Age | Commit message (Collapse) | Author |
|
commit 95a7d76897c1e7243d4137037c66d15cbf2cce76 upstream.
As Mukesh explained it, the MMUEXT_TLB_FLUSH_ALL allows the
hypervisor to do a TLB flush on all active vCPUs. If instead
we were using the generic one (which ends up being xen_flush_tlb)
we end up making the MMUEXT_TLB_FLUSH_LOCAL hypercall. But
before we make that hypercall the kernel will IPI all of the
vCPUs (even those that were asleep from the hypervisor
perspective). The end result is that we needlessly wake them
up and do a TLB flush when we can just let the hypervisor
do it correctly.
This patch gives around 50% speed improvement when migrating
idle guest's from one host to another.
Oracle-bug: 14630170
Tested-by: Jingjie Jiang <jingjie.jiang@oracle.com>
Suggested-by: Mukesh Rathor <mukesh.rathor@oracle.com>
Signed-off-by: Konrad Rzeszutek Wilk <konrad.wilk@oracle.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
commit 1f2ff682ac951ed82cc043cf140d2851084512df upstream.
We need to handle E820_RAM and E820_RESERVED_KERNEL at the same time.
Also memblock has page aligned range for ram, so we could avoid mapping
partial pages.
Signed-off-by: Yinghai Lu <yinghai@kernel.org>
Link: http://lkml.kernel.org/r/CAE9FiQVZirvaBMFYRfXMmWEcHbKSicQEHz4VAwUv0xFCk51ZNw@mail.gmail.com
Acked-by: Jacob Shin <jacob.shin@amd.com>
Signed-off-by: H. Peter Anvin <hpa@linux.intel.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
commit 5189c2a7c7769ee9d037d76c1a7b8550ccf3481c upstream.
When 32-bit EFI is used with 64-bit kernel (or vice versa), turn off
efi_enabled once setup is done. Beyond setup, it is normally used to
determine if runtime services are available and we will have none.
This will resolve issues stemming from efivars modprobe panicking on a
32/64-bit setup, as well as some reboot issues on similar setups.
Bugzilla: https://bugzilla.kernel.org/show_bug.cgi?id=45991
Reported-by: Marko Kohtala <marko.kohtala@gmail.com>
Reported-by: Maxim Kammerer <mk@dee.su>
Signed-off-by: Olof Johansson <olof@lixom.net>
Acked-by: Maarten Lankhorst <maarten.lankhorst@canonical.com>
Cc: Matthew Garrett <mjg@redhat.com>
Signed-off-by: Matt Fleming <matt.fleming@intel.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
commit 785107923a83d8456bbd8564e288a24d84109a46 upstream.
Some new ACPI 5.0 tables reference resources stored in boot services
memory, so keep that memory around until we have ACPI and can extract
data from it.
Signed-off-by: Josh Triplett <josh@joshtriplett.org>
Link: http://lkml.kernel.org/r/baaa6d44bdc4eb0c58e5d1b4ccd2c729f854ac55.1348876882.git.josh@joshtriplett.org
Signed-off-by: H. Peter Anvin <hpa@linux.intel.com>
Cc: Matt Fleming <matt@console-pimps.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
commit f82f64dd9f485e13f29f369772d4a0e868e5633a upstream.
Commit
844ab6f9 x86, mm: Find_early_table_space based on ranges that are actually being mapped
added back some lines back wrongly that has been removed in commit
7b16bbf97 Revert "x86/mm: Fix the size calculation of mapping tables"
remove them again.
Signed-off-by: Yinghai Lu <yinghai@kernel.org>
Link: http://lkml.kernel.org/r/CAE9FiQW_vuaYQbmagVnxT2DGsYc=9tNeAbdBq53sYkitPOwxSQ@mail.gmail.com
Acked-by: Jacob Shin <jacob.shin@amd.com>
Signed-off-by: H. Peter Anvin <hpa@linux.intel.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
commit 844ab6f993b1d32eb40512503d35ff6ad0c57030 upstream.
Current logic finds enough space for direct mapping page tables from 0
to end. Instead, we only need to find enough space to cover mr[0].start
to mr[nr_range].end -- the range that is actually being mapped by
init_memory_mapping()
This is needed after 1bbbbe779aabe1f0768c2bf8f8c0a5583679b54a, to address
the panic reported here:
https://lkml.org/lkml/2012/10/20/160
https://lkml.org/lkml/2012/10/21/157
Signed-off-by: Jacob Shin <jacob.shin@amd.com>
Link: http://lkml.kernel.org/r/20121024195311.GB11779@jshin-Toonie
Tested-by: Tom Rini <trini@ti.com>
Signed-off-by: H. Peter Anvin <hpa@linux.intel.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
commit 69e7ea04c9365626c0963ff09bbaa3a1b49e293a upstream.
