will Deacon <will.deacon@arm.com> Reviewed-by: Marc Zyngier <marc.zyngier@arm.com> Signed-off-by: Wei Li <liwei391@huawei.com> [JT: make init_gic_priority_masking() not modify daif, rebase on other priority masking fixes] Signed-off-by: Julien Thierry <julien.thierry@arm.com> Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
2019-06-21arm64: Fix incorrect irqflag restore for priority maskingJulien Thierry
When using IRQ priority masking to disable interrupts, in order to deal with the PSR.I state, local_irq_save() would convert the I bit into a PMR value (GIC_PRIO_IRQOFF). This resulted in local_irq_restore() potentially modifying the value of PMR in undesired location due to the state of PSR.I upon flag saving [1]. In an attempt to solve this issue in a less hackish manner, introduce a bit (GIC_PRIO_IGNORE_PMR) for the PMR values that can represent whether PSR.I is being used to disable interrupts, in which case it takes precedence of the status of interrupt masking via PMR. GIC_PRIO_PSR_I_SET is chosen such that (<pmr_value> | GIC_PRIO_PSR_I_SET) does not mask more interrupts than <pmr_value> as some sections (e.g. arch_cpu_idle(), interrupt acknowledge path) requires PMR not to mask interrupts that could be signaled to the CPU when using only PSR.I. [1] https://www.spinics.net/lists/arm-kernel/msg716956.html Fixes: 4a503217ce37 ("arm64: irqflags: Use ICC_PMR_EL1 for interrupt masking") Cc: <stable@vger.kernel.org> # 5.1.x- Reported-by: Zenghui Yu <yuzenghui@huawei.com> Cc: Steven Rostedt <rostedt@goodmis.org> Cc: Wei Li <liwei391@huawei.com> Cc: Will Deacon <will.deacon@arm.com> Cc: Christoffer Dall <christoffer.dall@arm.com> Cc: James Morse <james.morse@arm.com> Cc: Suzuki K Pouloze <suzuki.poulose@arm.com> Cc: Oleg Nesterov <oleg@redhat.com> Reviewed-by: Marc Zyngier <marc.zyngier@arm.com> Signed-off-by: Julien Thierry <julien.thierry@arm.com> Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
2019-06-19treewide: Replace GPLv2 boilerplate/reference with SPDX - rule 234Thomas Gleixner
Based on 1 normalized pattern(s): this program is free software you can redistribute it and or modify it under the terms of the gnu general public license version 2 as published by the free software foundation this program is distributed in the hope that it will be useful but without any warranty without even the implied warranty of merchantability or fitness for a particular purpose see the gnu general public license for more details you should have received a copy of the gnu general public license along with this program if not see http www gnu org licenses extracted by the scancode license scanner the SPDX license identifier GPL-2.0-only has been chosen to replace the boilerplate/reference in 503 file(s). Signed-off-by: Thomas Gleixner <tglx@linutronix.de> Reviewed-by: Alexios Zavras <alexios.zavras@intel.com> Reviewed-by: Allison Randal <allison@lohutok.net> Reviewed-by: Enrico Weigelt <info@metux.net> Cc: linux-spdx@vger.kernel.org Link: https://lkml.kernel.org/r/20190602204653.811534538@linutronix.de Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2019-04-04acpi: Create subtable parsing infrastructureKeith Busch
Parsing entries in an ACPI table had assumed a generic header structure. There is no standard ACPI header, though, so less common layouts with different field sizes required custom parsers to go through their subtable entry list. Create the infrastructure for adding different table types so parsing the entries array may be more reused for all ACPI system tables and the common code doesn't need to be duplicated. Reviewed-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com> Acked-by: Jonathan Cameron <Jonathan.Cameron@huawei.com> Tested-by: Jonathan Cameron <Jonathan.Cameron@huawei.com> Signed-off-by: Keith Busch <keith.busch@intel.com> Tested-by: Brice Goglin <Brice.Goglin@inria.fr> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2019-02-06arm64: Switch to PMR masking when starting CPUsJulien Thierry
Once the boot CPU has been prepared or a new secondary CPU has been brought up, use ICC_PMR_EL1 to mask interrupts on that CPU and clear PSR.I bit. Since ICC_PMR_EL1 is initialized at CPU bringup, avoid overwriting it in the GICv3 driver. Signed-off-by: Julien Thierry <julien.thierry@arm.com> Suggested-by: Daniel Thompson <daniel.thompson@linaro.org> Acked-by: Marc Zyngier <marc.zyngier@arm.com> Cc: Will Deacon <will.deacon@arm.com> Cc: James Morse <james.morse@arm.com> Cc: Marc Zyngier <marc.zyngier@arm.com> Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
2019-02-06arm64: alternative: Apply alternatives early in boot processDaniel Thompson
