Age | Commit message (Collapse) | Author |
|
commit 11e3b725cfc282efe9d4a354153e99d86a16af08 upstream.
Update the ARMv8 Crypto Extensions and the plain NEON AES implementations
in CBC and CTR modes to return the next IV back to the skcipher API client.
This is necessary for chaining to work correctly.
Note that for CTR, this is only done if the request is a round multiple of
the block size, since otherwise, chaining is impossible anyway.
Signed-off-by: Ard Biesheuvel <ard.biesheuvel@linaro.org>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
commit 7d9e8f71b989230bc613d121ca38507d34ada849 upstream.
Generally, taking an unexpected exception should be a fatal event, and
bad_mode is intended to cater for this. However, it should be possible
to contain unexpected synchronous exceptions from EL0 without bringing
the kernel down, by sending a SIGILL to the task.
We tried to apply this approach in commit 9955ac47f4ba1c95 ("arm64:
don't kill the kernel on a bad esr from el0"), by sending a signal for
any bad_mode call resulting from an EL0 exception.
However, this also applies to other unexpected exceptions, such as
SError and FIQ. The entry paths for these exceptions branch to bad_mode
without configuring the link register, and have no kernel_exit. Thus, if
we take one of these exceptions from EL0, bad_mode will eventually
return to the original user link register value.
This patch fixes this by introducing a new bad_el0_sync handler to cater
for the recoverable case, and restoring bad_mode to its original state,
whereby it calls panic() and never returns. The recoverable case
branches to bad_el0_sync with a bl, and returns to userspace via the
usual ret_to_user mechanism.
Signed-off-by: Mark Rutland <mark.rutland@arm.com>
Fixes: 9955ac47f4ba1c95 ("arm64: don't kill the kernel on a bad esr from el0")
Reported-by: Mark Salter <msalter@redhat.com>
Cc: Will Deacon <will.deacon@arm.com>
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
commit ad9e202aa1ce571b1d7fed969d06f66067f8a086 upstream.
We cannot preserve partial fields for hardware breakpoints, because
the values written by userspace to the hardware breakpoint
registers can't subsequently be recovered intact from the hardware.
So, just reject attempts to write incomplete fields with -EINVAL.
Fixes: 478fcb2cdb23 ("arm64: Debugging support")
Signed-off-by: Dave Martin <Dave.Martin@arm.com>
Acked-by: Will Deacon <Will.Deacon@arm.com>
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
commit aeb1f39d814b2e21e5e5706a48834bfd553d0059 upstream.
This patch adds an explicit __reserved[] field to user_fpsimd_state
to replace what was previously unnamed padding.
This ensures that data in this region are propagated across
assignment rather than being left possibly uninitialised at the
destination.
Fixes: 60ffc30d5652 ("arm64: Exception handling")
Signed-off-by: Dave Martin <Dave.Martin@arm.com>
Acked-by: Will Deacon <Will.Deacon@arm.com>
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
commit a672401c00f82e4e19704aff361d9bad18003714 upstream.
Ensure that if userspace supplies insufficient data to
PTRACE_SETREGSET to fill all the registers, the thread's old
registers are preserved.
Fixes: 5d220ff9420f ("arm64: Better native ptrace support for compat tasks")
Signed-off-by: Dave Martin <Dave.Martin@arm.com>
Acked-by: Will Deacon <Will.Deacon@arm.com>
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
commit 9dd73f72f218320c6c90da5f834996e7360dc227 upstream.
Ensure that if userspace supplies insufficient data to
PTRACE_SETREGSET to fill all the registers, the thread's old
registers are preserved.
Fixes: 766a85d7bc5d ("arm64: ptrace: add NT_ARM_SYSTEM_CALL regset")
Signed-off-by: Dave Martin <Dave.Martin@arm.com>
Acked-by: Will Deacon <Will.Deacon@arm.com>
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
commit 9a17b876b573441bfb3387ad55d98bf7184daf9d upstream.
Ensure that if userspace supplies insufficient data to
PTRACE_SETREGSET to fill all the registers, the thread's old
registers are preserved.
Fixes: 478fcb2cdb23 ("arm64: Debugging support")
Signed-off-by: Dave Martin <Dave.Martin@arm.com>
Acked-by: Will Deacon <Will.Deacon@arm.com>
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
commit 1803b9a52c4e5a5dbb8a27126f6bc06939359753 upstream.
The core AES cipher implementation that uses ARMv8 Crypto Extensions
instructions erroneously loads the round keys as 64-bit quantities,
which causes the algorithm to fail when built for big endian. In
addition, the key schedule generation routine fails to take endianness
into account as well, when loading the combining the input key with
the round constants. So fix both issues.
Fixes: 12ac3efe74f8 ("arm64/crypto: use crypto instructions to generate AES key schedule")
Signed-off-by: Ard Biesheuvel <ard.biesheuvel@linaro.org>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
commit caf4b9e2b326cc2a5005a5c557274306536ace61 upstream.
Emit the XTS tweak literal constants in the appropriate order for a
single 128-bit scalar literal load.
Fixes: 49788fe2a128 ("arm64/crypto: AES-ECB/CBC/CTR/XTS using ARMv8 NEON and Crypto Extensions")
Signed-off-by: Ard Biesheuvel <ard.biesheuvel@linaro.org>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
commit ee71e5f1e7d25543ee63a80451871f8985b8d431 upstream.
The SHA1 digest is an array of 5 32-bit quantities, so we should refer
to them as such in order for this code to work correctly when built for
big endian. So replace 16 byte scalar loads and stores with 4x4 vector
ones where appropriate.
Fixes: 2c98833a42cd ("arm64/crypto: SHA-1 using ARMv8 Crypto Extensions")
Signed-off-by: Ard Biesheuvel <ard.biesheuvel@linaro.org>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
commit a2c435cc99862fd3d165e1b66bf48ac72c839c62 upstream.