Since the switch to sparse irq, we have to add the NR_IRQS_LEGACY
offset to static irq numbers. It has been forgotten on these
SPI irq definitions in board code.
Signed-off-by: Nicolas Ferre <nicolas.ferre@atmel.com>
Acked-by: Jean-Christophe PLAGNIOL-VILLARD <plagnioj@jcrosoft.com>
Acked-by: Ludovic Desroches <ludovic.desroches@atmel.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
commit 738a0fd752dc60e20beeda6f2f0f62e58dc0e344 upstream.
Management of external interrupts has changed but the
non-DT code has not integrated these changes.
Add a mask to pass external irq specification from SoC
specific code to the at91_aic_init() function.
Signed-off-by: Nicolas Ferre <nicolas.ferre@atmel.com>
Acked-by: Jean-Christophe PLAGNIOL-VILLARD <plagnioj@jcrosoft.com>
Acked-by: Ludovic Desroches <ludovic.desroches@atmel.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
commit 3d9a0183dd3423353e9e363bcc261c1220d05f9f upstream.
Newer at91sam9g10 SoC revision can't be detected, so the kernel can't boot with
this kind of kernel panic:
"AT91: Impossible to detect the SOC type"
CPU: ARM926EJ-S [41069265] revision 5 (ARMv5TEJ), cr=00053177
CPU: VIVT data cache, VIVT instruction cache
Machine: Atmel AT91SAM9G10-EK
Ignoring tag cmdline (using the default kernel command line)
bootconsole [earlycon0] enabled
Memory policy: ECC disabled, Data cache writeback
Kernel panic - not syncing: AT91: Impossible to detect the SOC type
[<c00133d4>] (unwind_backtrace+0x0/0xe0) from [<c02366dc>] (panic+0x78/0x1cc)
[<c02366dc>] (panic+0x78/0x1cc) from [<c02fa35c>] (at91_map_io+0x90/0xc8)
[<c02fa35c>] (at91_map_io+0x90/0xc8) from [<c02f9860>] (paging_init+0x564/0x6d0)
[<c02f9860>] (paging_init+0x564/0x6d0) from [<c02f7914>] (setup_arch+0x464/0x704)
[<c02f7914>] (setup_arch+0x464/0x704) from [<c02f44f8>] (start_kernel+0x6c/0x2d4)
[<c02f44f8>] (start_kernel+0x6c/0x2d4) from [<20008040>] (0x20008040)
The reason for this is that the Debug Unit Chip ID Register has changed between
Engineering Sample and definitive revision of the SoC. Changing the check of
cidr to socid will address the problem. We do not integrate this check to the
list just above because we also have to make sure that the extended id is
disregarded.
Signed-off-by: Ivan Shugov <ivan.shugov@gmail.com>
[nicolas.ferre@atmel.com: change commit message]
Signed-off-by: Nicolas Ferre <nicolas.ferre@atmel.com>
Acked-by: Jean-Christophe PLAGNIOL-VILLARD <plagnioj@jcrosoft.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
commit 7840487cd6298f9f931103b558290d8d98d41c49 upstream.
The i2c core driver will turn the platform device ID to busnum
When using platfrom device ID as -1, it means dynamically assigned
the busnum. When writing code, we need to make sure the busnum,
and call i2c_register_board_info(int busnum, ...) to register device
if using -1, we do not know the value of busnum
In order to solve this issue, set the platform device ID as a fix number
Here using 0 to match the busnum used in i2c_regsiter_board_info()
Signed-off-by: Bo Shen <voice.shen@atmel.com>
Acked-by: Jean Delvare <khali@linux-fr.org>
Signed-off-by: Nicolas Ferre <nicolas.ferre@atmel.com>
Acked-by: Jean-Christophe PLAGNIOL-VILLARD <plagnioj@jcrosoft.com>
Acked-by: Ludovic Desroches <ludovic.desroches@atmel.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
commit 308b3afb97dc342e9c4f958d8b4c459ae0e22bd7 upstream.
Commit a5238e360b71 (spi: s3c64xx: move controller information into driver
data) introduced separate device names for the different subtypes of the
spi controller but forgot to set these in the relevant machines.
To fix this introduce a s3c64xx_spi_setname function and populate all
Samsung arches with the correct names. The function resides in a new
header, as the s3c64xx-spi.h contains driver platform data and should
therefore at some later point move out of the Samsung include dir.
Tested on a s3c2416-based machine.
Signed-off-by: Heiko Stuebner <heiko@sntech.de>
Reviewed-by: Sylwester Nawrocki <s.nawrocki@samsung.com>
[s.nawrocki@samsung.com: tested on mach-exynos]
Tested-by: Sylwester Nawrocki <s.nawrocki@samsung.com>
Signed-off-by: Kukjin Kim <kgene.kim@samsung.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
commit 6ede1fd3cb404c0016de6ac529df46d561bd558b upstream.