Currently alternatives are applied very late in the boot process (and a long time after we enable scheduling). Some alternative sequences, such as those that alter the way CPU context is stored, must be applied much earlier in the boot sequence. Introduce apply_boot_alternatives() to allow some alternatives to be applied immediately after we detect the CPU features of the boot CPU. Signed-off-by: Daniel Thompson <daniel.thompson@linaro.org> [julien.thierry@arm.com: rename to fit new cpufeature framework better, apply BOOT_SCOPE feature early in boot] Signed-off-by: Julien Thierry <julien.thierry@arm.com> Reviewed-by: Suzuki K Poulose <suzuki.poulose@arm.com> Reviewed-by: Marc Zyngier <marc.zyngier@arm.com> Cc: Will Deacon <will.deacon@arm.com> Cc: Christoffer Dall <christoffer.dall@arm.com> Cc: Suzuki K Poulose <suzuki.poulose@arm.com> Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
2018-12-10arm64: smp: Handle errors reported by the firmwareSuzuki K Poulose
The __cpu_up() routine ignores the errors reported by the firmware for a CPU bringup operation and looks for the error status set by the booting CPU. If the CPU never entered the kernel, we could end up in assuming stale error status, which otherwise would have been set/cleared appropriately by the booting CPU. Reported-by: Steve Capper <steve.capper@arm.com> Cc: Will Deacon <will.deacon@arm.com> Signed-off-by: Suzuki K Poulose <suzuki.poulose@arm.com> Signed-off-by: Will Deacon <will.deacon@arm.com>
2018-12-10arm64: smp: Rework early feature mismatched detectionWill Deacon
Rather than add additional variables to detect specific early feature mismatches with secondary CPUs, we can instead dedicate the upper bits of the CPU boot status word to flag specific mismatches. This allows us to communicate both granule and VA-size mismatches back to the primary CPU without the need for additional book-keeping. Tested-by: Steve Capper <steve.capper@arm.com> Signed-off-by: Will Deacon <will.deacon@arm.com>
2018-12-10arm64: Kconfig: Re-jig CONFIG options for 52-bit VAWill Deacon
Enabling 52-bit VAs for userspace is pretty confusing, since it requires you to select "48-bit" virtual addressing in the Kconfig. Rework the logic so that 52-bit user virtual addressing is advertised in the "Virtual address space size" choice, along with some help text to describe its interaction with Pointer Authentication. The EXPERT-only option to force all user mappings to the 52-bit range is then made available immediately below the VA size selection. Signed-off-by: Will Deacon <will.deacon@arm.com>
2018-12-10arm64: mm: Prevent mismatched 52-bit VA supportSteve Capper
For cases where there is a mismatch in ARMv8.2-LVA support between CPUs we have to be careful in allowing secondary CPUs to boot if 52-bit virtual addresses have already been enabled on the boot CPU. This patch adds code to the secondary startup path. If the boot CPU has enabled 52-bit VAs then ID_AA64MMFR2_EL1 is checked to see if the secondary can also enable 52-bit support. If not, the secondary is prevented from booting and an error message is displayed indicating why. Technically this patch could be implemented using the cpufeature code when considering 52-bit userspace support. However, we employ low level checks here as the cpufeature code won't be able to run if we have mismatched 52-bit kernel va support. Signed-off-by: Steve Capper <steve.capper@arm.com> Signed-off-by: Will Deacon <will.deacon@arm.com>
2018-09-28arm64: use for_each_of_cpu_node iteratorRob Herring
Use the for_each_of_cpu_node iterator to iterate over cpu nodes. This has the side effect of defaulting to iterating using "cpu" node names in preference to the deprecated (for FDT) device_type == "cpu". Cc: Catalin Marinas <catalin.marinas@arm.com> Cc: linux-arm-kernel@lists.infradead.org Acked-by: Will Deacon <will.deacon@arm.com> Signed-off-by: Rob Herring <robh@kernel.org>
2018-07-09arm64: numa: rework ACPI NUMA initializationLorenzo Pieralisi
Current ACPI ARM64 NUMA initialization code in acpi_numa_gicc_affinity_init() carries out NUMA nodes creation and cpu<->node mappings at the same time in the arch backend so that a single SRAT walk is needed to parse both pieces of information. This implies that the cpu<->node mappings must be stashed in an array (sized NR_CPUS) so that SMP code can later use the stashed values to avoid another SRAT table walk to set-up the early cpu<->node mappings. If the kernel is configured with a NR_CPUS value less than the actual processor entries in the SRAT (and MADT), the logic in acpi_numa_gicc_affinity_init() is broken in that the cpu<->node mapping is only carried out (and stashed for future use) only for a number of SRAT entries up to NR_CPUS, which do not necessarily correspond to the possible cpus detected at SMP initialization in acpi_map_gic_cpu_interface() (ie MADT and SRAT processor entries order is not enforced), which leaves the kernel