The AES implementation using pure NEON instructions relies on the generic
AES key schedule generation routines, which store the round keys as arrays
of 32-bit quantities stored in memory using native endianness. This means
we should refer to these round keys using 4x4 loads rather than 16x1 loads.
In addition, the ShiftRows tables are loading using a single scalar load,
which is also affected by endianness, so emit these tables in the correct
order depending on whether we are building for big endian or not.
Fixes: 49788fe2a128 ("arm64/crypto: AES-ECB/CBC/CTR/XTS using ARMv8 NEON and Crypto Extensions")
Signed-off-by: Ard Biesheuvel <ard.biesheuvel@linaro.org>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
commit 56e4e76c68fcb51547b5299e5b66a135935ff414 upstream.
The AES-CCM implementation that uses ARMv8 Crypto Extensions instructions
refers to the AES round keys as pairs of 64-bit quantities, which causes
failures when building the code for big endian. In addition, it byte swaps
the input counter unconditionally, while this is only required for little
endian builds. So fix both issues.
Fixes: 12ac3efe74f8 ("arm64/crypto: use crypto instructions to generate AES key schedule")
Signed-off-by: Ard Biesheuvel <ard.biesheuvel@linaro.org>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
commit 9c433ad5083fd4a4a3c721d86cbfbd0b2a2326a5 upstream.
The GHASH key and digest are both pairs of 64-bit quantities, but the
GHASH code does not always refer to them as such, causing failures when
built for big endian. So replace the 16x1 loads and stores with 2x8 ones.
Fixes: b913a6404ce2 ("arm64/crypto: improve performance of GHASH algorithm")
Signed-off-by: Ard Biesheuvel <ard.biesheuvel@linaro.org>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
commit 174122c39c369ed924d2608fc0be0171997ce800 upstream.
The SHA256 digest is an array of 8 32-bit quantities, so we should refer
to them as such in order for this code to work correctly when built for
big endian. So replace 16 byte scalar loads and stores with 4x32 vector
ones where appropriate.
Fixes: 6ba6c74dfc6b ("arm64/crypto: SHA-224/SHA-256 using ARMv8 Crypto Extensions")
Signed-off-by: Ard Biesheuvel <ard.biesheuvel@linaro.org>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
commit 811d61e384e24759372bb3f01772f3744b0a8327 upstream.
futex.h's futex_atomic_cmpxchg_inatomic() does not use the
__futex_atomic_op() macro and needs its own PAN toggling. This was missed
when the feature was implemented.
Fixes: 338d4f49d6f ("arm64: kernel: Add support for Privileged Access Never")
Signed-off-by: James Morse <james.morse@arm.com>
Signed-off-by: Will Deacon <will.deacon@arm.com>
Cc: Mian Yousaf Kaukab <yousaf.kaukab@suse.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
commit d08544127d9fb4505635e3cb6871fd50a42947bd upstream.
The suspend/resume path in kernel/sleep.S, as used by cpu-idle, does not
save/restore PSTATE. As a result of this cpufeatures that were detected
and have bits in PSTATE get lost when we resume from idle.
UAO gets set appropriately on the next context switch. PAN will be
re-enabled next time we return from user-space, but on a preemptible
kernel we may run work accessing user space before this point.
Add code to re-enable theses two features in __cpu_suspend_exit().
We re-use uao_thread_switch() passing current.
Signed-off-by: James Morse <james.morse@arm.com>
Cc: Lorenzo Pieralisi <lorenzo.pieralisi@arm.com>
Signed-off-by: Will Deacon <will.deacon@arm.com>
[Removed UAO hooks and commit-message references: this feature is not
present in v4.4]
Signed-off-by: James Morse <james.morse@arm.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
commit 7209c868600bd8926e37c10b9aae83124ccc1dd8 upstream.
Commit 338d4f49d6f7 ("arm64: kernel: Add support for Privileged Access
Never") enabled PAN by enabling the 'SPAN' feature-bit in SCTLR_EL1.
This means the PSTATE.PAN bit won't be set until the next return to the
kernel from userspace. On a preemptible kernel we may schedule work that
accesses userspace on a CPU before it has done this.
Now that cpufeature enable() calls are scheduled via stop_machine(), we
can set PSTATE.PAN from the cpu_enable_pan() call.
Add WARN_ON_ONCE(in_interrupt()) to check the PSTATE value we updated
is not immediately discarded.
Reported-by: Tony Thompson <anthony.thompson@arm.com>
Reported-by: Vladimir Murzin <vladimir.murzin@arm.com>
Signed-off-by: James Morse <james.morse@arm.com>
[will: fixed typo in comment]
Signed-off-by: Will Deacon <will.deacon@arm.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
commit 2a6dcb2b5f3e21592ca8dfa198dcce7bec09b020 upstream.
The enable() call for a cpufeature/errata is called using on_each_cpu().
This issues a cross-call IPI to get the work done. Implicitly, this
stashes the running PSTATE in SPSR when the CPU receives the IPI, and
restores it when we return. This means an enable() call can never modify
PSTATE.
To allow PAN to do this, change the on_each_cpu() call to use
stop_machine(). This schedules the work on each CPU which allows
us to modify PSTATE.
This involves changing the protype of all the enable() functions.
enable_cpu_capabilities() is called during boot and enables the feature
on all online CPUs. This path now uses stop_machine(). CPU features for
hotplug'd CPUs are enabled by verify_local_cpu_features() which only
acts on the local CPU, and can already modify the running PSTATE as it
is called from secondary_start_kernel().