We will not map partial pages, so need to make sure memblock
allocation will not allocate those bytes out.
Also we will use for_each_mem_pfn_range() to loop to map memory
range to keep them consistent.
Signed-off-by: Yinghai Lu <yinghai@kernel.org>
Link: http://lkml.kernel.org/r/CAE9FiQVZirvaBMFYRfXMmWEcHbKSicQEHz4VAwUv0xFCk51ZNw@mail.gmail.com
Acked-by: Jacob Shin <jacob.shin@amd.com>
Signed-off-by: H. Peter Anvin <hpa@linux.intel.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
commit 7b16bbf97375d9fb7fc107b3f80afeb94a204e44 upstream.
Commit:
722bc6b16771 x86/mm: Fix the size calculation of mapping tables
Tried to address the issue that the first 2/4M should use 4k pages
if PSE enabled, but extra counts should only be valid for x86_32.
This commit caused a kdump regression: the kdump kernel hangs.
Work is in progress to fundamentally fix the various page table
initialization issues that we have, via the design suggested
by H. Peter Anvin, but it's not ready yet to be merged.
So, to get a working kdump revert to the last known working version,
which is the revert of this commit and of a followup fix (which was
incomplete):
bd2753b2dda7 x86/mm: Only add extra pages count for the first memory range during pre-allocation
Tested kdump on physical and virtual machines.
Signed-off-by: Dave Young <dyoung@redhat.com>
Acked-by: Yinghai Lu <yinghai@kernel.org>
Acked-by: Cong Wang <xiyou.wangcong@gmail.com>
Acked-by: Flavio Leitner <fbl@redhat.com>
Tested-by: Flavio Leitner <fbl@redhat.com>
Cc: Dan Carpenter <dan.carpenter@oracle.com>
Cc: Cong Wang <xiyou.wangcong@gmail.com>
Cc: Flavio Leitner <fbl@redhat.com>
Cc: Tejun Heo <tj@kernel.org>
Cc: ianfang.cn@gmail.com
Cc: Vivek Goyal <vgoyal@redhat.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
commit 876ee61aadf01aa0db981b5d249cbdd53dc28b5e upstream.
Commit 20167d3421a089a1bf1bd680b150dc69c9506810 ("x86-64: Fix
accounting in kernel_physical_mapping_init()") went a little too
far by entirely removing the counting of pre-populated page
tables: this should be done at boot time (to cover the page
tables set up in early boot code), but shouldn't be done during
memory hot add.
Hence, re-add the removed increments of "pages", but make them
and the one in phys_pte_init() conditional upon !after_bootmem.
Reported-Acked-and-Tested-by: Hugh Dickins <hughd@google.com>
Signed-off-by: Jan Beulich <jbeulich@suse.com>
Link: http://lkml.kernel.org/r/506DAFBA020000780009FA8C@nat28.tlf.novell.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
commit 5f40b909728ad784eb43aa309d3c4e9bdf050781 upstream.
When booting a secondary CPU, the primary CPU hands two sets of page
tables via the secondary_data struct:
(1) swapper_pg_dir: a normal, cacheable, shared (if SMP) mapping
of the kernel image (i.e. the tables used by init_mm).
(2) idmap_pgd: an uncached mapping of the .idmap.text ELF
section.
The idmap is generally used when enabling and disabling the MMU, which
includes early CPU boot. In this case, the secondary CPU switches to
swapper as soon as it enters C code:
struct mm_struct *mm = &init_mm;
unsigned int cpu = smp_processor_id();
/*
* All kernel threads share the same mm context; grab a
* reference and switch to it.
*/
atomic_inc(&mm->mm_count);
current->active_mm = mm;
cpumask_set_cpu(cpu, mm_cpumask(mm));
cpu_switch_mm(mm->pgd, mm);
This causes a problem on ARMv7, where the identity mapping is treated as
strongly-ordered leading to architecturally UNPREDICTABLE behaviour of
exclusive accesses, such as those used by atomic_inc.
This patch re-orders the secondary_start_kernel function so that we
switch to swapper before performing any exclusive accesses.
Reported-by: Gilles Chanteperdrix <gilles.chanteperdrix@xenomai.org>
Cc: David McKay <david.mckay@st.com>
Signed-off-by: Will Deacon <will.deacon@arm.com>
Signed-off-by: Russell King <rmk+kernel@arm.linux.org.uk>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
[ Upstream commit e793d8c6740f8fe704fa216e95685f4d92c4c4b9 ]
There was a serious disconnect in the logic happening in
sparc_pmu_disable_event() vs. sparc_pmu_enable_event().
Event disable is implemented by programming a NOP event into the PCR.
However, event enable was not reversing this operation. Instead, it
was setting the User/Priv/Hypervisor trace enable bits.
