summaryrefslogtreecommitdiff
path: root/arch/x86/kernel
AgeCommit message (Collapse)Author
2014-06-11perf: Drop sample rate when sampling is too slowDave Hansen
commit 14c63f17b1fde5a575a28e96547a22b451c71fb5 upstream. This patch keeps track of how long perf's NMI handler is taking, and also calculates how many samples perf can take a second. If the sample length times the expected max number of samples exceeds a configurable threshold, it drops the sample rate. This way, we don't have a runaway sampling process eating up the CPU. This patch can tend to drop the sample rate down to level where perf doesn't work very well. *BUT* the alternative is that my system hangs because it spends all of its time handling NMIs. I'll take a busted performance tool over an entire system that's busted and undebuggable any day. BTW, my suspicion is that there's still an underlying bug here. Using the HPET instead of the TSC is definitely a contributing factor, but I suspect there are some other things going on. But, I can't go dig down on a bug like that with my machine hanging all the time. Signed-off-by: Dave Hansen <dave.hansen@linux.intel.com> Acked-by: Peter Zijlstra <a.p.zijlstra@chello.nl> Cc: paulus@samba.org Cc: acme@ghostprotocols.net Cc: Dave Hansen <dave@sr71.net> [ Prettified it a bit. ] Signed-off-by: Ingo Molnar <mingo@kernel.org> Cc: Weng Meiling <wengmeiling.weng@huawei.com> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2014-06-07x86-64, modify_ldt: Make support for 16-bit segments a runtime optionLinus Torvalds
commit fa81511bb0bbb2b1aace3695ce869da9762624ff upstream. Checkin: b3b42ac2cbae x86-64, modify_ldt: Ban 16-bit segments on 64-bit kernels disabled 16-bit segments on 64-bit kernels due to an information leak. However, it does seem that people are genuinely using Wine to run old 16-bit Windows programs on Linux. A proper fix for this ("espfix64") is coming in the upcoming merge window, but as a temporary fix, create a sysctl to allow the administrator to re-enable support for 16-bit segments. It adds a "/proc/sys/abi/ldt16" sysctl that defaults to zero (off). If you hit this issue and care about your old Windows program more than you care about a kernel stack address information leak, you can do echo 1 > /proc/sys/abi/ldt16 as root (add it to your startup scripts), and you should be ok. The sysctl table is only added if you have COMPAT support enabled on x86-64, but I assume anybody who runs old windows binaries very much does that ;) Signed-off-by: H. Peter Anvin <hpa@linux.intel.com> Link: http://lkml.kernel.org/r/CA%2B55aFw9BPoD10U1LfHbOMpHWZkvJTkMcfCs9s3urPr1YyWBxw@mail.gmail.com Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2014-05-06x86-64, modify_ldt: Ban 16-bit segments on 64-bit kernelsH. Peter Anvin
commit b3b42ac2cbae1f3cecbb6229964a4d48af31d382 upstream. The IRET instruction, when returning to a 16-bit segment, only restores the bottom 16 bits of the user space stack pointer. We have a software workaround for that ("espfix") for the 32-bit kernel, but it relies on a nonzero stack segment base which is not available in 32-bit mode. Since 16-bit support is somewhat crippled anyway on a 64-bit kernel (no V86 mode), and most (if not quite all) 64-bit processors support virtualization for the users who really need it, simply reject attempts at creating a 16-bit segment when running on top of a 64-bit kernel. Cc: Linus Torvalds <torvalds@linux-foundation.org> Signed-off-by: H. Peter Anvin <hpa@linux.intel.com> Link: http://lkml.kernel.org/n/tip-kicdm89kzw9lldryb1br9od0@git.kernel.org Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2014-05-06ftrace/x86: One more missing sync after fixup of function modification failurePetr Mladek
commit 12729f14d8357fb845d75155228b21e76360272d upstream. If a failure occurs while modifying ftrace function, it bails out and will remove the tracepoints to be back to what the code originally was. There is missing the final sync run across the CPUs after the fix up is done and before the ftrace int3 handler flag is reset. Here's the description of the problem: CPU0 CPU1 ---- ---- remove_breakpoint(); modifying_ftrace_code = 0; [still sees breakpoint] <takes trap> [sees modifying_ftrace_code as zero] [no breakpoint handler] [goto failed case] [trap exception - kernel breakpoint, no handler] BUG() Link: http://lkml.kernel.org/r/1393258342-29978-2-git-send-email-pmladek@suse.cz Fixes: 8a4d0a687a5 "ftrace: Use breakpoint method to update ftrace caller" Acked-by: Frederic Weisbecker <fweisbec@gmail.com> Acked-by: H. Peter Anvin <hpa@linux.intel.com> Signed-off-by: Petr Mladek <pmladek@suse.cz> Signed-off-by: Steven Rostedt <rostedt@goodmis.org> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2014-04-26x86: Adjust irq remapping quirk for older revisions of 5500/5520 chipsetsNeil Horman
commit 6f8a1b335fde143b7407036e2368d3cd6eb55674 upstream. Commit 03bbcb2e7e2 (iommu/vt-d: add quirk for broken interrupt remapping on 55XX chipsets) properly disables irq remapping on the 5500/5520 chipsets that don't correctly perform that feature. However, when I wrote it, I followed the errata sheet linked in that commit too closely, and explicitly tied the activation of the quirk to revision 0x13 of the chip, under the assumption that earlier revisions were not in the field. Recently a system was reported to be suffering from this remap bug and the quirk hadn't triggered, because the revision id register read at a lower value that 0x13, so the quirk test failed improperly. Given this, it seems only prudent to adjust this quirk so that any revision less than 0x13 has the quirk asserted. [ tglx: Removed the 0x12 comparison of pci id 3405 as this is covered by the <= 0x13 check already ] Signed-off-by: Neil Horman <nhorman@tuxdriver.com> Cc: Ingo Molnar <mingo@redhat.com> Cc: "H. Peter Anvin" <hpa@zytor.com> Cc: x86@kernel.org Link: http://lkml.kernel.org/r/1394649873-14913-1-git-send-email-nhorman@tuxdriver.com Signed-off-by: Thomas Gleixner <tglx@linutronix.de> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2014-03-23x86, fpu: Check tsk_used_math() in kernel_fpu_end() for eager FPUSuresh Siddha