Reported-by: Tony Thompson <anthony.thompson@arm.com>
Reported-by: Vladimir Murzin <vladimir.murzin@arm.com>
Signed-off-by: James Morse <james.morse@arm.com>
Cc: Suzuki K Poulose <suzuki.poulose@arm.com>
Signed-off-by: Will Deacon <will.deacon@arm.com>
[Removed enable() hunks for features/errata v4.4. doesn't have. Changed
caps->enable arg in enable_cpu_capabilities()]
Signed-off-by: James Morse <james.morse@arm.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
commit 850540351bb1a4fa5f192e5ce55b89928cc57f42 upstream.
Commit f436b2ac90a0 ("arm64: kernel: fix architected PMU registers
unconditional access") made sure we wouldn't access unimplemented
PMU registers, but also left MDCR_EL2 uninitialized in that case,
leading to trap bits being potentially left set.
Make sure we always write something in that register.
Fixes: f436b2ac90a0 ("arm64: kernel: fix architected PMU registers unconditional access")
Cc: Lorenzo Pieralisi <lorenzo.pieralisi@arm.com>
Cc: Will Deacon <will.deacon@arm.com>
Signed-off-by: Marc Zyngier <marc.zyngier@arm.com>
Signed-off-by: Will Deacon <will.deacon@arm.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
commit 1e6e57d9b34a9075d5f9e2048ea7b09756590d11 upstream.
Writing the outer loop of an LL/SC sequence using do {...} while
constructs potentially allows the compiler to hoist memory accesses
between the STXR and the branch back to the LDXR. On CPUs that do not
guarantee forward progress of LL/SC loops when faced with memory
accesses to the same ERG (up to 2k) between the failed STXR and the
branch back, we may end up livelocking.
This patch avoids this issue in our percpu atomics by rewriting the
outer loop as part of the LL/SC inline assembly block.
Fixes: f97fc810798c ("arm64: percpu: Implement this_cpu operations")
Reviewed-by: Mark Rutland <mark.rutland@arm.com>
Tested-by: Mark Rutland <mark.rutland@arm.com>
Signed-off-by: Will Deacon <will.deacon@arm.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
commit 3a402a709500c5a3faca2111668c33d96555e35a upstream.
When TIF_SINGLESTEP is set for a task, the single-step state machine is
enabled and we must take care not to reset it to the active-not-pending
state if it is already in the active-pending state.
Unfortunately, that's exactly what user_enable_single_step does, by
unconditionally setting the SS bit in the SPSR for the current task.
This causes failures in the GDB testsuite, where GDB ends up missing
expected step traps if the instruction being stepped generates another
trap, e.g. PTRACE_EVENT_FORK from an SVC instruction.
This patch fixes the problem by preserving the current state of the
stepping state machine when TIF_SINGLESTEP is set on the current thread.
Cc: <stable@vger.kernel.org>
Reported-by: Yao Qi <yao.qi@arm.com>
Signed-off-by: Will Deacon <will.deacon@arm.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
commit 2db34e78f126c6001d79d3b66ab1abb482dc7caa upstream.
The AES-CTR glue code avoids calling into the blkcipher API for the
tail portion of the walk, by comparing the remainder of walk.nbytes
modulo AES_BLOCK_SIZE with the residual nbytes, and jumping straight
into the tail processing block if they are equal. This tail processing
block checks whether nbytes != 0, and does nothing otherwise.
However, in case of an allocation failure in the blkcipher layer, we
may enter this code with walk.nbytes == 0, while nbytes > 0. In this
case, we should not dereference the source and destination pointers,
since they may be NULL. So instead of checking for nbytes != 0, check
for (walk.nbytes % AES_BLOCK_SIZE) != 0, which implies the former in
non-error conditions.
Fixes: 49788fe2a128 ("arm64/crypto: AES-ECB/CBC/CTR/XTS using ARMv8 NEON and Crypto Extensions")
Reported-by: xiakaixu <xiakaixu@huawei.com>
Signed-off-by: Ard Biesheuvel <ard.biesheuvel@linaro.org>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
commit 872c63fbf9e153146b07f0cece4da0d70b283eeb upstream.
smp_mb__before_spinlock() is intended to upgrade a spin_lock() operation
to a full barrier, such that prior stores are ordered with respect to
loads and stores occuring inside the critical section.
Unfortunately, the core code defines the barrier as smp_wmb(), which
is insufficient to provide the required ordering guarantees when used in
conjunction with our load-acquire-based spinlock implementation.
This patch overrides the arm64 definition of smp_mb__before_spinlock()
to map to a full smp_mb().
Cc: Peter Zijlstra <peterz@infradead.org>
Reported-by: Alan Stern <stern@rowland.harvard.edu>
Signed-off-by: Will Deacon <will.deacon@arm.com>
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
[ Upstream commit fbf8f40e1658cb2f17452dbd3c708e329c5d27e0 ]
The erratum fixes the hang of ITS SYNC command by avoiding inter node
io and collections/cpu mapping on thunderx dual-socket platform.
This fix is only applicable for Cavium's ThunderX dual-socket platform.
Reviewed-by: Robert Richter <rrichter@cavium.com>
Signed-off-by: Ganapatrao Kulkarni <gkulkarni@caviumnetworks.com>
Signed-off-by: Robert Richter <rrichter@cavium.com>
Signed-off-by: Marc Zyngier <marc.zyngier@arm.com>
Signed-off-by: Sasha Levin <alexander.levin@verizon.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
[ Upstream commit 104a0c02e8b1936c049e18a6d4e4ab040fb61213 ]
On ThunderX T88 pass 1.x through 2.1 parts, broadcast TLBI
instructions may cause the icache to become corrupted if it contains
data for a non-current ASID.
This patch implements the workaround (which invalidates the local
icache when switching the mm) by using code patching.