That's not sparc_pmu_enable_event()'s job, that's what
sparc_pmu_enable() and sparc_pmu_disable() do .
The intent of sparc_pmu_enable_event() is clear, since it first clear
out the event type encoding field. So fix this by OR'ing in the event
encoding rather than the trace enable bits.
Signed-off-by: David S. Miller <davem@davemloft.net>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
[ Upstream commit 08280e6c4c2e8049ac61d9e8e3536ec1df629c0d ]
If the MM is not active, only report the top-level PC. Do not try to
access the address space.
Signed-off-by: David S. Miller <davem@davemloft.net>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
[ Upstream commit 55c2770e413e96871147b9406a9c41fe9bc5209c ]
we want syscall_trace_leave() called on exit from any syscall;
skipping its call in case we'd done force_successful_syscall_return()
is broken...
Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
Signed-off-by: David S. Miller <davem@davemloft.net>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
commit 7216cabfff5149670445cd65d415ed5db21314b4 upstream.
Add the following system calls to the syscall table:
fallocate
sendmmsg
umount2
syncfs
epoll_create1
inotify_init1
signalfd4
dup3
pipe2
timerfd_create
timerfd_settime
timerfd_gettime
eventfd2
preadv
pwritev
fanotify_init
fanotify_mark
process_vm_readv
process_vm_writev
name_to_handle_at
open_by_handle_at
sync_file_range
perf_event_open
rt_tgsigqueueinfo
clock_adjtime
prlimit64
kcmp
Note that we have to use the 'sys_sync_file_range2' version, so that
the 64-bit arguments are aligned correctly to the argument registers.
Signed-off-by: Chris Zankel <chris@zankel.net>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
commit a349e23d1cf746f8bdc603dcc61fae9ee4a695f6 upstream.
In 32 bit guests, if a userspace process has %eax == -ERESTARTSYS
(-512) or -ERESTARTNOINTR (-513) when it is interrupted by an event
/and/ the process has a pending signal then %eip (and %eax) are
corrupted when returning to the main process after handling the
signal. The application may then crash with SIGSEGV or a SIGILL or it
may have subtly incorrect behaviour (depending on what instruction it
returned to).
The occurs because handle_signal() is incorrectly thinking that there
is a system call that needs to restarted so it adjusts %eip and %eax
to re-execute the system call instruction (even though user space had
not done a system call).
If %eax == -514 (-ERESTARTNOHAND (-514) or -ERESTART_RESTARTBLOCK
(-516) then handle_signal() only corrupted %eax (by setting it to
-EINTR). This may cause the application to crash or have incorrect
behaviour.
handle_signal() assumes that regs->orig_ax >= 0 means a system call so
any kernel entry point that is not for a system call must push a
negative value for orig_ax. For example, for physical interrupts on
bare metal the inverse of the vector is pushed and page_fault() sets
regs->orig_ax to -1, overwriting the hardware provided error code.
xen_hypervisor_callback() was incorrectly pushing 0 for orig_ax
instead of -1.
Classic Xen kernels pushed %eax which works as %eax cannot be both
non-negative and -RESTARTSYS (etc.), but using -1 is consistent with
other non-system call entry points and avoids some of the tests in
handle_signal().
There were similar bugs in xen_failsafe_callback() of both 32 and
64-bit guests. If the fault was corrected and the normal return path
was used then 0 was incorrectly pushed as the value for orig_ax.
Signed-off-by: David Vrabel <david.vrabel@citrix.com>
Acked-by: Jan Beulich <JBeulich@suse.com>
Acked-by: Ian Campbell <ian.campbell@citrix.com>
Signed-off-by: Konrad Rzeszutek Wilk <konrad.wilk@oracle.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
mapping.
commit 1bbbbe779aabe1f0768c2bf8f8c0a5583679b54a upstream.
On systems with very large memory (1 TB in our case), BIOS may report a
reserved region or a hole in the E820 map, even above the 4 GB range. Exclude
these from the direct mapping.
[ hpa: this should be done not just for > 4 GB but for everything above the legacy
region (1 MB), at the very least. That, however, turns out to require significant
restructuring. That work is well underway, but is not suitable for rc/stable. ]
Signed-off-by: Jacob Shin <jacob.shin@amd.com>
Link: http://lkml.kernel.org/r/1319145326-13902-1-git-send-email-jacob.shin@amd.com
Signed-off-by: H. Peter Anvin <hpa@linux.intel.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
commit 21c5e50e15b1abd797e62f18fd7f90b9cc004cbd upstream.
When booting on a federated multi-server system (NumaScale), the
processor Northbridge lookup returns NULL; add guards to prevent this
causing an oops.
On those systems, the northbridge is accessed through MMIO and the
"normal" northbridge enumeration in amd_nb.c doesn't work since we're
generating the northbridge ID from the initial APIC ID and the last
is not unique on those systems. Long story short, we end up without
northbridge descriptors.