commit 731bd6a93a6e9172094a2322bd0ee964bb1f4d63 upstream. For non-eager fpu mode, thread's fpu state is allocated during the first fpu usage (in the context of device not available exception). This (math_state_restore()) can be a blocking call and hence we enable interrupts (which were originally disabled when the exception happened), allocate memory and disable interrupts etc. But the eager-fpu mode, call's the same math_state_restore() from kernel_fpu_end(). The assumption being that tsk_used_math() is always set for the eager-fpu mode and thus avoid the code path of enabling interrupts, allocating fpu state using blocking call and disable interrupts etc. But the below issue was noticed by Maarten Baert, Nate Eldredge and few others: If a user process dumps core on an ecrypt fs while aesni-intel is loaded, we get a BUG() in __find_get_block() complaining that it was called with interrupts disabled; then all further accesses to our ecrypt fs hang and we have to reboot. The aesni-intel code (encrypting the core file that we are writing) needs the FPU and quite properly wraps its code in kernel_fpu_{begin,end}(), the latter of which calls math_state_restore(). So after kernel_fpu_end(), interrupts may be disabled, which nobody seems to expect, and they stay that way until we eventually get to __find_get_block() which barfs. For eager fpu, most the time, tsk_used_math() is true. At few instances during thread exit, signal return handling etc, tsk_used_math() might be false. In kernel_fpu_end(), for eager-fpu, call math_state_restore() only if tsk_used_math() is set. Otherwise, don't bother. Kernel code path which cleared tsk_used_math() knows what needs to be done with the fpu state. Reported-by: Maarten Baert <maarten-baert@hotmail.com> Reported-by: Nate Eldredge <nate@thatsmathematics.com> Suggested-by: Linus Torvalds <torvalds@linux-foundation.org> Signed-off-by: Suresh Siddha <sbsiddha@gmail.com> Link: http://lkml.kernel.org/r/1391410583.3801.6.camel@europa Cc: George Spelvin <linux@horizon.com> Signed-off-by: H. Peter Anvin <hpa@linux.intel.com> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2014-03-23x86/amd/numa: Fix northbridge quirk to assign correct NUMA nodeDaniel J Blueman
commit 847d7970defb45540735b3fb4e88471c27cacd85 upstream. For systems with multiple servers and routed fabric, all northbridges get assigned to the first server. Fix this by also using the node reported from the PCI bus. For single-fabric systems, the northbriges are on PCI bus 0 by definition, which are on NUMA node 0 by definition, so this is invarient on most systems. Tested on fam10h and fam15h single and multi-fabric systems and candidate for stable. Signed-off-by: Daniel J Blueman <daniel@numascale.com> Acked-by: Steffen Persvold <sp@numascale.com> Acked-by: Borislav Petkov <bp@suse.de> Link: http://lkml.kernel.org/r/1394710981-3596-1-git-send-email-daniel@numascale.com Signed-off-by: Ingo Molnar <mingo@kernel.org> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2014-03-23x86: fix compile error due to X86_TRAP_NMI use in asm filesLinus Torvalds
commit b01d4e68933ec23e43b1046fa35d593cefcf37d1 upstream. It's an enum, not a #define, you can't use it in asm files. Introduced in commit 5fa10196bdb5 ("x86: Ignore NMIs that come in during early boot"), and sadly I didn't compile-test things like I should have before pushing out. My weak excuse is that the x86 tree generally doesn't introduce stupid things like this (and the ARM pull afterwards doesn't cause me to do a compile-test either, since I don't cross-compile). Cc: Don Zickus <dzickus@redhat.com> Cc: H. Peter Anvin <hpa@linux.intel.com> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2014-03-23x86: Ignore NMIs that come in during early bootH. Peter Anvin
commit 5fa10196bdb5f190f595ebd048490ee52dddea0f upstream. Don Zickus reports: A customer generated an external NMI using their iLO to test kdump worked. Unfortunately, the machine hung. Disabling the nmi_watchdog made things work. I speculated the external NMI fired, caused the machine to panic (as expected) and the perf NMI from the watchdog came in and was latched. My guess was this somehow caused the hang. ---- It appears that the latched NMI stays latched until the early page table generation on 64 bits, which causes exceptions to happen which end in IRET, which re-enable NMI. Therefore, ignore NMIs that come in during early execution, until we have proper exception handling. Reported-and-tested-by: Don Zickus <dzickus@redhat.com> Link: http://lkml.kernel.org/r/1394221143-29713-1-git-send-email-dzickus@redhat.com Signed-off-by: H. Peter Anvin <hpa@linux.intel.com> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2014-03-06perf/x86: Fix event schedulingPeter Zijlstra
commit 26e61e8939b1fe8729572dabe9a9e97d930dd4f6 upstream. Vince "Super Tester" Weaver reported a new round of syscall fuzzing (Trinity) failures, with perf WARN_ON()s triggering. He also provided traces of the failures. This is I think the relevant bit: > pec_1076_warn-2804 [000] d... 147.926153: x86_pmu_disable: x86_pmu_disable > pec_1076_warn-2804 [000] d... 147.926153: x86_pmu_state: Events: { > pec_1076_warn-2804 [000] d... 147.926156: x86_pmu_state: 0: state: .R config: ffffffffffffffff ( (null)) > pec_1076_warn-2804 [000] d... 147.926158: x86_pmu_state: 33: state: AR config: 0 (ffff88011ac99800) > pec_1076_warn-2804 [000] d... 147.926159: x86_pmu_state: } > pec_1076_warn-2804 [000] d... 147.926160: x86_pmu_state: n_events: 1, n_added: 0, n_txn: 1 > pec_1076_warn-2804 [000] d... 147.926161: x86_pmu_state: Assignment: { > pec_1076_warn-2804 [000] d... 147.926162: x86_pmu_state: 0->33 tag: 1 config: 0 (ffff88011ac99800) > pec_1076_warn-2804 [000] d... 147.926163: x86_pmu_state: } > pec_1076_warn-2804 [000] d... 147.926166: collect_events: Adding event: 1 (ffff880119ec8800) So we add the insn:p event (fd[23]). At this point we should have: n_events = 2, n_added = 1, n_txn = 1 > pec_1076_warn-2804 [000] d... 147.926170: collect_events: Adding event: 0 (ffff8800c9e01800) > pec_1076_warn-2804 [000] d... 147.926172: collect_events: Adding event: 4 (ffff8800cbab2c00) We try and add the {BP,cycles,br_insn} group (fd[3], fd[4], fd[15]). These events are 0:cycles and 4:br_insn, the BP event isn't x86_pmu so that's not visible. group_sched_in() pmu->start_txn() /* nop - BP pmu */ event_sched_in() event->pmu->add() So here we should end up with: 0: n_events = 3, n_added = 2, n_txn = 2 4: n_events = 4, n_added = 3, n_txn = 3 But seeing the below state on x86_pmu_enable(), the must have failed, because the 0 and 4 events aren't there anymore. Looking at group_sched_in(), since the BP is the leader, its event_sched_in() must have succeeded, for otherwise we would not have seen the sibling adds. But since neither 0 or 4 are in the below state; their event_sched_in() must have failed; but I don't see why, the complete state: 0,0,1:p,4 fits perfectly fine on a core2. However, since we try and schedule 4 it means the 0 event must have succeeded! Therefore the 4 event must have failed, its failure will have put group_sched_in() into the fail path, which will call: event_sched_out() event->pmu->del() on 0 and the BP event. Now x86_pmu_del() will reduce n_events; but it will not reduce n_added; giving what we see below: n_event = 2, n_added = 2, n_txn = 2 > pec_1076_warn-2804 [000] d... 147.926177: x86_pmu_enable: x86_pmu_enable > pec_1076_warn-2804 [000] d... 147.926177: x86_pmu_state: Events: { > pec_1076_warn-2804 [000] d... 147.926179: x86_pmu_state: 0: state: .R config: ffffffffffffffff ( (null)) > pec_1076_warn-2804 [000] d... 147.926181: x86_pmu_state: 33: state: AR config: 0 (ffff88011ac99800) > pec_1076_warn-2804 [000] d... 147.926182: x86_pmu_state: } > pec_1076_warn-2804 [000] d... 147.926184: x86_pmu_state: n_events: 2, n_added: 2, n_txn: 2 > pec_1076_warn-2804 [000] d... 147.926184: x86_pmu_state: Assignment: { > pec_1076_warn-2804 [000] d... 147.926186: x86_pmu_state: 0->33 tag: 1 config: 0 (ffff88011ac99800) > pec_1076_warn-2804 [000] d... 147.926188: x86_pmu_state: 1->0 tag: 1 config: 1 (ffff880119ec8800) > pec_1076_warn-2804 [000] d... 147.926188: x86_pmu_state: } > pec_1076_warn-2804 [000] d... 147.926190: x86_pmu_enable: S0: hwc->idx: 33, hwc->last_cpu: 0, hwc->last_tag: 1 hwc->state: 0 So the problem is that x86_pmu_del(), when called from a group_sched_in() that fails (for whatever reason), and without x86_pmu TXN support (because the leader is !x86_pmu), will corrupt the n_added state. Reported-and-Tested-by: Vince Weaver <vincent.weaver@maine.edu> Signed-off-by: Peter Zijlstra <peterz@infradead.org> Cc: Paul Mackerras <paulus@samba.org> Cc: Steven Rostedt <rostedt@goodmis.org> Cc: Stephane Eranian <eranian@google.com> Cc: Dave Jones <davej@redhat.com> Link: http://lkml.kernel.org/r/20140221150312.GF3104@twins.programming.kicks-ass.net Signed-off-by: Ingo Molnar <mingo@kernel.org> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2014-03-06x86: dma-mapping: fix GFP_ATOMIC macro usageMarek Szyprowski