Signed-off-by: Andrew Pinski <apinski@cavium.com>
Signed-off-by: David Daney <david.daney@cavium.com>
Reviewed-by: Will Deacon <will.deacon@arm.com>
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
Signed-off-by: Sasha Levin <alexander.levin@verizon.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
[ Upstream commit 3c5b1d92b3b02be07873d611a27950addff544d3 ]
Setting TCR_EL2.PS to 40 bits is wrong on systems with less that
less than 40 bits of physical addresses. and breaks KVM on systems
where the RAM is above 40 bits.
This patch uses ID_AA64MMFR0_EL1.PARange to set TCR_EL2.PS dynamically,
just like we already do for VTCR_EL2.PS.
[Marc: rewrote commit message, patch tidy up]
Reviewed-by: Marc Zyngier <marc.zyngier@arm.com>
Signed-off-by: Tirumalesh Chalamarla <tchalamarla@caviumnetworks.com>
Signed-off-by: Marc Zyngier <marc.zyngier@arm.com>
Signed-off-by: Sasha Levin <alexander.levin@verizon.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
[ Upstream commit 1a1ebd5fb1e203ee8cc73508cc7a38ac4b804596 ]
The ARM GICv3 specification mentions the need for dsb after a read
from the ICC_IAR1_EL1 register:
4.1.1 Physical CPU Interface:
The effects of reading ICC_IAR0_EL1 and ICC_IAR1_EL1
on the state of a returned INTID are not guaranteed
to be visible until after the execution of a DSB.
Not having this could result in missed interrupts, so let's add the
required barrier.
[Marc: fixed commit message]
Acked-by: Marc Zyngier <marc.zyngier@arm.com>
Signed-off-by: Tirumalesh Chalamarla <tchalamarla@caviumnetworks.com>
Signed-off-by: Marc Zyngier <marc.zyngier@arm.com>
Signed-off-by: Sasha Levin <alexander.levin@verizon.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
commit 78ec79bfd59e126e1cb394302bfa531a420b3ecd upstream.
SARADC controller needs to be reset before programming it, otherwise
it will not function properly.
Signed-off-by: Caesar Wang <wxt@rock-chips.com>
Acked-by: Heiko Stuebner <heiko@sntech.de>
Signed-off-by: Jonathan Cameron <jic23@kernel.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
commit 3146bc64d12377a74dbda12b96ea32da3774ae07 upstream.
AT_VECTOR_SIZE_ARCH should be defined with the maximum number of
NEW_AUX_ENT entries that ARCH_DLINFO can contain, but it wasn't defined
for arm64 at all even though ARCH_DLINFO will contain one NEW_AUX_ENT
for the VDSO address.
This shouldn't be a problem as AT_VECTOR_SIZE_BASE includes space for
AT_BASE_PLATFORM which arm64 doesn't use, but lets define it now and add
the comment above ARCH_DLINFO as found in several other architectures to
remind future modifiers of ARCH_DLINFO to keep AT_VECTOR_SIZE_ARCH up to
date.
Fixes: f668cd1673aa ("arm64: ELF definitions")
Signed-off-by: James Hogan <james.hogan@imgtec.com>
Cc: Catalin Marinas <catalin.marinas@arm.com>
Cc: Will Deacon <will.deacon@arm.com>
Cc: linux-arm-kernel@lists.infradead.org
Signed-off-by: Will Deacon <will.deacon@arm.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
commit 04a848106193b134741672f7e4e444b50c70b631 upstream.
As reported by Zijun, the fdt_check_header() call in __fixmap_remap_fdt()
is not safe since it is not guaranteed that the FDT header is mapped
completely. Due to the minimum alignment of 8 bytes, the only fields we
can assume to be mapped are 'magic' and 'totalsize'.
Since the OF layer is in charge of validating the FDT image, and we are
only interested in making reasonably sure that the size field contains
a meaningful value, replace the fdt_check_header() call with an explicit
comparison of the magic field's value against the expected value.
Reported-by: Zijun Hu <zijun_hu@htc.com>
Acked-by: Mark Rutland <mark.rutland@arm.com>
Signed-off-by: Ard Biesheuvel <ard.biesheuvel@linaro.org>
Signed-off-by: Will Deacon <will.deacon@arm.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
commit ad1cfdf518976447e6b0d31517bad4e3ebbce6bb upstream.
The 2nd additional region is the GIC virtual cpu interface register
base and size.
As the gic400 of rk3368 says, the cpu interface register map as below
:
-0x0000 GICC_CTRL
.
.
.
-0x00fc GICC_IIDR
-0x1000 GICC_IDR
Obviously, the region size should be greater than 0x1000.
So we should make sure to include the GICC_IDR since the kernel will access
it in some cases.
Fixes: b790c2cab5ca ("arm64: dts: add Rockchip rk3368 core dtsi and board dts for the r88 board")
Signed-off-by: Caesar Wang <wxt@rock-chips.com>
Reviewed-by: Shawn Lin <shawn.lin@rock-chips.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
[added Fixes and stable-cc]
Signed-off-by: Heiko Stuebner <heiko@sntech.de>
|
|
commit 9113c2aa05e9848cd4f1154abee17d4f265f012d upstream.
In smp_prepare_boot_cpu(), we invoke cpuinfo_store_boot_cpu to store
the cpuinfo in a per-cpu ptr, before initialising the per-cpu offset for
the boot CPU. This patch reorders the sequence to make sure we initialise
the per-cpu offset before accessing the per-cpu area.
Commit 4b998ff1885eec ("arm64: Delay cpuinfo_store_boot_cpu") fixed the
issue where we modified the per-cpu area even before the kernel initialises
the per-cpu areas, but failed to wait until the boot cpu updated it's
offset.