Signed-off-by: Daniel J Blueman <daniel@numascale-asia.com>
Link: http://lkml.kernel.org/r/1349073725-14093-1-git-send-email-daniel@numascale-asia.com
[ Boris: beef up commit message ]
Signed-off-by: Borislav Petkov <borislav.petkov@amd.com>
Signed-off-by: H. Peter Anvin <hpa@linux.intel.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
commit c985cb37f1b39c2c8035af741a2a0b79f1fbaca7 upstream.
Because of a change in the s390 arch backend of binutils (commit 23ecd77
"Pick the default arch depending on the target size" in binutils repo)
31 bit builds will fail since the linker would now try to create 64 bit
binary output.
Fix this by setting OUTPUT_ARCH to s390:31-bit instead of s390.
Thanks to Andreas Krebbel for figuring out the issue.
Fixes this build error:
LD init/built-in.o
s390x-4.7.2-ld: s390:31-bit architecture of input file
`arch/s390/kernel/head.o' is incompatible with s390:64-bit output
Cc: Andreas Krebbel <Andreas.Krebbel@de.ibm.com>
Signed-off-by: Heiko Carstens <heiko.carstens@de.ibm.com>
Signed-off-by: Martin Schwidefsky <schwidefsky@de.ibm.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
commit 44009105081b51417f311f4c3be0061870b6b8ed upstream.
The "event" variable is a u16 so the shift will always wrap to zero
making the line a no-op.
Signed-off-by: Dan Carpenter <dan.carpenter@oracle.com>
Signed-off-by: Robert Richter <robert.richter@amd.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
commit 627072b06c362bbe7dc256f618aaa63351f0cfe6 upstream.
The tile tool chain uses the .eh_frame information for backtracing.
The vmlinux build drops any .eh_frame sections at link time, but when
present in kernel modules, it causes a module load failure due to the
presence of unsupported pc-relative relocations. When compiling to
use compiler feedback support, the compiler by default omits .eh_frame
information, so we don't see this problem. But when not using feedback,
we need to explicitly suppress the .eh_frame.
Signed-off-by: Chris Metcalf <cmetcalf@tilera.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
commit 3ce9e53e788881da0d5f3912f80e0dd6b501f304 upstream.
Commit fe04ddf7c291 ("kbuild: Do not package /boot and /lib in make
tar-pkg") accidentally reverted two previous kbuild commits. I don't
know what I was thinking.
This brings back changes made by commits 24cc7fb69a5b ("x86/kbuild:
archscripts depends on scripts_basic") and c1c1a59e37da ("firmware: fix
directory creation rule matching with make 3.80")
Reported-by: Jan Beulich <JBeulich@suse.com>
Signed-off-by: Michal Marek <mmarek@suse.cz>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
commit 97541ccfb9db2bb9cd1dde6344d5834438d14bda upstream.
Besides the CPU and DDR PLLs, the CPU and DDR frequencies
can be derived from other PLLs in the SRIF block on the
AR934x SoCs. The current code does not checks if the SRIF
PLLs are used and this can lead to incorrectly calculated
CPU/DDR frequencies.
Fix it by calculating the frequencies from SRIF PLLs if
those are used on a given board.
Signed-off-by: Gabor Juhos <juhosg@openwrt.org>
Cc: linux-mips@linux-mips.org
Patchwork: https://patchwork.linux-mips.org/patch/4324/
Signed-off-by: Ralf Baechle <ralf@linux-mips.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
commit cd0608e71e9757f4dae35bcfb4e88f4d1a03a8ab upstream.
The hypervisor will trap it. However without this patch,
we would crash as the .read_tscp is set to NULL. This patch
fixes it and sets it to the native_read_tscp call.
Signed-off-by: Konrad Rzeszutek Wilk <konrad.wilk@oracle.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
commit 1a7bbda5b1ab0e02622761305a32dc38735b90b2 upstream.
We actually do not do anything about it. Just return a default
value of zero and if the kernel tries to write anything but 0
we BUG_ON.
This fixes the case when an user tries to suspend the machine
and it blows up in save_processor_state b/c 'read_cr8' is set
to NULL and we get:
kernel BUG at /home/konrad/ssd/linux/arch/x86/include/asm/paravirt.h:100!
invalid opcode: 0000 [#1] SMP
Pid: 2687, comm: init.late Tainted: G O 3.6.0upstream-00002-gac264ac-dirty #4 Bochs Bochs
RIP: e030:[<ffffffff814d5f42>] [<ffffffff814d5f42>] save_processor_state+0x212/0x270
.. snip..