commit c091c71ad2218fc50a07b3d1dab85783f3b77efd upstream. GFP_ATOMIC is not a single gfp flag, but a macro which expands to the other flags, where meaningful is the LACK of __GFP_WAIT flag. To check if caller wants to perform an atomic allocation, the code must test for a lack of the __GFP_WAIT flag. This patch fixes the issue introduced in v3.5-rc1. Signed-off-by: Marek Szyprowski <m.szyprowski@samsung.com> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2014-02-22ftrace/x86: Use breakpoints for converting function graph callerSteven Rostedt (Red Hat)
commit 87fbb2ac6073a7039303517546a76074feb14c84 upstream. When the conversion was made to remove stop machine and use the breakpoint logic instead, the modification of the function graph caller is still done directly as though it was being done under stop machine. As it is not converted via stop machine anymore, there is a possibility that the code could be layed across cache lines and if another CPU is accessing that function graph call when it is being updated, it could cause a General Protection Fault. Convert the update of the function graph caller to use the breakpoint method as well. Cc: H. Peter Anvin <hpa@zytor.com> Fixes: 08d636b6d4fb "ftrace/x86: Have arch x86_64 use breakpoints instead of stop machine" Signed-off-by: Steven Rostedt <rostedt@goodmis.org> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2014-02-22x86, smap: Don't enable SMAP if CONFIG_X86_SMAP is disabledH. Peter Anvin
commit 03bbd596ac04fef47ce93a730b8f086d797c3021 upstream. If SMAP support is not compiled into the kernel, don't enable SMAP in CR4 -- in fact, we should clear it, because the kernel doesn't contain the proper STAC/CLAC instructions for SMAP support. Found by Fengguang Wu's test system. Reported-by: Fengguang Wu <fengguang.wu@intel.com> Link: http://lkml.kernel.org/r/20140213124550.GA30497@localhost Signed-off-by: H. Peter Anvin <hpa@linux.intel.com> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2014-02-20x86: mm: change tlb_flushall_shift for IvyBridgeMel Gorman
commit f98b7a772ab51b52ca4d2a14362fc0e0c8a2e0f3 upstream. There was a large performance regression that was bisected to commit 611ae8e3 ("x86/tlb: enable tlb flush range support for x86"). This patch simply changes the default balance point between a local and global flush for IvyBridge. In the interest of allowing the tests to be reproduced, this patch was tested using mmtests 0.15 with the following configurations configs/config-global-dhp__tlbflush-performance configs/config-global-dhp__scheduler-performance configs/config-global-dhp__network-performance Results are from two machines Ivybridge 4 threads: Intel(R) Core(TM) i3-3240 CPU @ 3.40GHz Ivybridge 8 threads: Intel(R) Core(TM) i7-3770 CPU @ 3.40GHz Page fault microbenchmark showed nothing interesting. Ebizzy was configured to run multiple iterations and threads. Thread counts ranged from 1 to NR_CPUS*2. For each thread count, it ran 100 iterations and each iteration lasted 10 seconds. Ivybridge 4 threads 3.13.0-rc7 3.13.0-rc7 vanilla altshift-v3 Mean 1 6395.44 ( 0.00%) 6789.09 ( 6.16%) Mean 2 7012.85 ( 0.00%) 8052.16 ( 14.82%) Mean 3 6403.04 ( 0.00%) 6973.74 ( 8.91%) Mean 4 6135.32 ( 0.00%) 6582.33 ( 7.29%) Mean 5 6095.69 ( 0.00%) 6526.68 ( 7.07%) Mean 6 6114.33 ( 0.00%) 6416.64 ( 4.94%) Mean 7 6085.10 ( 0.00%) 6448.51 ( 5.97%) Mean 8 6120.62 ( 0.00%) 6462.97 ( 5.59%) Ivybridge 8 threads 3.13.0-rc7 3.13.0-rc7 vanilla altshift-v3 Mean 1 7336.65 ( 0.00%) 7787.02 ( 6.14%) Mean 2 8218.41 ( 0.00%) 9484.13 ( 15.40%) Mean 3 7973.62 ( 0.00%) 8922.01 ( 11.89%) Mean 4 7798.33 ( 0.00%) 8567.03 ( 9.86%) Mean 5 7158.72 ( 0.00%) 8214.23 ( 14.74%) Mean 6 6852.27 ( 0.00%) 7952.45 ( 16.06%) Mean 7 6774.65 ( 0.00%) 7536.35 ( 11.24%) Mean 8 6510.50 ( 0.00%) 6894.05 ( 5.89%) Mean 12 6182.90 ( 0.00%) 6661.29 ( 7.74%) Mean 16 6100.09 ( 0.00%) 6608.69 ( 8.34%) Ebizzy hits the worst case scenario for TLB range flushing every time and it shows for these Ivybridge CPUs at least that the default choice is a poor on. The patch addresses the problem. Next was a tlbflush microbenchmark written by Alex Shi at http://marc.info/?l=linux-kernel&m=133727348217113 . It measures access costs while the TLB is being flushed. The expectation is that if there are always full TLB flushes that the benchmark would suffer and it benefits from range flushing There are 320 iterations of the test per thread count. The number of entries is randomly selected with a min of 1 and max of 512. To ensure a reasonably even spread of entries, the full range is broken up into 8 sections and a random number selected within that section. iteration 1, random number between 0-64 iteration 2, random number between 64-128 etc This is still a very weak methodology. When you do not know what are typical ranges, random is a reasonable choice but it can be easily argued that the opimisation was for smaller ranges and an even spread is not representative of any workload that matters. To improve this, we'd need to know the probability distribution of TLB flush range sizes for a set of workloads that are considered "common", build a synthetic trace and feed that into this benchmark. Even that is not perfect because it would not account for the time between flushes but there are limits of what can be reasonably done and still be doing something useful. If a representative synthetic trace is provided then this benchmark could be revisited and the shift values retuned. Ivybridge 4 threads 3.13.0-rc7 3.13.0-rc7 vanilla altshift-v3 Mean 1 10.50 ( 0.00%) 10.50 ( 0.03%) Mean 2 17.59 ( 0.00%) 17.18 ( 2.34%) Mean 3 22.98 ( 0.00%) 21.74 ( 5.41%) Mean 5 47.13 ( 0.00%) 46.23 ( 1.92%) Mean 8 43.30 ( 0.00%) 42.56 ( 1.72%) Ivybridge 8 threads 3.13.0-rc7 3.13.0-rc7 vanilla altshift-v3 Mean 1 9.45 ( 0.00%) 9.36 ( 0.93%) Mean 2 9.37 ( 0.00%) 9.70 ( -3.54%) Mean 3 9.36 ( 0.00%) 9.29 ( 0.70%) Mean 5 14.49 ( 0.00%) 15.04 ( -3.75%) Mean 8 41.08 ( 0.00%) 38.73 ( 5.71%) Mean 13 32.04 ( 0.00%) 31.24 ( 2.49%) Mean 16 40.05 ( 0.00%) 39.04 ( 2.51%) For both CPUs, average access time is reduced which is good as this is the benchmark that was used to tune the shift values in the first place albeit it is now known *how* the benchmark was used. The scheduler benchmarks were somewhat inconclusive. They showed gains and losses and makes me reconsider how stable those benchmarks really are or if something else might be interfering with the test results recently. Network benchmarks were inconclusive. Almost all results were flat except for netperf-udp tests on the 4 thread machine. These results were unstable and showed large variations between reboots. It is unknown if this is a recent problems but I've noticed before that netperf-udp results tend to vary. Based on these results, changing the default for Ivybridge seems like a logical choice. Signed-off-by: Mel Gorman <mgorman@suse.de> Tested-by: Davidlohr Bueso <davidlohr@hp.com> Reviewed-by: Alex Shi <alex.shi@linaro.org> Reviewed-by: Rik van Riel <riel@redhat.