with broken cpu<->node mappings. Furthermore, given the current ACPI NUMA code parsing logic in acpi_numa_gicc_affinity_init(), PXM domains for CPUs that are not parsed because they exceed NR_CPUS entries are not mapped to NUMA nodes (ie the PXM corresponding node is not created in the kernel) leaving the system with a broken NUMA topology. Rework the ACPI ARM64 NUMA initialization process so that the NUMA nodes creation and cpu<->node mappings are decoupled. cpu<->node mappings are moved to SMP initialization code (where they are needed), at the cost of an extra SRAT walk so that ACPI NUMA mappings can be batched before being applied, fixing current parsing pitfalls. Acked-by: Hanjun Guo <hanjun.guo@linaro.org> Tested-by: John Garry <john.garry@huawei.com> Fixes: d8b47fca8c23 ("arm64, ACPI, NUMA: NUMA support based on SRAT and SLIT") Link: http://lkml.kernel.org/r/1527768879-88161-2-git-send-email-xiexiuqi@huawei.com Reported-by: Xie XiuQi <xiexiuqi@huawei.com> Signed-off-by: Lorenzo Pieralisi <lorenzo.pieralisi@arm.com> Cc: Punit Agrawal <punit.agrawal@arm.com> Cc: Jonathan Cameron <jonathan.cameron@huawei.com> Cc: Will Deacon <will.deacon@arm.com> Cc: Hanjun Guo <guohanjun@huawei.com> Cc: Ganapatrao Kulkarni <gkulkarni@caviumnetworks.com> Cc: Jeremy Linton <jeremy.linton@arm.com> Cc: Catalin Marinas <catalin.marinas@arm.com> Cc: Xie XiuQi <xiexiuqi@huawei.com> Signed-off-by: Will Deacon <will.deacon@arm.com>
2018-07-06arm64: smp: remove cpu and numa topology information when hotplugging out CPUSudeep Holla
We already repopulate the information on CPU hotplug-in, so we can safely remove the CPU topology and NUMA cpumap information during CPU hotplug out operation. This will help to provide the correct cpumask for scheduler domains. Cc: Catalin Marinas <catalin.marinas@arm.com> Cc: Will Deacon <will.deacon@arm.com> Tested-by: Ganapatrao Kulkarni <ganapatrao.kulkarni@cavium.com> Tested-by: Hanjun Guo <hanjun.guo@linaro.org> Signed-off-by: Sudeep Holla <sudeep.holla@arm.com> Signed-off-by: Will Deacon <will.deacon@arm.com>
2018-07-06arm64: numa: separate out updates to percpu nodeid and NUMA node cpumapSudeep Holla
Currently numa_clear_node removes both cpu information from the NUMA node cpumap as well as the NUMA node id from the cpu. Similarly numa_store_cpu_info updates both percpu nodeid and NUMA cpumap. However we need to retain the numa node id for the cpu and only remove the cpu information from the numa node cpumap during CPU hotplug out. The same can be extended for hotplugging in the CPU. This patch separates out numa_{add,remove}_cpu from numa_clear_node and numa_store_cpu_info. Cc: Catalin Marinas <catalin.marinas@arm.com> Cc: Will Deacon <will.deacon@arm.com> Reviewed-by: Ganapatrao Kulkarni <ganapatrao.kulkarni@cavium.com> Tested-by: Ganapatrao Kulkarni <ganapatrao.kulkarni@cavium.com> Tested-by: Hanjun Guo <hanjun.guo@linaro.org> Signed-off-by: Sudeep Holla <sudeep.holla@arm.com> Signed-off-by: Will Deacon <will.deacon@arm.com>
2018-06-19arm64: make secondary_start_kernel() notraceZhizhou Zhang
We can't call function trace hook before setup percpu offset. When entering secondary_start_kernel(), percpu offset has not been initialized. So this lead hotplug malfunction. Here is the flow to reproduce this bug: echo 0 > /sys/devices/system/cpu/cpu1/online echo function > /sys/kernel/debug/tracing/current_tracer echo 1 > /sys/kernel/debug/tracing/tracing_on echo 1 > /sys/devices/system/cpu/cpu1/online Acked-by: Mark Rutland <mark.rutland@arm.com> Tested-by: Suzuki K Poulose <suzuki.poulose@arm.com> Signed-off-by: Zhizhou Zhang <zhizhouzhang@asrmicro.com> Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
2018-03-26arm64: capabilities: Change scope of VHE to Boot CPU featureSuzuki K Poulose
We expect all CPUs to be running at the same EL inside the kernel with or without VHE enabled and we have strict checks to ensure that any mismatch triggers a kernel panic. If VHE is enabled, we use the feature based on the boot CPU and all other CPUs should follow. This makes it a perfect candidate for a capability based on the boot CPU, which should be matched by all the CPUs (both when is ON and OFF). This saves us some not-so-pretty hooks and special code, just for verifying the conflict. The patch also makes the VHE capability entry depend on CONFIG_ARM64_VHE. Cc: Marc Zyngier <marc.zyngier@arm.com> Cc: Will Deacon <will.deacon@arm.com> Reviewed-by: Dave Martin <dave.martin@arm.com> Signed-off-by: Suzuki K Poulose <suzuki.poulose@arm.com> Signed-off-by: Will Deacon <will.deacon@arm.com>
2018-03-26arm64: capabilities: Move errata work around check on boot CPUSuzuki K Poulose