Call Trace:
[<ffffffff810733bf>] do_suspend_lowlevel+0xf/0xac
[<ffffffff8107330c>] ? x86_acpi_suspend_lowlevel+0x10c/0x150
[<ffffffff81342ee2>] acpi_suspend_enter+0x57/0xd5
Signed-off-by: Konrad Rzeszutek Wilk <konrad.wilk@oracle.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
commit 9d7d6e363b06934221b81a859d509844c97380df upstream.
read_persistent_clock uses a global variable, use a spinlock to
ensure non-atomic updates to the variable don't overlap and cause
time to move backwards.
Signed-off-by: Colin Cross <ccross@android.com>
Signed-off-by: R Sricharan <r.sricharan@ti.com>
Signed-off-by: Tony Lindgren <tony@atomide.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
commit 7253b85cc62d6ff84143d96fe6cd54f73736f4d7 upstream.
arm: Add ARM ERRATA 775420 workaround
Workaround for the 775420 Cortex-A9 (r2p2, r2p6,r2p8,r2p10,r3p0) erratum.
In case a date cache maintenance operation aborts with MMU exception, it
might cause the processor to deadlock. This workaround puts DSB before
executing ISB if an abort may occur on cache maintenance.
Based on work by Kouei Abe and feedback from Catalin Marinas.
Signed-off-by: Kouei Abe <kouei.abe.cp@rms.renesas.com>
[ horms@verge.net.au: Changed to implementation
suggested by catalin.marinas@arm.com ]
Acked-by: Catalin Marinas <catalin.marinas@arm.com>
Signed-off-by: Simon Horman <horms@verge.net.au>
Signed-off-by: Russell King <rmk+kernel@arm.linux.org.uk>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
commit f0a996eeeda214f4293e234df33b29bec003b536 upstream.
This fault was detected using the kgdb test suite on boot and it
crashes recursively due to the fact that CONFIG_KPROBES on mips adds
an extra die notifier in the page fault handler. The crash signature
looks like this:
kgdbts:RUN bad memory access test
KGDB: re-enter exception: ALL breakpoints killed
Call Trace:
[<807b7548>] dump_stack+0x20/0x54
[<807b7548>] dump_stack+0x20/0x54
The fix for now is to have kgdb return immediately if the fault type
is DIE_PAGE_FAULT and allow the kprobe code to decide what is supposed
to happen.
Signed-off-by: Jason Wessel <jason.wessel@windriver.com>
Cc: Masami Hiramatsu <masami.hiramatsu.pt@hitachi.com>
Cc: David S. Miller <davem@davemloft.net>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
commit 846a136881b8f73c1f74250bf6acfaa309cab1f2 upstream.
Michael Olbrich reported that his test program fails when built with
-O2 -mcpu=cortex-a8 -mfpu=neon, and a kernel which supports v6 and v7
CPUs:
volatile int x = 2;
volatile int64_t y = 2;
int main() {
volatile int a = 0;
volatile int64_t b = 0;
while (1) {
a = (a + x) % (1 << 30);
b = (b + y) % (1 << 30);
assert(a == b);
}
}
and two instances are run. When built for just v7 CPUs, this program
works fine. It uses the "vadd.i64 d19, d18, d16" VFP instruction.
It appears that we do not save the high-16 double VFP registers across
context switches when the kernel is built for v6 CPUs. Fix that.
Tested-By: Michael Olbrich <m.olbrich@pengutronix.de>
Signed-off-by: Russell King <rmk+kernel@arm.linux.org.uk>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
query_variable_info/update_capsule workable
commit d6cf86d8f23253225fe2a763d627ecf7dfee9dae upstream.
A value of efi.runtime_version is checked before calling
update_capsule()/query_variable_info() as follows.
But it isn't initialized anywhere.
<snip>
static efi_status_t virt_efi_query_variable_info(u32 attr,
u64 *storage_space,
u64 *remaining_space,
u64 *max_variable_size)
{
if (efi.runtime_version < EFI_2_00_SYSTEM_TABLE_REVISION)
return EFI_UNSUPPORTED;
<snip>
This patch initializes a value of efi.runtime_version at boot time.
Signed-off-by: Seiji Aguchi <seiji.aguchi@hds.com>
Acked-by: Matthew Garrett <mjg@redhat.com>
Signed-off-by: Matt Fleming <matt.fleming@intel.com>
Signed-off-by: Ivan Hu <ivan.hu@canonical.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
commit 9dead5bbb825d7c25c0400e61de83075046322d0 upstream.
We can't assume the presence of the red zone while we're still in a boot
services environment, so we should build with -fno-red-zone to avoid
problems. Change the size of wchar at the same time to make string handling
simpler.
Signed-off-by: Matthew Garrett <mjg@redhat.com>
Signed-off-by: Matt Fleming <matt.fleming@intel.com>
Acked-by: Josh Boyer <jwboyer@redhat.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
commit 0ee23fda59740767324b4340247ca41a2f498ca6 upstream.