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Peter Zijlstra <peterz@infradead.org> Link: http://lkml.kernel.org/n/tip-cqnadffh1tiqrshthRj3Esge@git.kernel.org Signed-off-by: Ingo Molnar <mingo@kernel.org> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2014-02-06x86, cpu, amd: Add workaround for family 16h, erratum 793Borislav Petkov
commit 3b56496865f9f7d9bcb2f93b44c63f274f08e3b6 upstream. This adds the workaround for erratum 793 as a precaution in case not every BIOS implements it. This addresses CVE-2013-6885. Erratum text: [Revision Guide for AMD Family 16h Models 00h-0Fh Processors, document 51810 Rev. 3.04 November 2013] 793 Specific Combination of Writes to Write Combined Memory Types and Locked Instructions May Cause Core Hang Description Under a highly specific and detailed set of internal timing conditions, a locked instruction may trigger a timing sequence whereby the write to a write combined memory type is not flushed, causing the locked instruction to stall indefinitely. Potential Effect on System Processor core hang. Suggested Workaround BIOS should set MSR C001_1020[15] = 1b. Fix Planned No fix planned [ hpa: updated description, fixed typo in MSR name ] Signed-off-by: Borislav Petkov <bp@suse.de> Link: http://lkml.kernel.org/r/20140114230711.GS29865@pd.tnic Tested-by: Aravind Gopalakrishnan <aravind.gopalakrishnan@amd.com> Signed-off-by: H. Peter Anvin <hpa@linux.intel.com> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2014-01-25ftrace/x86: Load ftrace_ops in parameter not the variable holding itSteven Rostedt
commit 1739f09e33d8f66bf48ddbc3eca615574da6c4f6 upstream. Function tracing callbacks expect to have the ftrace_ops that registered it passed to them, not the address of the variable that holds the ftrace_ops that registered it. Use a mov instead of a lea to store the ftrace_ops into the parameter of the function tracing callback. Signed-off-by: Steven Rostedt <rostedt@goodmis.org> Reviewed-by: Masami Hiramatsu <masami.hiramatsu.pt@hitachi.com> Link: http://lkml.kernel.org/r/20131113152004.459787f9@gandalf.local.home Signed-off-by: H. Peter Anvin <hpa@linux.intel.com> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2014-01-25perf/x86/amd/ibs: Fix waking up from S3 for AMD family 10hRobert Richter
commit bee09ed91cacdbffdbcd3b05de8409c77ec9fcd6 upstream. On AMD family 10h we see following error messages while waking up from S3 for all non-boot CPUs leading to a failed IBS initialization: Enabling non-boot CPUs ... smpboot: Booting Node 0 Processor 1 APIC 0x1 [Firmware Bug]: cpu 1, try to use APIC500 (LVT offset 0) for vector 0x400, but the register is already in use for vector 0xf9 on another cpu perf: IBS APIC setup failed on cpu #1 process: Switch to broadcast mode on CPU1 CPU1 is up ... ACPI: Waking up from system sleep state S3 Reason for this is that during suspend the LVT offset for the IBS vector gets lost and needs to be reinialized while resuming. The offset is read from the IBSCTL msr. On family 10h the offset needs to be 1 as offset 0 is used for the MCE threshold interrupt, but firmware assings it for IBS to 0 too. The kernel needs to reprogram the vector. The msr is a readonly node msr, but a new value can be written via pci config space access. The reinitialization is implemented for family 10h in setup_ibs_ctl() which is forced during IBS setup. This patch fixes IBS setup after waking up from S3 by adding resume/supend hooks for the boot cpu which does the offset reinitialization. Marking it as stable to let distros pick up this fix. Signed-off-by: Robert Richter <rric@kernel.org> Signed-off-by: Peter Zijlstra <peterz@infradead.org> Cc: Linus Torvalds <torvalds@linux-foundation.org> Link: http://lkml.kernel.org/r/1389797849-5565-1-git-send-email-rric.net@gmail.com Signed-off-by: Ingo Molnar <mingo@kernel.org> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2014-01-09x86 idle: Repair large-server 50-watt idle-power regressionLen Brown
commit 40e2d7f9b5dae048789c64672bf3027fbb663ffa upstream. Linux 3.10 changed the timing of how thread_info->flags is touched: x86: Use generic idle loop (7d1a941731fabf27e5fb6edbebb79fe856edb4e5) This caused Intel NHM-EX and WSM-EX servers to experience a large number of immediate MONITOR/MWAIT break wakeups, which caused cpuidle to demote from deep C-states to shallow C-states, which caused these platforms to experience a significant increase in idle power. Note that this issue was already present before the commit above, however, it wasn't seen often enough to be noticed in power measurements. Here we extend an errata workaround from the Core2 EX "Dunnington" to extend to NHM-EX and WSM-EX, to prevent these immediate returns from MWAIT, reducing idle power on these platforms. While only acpi_idle ran on Dunnington, intel_idle may also run on these two newer systems. As of today, there are no other models that are known to need this tweak. Link: http://lkml.kernel.org/r/CAJvTdK=%2BaNN66mYpCGgbHGCHhYQAKx-vB0kJSWjVpsNb_hOAtQ@mail.gmail.com Signed-off-by: Len Brown <len.brown@intel.com> Link: http://lkml.kernel.org/r/baff264285f6e585df757d58b17788feabc68918.1387403066.git.len.brown@intel.com Signed-off-by: H. Peter Anvin <hpa@linux.intel.com> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2013-11-29ftrace/x86: skip over the breakpoint for ftrace callerKevin Hao
commit ab4ead02ec235d706d0611d8741964628291237e upstream. In commit 8a4d0a687a59 "ftrace: Use breakpoint method to update ftrace caller", we choose to use breakpoint method to update the ftrace caller. But we also need to skip over the breakpoint in function ftrace_int3_handler() for them. Otherwise weird things would happen. Signed-off-by: Kevin Hao <haokexin@gmail.com> Signed-off-by: Steven Rostedt <rostedt@goodmis.org> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2013-11-29x86/microcode/amd: Tone down printk(), don't treat a missing firmware file ↵Thomas Renninger