Fixes: 4b998ff1885e ("arm64: Delay cpuinfo_store_boot_cpu")
Cc: <stable@vger.kernel.org> # 4.4+
Cc: Will Deacon <will.deacon@arm.com>
Signed-off-by: Suzuki K Poulose <suzuki.poulose@arm.com>
Acked-by: Mark Rutland <mark.rutland@arm.com>
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
commit 2ce39ad15182604beb6c8fa8bed5e46b59fd1082 upstream.
Clearing PSTATE.D is one of the requirements for generating a debug
exception. The arm64 booting protocol requires that PSTATE.D is set,
since many of the debug registers (for example, the hw_breakpoint
registers) are UNKNOWN out of reset and could potentially generate
spurious, fatal debug exceptions in early boot code if PSTATE.D was
clear. Once the debug registers have been safely initialised, PSTATE.D
is cleared, however this is currently broken for two reasons:
(1) The boot CPU clears PSTATE.D in a postcore_initcall and secondary
CPUs clear PSTATE.D in secondary_start_kernel. Since the initcall
runs after SMP (and the scheduler) have been initialised, there is
no guarantee that it is actually running on the boot CPU. In this
case, the boot CPU is left with PSTATE.D set and is not capable of
generating debug exceptions.
(2) In a preemptible kernel, we may explicitly schedule on the IRQ
return path to EL1. If an IRQ occurs with PSTATE.D set in the idle
thread, then we may schedule the kthread_init thread, run the
postcore_initcall to clear PSTATE.D and then context switch back
to the idle thread before returning from the IRQ. The exception
return path will then restore PSTATE.D from the stack, and set it
again.
This patch fixes the problem by moving the clearing of PSTATE.D earlier
to proc.S. This has the desirable effect of clearing it in one place for
all CPUs, long before we have to worry about the scheduler or any
exception handling. We ensure that the previous reset of MDSCR_EL1 has
completed before unmasking the exception, so that any spurious
exceptions resulting from UNKNOWN debug registers are not generated.
Without this patch applied, the kprobes selftests have been seen to fail
under KVM, where we end up attempting to step the OOL instruction buffer
with PSTATE.D set and therefore fail to complete the step.
Acked-by: Mark Rutland <mark.rutland@arm.com>
Reported-by: Catalin Marinas <catalin.marinas@arm.com>
Tested-by: Marc Zyngier <marc.zyngier@arm.com>
Signed-off-by: Will Deacon <will.deacon@arm.com>
Reviewed-by: Catalin Marinas <catalin.marinas@arm.com>
Tested-by: Catalin Marinas <catalin.marinas@arm.com>
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
commit e19a6ee2460bdd0d0055a6029383422773f9999a upstream.
If we take an exception while at EL1, the exception handler inherits
the original context's addr_limit and PSTATE.UAO values. To be consistent
always reset addr_limit and PSTATE.UAO on (re-)entry to EL1. This
prevents accidental re-use of the original context's addr_limit.
Based on a similar patch for arm from Russell King.
Cc: <stable@vger.kernel.org> # 4.6-
Acked-by: Will Deacon <will.deacon@arm.com>
Reviewed-by: Mark Rutland <mark.rutland@arm.com>
Signed-off-by: James Morse <james.morse@arm.com>
Signed-off-by: Will Deacon <will.deacon@arm.com>
[ backport to stop perf misusing inherited addr_limit.
Removed code interacting with UAO and the irqstack ]
Link: https://bugs.chromium.org/p/project-zero/issues/detail?id=822
Signed-off-by: James Morse <james.morse@arm.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
commit dbd4d7ca563fd0a8949718d35ce197e5642d5d9d upstream.
We validate pstate using PSR_MODE32_BIT, which is part of the
user-provided pstate (and cannot be trusted). Also, we conflate
validation of AArch32 and AArch64 pstate values, making the code
difficult to reason about.
Instead, validate the pstate value based on the associated task. The
task may or may not be current (e.g. when using ptrace), so this must be
passed explicitly by callers. To avoid circular header dependencies via
sched.h, is_compat_task is pulled out of asm/ptrace.h.
To make the code possible to reason about, the AArch64 and AArch32
validation is split into separate functions. Software must respect the
RES0 policy for SPSR bits, and thus the kernel mirrors the hardware
policy (RAZ/WI) for bits as-yet unallocated. When these acquire an
architected meaning writes may be permitted (potentially with additional
validation).
Signed-off-by: Mark Rutland <mark.rutland@arm.com>
Acked-by: Will Deacon <will.deacon@arm.com>
Cc: Dave Martin <dave.martin@arm.com>
Cc: James Morse <james.morse@arm.com>
Cc: Peter Maydell <peter.maydell@linaro.org>
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Signed-off-by: Mark Rutland <mark.rutland@arm.com>
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
[ rebased for v4.1+
This avoids a user-triggerable Oops() if a task is switched to a mode
not supported by the kernel (e.g. switching a 64-bit task to AArch32).
]
Signed-off-by: James Morse <james.morse@arm.com>
Reviewed-by: Mark Rutland <mark.rutland@arm.com> [backport]
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
commit 0106d456c4cb1770253fefc0ab23c9ca760b43f7 upstream.
Commit 66dbd6e61a52 ("arm64: Implement ptep_set_access_flags() for
hardware AF/DBM") ensured that pte flags are updated atomically in the
face of potential concurrent, hardware-assisted updates. However, Alex
reports that:
| This patch breaks swapping for me.
| In the broken case, you'll see either systemd cpu time spike (because
| it's stuck in a page fault loop) or the system hang (because the
| application owning the screen is stuck in a page fault loop).
It turns out that this is because the 'dirty' argument to
ptep_set_access_flags is always 0 for read faults, and so we can't use
it to set PTE_RDONLY. The failing sequence is:
1. We put down a PTE_WRITE | PTE_DIRTY | PTE_AF pte
2. Memory pressure -> pte_mkold(pte) -> clear PTE_AF
3. A read faults due to the missing access flag
4. ptep_set_access_flags is called with dirty = 0, due to the read fault
5. pte is then made PTE_WRITE | PTE_DIRTY | PTE_AF | PTE_RDONLY (!)