In the old times, the whole idle task was considered
as an RCU quiescent state. But as RCU became more and
more successful overtime, some RCU read side critical
section have been added even in the code of some
architectures idle tasks, for tracing for example.
So nowadays, rcu_idle_enter() and rcu_idle_exit() must
be called by the architecture to tell RCU about the part
in the idle loop that doesn't make use of rcu read side
critical sections, typically the part that puts the CPU
in low power mode.
This is necessary for RCU to find the quiescent states in
idle in order to complete grace periods.
Add this missing pair of calls in scores's idle loop.
Reported-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
Signed-off-by: Frederic Weisbecker <fweisbec@gmail.com>
Cc: Chen Liqin <liqin.chen@sunplusct.com>
Cc: Lennox Wu <lennox.wu@gmail.com>
Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
Reviewed-by: Josh Triplett <josh@joshtriplett.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
commit 48ae077cfce72591b8fc80e1dcc87806f86fed7f upstream.
In the old times, the whole idle task was considered
as an RCU quiescent state. But as RCU became more and
more successful overtime, some RCU read side critical
section have been added even in the code of some
architectures idle tasks, for tracing for example.
So nowadays, rcu_idle_enter() and rcu_idle_exit() must
be called by the architecture to tell RCU about the part
in the idle loop that doesn't make use of rcu read side
critical sections, typically the part that puts the CPU
in low power mode.
This is necessary for RCU to find the quiescent states in
idle in order to complete grace periods.
Add this missing pair of calls in the m32r's idle loop.
Reported-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
Signed-off-by: Frederic Weisbecker <fweisbec@gmail.com>
Cc: Hirokazu Takata <takata@linux-m32r.org>
Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
Reviewed-by: Josh Triplett <josh@joshtriplett.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
commit c633f9e788928e91ad11f44df29b47bbbe9550b0 upstream.
In the old times, the whole idle task was considered
as an RCU quiescent state. But as RCU became more and
more successful overtime, some RCU read side critical
section have been added even in the code of some
architectures idle tasks, for tracing for example.
So nowadays, rcu_idle_enter() and rcu_idle_exit() must
be called by the architecture to tell RCU about the part
in the idle loop that doesn't make use of rcu read side
critical sections, typically the part that puts the CPU
in low power mode.
This is necessary for RCU to find the quiescent states in
idle in order to complete grace periods.
Add this missing pair of calls in the Cris's idle loop.
Reported-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
Signed-off-by: Frederic Weisbecker <fweisbec@gmail.com>
Cc: Mikael Starvik <starvik@axis.com>
Cc: Jesper Nilsson <jesper.nilsson@axis.com>
Cc: Cris <linux-cris-kernel@axis.com>
Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
Reviewed-by: Josh Triplett <josh@joshtriplett.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
commit 4c94cada48f7c660eca582be6032427a5e367117 upstream.
In the old times, the whole idle task was considered
as an RCU quiescent state. But as RCU became more and
more successful overtime, some RCU read side critical
section have been added even in the code of some
architectures idle tasks, for tracing for example.
So nowadays, rcu_idle_enter() and rcu_idle_exit() must
be called by the architecture to tell RCU about the part
in the idle loop that doesn't make use of rcu read side
critical sections, typically the part that puts the CPU
in low power mode.
This is necessary for RCU to find the quiescent states in
idle in order to complete grace periods.
Add this missing pair of calls in the Alpha's idle loop.
Reported-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
Signed-off-by: Frederic Weisbecker <fweisbec@gmail.com>
Tested-by: Michael Cree <mcree@orcon.net.nz>
Cc: Richard Henderson <rth@twiddle.net>
Cc: Ivan Kokshaysky <ink@jurassic.park.msu.ru>
Cc: Matt Turner <mattst88@gmail.com>
Cc: alpha <linux-alpha@vger.kernel.org>
Cc: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
Reviewed-by: Josh Triplett <josh@joshtriplett.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
commit 5b57ba37e82a15f345a6a2eb8c01a2b2d94c5eeb upstream.
In the old times, the whole idle task was considered
as an RCU quiescent state. But as RCU became more and
more successful overtime, some RCU read side critical
section have been added even in the code of some
architectures idle tasks, for tracing for example.
So nowadays, rcu_idle_enter() and rcu_idle_exit() must
be called by the architecture to tell RCU about the part
in the idle loop that doesn't make use of rcu read side
critical sections, typically the part that puts the CPU
in low power mode.
This is necessary for RCU to find the quiescent states in
idle in order to complete grace periods.
Add this missing pair of calls in the m68k's idle loop.
Reported-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
Signed-off-by: Frederic Weisbecker <fweisbec@gmail.com>
Acked-by: Geert Uytterhoeven <geert@linux-m68k.org>
Cc: m68k <linux-m68k@lists.linux-m68k.org>
Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
Reviewed-by: Josh Triplett <josh@joshtriplett.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
commit 5b0753a90b7a98bc613c3767e9263a1a76d4f900 upstream.