We trigger CPU errata work around check on the boot CPU from smp_prepare_boot_cpu() to make sure that we run the checks only after the CPU feature infrastructure is initialised. While this is correct, we can also do this from init_cpu_features() which initilises the infrastructure, and is called only on the Boot CPU. This helps to consolidate the CPU capability handling to cpufeature.c. No functional changes. Cc: Will Deacon <will.deacon@arm.com> Cc: Catalin Marinas <catalin.marinas@arm.com> Cc: Mark Rutland <mark.rutland@arm.com> Reviewed-by: Dave Martin <dave.martin@arm.com> Signed-off-by: Suzuki K Poulose <suzuki.poulose@arm.com> Signed-off-by: Will Deacon <will.deacon@arm.com>
2018-01-13arm64: kernel: Add arch-specific SDEI entry code and CPU maskingJames Morse
The Software Delegated Exception Interface (SDEI) is an ARM standard for registering callbacks from the platform firmware into the OS. This is typically used to implement RAS notifications. Such notifications enter the kernel at the registered entry-point with the register values of the interrupted CPU context. Because this is not a CPU exception, it cannot reuse the existing entry code. (crucially we don't implicitly know which exception level we interrupted), Add the entry point to entry.S to set us up for calling into C code. If the event interrupted code that had interrupts masked, we always return to that location. Otherwise we pretend this was an IRQ, and use SDEI's complete_and_resume call to return to vbar_el1 + offset. This allows the kernel to deliver signals to user space processes. For KVM this triggers the world switch, a quick spin round vcpu_run, then back into the guest, unless there are pending signals. Add sdei_mask_local_cpu() calls to the smp_send_stop() code, this covers the panic() code-path, which doesn't invoke cpuhotplug notifiers. Because we can interrupt entry-from/exit-to another EL, we can't trust the value in sp_el0 or x29, even if we interrupted the kernel, in this case the code in entry.S will save/restore sp_el0 and use the value in __entry_task. When we have VMAP stacks we can interrupt the stack-overflow test, which stirs x0 into sp, meaning we have to have our own VMAP stacks. For now these are allocated when we probe the interface. Future patches will add refcounting hooks to allow the arch code to allocate them lazily. Signed-off-by: James Morse <james.morse@arm.com> Reviewed-by: Catalin Marinas <catalin.marinas@arm.com> Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
2017-11-02arm64: Move the async/fiq helpers to explicitly set process context flagsJames Morse
Remove the local_{async,fiq}_{en,dis}able macros as they don't respect our newly defined order and are only used to set the flags for process context when we bring CPUs online. Add a helper to do this. The IRQ flag varies as we want it masked on the boot CPU until we are ready to handle interrupts. The boot CPU unmasks SError during early boot once it can print an error message. If we can print an error message about SError, we can do the same for FIQ. Debug exceptions are already enabled by __cpu_setup(), which has also configured MDSCR_EL1 to disable MDE and KDE. Signed-off-by: James Morse <james.morse@arm.com> Reviewed-by: Julien Thierry <julien.thierry@arm.com> Reviewed-by: Catalin Marinas <catalin.marinas@arm.com> Signed-off-by: Will Deacon <will.deacon@arm.com>
2017-11-02arm64: explicitly mask all exceptionsJames Morse
There are a few places where we want to mask all exceptions. Today we do this in a piecemeal fashion, typically we expect the caller to have masked irqs and the arch code masks debug exceptions, ignoring serror which is probably masked. Make it clear that 'mask all exceptions' is the intention by adding helpers to do exactly that. This will let us unmask SError without having to add 'oh and SError' to these paths. Signed-off-by: James Morse <james.morse@arm.com> Reviewed-by: Julien Thierry <julien.thierry@arm.com> Reviewed-by: Catalin Marinas <catalin.marinas@arm.com> Signed-off-by: Will Deacon <will.deacon@arm.com>
2017-10-04arm64: consistently log boot/secondary CPU IDsMark Rutland
Currently we inconsistently log identifying information for the boot CPU and secondary CPUs. For the boot CPU, we log the MIDR and MPIDR across separate messages, whereas for the secondary CPUs we only log the MIDR. In some cases, it would be useful to know the MPIDR of secondary CPUs, and it would be nice for these messages to be consistent. This patch ensures that in the primary and secondary boot paths, we log both the MPIDR and MIDR in a single message, with a consistent format. the MPIDR is consistently padded to 10 hex characters to cover Aff3 in bits 39:32, so that IDs can be compared easily. The newly redundant message in setup_arch() is removed. Signed-off-by: Mark Rutland <mark.rutland@arm.com> Cc: Al Stone <ahs3@redhat.com> Cc: Catalin Marinas <catalin.marinas@arm.com> Cc: Will Deacon <will.deacon@arm.com> [will: added '0x' prefixes consistently] Signed-off-by: Will Deacon <will.deacon@arm.com>