as an error commit 11f918d3e2d3861b6931e97b3aa778e4984935aa upstream. Do it the same way as done in microcode_intel.c: use pr_debug() for missing firmware files. There seem to be CPUs out there for which no microcode update has been submitted to kernel-firmware repo yet resulting in scary sounding error messages in dmesg: microcode: failed to load file amd-ucode/microcode_amd_fam16h.bin Signed-off-by: Thomas Renninger <trenn@suse.de> Acked-by: Borislav Petkov <bp@suse.de> Link: http://lkml.kernel.org/r/1384274383-43510-1-git-send-email-trenn@suse.de Signed-off-by: Ingo Molnar <mingo@kernel.org> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2013-11-29sched, idle: Fix the idle polling state logicPeter Zijlstra
commit ea8117478918a4734586d35ff530721b682425be upstream. Mike reported that commit 7d1a9417 ("x86: Use generic idle loop") regressed several workloads and caused excessive reschedule interrupts. The patch in question failed to notice that the x86 code had an inverted sense of the polling state versus the new generic code (x86: default polling, generic: default !polling). Fix the two prominent x86 mwait based idle drivers and introduce a few new generic polling helpers (fixing the wrong smp_mb__after_clear_bit usage). Also switch the idle routines to using tif_need_resched() which is an immediate TIF_NEED_RESCHED test as opposed to need_resched which will end up being slightly different. Reported-by: Mike Galbraith <bitbucket@online.de> Signed-off-by: Peter Zijlstra <peterz@infradead.org> Cc: lenb@kernel.org Cc: tglx@linutronix.de Link: http://lkml.kernel.org/n/tip-nc03imb0etuefmzybzj7sprf@git.kernel.org Signed-off-by: Ingo Molnar <mingo@kernel.org> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2013-11-13x86: Update UV3 hub revision IDRuss Anderson
commit dd3c9c4b603c664fedc12facf180db0f1794aafe upstream. The UV3 hub revision ID is different than expected. The first revision was supposed to start at 1 but instead will start at 0. Signed-off-by: Russ Anderson <rja@sgi.com> Link: http://lkml.kernel.org/r/20131014161733.GA6274@sgi.com Signed-off-by: Ingo Molnar <mingo@kernel.org> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2013-10-18x86: avoid remapping data in parse_setup_data()Linn Crosetto
commit 30e46b574a1db7d14404e52dca8e1aa5f5155fd2 upstream. Type SETUP_PCI, added by setup_efi_pci(), may advertise a ROM size larger than early_memremap() is able to handle, which is currently limited to 256kB. If this occurs it leads to a NULL dereference in parse_setup_data(). To avoid this, remap the setup_data header and allow parsing functions for individual types to handle their own data remapping. Signed-off-by: Linn Crosetto <linn@hp.com> Link: http://lkml.kernel.org/r/1376430401-67445-1-git-send-email-linn@hp.com Acked-by: Yinghai Lu <yinghai@kernel.org> Reviewed-by: Pekka Enberg <penberg@kernel.org> Signed-off-by: H. Peter Anvin <hpa@linux.intel.com> Cc: Paul Gortmaker <paul.gortmaker@windriver.com> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2013-10-05x86/reboot: Add quirk to make Dell C6100 use reboot=pci automaticallyMasoud Sharbiani
commit 4f0acd31c31f03ba42494c8baf6c0465150e2621 upstream. Dell PowerEdge C6100 machines fail to completely reboot about 20% of the time. Signed-off-by: Masoud Sharbiani <msharbiani@twitter.com> Signed-off-by: Vinson Lee <vlee@twitter.com> Cc: Robin Holt <holt@sgi.com> Cc: Russell King <rmk+kernel@arm.linux.org.uk> Cc: Guan Xuetao <gxt@mprc.pku.edu.cn> Link: http://lkml.kernel.org/r/1379717947-18042-1-git-send-email-vlee@freedesktop.org Signed-off-by: Ingo Molnar <mingo@kernel.org> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2013-09-26x86, amd_nb: Clarify F15h, model 30h GART and L3 supportAravind Gopalakrishnan
commit 7d64ac6422092adbbdaa279ab32f9d4c90a84558 upstream. F15h, models 0x30 and later don't have a GART. Note that. Also check CPUID leaf 0x80000006 for L3 prescence because there are models which don't sport an L3 cache. Signed-off-by: Aravind Gopalakrishnan <Aravind.Gopalakrishnan@amd.com> [ Boris: rewrite commit message, cleanup comments. ] Signed-off-by: Borislav Petkov <bp@suse.de> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2013-09-26Introduce [compat_]save_altstack_ex() to unbreak x86 SMAPAl Viro
commit bd1c149aa9915b9abb6d83d0f01dfd2ace0680b5 upstream. For performance reasons, when SMAP is in use, SMAP is left open for an entire put_user_try { ... } put_user_catch(); block, however, calling __put_user() in the middle of that block will close SMAP as the STAC..CLAC constructs intentionally do not nest. Furthermore, using __put_user() rather than put_user_ex() here is bad for performance. Thus, introduce new [compat_]save_altstack_ex() helpers that replace __[compat_]save_altstack() for x86, being currently the only architecture which supports put_user_try { ... } put_user_catch(). Reported-by: H. Peter Anvin <hpa@linux.intel.com> Signed-off-by: Al Viro <viro@zeniv.linux.org.uk> Signed-off-by: H. Peter Anvin <hpa@linux.intel.com> Link: http://lkml.kernel.org/n/tip-es5p6y64if71k8p5u08agv9n@git.kernel.org Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2013-08-29x86 get_unmapped_area: Access mmap_legacy_base through mm_struct memberRadu Caragea
commit 41aacc1eea645c99edbe8fbcf78a97dc9b862adc upstream. This is the updated version of df54d6fa5427 ("x86 get_unmapped_area(): use proper mmap base for bottom-up direction") that only randomizes the mmap base address once. Signed-off-by: Radu Caragea <sinaelgl@gmail.com> Reported-and-tested-by: Jeff Shorey <shoreyjeff@gmail.com> Cc: Andrew Morton <akpm@linux-foundation.org> Cc: Michel Lespinasse <walken@google.com> Cc: Oleg Nesterov <oleg@redhat.com> Cc: Rik van Riel <riel@redhat.com> Cc: Ingo Molnar <mingo@elte.hu> Cc: Adrian Sendroiu <molecula2788@gmail.com> Cc: Kamal Mostafa <kamal@canonical.com> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2013-08-29Revert "x86 get_unmapped_area(): use proper mmap base for bottom-up direction"Linus Torvalds
commit 5ea80f76a56605a190a7ea16846c82aa63dbd0aa upstream. This reverts commit df54d6fa54275ce59660453e29d1228c2b45a826. The commit isn't necessarily wrong, but because it recalculates the random mmap_base every time, it seems to confuse user memory allocators that expect contiguous mmap allocations even when the mmap address isn't specified. In particular, the MATLAB Java runtime seems to be unhappy. See https://bugzilla.kernel.org/show_bug.cgi?id=60774 So we'll want to apply the random offset only once, and Radu has a patch for that. Revert this older commit in order to apply the other one. Reported-by: Jeff Shorey <shoreyjeff@gmail.com> Cc: Radu Caragea <sinaelgl@gmail.com> Cc: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2013-08-20x86 get_unmapped_area(): use proper mmap base for bottom-up directionRadu Caragea
commit df54d6fa54275ce59660453e29d1228c2b45a826 upstream. When the stack is set to unlimited, the bottomup direction is used for mmap-ings but the mmap_base is not used and thus effectively renders ASLR for mmapings along with PIE useless. Reviewed-by: Rik van Riel <riel@redhat.com> Cc: Michel Lespinasse <walken@google.com> Cc: Oleg Nesterov <oleg@redhat.com> Acked-by: Ingo Molnar <mingo@kernel.org> Cc: Adrian Sendroiu <molecula2788@gmail.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2013-08-20perf/x86: Fix intel QPI uncore event definitionsVince Weaver