6. A write faults, but pte_write is true so we get stuck
The solution is to check the new page table entry (as would be done by
the generic, non-atomic definition of ptep_set_access_flags that just
calls set_pte_at) to establish the dirty state.
Fixes: 66dbd6e61a52 ("arm64: Implement ptep_set_access_flags() for hardware AF/DBM")
Reviewed-by: Catalin Marinas <catalin.marinas@arm.com>
Reported-by: Alexander Graf <agraf@suse.de>
Tested-by: Alexander Graf <agraf@suse.de>
Signed-off-by: Will Deacon <will.deacon@arm.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
commit e47b020a323d1b2a7b1e9aac86e99eae19463630 upstream.
This patch brings the PER_LINUX32 /proc/cpuinfo format more in line with
the 32-bit ARM one by providing an additional line:
model name : ARMv8 Processor rev X (v8l)
Acked-by: Will Deacon <will.deacon@arm.com>
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
Signed-off-by: Will Deacon <will.deacon@arm.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
commit e4fe9e7dc3828bf6a5714eb3c55aef6260d823a2 upstream.
The EC field of the constructed ESR is conditionally modified by ORing in
ESR_ELx_EC_DABT_LOW for a data abort. However, ESR_ELx_EC_SHIFT is missing
from this condition.
Signed-off-by: Matt Evans <matt.evans@arm.com>
Acked-by: Marc Zyngier <marc.zyngier@arm.com>
Signed-off-by: Christoffer Dall <christoffer.dall@linaro.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
commit f228b494e56d949be8d8ea09d4f973d1979201bf upstream.
The loop that browses the array compat_hwcap_str will stop when a NULL
is encountered, however NULL is missing at the end of array. This will
lead to overrun until a NULL is found somewhere in the following memory.
In reality, this works out because the compat_hwcap2_str array tends to
follow immediately in memory, and that *is* terminated correctly.
Furthermore, the unsigned int compat_elf_hwcap is checked before
printing each capability, so we end up doing the right thing because
the size of the two arrays is less than 32. Still, this is an obvious
mistake and should be fixed.
Note for backporting: commit 12d11817eaafa414 ("arm64: Move
/proc/cpuinfo handling code") moved this code in v4.4. Prior to that
commit, the same change should be made in arch/arm64/kernel/setup.c.
Fixes: 44b82b7700d0 "arm64: Fix up /proc/cpuinfo"
Signed-off-by: Julien Grall <julien.grall@arm.com>
Signed-off-by: Will Deacon <will.deacon@arm.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
commit 282aa7051b0169991b34716f0f22d9c2f59c46c4 upstream.
The update to the accessed or dirty states for block mappings must be
done atomically on hardware with support for automatic AF/DBM. The
ptep_set_access_flags() function has been fixed as part of commit
66dbd6e61a52 ("arm64: Implement ptep_set_access_flags() for hardware
AF/DBM"). This patch brings pmdp_set_access_flags() in line with the pte
counterpart.
Fixes: 2f4b829c625e ("arm64: Add support for hardware updates of the access and dirty pte bits")
Reviewed-by: Will Deacon <will.deacon@arm.com>
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
Signed-off-by: Will Deacon <will.deacon@arm.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
commit 66dbd6e61a526ae7d11a208238ae2c17e5cacb6b upstream.
When hardware updates of the access and dirty states are enabled, the
default ptep_set_access_flags() implementation based on calling
set_pte_at() directly is potentially racy. This triggers the "racy dirty
state clearing" warning in set_pte_at() because an existing writable PTE
is overridden with a clean entry.
There are two main scenarios for this situation:
1. The CPU getting an access fault does not support hardware updates of
the access/dirty flags. However, a different agent in the system
(e.g. SMMU) can do this, therefore overriding a writable entry with a
clean one could potentially lose the automatically updated dirty
status
2. A more complex situation is possible when all CPUs support hardware
AF/DBM:
a) Initial state: shareable + writable vma and pte_none(pte)
b) Read fault taken by two threads of the same process on different
CPUs
c) CPU0 takes the mmap_sem and proceeds to handling the fault. It
eventually reaches do_set_pte() which sets a writable + clean pte.
CPU0 releases the mmap_sem
d) CPU1 acquires the mmap_sem and proceeds to handle_pte_fault(). The
pte entry it reads is present, writable and clean and it continues
to pte_mkyoung()
e) CPU1 calls ptep_set_access_flags()
If between (d) and (e) the hardware (another CPU) updates the dirty
state (clears PTE_RDONLY), CPU1 will override the PTR_RDONLY bit
marking the entry clean again.
This patch implements an arm64-specific ptep_set_access_flags() function
to perform an atomic update of the PTE flags.
Fixes: 2f4b829c625e ("arm64: Add support for hardware updates of the access and dirty pte bits")
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
Reported-by: Ming Lei <tom.leiming@gmail.com>
Tested-by: Julien Grall <julien.grall@arm.com>
Cc: Will Deacon <will.deacon@arm.com>
[will: reworded comment]
Signed-off-by: Will Deacon <will.deacon@arm.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
commit 5bb1cc0ff9a6b68871970737e6c4c16919928d8b upstream.
Currently, pmd_present() only checks for a non-zero value, returning
true even after pmd_mknotpresent() (which only clears the type bits).
This patch converts pmd_present() to using pte_present(), similar to the
other pmd_*() checks. As a side effect, it will return true for
PROT_NONE mappings, though they are not yet used by the kernel with
transparent huge pages.