2017-09-08treewide: make "nr_cpu_ids" unsignedAlexey Dobriyan
First, number of CPUs can't be negative number. Second, different signnnedness leads to suboptimal code in the following cases: 1) kmalloc(nr_cpu_ids * sizeof(X)); "int" has to be sign extended to size_t. 2) while (loff_t *pos < nr_cpu_ids) MOVSXD is 1 byte longed than the same MOV. Other cases exist as well. Basically compiler is told that nr_cpu_ids can't be negative which can't be deduced if it is "int". Code savings on allyesconfig kernel: -3KB add/remove: 0/0 grow/shrink: 25/264 up/down: 261/-3631 (-3370) function old new delta coretemp_cpu_online 450 512 +62 rcu_init_one 1234 1272 +38 pci_device_probe 374 399 +25 ... pgdat_reclaimable_pages 628 556 -72 select_fallback_rq 446 369 -77 task_numa_find_cpu 1923 1807 -116 Link: http://lkml.kernel.org/r/20170819114959.GA30580@avx2 Signed-off-by: Alexey Dobriyan <adobriyan@gmail.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2017-08-21arm64: kexec: have own crash_smp_send_stop() for crash dump for nonpanic coresHoeun Ryu
Commit 0ee5941 : (x86/panic: replace smp_send_stop() with kdump friendly version in panic path) introduced crash_smp_send_stop() which is a weak function and can be overridden by architecture codes to fix the side effect caused by commit f06e515 : (kernel/panic.c: add "crash_kexec_post_ notifiers" option). ARM64 architecture uses the weak version function and the problem is that the weak function simply calls smp_send_stop() which makes other CPUs offline and takes away the chance to save crash information for nonpanic CPUs in machine_crash_shutdown() when crash_kexec_post_notifiers kernel option is enabled. Calling smp_send_crash_stop() in machine_crash_shutdown() is useless because all nonpanic CPUs are already offline by smp_send_stop() in this case and smp_send_crash_stop() only works against online CPUs. The result is that secondary CPUs registers are not saved by crash_save_cpu() and the vmcore file misreports these CPUs as being offline. crash_smp_send_stop() is implemented to fix this problem by replacing the existing smp_send_crash_stop() and adding a check for multiple calling to the function. The function (strong symbol version) saves crash information for nonpanic CPUs and machine_crash_shutdown() tries to save crash information for nonpanic CPUs only when crash_kexec_post_notifiers kernel option is disabled. * crash_kexec_post_notifiers : false panic() __crash_kexec() machine_crash_shutdown() crash_smp_send_stop() <= save crash dump for nonpanic cores * crash_kexec_post_notifiers : true panic() crash_smp_send_stop() <= save crash dump for nonpanic cores __crash_kexec() machine_crash_shutdown() crash_smp_send_stop() <= just return. Signed-off-by: Hoeun Ryu <hoeun.ryu@gmail.com> Reviewed-by: James Morse <james.morse@arm.com> Tested-by: James Morse <james.morse@arm.com> Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
2017-08-15arm64: kernel: remove {THREAD,IRQ_STACK}_START_SPArd Biesheuvel
For historical reasons, we leave the top 16 bytes of our task and IRQ stacks unused, a practice used to ensure that the SP can always be masked to find the base of the current stack (historically, where thread_info could be found). However, this is not necessary, as: * When an exception is taken from a task stack, we decrement the SP by S_FRAME_SIZE and stash the exception registers before we compare the SP against the task stack. In such cases, the SP must be at least S_FRAME_SIZE below the limit, and can be safely masked to determine whether the task stack is in use. * When transitioning to an IRQ stack, we'll place a dummy frame onto the IRQ stack before enabling asynchronous exceptions, or executing code we expect to trigger faults. Thus, if an exception is taken from the IRQ stack, the SP must be at least 16 bytes below the limit. * We no longer mask the SP to find the thread_info, which is now found via sp_el0. Note that historically, the offset was critical to ensure that cpu_switch_to() found the correct stack for new threads that hadn't yet executed ret_from_fork(). Given that, this initial offset serves no purpose, and can be removed. This brings us in-line with other architectures (e.g. x86) which do not rely on this masking. Signed-off-by: Ard Biesheuvel <ard.biesheuvel@linaro.org> [Mark: rebase, kill THREAD_START_SP, commit msg additions] Signed-off-by: Mark Rutland <mark.rutland@arm.com> Reviewed-by: Will Deacon <will.deacon@arm.com> Tested-by: Laura Abbott <labbott@redhat.com> Cc: Catalin Marinas <catalin.marinas@arm.com> Cc: James Morse <james.morse@arm.com>
2017-07-20arm64: Convert to using %pOF instead of full_nameRob Herring