commit c9601247f8f3fdc18aed7ed7e490e8dfcd07f122 upstream. John McCalpin reports that the "drs_data" and "ncb_data" QPI uncore events are missing the "extra bit" and always return zero values unless the bit is properly set. More details from him: According to the Xeon E5-2600 Product Family Uncore Performance Monitoring Guide, Table 2-94, about 1/2 of the QPI Link Layer events (including the ones that "perf" calls "drs_data" and "ncb_data") require that the "extra bit" be set. This was confusing for a while -- a note at the bottom of page 94 says that the "extra bit" is bit 16 of the control register. Unfortunately, Table 2-86 clearly says that bit 16 is reserved and must be zero. Looking around a bit, I found that bit 21 appears to be the correct "extra bit", and further investigation shows that "perf" actually agrees with me: [root@c560-003.stampede]# cat /sys/bus/event_source/devices/uncore_qpi_0/format/event config:0-7,21 So the command # perf -e "uncore_qpi_0/event=drs_data/" Is the same as # perf -e "uncore_qpi_0/event=0x02,umask=0x08/" While it should be # perf -e "uncore_qpi_0/event=0x102,umask=0x08/" I confirmed that this last version gives results that agree with the amount of data that I expected the STREAM benchmark to move across the QPI link in the second (cross-chip) test of the original script. Reported-by: John McCalpin <mccalpin@tacc.utexas.edu> Signed-off-by: Vince Weaver <vincent.weaver@maine.edu> Cc: zheng.z.yan@intel.com Cc: Peter Zijlstra <peterz@infradead.org> Cc: Arnaldo Carvalho de Melo <acme@ghostprotocols.net> Cc: Paul Mackerras <paulus@samba.org> Link: http://lkml.kernel.org/r/alpine.DEB.2.10.1308021037280.26119@vincent-weaver-1.um.maine.edu Signed-off-by: Ingo Molnar <mingo@kernel.org> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2013-08-11x86/iommu/vt-d: Expand interrupt remapping quirk to cover x58 chipsetNeil Horman
commit 803075dba31c17af110e1d9a915fe7262165b213 upstream. Recently we added an early quirk to detect 5500/5520 chipsets with early revisions that had problems with irq draining with interrupt remapping enabled: commit 03bbcb2e7e292838bb0244f5a7816d194c911d62 Author: Neil Horman <nhorman@tuxdriver.com> Date: Tue Apr 16 16:38:32 2013 -0400 iommu/vt-d: add quirk for broken interrupt remapping on 55XX chipsets It turns out this same problem is present in the intel X58 chipset as well. See errata 69 here: http://www.intel.com/content/www/us/en/chipsets/x58-express-specification-update.html This patch extends the pci early quirk so that the chip devices/revisions specified in the above update are also covered in the same way: Signed-off-by: Neil Horman <nhorman@tuxdriver.com> Reviewed-by: Jan Beulich <jbeulich@suse.com> Acked-by: Donald Dutile <ddutile@redhat.com> Cc: Joerg Roedel <joro@8bytes.org> Cc: Andrew Cooper <andrew.cooper3@citrix.com> Cc: Malcolm Crossley <malcolm.crossley@citrix.com> Cc: Prarit Bhargava <prarit@redhat.com> Cc: Don Zickus <dzickus@redhat.com> Link: http://lkml.kernel.org/r/1374059639-8631-1-git-send-email-nhorman@tuxdriver.com [ Small edits. ] Signed-off-by: Ingo Molnar <mingo@kernel.org> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2013-08-11x86, fpu: correct the asm constraints for fxsave, unbreak mxcsr.dazH.J. Lu
commit eaa5a990191d204ba0f9d35dbe5505ec2cdd1460 upstream. GCC will optimize mxcsr_feature_mask_init in arch/x86/kernel/i387.c: memset(&fx_scratch, 0, sizeof(struct i387_fxsave_struct)); asm volatile("fxsave %0" : : "m" (fx_scratch)); mask = fx_scratch.mxcsr_mask; if (mask == 0) mask = 0x0000ffbf; to memset(&fx_scratch, 0, sizeof(struct i387_fxsave_struct)); asm volatile("fxsave %0" : : "m" (fx_scratch)); mask = 0x0000ffbf; since asm statement doesn’t say it will update fx_scratch. As the result, the DAZ bit will be cleared. This patch fixes it. This bug dates back to at least kernel 2.6.12. Signed-off-by: H. Peter Anvin <hpa@linux.intel.com> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2013-08-04x86: Fix /proc/mtrr with base/size more than 44bitsYinghai Lu
commit d5c78673b1b28467354c2c30c3d4f003666ff385 upstream. On one sytem that mtrr range is more then 44bits, in dmesg we have [ 0.000000] MTRR default type: write-back [ 0.000000] MTRR fixed ranges enabled: [ 0.000000] 00000-9FFFF write-back [ 0.000000] A0000-BFFFF uncachable [ 0.000000] C0000-DFFFF write-through [ 0.000000] E0000-FFFFF write-protect [ 0.000000] MTRR variable ranges enabled: [ 0.000000] 0 [000080000000-0000FFFFFFFF] mask 3FFF80000000 uncachable [ 0.000000] 1 [380000000000-38FFFFFFFFFF] mask 3F0000000000 uncachable [ 0.000000] 2 [000099000000-000099FFFFFF] mask 3FFFFF000000 write-through [ 0.000000] 3 [00009A000000-00009AFFFFFF] mask 3FFFFF000000 write-through [ 0.000000] 4 [381FFA000000-381FFBFFFFFF] mask 3FFFFE000000 write-through [ 0.000000] 5 [381FFC000000-381FFC0FFFFF] mask 3FFFFFF00000 write-through [ 0.000000] 6 [0000AD000000-0000ADFFFFFF] mask 3FFFFF000000 write-through [ 0.000000] 7 [0000BD000000-0000BDFFFFFF] mask 3FFFFF000000 write-through [ 0.000000] 8 disabled [ 0.000000] 9 disabled but /proc/mtrr report wrong: reg00: base=0x080000000 ( 2048MB), size= 2048MB, count=1: uncachable reg01: base=0x80000000000 (8388608MB), size=1048576MB, count=1: uncachable reg02: base=0x099000000 ( 2448MB), size= 16MB, count=1: write-through reg03: base=0x09a000000 ( 2464MB), size= 16MB, count=1: write-through reg04: base=0x81ffa000000 (8519584MB), size= 32MB, count=1: write-through reg05: base=0x81ffc000000 (8519616MB), size= 1MB, count=1: write-through reg06: base=0x0ad000000 ( 2768MB), size= 16MB, count=1: write-through reg07: base=0x0bd000000 ( 3024MB), size= 16MB, count=1: write-through reg08: base=0x09b000000 ( 2480MB), size= 16MB, count=1: write-combining so bit 44 and bit 45 get cut off. We have problems in arch/x86/kernel/cpu/mtrr/generic.c::generic_get_mtrr(). 1. for base, we miss cast base_lo to 64bit before shifting. Fix that by adding u64 casting. 2. for size, it only can handle 44 bits aka 32bits + page_shift Fix that with 64bit mask instead of 32bit mask_lo, then range could be more than 44bits. At the same time, we need to update size_or_mask for old cpus that does support cpuid 0x80000008 to get phys_addr. Need to set high 32bits to all 1s, otherwise will not get correct size for them. Also fix mtrr_add_page: it should check base and (base + size - 1) instead of base and size, as base and size could be small but base + size could bigger enough to be out of boundary. We can use boot_cpu_data.x86_phys_bits directly to avoid size_or_mask. So When are we going to have size more than 44bits? that is 16TiB. after patch we have right ouput: reg00: base=0x080000000 ( 2048MB), size= 2048MB, count=1: uncachable reg01: base=0x380000000000 (58720256MB), size=1048576MB, count=1: uncachable reg02: base=0x099000000 ( 2448MB), size= 16MB, count=1: write-through reg03: base=0x09a000000 ( 2464MB), size= 16MB, count=1: write-through reg04: base=0x381ffa000000 (58851232MB), size= 32MB, count=1: write-through reg05: base=0x381ffc000000 (58851264MB), size= 1MB, count=1: write-through reg06: base=0x0ad000000 ( 2768MB), size= 16MB, count=1: write-through reg07: base=0x0bd000000 ( 3024MB), size= 16MB, count=1: write-through reg08: base=0x09b000000 ( 2480MB), size= 16MB, count=1: write-combining -v2: simply checking in mtrr_add_page according to hpa. [ hpa: This probably wants to go into -stable only after having sat in mainline for a bit. It is not a regression. ] Signed-off-by: Yinghai Lu <yinghai@kernel.org> Link: http://lkml.kernel.org/r/1371162815-29931-1-git-send-email-yinghai@kernel.org Signed-off-by: H. Peter Anvin <hpa@linux.intel.com> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2013-08-04x86: make sure IDT is page alignedKees Cook