For consistency, also change pmd_mknotpresent() to only clear the
PMD_SECT_VALID bit, even though the PMD_TABLE_BIT is already 0 for block
mappings (no functional change). The unused PMD_SECT_PROT_NONE
definition is removed as transparent huge pages use the pte page prot
values.
Fixes: 9c7e535fcc17 ("arm64: mm: Route pmd thp functions through pte equivalents")
Reviewed-by: Will Deacon <will.deacon@arm.com>
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
Signed-off-by: Will Deacon <will.deacon@arm.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
commit 911f56eeb87ee378f5e215469268a7a2f68a5a8a upstream.
With hardware AF/DBM support, pmd modifications (transparent huge pages)
should be performed atomically using load/store exclusive. The initial
patches defined the get-and-clear function and __HAVE_ARCH_* macro
without the "huge" word, leaving the pmdp_huge_get_and_clear() to the
default, non-atomic implementation.
Fixes: 2f4b829c625e ("arm64: Add support for hardware updates of the access and dirty pte bits")
Reviewed-by: Will Deacon <will.deacon@arm.com>
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
Signed-off-by: Will Deacon <will.deacon@arm.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
commit fdc69e7df3cb24f18a93192641786e5b7ecd1dfe upstream.
The set_pte_at() function must update the hardware PTE_RDONLY bit
depending on the state of the PTE_WRITE and PTE_DIRTY bits of the given
entry value. However, it currently only performs this for pte_valid()
entries, ignoring PTE_PROT_NONE. The side-effect is that PROT_NONE
mappings would not have the PTE_RDONLY bit set. Without
CONFIG_ARM64_HW_AFDBM, this is not an issue since such PROT_NONE pages
are not accessible anyway.
With commit 2f4b829c625e ("arm64: Add support for hardware updates of
the access and dirty pte bits"), the ptep_set_wrprotect() function was
re-written to cope with automatic hardware updates of the dirty state.
As an optimisation, only PTE_RDONLY is checked to assess the "dirty"
status. Since set_pte_at() does not set this bit for PROT_NONE mappings,
such pages may be considered "dirty" as a result of
ptep_set_wrprotect().
This patch updates the pte_valid() check to pte_present() in
set_pte_at(). It also adds PTE_PROT_NONE to the swap entry bits comment.
Fixes: 2f4b829c625e ("arm64: Add support for hardware updates of the access and dirty pte bits")
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
Reported-by: Ganapatrao Kulkarni <gkulkarni@caviumnetworks.com>
Tested-by: Ganapatrao Kulkarni <gkulkarni@cavium.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
commit ac15bd63bbb24238f763ec5b24ee175ec301e8cd upstream.
Currently, set_pte_at() only checks the software PTE_WRITE bit for user
mappings when it sets or clears the hardware PTE_RDONLY accordingly. The
kernel ptes are written directly without any modification, relying
solely on the protection bits in macros like PAGE_KERNEL. However,
modifying kernel pte attributes via pte_wrprotect() would be ignored by
set_pte_at(). Since pte_wrprotect() does not set PTE_RDONLY (it only
clears PTE_WRITE), the new permission is not taken into account.
This patch changes set_pte_at() to adjust the read-only permission for
kernel ptes as well. As a side effect, existing PROT_* definitions used
for kernel ioremap*() need to include PTE_DIRTY | PTE_WRITE.
(additionally, white space fix for PTE_KERNEL_ROX)
Acked-by: Andrey Ryabinin <aryabinin@virtuozzo.com>
Tested-by: Ard Biesheuvel <ard.biesheuvel@linaro.org>
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
Reported-by: Ard Biesheuvel <ard.biesheuvel@linaro.org>
Signed-off-by: Will Deacon <will.deacon@arm.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
commit cf0a25436f05753aca5151891aea4fd130556e2a upstream.
BUG: sleeping function called from invalid context at kernel/locking/rtmutex.c:917
in_atomic(): 1, irqs_disabled(): 128, pid: 383, name: sh
Preemption disabled at:[<ffff800000124c18>] kgdb_cpu_enter+0x158/0x6b8
CPU: 3 PID: 383 Comm: sh Tainted: G W 4.1.13-rt13 #2
Hardware name: Freescale Layerscape 2085a RDB Board (DT)
Call trace:
[<ffff8000000885e8>] dump_backtrace+0x0/0x128
[<ffff800000088734>] show_stack+0x24/0x30
[<ffff80000079a7c4>] dump_stack+0x80/0xa0
[<ffff8000000bd324>] ___might_sleep+0x18c/0x1a0
[<ffff8000007a20ac>] __rt_spin_lock+0x2c/0x40
[<ffff8000007a2268>] rt_read_lock+0x40/0x58
[<ffff800000085328>] single_step_handler+0x38/0xd8
[<ffff800000082368>] do_debug_exception+0x58/0xb8
Exception stack(0xffff80834a1e7c80 to 0xffff80834a1e7da0)
7c80: ffffff9c ffffffff 92c23ba0 0000ffff 4a1e7e40 ffff8083 001bfcc4 ffff8000
7ca0: f2000400 00000000 00000000 00000000 4a1e7d80 ffff8083 0049501c ffff8000
7cc0: 00005402 00000000 00aaa210 ffff8000 4a1e7ea0 ffff8083 000833f4 ffff8000
7ce0: ffffff9c ffffffff 92c23ba0 0000ffff 4a1e7ea0 ffff8083 001bfcc0 ffff8000
7d00: 4a0fc400 ffff8083 00005402 00000000 4a1e7d40 ffff8083 00490324 ffff8000
7d20: ffffff9c 00000000 92c23ba0 0000ffff 000a0000 00000000 00000000 00000000
7d40: 00000008 00000000 00080000 00000000 92c23b8b 0000ffff 92c23b8e 0000ffff
7d60: 00000038 00000000 00001cb2 00000000 00000005 00000000 92d7b498 0000ffff
7d80: 01010101 01010101 92be9000 0000ffff 00000000 00000000 00000030 00000000
[<ffff8000000833f4>] el1_dbg+0x18/0x6c
This issue is similar with 62c6c61("arm64: replace read_lock to rcu lock in
call_break_hook"), but comes to single_step_handler.