Now that we have a custom printf format specifier, convert users of full_name to use %pOF instead. This is preparation to remove storing of the full path string for each node. Signed-off-by: Rob Herring <robh@kernel.org> Cc: Catalin Marinas <catalin.marinas@arm.com> Cc: Will Deacon <will.deacon@arm.com> Cc: linux-arm-kernel@lists.infradead.org Signed-off-by: Will Deacon <will.deacon@arm.com>
2017-05-23arm64: Adjust system_state checkThomas Gleixner
To enable smp_processor_id() and might_sleep() debug checks earlier, it's required to add system states between SYSTEM_BOOTING and SYSTEM_RUNNING. Adjust the system_state check in smp_send_stop() to handle the extra states. Tested-by: Mark Rutland <mark.rutland@arm.com> Signed-off-by: Thomas Gleixner <tglx@linutronix.de> Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> Acked-by: Mark Rutland <mark.rutland@arm.com> Acked-by: Catalin Marinas <catalin.marinas@arm.com> Cc: Greg Kroah-Hartman <gregkh@linuxfoundation.org> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Steven Rostedt <rostedt@goodmis.org> Cc: Will Deacon <will.deacon@arm.com> Link: http://lkml.kernel.org/r/20170516184735.112589728@linutronix.de Signed-off-by: Ingo Molnar <mingo@kernel.org>
2017-05-05Merge tag 'arm64-upstream' of ↵Linus Torvalds
git://git.kernel.org/pub/scm/linux/kernel/git/arm64/linux Pull arm64 updates from Catalin Marinas: - kdump support, including two necessary memblock additions: memblock_clear_nomap() and memblock_cap_memory_range() - ARMv8.3 HWCAP bits for JavaScript conversion instructions, complex numbers and weaker release consistency - arm64 ACPI platform MSI support - arm perf updates: ACPI PMU support, L3 cache PMU in some Qualcomm SoCs, Cortex-A53 L2 cache events and DTLB refills, MAINTAINERS update for DT perf bindings - architected timer errata framework (the arch/arm64 changes only) - support for DMA_ATTR_FORCE_CONTIGUOUS in the arm64 iommu DMA API - arm64 KVM refactoring to use common system register definitions - remove support for ASID-tagged VIVT I-cache (no ARMv8 implementation using it and deprecated in the architecture) together with some I-cache handling clean-up - PE/COFF EFI header clean-up/hardening - define BUG() instruction without CONFIG_BUG * tag 'arm64-upstream' of git://git.kernel.org/pub/scm/linux/kernel/git/arm64/linux: (92 commits) arm64: Fix the DMA mmap and get_sgtable API with DMA_ATTR_FORCE_CONTIGUOUS arm64: Print DT machine model in setup_machine_fdt() arm64: pmu: Wire-up Cortex A53 L2 cache events and DTLB refills arm64: module: split core and init PLT sections arm64: pmuv3: handle pmuv3+ arm64: Add CNTFRQ_EL0 trap handler arm64: Silence spurious kbuild warning on menuconfig arm64: pmuv3: use arm_pmu ACPI framework arm64: pmuv3: handle !PMUv3 when probing drivers/perf: arm_pmu: add ACPI framework arm64: add function to get a cpu's MADT GICC table drivers/perf: arm_pmu: split out platform device probe logic drivers/perf: arm_pmu: move irq request/free into probe drivers/perf: arm_pmu: split cpu-local irq request/free drivers/perf: arm_pmu: rename irq request/free functions drivers/perf: arm_pmu: handle no platform_device drivers/perf: arm_pmu: simplify cpu_pmu_request_irqs() drivers/perf: arm_pmu: factor out pmu registration drivers/perf: arm_pmu: fold init into alloc drivers/perf: arm_pmu: define armpmu_init_fn ...
2017-04-12Merge branch 'will/for-next/perf' into for-next/coreCatalin Marinas
* will/for-next/perf: arm64: pmuv3: use arm_pmu ACPI framework arm64: pmuv3: handle !PMUv3 when probing drivers/perf: arm_pmu: add ACPI framework arm64: add function to get a cpu's MADT GICC table drivers/perf: arm_pmu: split out platform device probe logic drivers/perf: arm_pmu: move irq request/free into probe drivers/perf: arm_pmu: split cpu-local irq request/free drivers/perf: arm_pmu: rename irq request/free functions drivers/perf: arm_pmu: handle no platform_device drivers/perf: arm_pmu: simplify cpu_pmu_request_irqs() drivers/perf: arm_pmu: factor out pmu registration drivers/perf: arm_pmu: fold init into alloc drivers/perf: arm_pmu: define armpmu_init_fn drivers/perf: arm_pmu: remove pointless PMU disabling perf: qcom: Add L3 cache PMU driver drivers/perf: arm_pmu: split irq request from enable drivers/perf: arm_pmu: manage interrupts per-cpu drivers/perf: arm_pmu: rework per-cpu allocation MAINTAINERS: Add file patterns for perf device tree bindings
2017-04-11arm64: add function to get a cpu's MADT GICC tableMark Rutland