based on 4df05f361937ee86e5a8c9ead8aeb6a19ea9b7d7 upstream. Since the IDT is referenced from a fixmap, make sure it is page aligned. This avoids the risk of the IDT ever being moved in the bss and having the mapping be offset, resulting in calling incorrect handlers. In the current upstream kernel this is not a manifested bug, but heavily patched kernels (such as those using the PaX patch series) did encounter this bug. Signed-off-by: Kees Cook <keescook@chromium.org> Reported-by: PaX Team <pageexec@gmail.com> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: Ingo Molnar <mingo@redhat.com> Cc: "H. Peter Anvin" <hpa@zytor.com> Cc: Yinghai Lu <yinghai@kernel.org> Cc: Seiji Aguchi <seiji.aguchi@hds.com> Cc: Fenghua Yu <fenghua.yu@intel.com> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2013-08-04x86, suspend: Handle CPUs which fail to #GP on RDMSRH. Peter Anvin
commit 5ff560fd48d5b3d82fa0c3aff625c9da1a301911 upstream. There are CPUs which have errata causing RDMSR of a nonexistent MSR to not fault. We would then try to WRMSR to restore the value of that MSR, causing a crash. Specifically, some Pentium M variants would have this problem trying to save and restore the non-existent EFER, causing a crash on resume. Work around this by making sure we can write back the result at suspend time. Huge thanks to Christian Sünkenberg for finding the offending erratum that finally deciphered the mystery. Reported-and-tested-by: Johan Heinrich <onny@project-insanity.org> Debugged-by: Christian Sünkenberg <christian.suenkenberg@student.kit.edu> Acked-by: Rafael J. Wysocki <rjw@sisk.pl> Link: http://lkml.kernel.org/r/51DDC972.3010005@student.kit.edu Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2013-06-26Merge branch 'perf-urgent-for-linus' of ↵Linus Torvalds
git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip Pull perf fixes from Ingo Molnar: "Three small fixlets" * 'perf-urgent-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip: hw_breakpoint: Use cpu_possible_mask in {reserve,release}_bp_slot() hw_breakpoint: Fix cpu check in task_bp_pinned(cpu) kprobes: Fix arch_prepare_kprobe to handle copy insn failures
2013-06-21Merge branch 'x86/urgent' of ↵Linus Torvalds
git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip Pull x86 fixes from Peter Anvin: "This series fixes a couple of build failures, and fixes MTRR cleanup and memory setup on very specific memory maps. Finally, it fixes triggering backtraces on all CPUs, which was inadvertently disabled on x86." * 'x86/urgent' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip: x86/efi: Fix dummy variable buffer allocation x86: Fix trigger_all_cpu_backtrace() implementation x86: Fix section mismatch on load_ucode_ap x86: fix build error and kconfig for ia32_emulation and binfmt range: Do not add new blank slot with add_range_with_merge x86, mtrr: Fix original mtrr range get for mtrr_cleanup
2013-06-21Merge tag 'for-linus' of git://git.kernel.org/pub/scm/virt/kvm/kvmLinus Torvalds
Pull KVM fixes from Paolo Bonzini: "Three one-line fixes for my first pull request; one for x86 host, one for x86 guest, one for PPC" * tag 'for-linus' of git://git.kernel.org/pub/scm/virt/kvm/kvm: x86: kvmclock: zero initialize pvclock shared memory area kvm/ppc/booke: Delay kvmppc_lazy_ee_enable KVM: x86: remove vcpu's CPL check in host-invoked XCR set
2013-06-20Merge branch 'sched-urgent-for-linus' of ↵Linus Torvalds
git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip Pull scheduler fixes from Ingo Molnar: "Two smaller fixes - plus a context tracking tracing fix that is a bit bigger" * 'sched-urgent-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip: tracing/context-tracking: Add preempt_schedule_context() for tracing sched: Fix clear NOHZ_BALANCE_KICK sched/x86: Construct all sibling maps if smt
2013-06-20Merge branch 'perf-urgent-for-linus' of ↵Linus Torvalds
git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip Pull perf fixes from Ingo Molnar: "Four fixes. The mmap ones are unfortunately larger than desired - fuzzing uncovered bugs that needed perf context life time management changes to fix properly" * 'perf-urgent-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip: perf/x86: Fix broken PEBS-LL support on SNB-EP/IVB-EP perf: Fix mmap() accounting hole perf: Fix perf mmap bugs kprobes: Fix to free gone and unused optprobes
2013-06-20Merge branch 'core-urgent-for-linus' of ↵Linus Torvalds
git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip Pull cpu idle fixes from Thomas Gleixner: - Add a missing irq enable. Fallout of the idle conversion - Fix stackprotector wreckage caused by the idle conversion * 'core-urgent-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip: idle: Enable interrupts in the weak arch_cpu_idle() implementation idle: Add the stack canary init to cpu_startup_entry()
2013-06-20kprobes: Fix arch_prepare_kprobe to handle copy insn failuresMasami Hiramatsu
Fix arch_prepare_kprobe() to handle failures in copy instruction correctly. This fix is related to the previous fix: 8101376 which made __copy_instruction return an error result if failed, but caller site was not updated to handle it. Thus, this is the other half of the bugfix. This fix is also related to the following bug-report: https://bugzilla.redhat.com/show_bug.cgi?id=910649 Signed-off-by: Masami Hiramatsu <masami.hiramatsu.pt@hitachi.com> Acked-by: Steven Rostedt <rostedt@goodmis.org> Tested-by: Jonathan Lebon <jlebon@redhat.com> Cc: Frank Ch. Eigler <fche@redhat.com> Cc: systemtap@sourceware.org Cc: yrl.pp-manager.tt@hitachi.com Link: http://lkml.kernel.org/r/20130605031216.15285.2001.stgit@mhiramat-M0-7522 Signed-off-by: Ingo Molnar <mingo@kernel.org>
2013-06-20x86: Fix trigger_all_cpu_backtrace() implementationMichel Lespinasse
The following change fixes the x86 implementation of trigger_all_cpu_backtrace(), which was previously (accidentally, as far as I can tell) disabled to always return false as on architectures that do not implement this function. trigger_all_cpu_backtrace(), as defined in include/linux/nmi.h, should call arch_trigger_all_cpu_backtrace() if available, or return false if the underlying arch doesn't implement this function. x86 did provide a suitable arch_trigger_all_cpu_backtrace() implementation, but it wasn't actually being used because it was declared in asm/nmi.h, which linux/nmi.h doesn't include. Also, linux/nmi.h couldn't easily be fixed by including asm/nmi.h, because that file is not available on all architectures. I am proposing to fix this by moving the x86 definition of arch_trigger_all_cpu_backtrace() to asm/irq.h. Tested via: echo l > /proc/sysrq-trigger Before the change, this uses a fallback implementation which shows backtraces on active CPUs (using smp_call_function_interrupt() ) After the change, this shows NMI backtraces on all CPUs Signed-off-by: Michel Lespinasse <walken@google.com> Cc: Linus Torvalds <torvalds@linux-foundation.org> Link: http://lkml.kernel.org/r/1370518875-1346-1-git-send-email-walken@google.com Signed-off-by: Ingo Molnar <mingo@kernel.org>