This also solves kgdbts boot test silent hang issue on 4.4 -rt kernel.
Signed-off-by: Yang Shi <yang.shi@linaro.org>
Acked-by: Will Deacon <will.deacon@arm.com>
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
commit a6002ec5a8c68e69706b2efd6db6d682d0ab672c upstream.
arm and arm64 use different config options to specify big endian. This
needs taking into account when including code/headers between the two
architectures.
A case in point is PAN, which uses the __instr_arm() macro to output
instructions. The macro comes from opcodes.h, which lives under arch/arm.
On a big-endian build the mismatched config options mean the instruction
isn't byte swapped correctly, resulting in undefined instruction exceptions
during boot:
| alternatives: patching kernel code
| kdevtmpfs[87]: undefined instruction: pc=ffffffc0004505b4
| kdevtmpfs[87]: undefined instruction: pc=ffffffc00076231c
| kdevtmpfs[87]: undefined instruction: pc=ffffffc00076231c
| kdevtmpfs[87]: undefined instruction: pc=ffffffc00076231c
| kdevtmpfs[87]: undefined instruction: pc=ffffffc00076231c
| kdevtmpfs[87]: undefined instruction: pc=ffffffc00076231c
| kdevtmpfs[87]: undefined instruction: pc=ffffffc00076231c
| kdevtmpfs[87]: undefined instruction: pc=ffffffc00076231c
| kdevtmpfs[87]: undefined instruction: pc=ffffffc00076231c
| kdevtmpfs[87]: undefined instruction: pc=ffffffc00076231c
| Internal error: Oops - undefined instruction: 0 [#1] SMP
| Modules linked in:
| CPU: 0 PID: 87 Comm: kdevtmpfs Not tainted 4.1.16+ #5
| Hardware name: Hisilicon PhosphorHi1382 EVB (DT)
| task: ffffffc336591700 ti: ffffffc3365a4000 task.ti: ffffffc3365a4000
| PC is at dump_instr+0x68/0x100
| LR is at do_undefinstr+0x1d4/0x2a4
| pc : [<ffffffc00076231c>] lr : [<ffffffc0000811d4>] pstate: 604001c5
| sp : ffffffc3365a6450
Reported-by: Hanjun Guo <guohanjun@huawei.com>
Tested-by: Xuefeng Wang <wxf.wang@hisilicon.com>
Signed-off-by: James Morse <james.morse@arm.com>
Signed-off-by: Will Deacon <will.deacon@arm.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
commit 36e5cd6b897e17d03008f81e075625d8e43e52d0 upstream.
Commit dfd55ad85e4a ("arm64: vmemmap: use virtual projection of linear
region") fixed an issue where the struct page array would overflow into the
adjacent virtual memory region if system RAM was placed so high up in
physical memory that its addresses were not representable in the build time
configured virtual address size.
However, the fix failed to take into account that the vmemmap region needs
to be relatively aligned with respect to the sparsemem section size, so that
a sequence of page structs corresponding with a sparsemem section in the
linear region appears naturally aligned in the vmemmap region.
So round up vmemmap to sparsemem section size. Since this essentially moves
the projection of the linear region up in memory, also revert the reduction
of the size of the vmemmap region.
Fixes: dfd55ad85e4a ("arm64: vmemmap: use virtual projection of linear region")
Tested-by: Mark Langsdorf <mlangsdo@redhat.com>
Tested-by: David Daney <david.daney@cavium.com>
Tested-by: Robert Richter <rrichter@cavium.com>
Acked-by: Catalin Marinas <catalin.marinas@arm.com>
Signed-off-by: Ard Biesheuvel <ard.biesheuvel@linaro.org>
Signed-off-by: Will Deacon <will.deacon@arm.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
commit dfd55ad85e4a7fbaa82df12467515ac3c81e8a3e upstream.
Commit dd006da21646 ("arm64: mm: increase VA range of identity map") made
some changes to the memory mapping code to allow physical memory to reside
at an offset that exceeds the size of the virtual mapping.
However, since the size of the vmemmap area is proportional to the size of
the VA area, but it is populated relative to the physical space, we may
end up with the struct page array being mapped outside of the vmemmap
region. For instance, on my Seattle A0 box, I can see the following output
in the dmesg log.
vmemmap : 0xffffffbdc0000000 - 0xffffffbfc0000000 ( 8 GB maximum)
0xffffffbfc0000000 - 0xffffffbfd0000000 ( 256 MB actual)
We can fix this by deciding that the vmemmap region is not a projection of
the physical space, but of the virtual space above PAGE_OFFSET, i.e., the
linear region. This way, we are guaranteed that the vmemmap region is of
sufficient size, and we can even reduce the size by half.
Signed-off-by: Ard Biesheuvel <ard.biesheuvel@linaro.org>
Signed-off-by: Will Deacon <will.deacon@arm.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
commit 4cad67fca3fc952d6f2ed9e799621f07666a560f upstream.
Calling return copy_to_user(...) in an ioctl will not
do the right thing if there's a pagefault:
copy_to_user returns the number of bytes not copied
in this case.
Fix up kvm to do
return copy_to_user(...)) ? -EFAULT : 0;
everywhere.
Acked-by: Christoffer Dall <christoffer.dall@linaro.org>
Signed-off-by: Michael S. Tsirkin <mst@redhat.com>
Signed-off-by: Marc Zyngier <marc.zyngier@arm.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|