Currently the ACPI parking protocol code needs to parse each CPU's MADT GICC table to extract the mailbox address and so on. Each time we parse a GICC table, we call back to the parking protocol code to parse it. This has been fine so far, but we're about to have more code that needs to extract data from the GICC tables, and adding a callback for each user is going to get unwieldy. Instead, this patch ensures that we stash a copy of each CPU's GICC table at boot time, such that anything needing to parse it can later request it. This will allow for other parsers of GICC, and for simplification to the ACPI parking protocol code. Note that we must store a copy, rather than a pointer, since the core ACPI code temporarily maps/unmaps tables while iterating over them. Since we parse the MADT before we know how many CPUs we have (and hence before we setup the percpu areas), we must use an NR_CPUS sized array. Signed-off-by: Mark Rutland <mark.rutland@arm.com> Reviewed-by: Lorenzo Pieralisi <lorenzo.pieralisi@arm.com> Tested-by: Jeremy Linton <jeremy.linton@arm.com> Cc: Catalin Marinas <catalin.marinas@arm.com> Cc: Will Deacon <will.deacon@arm.com> Signed-off-by: Will Deacon <will.deacon@arm.com>
2017-04-05arm64: kdump: implement machine_crash_shutdown()AKASHI Takahiro
Primary kernel calls machine_crash_shutdown() to shut down non-boot cpus and save registers' status in per-cpu ELF notes before starting crash dump kernel. See kernel_kexec(). Even if not all secondary cpus have shut down, we do kdump anyway. As we don't have to make non-boot(crashed) cpus offline (to preserve correct status of cpus at crash dump) before shutting down, this patch also adds a variant of smp_send_stop(). Signed-off-by: AKASHI Takahiro <takahiro.akashi@linaro.org> Reviewed-by: James Morse <james.morse@arm.com> Acked-by: Catalin Marinas <catalin.marinas@arm.com> Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
2017-03-30arm64: fix NULL dereference in have_cpu_die()Mark Salter
Commit 5c492c3f5255 ("arm64: smp: Add function to determine if cpus are stuck in the kernel") added a helper function to determine if die() is supported in cpu_ops. This function assumes a cpu will have a valid cpu_ops entry, but that may not be the case for cpu0 is spin-table or parking protocol is used to boot secondary cpus. In that case, there is a NULL dereference if have_cpu_die() is called by cpu0. So add a check for a valid cpu_ops before dereferencing it. Fixes: 5c492c3f5255 ("arm64: smp: Add function to determine if cpus are stuck in the kernel") Signed-off-by: Mark Salter <msalter@redhat.com> Signed-off-by: Will Deacon <will.deacon@arm.com>
2017-03-23arm64: alternatives: apply boot time fixups via the linear mappingArd Biesheuvel
One important rule of thumb when desiging a secure software system is that memory should never be writable and executable at the same time. We mostly adhere to this rule in the kernel, except at boot time, when regions may be mapped RWX until after we are done applying alternatives or making other one-off changes. For the alternative patching, we can improve the situation by applying the fixups via the linear mapping, which is never mapped with executable permissions. So map the linear alias of .text with RW- permissions initially, and remove the write permissions as soon as alternative patching has completed. Reviewed-by: Laura Abbott <labbott@redhat.com> Reviewed-by: Mark Rutland <mark.rutland@arm.com> Tested-by: Mark Rutland <mark.rutland@arm.com> Signed-off-by: Ard Biesheuvel <ard.biesheuvel@linaro.org> Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
2017-03-03sched/headers: Move task->mm handling methods to <linux/sched/mm.h>Ingo Molnar
Move the following task->mm helper APIs into a new header file, <linux/sched/mm.h>, to further reduce the size and complexity of <linux/sched.h>. Here are how the APIs are used in various kernel files: # mm_alloc(): arch/arm/mach-rpc/ecard.c fs/exec.c include/linux/sched/mm.h kernel/fork.c # __mmdrop(): arch/arc/include/asm/mmu_context.h include/linux/sched/mm.h kernel/fork.c # mmdrop(): arch/arm/mach-rpc/ecard.c arch/m68k/sun3/mmu_emu.c arch/x86/mm/tlb.c drivers/gpu/drm/amd/amdkfd/kfd_process.c drivers/gpu/drm/i915/i915_gem_userptr.c drivers/infiniband/hw/hfi1/file_ops.c drivers/vfio/vfio_iommu_spapr_tce.c fs/exec.c fs/proc/base.c fs/proc/task_mmu.c fs/proc/task_nommu.c fs/userfaultfd.c include/linux/mmu_notifier.h include/linux/sched/mm.h kernel/fork.c kernel/futex.c kernel/sched/core.c mm/khugepaged.c mm/ksm.c mm/mmu_context.c mm/mmu_notifier.c mm/oom_kill.c virt/kvm/kvm_main.c # mmdrop_async_fn(): include/linux/sched/mm.h # mmdrop_async(): include/linux/sched/mm.h kernel/fork.c # mmget_not_zero(): fs/userfaultfd.c include/linux/sched/mm.h mm/oom_kill.c # mmput(): arch/arc/include/asm/mmu_context.h arch/arc/kernel/troubleshoot.c arch/frv/mm/mmu-context.c arch/powerpc/platforms/cell/spufs/context.c arch/sparc/include/asm/mmu_context_32.h drivers/android/binder.c drivers/gpu/drm/etnaviv/etnaviv_gem.c drivers/gpu/drm/i915/i915_gem_userptr.c drivers/infiniband/core/umem.c