2013-06-19perf/x86: Fix broken PEBS-LL support on SNB-EP/IVB-EPStephane Eranian
This patch fixes broken support of PEBS-LL on SNB-EP/IVB-EP. For some reason, the LDLAT extra reg definition for snb_ep showed up as duplicate in the snb table. This patch moves the definition of LDLAT back into the snb_ep table. Thanks to Don Zickus for tracking this one down. Signed-off-by: Stephane Eranian <eranian@google.com> Signed-off-by: Peter Zijlstra <peterz@infradead.org> Link: http://lkml.kernel.org/r/20130607212210.GA11849@quad Signed-off-by: Ingo Molnar <mingo@kernel.org>
2013-06-19x86: kvmclock: zero initialize pvclock shared memory areaIgor Mammedov
kernel might hung in pvclock_clocksource_read() due to uninitialized memory might contain odd version value in following cycle: do { version = __pvclock_read_cycles(src, &ret, &flags); } while ((src->version & 1) || version != src->version); if secondary kvmclock is accessed before it's registered with kvm. Clear garbage in pvclock shared memory area right after it's allocated to avoid this issue. Ref: https://bugzilla.kernel.org/show_bug.cgi?id=59521 Signed-off-by: Igor Mammedov <imammedo@redhat.com> [See BZ for analysis. We may want a different fix for 3.11, but this is the safest for now - Paolo] Cc: <stable@vger.kernel.org> # 3.8 Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2013-06-18x86, mtrr: Fix original mtrr range get for mtrr_cleanupYinghai Lu
Joshua reported: Commit cd7b304dfaf1 (x86, range: fix missing merge during add range) broke mtrr cleanup on his setup in 3.9.5. corresponding commit in upstream is fbe06b7bae7c. *BAD*gran_size: 64K chunk_size: 16M num_reg: 6 lose cover RAM: -0G https://bugzilla.kernel.org/show_bug.cgi?id=59491 So it rejects new var mtrr layout. It turns out we have some problem with initial mtrr range retrieval. The current sequence is: x86_get_mtrr_mem_range ==> bunchs of add_range_with_merge ==> bunchs of subract_range ==> clean_sort_range add_range_with_merge for [0,1M) sort_range() add_range_with_merge could have blank slots, so we can not just sort only, that will have final result have extra blank slot in head. So move that calling add_range_with_merge for [0,1M), with that we could avoid extra clean_sort_range calling. Reported-by: Joshua Covington <joshuacov@googlemail.com> Tested-by: Joshua Covington <joshuacov@googlemail.com> Signed-off-by: Yinghai Lu <yinghai@kernel.org> Link: http://lkml.kernel.org/r/1371154622-8929-2-git-send-email-yinghai@kernel.org Cc: <stable@vger.kernel.org> v3.9 Signed-off-by: H. Peter Anvin <hpa@linux.intel.com>
2013-06-12x86: Fix typo in kexec register clearingKees Cook
Fixes a typo in register clearing code. Thanks to PaX Team for fixing this originally, and James Troup for pointing it out. Signed-off-by: Kees Cook <keescook@chromium.org> Link: http://lkml.kernel.org/r/20130605184718.GA8396@www.outflux.net Cc: <stable@vger.kernel.org> v2.6.30+ Cc: PaX Team <pageexec@freemail.hu> Signed-off-by: H. Peter Anvin <hpa@linux.intel.com>
2013-06-11idle: Add the stack canary init to cpu_startup_entry()Thomas Gleixner
Moving x86 to the generic idle implementation (commit 7d1a9417 "x86: Use generic idle loop") wreckaged the stack protector. I stupidly missed that boot_init_stack_canary() must be inlined from a function which never returns, but I put that call into arch_cpu_idle_prepare() which of course returns. I pondered to play tricks with arch_cpu_idle_prepare() first, but then I noticed, that the other archs which have implemented the stackprotector (ARM and SH) do not initialize the canary for the non-boot cpus. So I decided to move the boot_init_stack_canary() call into cpu_startup_entry() ifdeffed with an CONFIG_X86 for now. This #ifdef is just a temporary measure as I don't want to inflict the boot_init_stack_canary() call on ARM and SH that late in the cycle. I'll queue a patch for 3.11 which removes the #ifdef if the ARM/SH maintainers have no objection. Reported-by: Wouter van Kesteren <woutershep@gmail.com> Cc: x86@kernel.org Cc: Russell King <linux@arm.linux.org.uk> Cc: Paul Mundt <lethal@linux-sh.org> Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
2013-05-31sched/x86: Construct all sibling maps if smtAndrew Jones
Commit 316ad248307fb ("sched/x86: Rewrite set_cpu_sibling_map()") broke the construction of sibling maps, which also broke the booted_cores accounting. Before the rewrite, if smt was present, then each map was updated for each smt sibling. After the rewrite only cpu_sibling_mask gets updated, as the llc and core maps depend on 'has_mc = x86_max_cores > 1' instead. This leads to problems with topologies like the following (qemu -smp sockets=2,cores=1,threads=2) processor : 0 physical id : 0 siblings : 1 <= should be 2 core id : 0 cpu cores : 1 processor : 1 physical id : 0 siblings : 1 <= should be 2 core id : 0 cpu cores : 0 <= should be 1 processor : 2 physical id : 1 siblings : 1 <= should be 2 core id : 0 cpu cores : 1 processor : 3 physical id : 1 siblings : 1 <= should be 2 core id : 0 cpu cores : 0 <= should be 1 This patch restores the former construction by defining has_mc as (has_smt || x86_max_cores > 1). This should be fine as there were no (has_smt && !has_mc) conditions in the context. Aso rename has_mc to has_mp now that it's not just for cores. Signed-off-by: Andrew Jones <drjones@redhat.com> Acked-by: Peter Zijlstra <peterz@infradead.org> Cc: a.p.zijlstra@chello.nl Cc: fenghua.yu@intel.com Link: http://lkml.kernel.org/r/1369831695-11970-1-git-send-email-drjones@redhat.com Signed-off-by: Ingo Molnar <mingo@kernel.org>
2013-05-31Merge branch 'x86-urgent-for-linus' of ↵Linus Torvalds
git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip Pull x86 fixes from Peter Anvin: - Three EFI-related fixes - Two early memory initialization fixes - build fix for older binutils - fix for an eager FPU performance regression -- currently we don't allow the use of the FPU at interrupt time *at all* in eager mode, which is clearly wrong. * 'x86-urgent-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip: x86: Allow FPU to be used at interrupt time even with eagerfpu x86, crc32-pclmul: Fix build with older binutils x86-64, init: Fix a possible wraparound bug in switchover in head_64.S x86, range: fix missing merge during add range x86, efi: initial the local variable of DataSize to zero efivar: fix oops in efivar_update_sysfs_entries() caused by memory reuse efivarfs: Never return ENOENT from firmware again