drivers/infiniband/core/umem_odp.c drivers/infiniband/core/uverbs_main.c drivers/infiniband/hw/mlx4/main.c drivers/infiniband/hw/mlx5/main.c drivers/infiniband/hw/usnic/usnic_uiom.c drivers/iommu/amd_iommu_v2.c drivers/iommu/intel-svm.c drivers/lguest/lguest_user.c drivers/misc/cxl/fault.c drivers/misc/mic/scif/scif_rma.c drivers/oprofile/buffer_sync.c drivers/vfio/vfio_iommu_type1.c drivers/vhost/vhost.c drivers/xen/gntdev.c fs/exec.c fs/proc/array.c fs/proc/base.c fs/proc/task_mmu.c fs/proc/task_nommu.c fs/userfaultfd.c include/linux/sched/mm.h kernel/cpuset.c kernel/events/core.c kernel/events/uprobes.c kernel/exit.c kernel/fork.c kernel/ptrace.c kernel/sys.c kernel/trace/trace_output.c kernel/tsacct.c mm/memcontrol.c mm/memory.c mm/mempolicy.c mm/migrate.c mm/mmu_notifier.c mm/nommu.c mm/oom_kill.c mm/process_vm_access.c mm/rmap.c mm/swapfile.c mm/util.c virt/kvm/async_pf.c # mmput_async(): include/linux/sched/mm.h kernel/fork.c mm/oom_kill.c # get_task_mm(): arch/arc/kernel/troubleshoot.c arch/powerpc/platforms/cell/spufs/context.c drivers/android/binder.c drivers/gpu/drm/etnaviv/etnaviv_gem.c drivers/infiniband/core/umem.c drivers/infiniband/core/umem_odp.c drivers/infiniband/hw/mlx4/main.c drivers/infiniband/hw/mlx5/main.c drivers/infiniband/hw/usnic/usnic_uiom.c drivers/iommu/amd_iommu_v2.c drivers/iommu/intel-svm.c drivers/lguest/lguest_user.c drivers/misc/cxl/fault.c drivers/misc/mic/scif/scif_rma.c drivers/oprofile/buffer_sync.c drivers/vfio/vfio_iommu_type1.c drivers/vhost/vhost.c drivers/xen/gntdev.c fs/proc/array.c fs/proc/base.c fs/proc/task_mmu.c include/linux/sched/mm.h kernel/cpuset.c kernel/events/core.c kernel/exit.c kernel/fork.c kernel/ptrace.c kernel/sys.c kernel/trace/trace_output.c kernel/tsacct.c mm/memcontrol.c mm/memory.c mm/mempolicy.c mm/migrate.c mm/mmu_notifier.c mm/nommu.c mm/util.c # mm_access(): fs/proc/base.c include/linux/sched/mm.h kernel/fork.c mm/process_vm_access.c # mm_release(): arch/arc/include/asm/mmu_context.h fs/exec.c include/linux/sched/mm.h include/uapi/linux/sched.h kernel/exit.c kernel/fork.c Acked-by: Linus Torvalds <torvalds@linux-foundation.org> Cc: Mike Galbraith <efault@gmx.de> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: linux-kernel@vger.kernel.org Signed-off-by: Ingo Molnar <mingo@kernel.org>
2017-03-02sched/headers: Prepare for new header dependencies before moving code to ↵Ingo Molnar
<linux/sched/task_stack.h> We are going to split <linux/sched/task_stack.h> out of <linux/sched.h>, which will have to be picked up from other headers and a couple of .c files. Create a trivial placeholder <linux/sched/task_stack.h> file that just maps to <linux/sched.h> to make this patch obviously correct and bisectable. Include the new header in the files that are going to need it. Acked-by: Linus Torvalds <torvalds@linux-foundation.org> Cc: Mike Galbraith <efault@gmx.de> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: linux-kernel@vger.kernel.org Signed-off-by: Ingo Molnar <mingo@kernel.org>
2017-03-02sched/headers: Prepare for new header dependencies before moving code to ↵Ingo Molnar
<linux/sched/hotplug.h> We are going to split <linux/sched/hotplug.h> out of <linux/sched.h>, which will have to be picked up from other headers and a couple of .c files. Create a trivial placeholder <linux/sched/hotplug.h> file that just maps to <linux/sched.h> to make this patch obviously correct and bisectable. Include the new header in the files that are going to need it. Acked-by: Linus Torvalds <torvalds@linux-foundation.org> Cc: Mike Galbraith <efault@gmx.de> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: linux-kernel@vger.kernel.org Signed-off-by: Ingo Molnar <mingo@kernel.org>
2017-02-27mm: add new mmgrab() helperVegard Nossum
Apart from adding the helper function itself, the rest of the kernel is converted mechanically using: git grep -l 'atomic_inc.*mm_count' | xargs sed -i 's/atomic_inc(&\(.*\)->mm_count);/mmgrab\(\1\);/' git grep -l 'atomic_inc.*mm_count' | xargs sed -i 's/atomic_inc(&\(.*\)\.mm_count);/mmgrab\(\&\1\);/' This is needed for a later patch that hooks into the helper, but might be a worthwhile cleanup on its own. (Michal Hocko provided most of the kerneldoc comment.) Link: http://lkml.kernel.org/r/20161218123229.22952-1-vegard.nossum@oracle.com Signed-off-by: Vegard Nossum <vegard.nossum@oracle.com> Acked-by: Michal Hocko <mhocko@suse.com> Acked-by: Peter Zijlstra (Intel) <peterz@infradead.org> Acked-by: David Rientjes <rientjes@google.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2017-02-02arm64: make use of for_each_node_by_type()Dmitry Torokhov
Instead of open-coding the loop, let's use canned macro. Signed-off-by: Dmitry Torokhov <dmitry.torokhov@gmail.com> Signed-off-by: Will Deacon <will.deacon@arm.com>