In the old times, the whole idle task was considered
as an RCU quiescent state. But as RCU became more and
more successful overtime, some RCU read side critical
section have been added even in the code of some
architectures idle tasks, for tracing for example.
So nowadays, rcu_idle_enter() and rcu_idle_exit() must
be called by the architecture to tell RCU about the part
in the idle loop that doesn't make use of rcu read side
critical sections, typically the part that puts the CPU
in low power mode.
This is necessary for RCU to find the quiescent states in
idle in order to complete grace periods.
Add this missing pair of calls in the mn10300's idle loop.
Reported-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
Signed-off-by: Frederic Weisbecker <fweisbec@gmail.com>
Cc: David Howells <dhowells@redhat.com>
Cc: Koichi Yasutake <yasutake.koichi@jp.panasonic.com>
Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
Acked-by: David Howells <dhowells@redhat.com>
Reviewed-by: Josh Triplett <josh@joshtriplett.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
commit 41d8fe5bb3cf91ce2716ac8f43e4b40d802a99c8 upstream.
In the old times, the whole idle task was considered
as an RCU quiescent state. But as RCU became more and
more successful overtime, some RCU read side critical
section have been added even in the code of some
architectures idle tasks, for tracing for example.
So nowadays, rcu_idle_enter() and rcu_idle_exit() must
be called by the architecture to tell RCU about the part
in the idle loop that doesn't make use of rcu read side
critical sections, typically the part that puts the CPU
in low power mode.
This is necessary for RCU to find the quiescent states in
idle in order to complete grace periods.
Add this missing pair of calls in the Frv's idle loop.
Reported-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
Signed-off-by: Frederic Weisbecker <fweisbec@gmail.com>
Cc: David Howells <dhowells@redhat.com>
Acked-by: David Howells <dhowells@redhat.com>
Reviewed-by: Josh Triplett <josh@joshtriplett.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
commit 11ad47a0edbd62bfc0547cfcdf227a911433f207 upstream.
In the old times, the whole idle task was considered
as an RCU quiescent state. But as RCU became more and
more successful overtime, some RCU read side critical
section have been added even in the code of some
architectures idle tasks, for tracing for example.
So nowadays, rcu_idle_enter() and rcu_idle_exit() must
be called by the architecture to tell RCU about the part
in the idle loop that doesn't make use of rcu read side
critical sections, typically the part that puts the CPU
in low power mode.
This is necessary for RCU to find the quiescent states in
idle in order to complete grace periods.
Add this missing pair of calls in the xtensa's idle loop.
Reported-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
Signed-off-by: Frederic Weisbecker <fweisbec@gmail.com>
Cc: Chris Zankel <chris@zankel.net>
Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
Reviewed-by: Josh Triplett <josh@joshtriplett.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
commit fbe752188d5589e7fcbb8e79824e560f77dccc92 upstream.
In the old times, the whole idle task was considered
as an RCU quiescent state. But as RCU became more and
more successful overtime, some RCU read side critical
section have been added even in the code of some
architectures idle tasks, for tracing for example.
So nowadays, rcu_idle_enter() and rcu_idle_exit() must
be called by the architecture to tell RCU about the part
in the idle loop that doesn't make use of rcu read side
critical sections, typically the part that puts the CPU
in low power mode.
This is necessary for RCU to find the quiescent states in
idle in order to complete grace periods.
Add this missing pair of calls in the parisc's idle loop.
Reported-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
Signed-off-by: Frederic Weisbecker <fweisbec@gmail.com>
Cc: James E.J. Bottomley <jejb@parisc-linux.org>
Cc: Helge Deller <deller@gmx.de>
Cc: Parisc <linux-parisc@vger.kernel.org>
Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
Reviewed-by: Josh Triplett <josh@joshtriplett.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
commit b2fe1430d4115c74d007c825cb9dc3317f28bb16 upstream.
In the old times, the whole idle task was considered
as an RCU quiescent state. But as RCU became more and
more successful overtime, some RCU read side critical
section have been added even in the code of some
architectures idle tasks, for tracing for example.
So nowadays, rcu_idle_enter() and rcu_idle_exit() must
be called by the architecture to tell RCU about the part
in the idle loop that doesn't make use of rcu read side
critical sections, typically the part that puts the CPU
in low power mode.
This is necessary for RCU to find the quiescent states in
idle in order to complete grace periods.
Add this missing pair of calls in the h8300's idle loop.
Reported-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
Signed-off-by: Frederic Weisbecker <fweisbec@gmail.com>
Cc: Yoshinori Sato <ysato@users.sourceforge.jp>
Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
Reviewed-by: Josh Triplett <josh@joshtriplett.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
commit 93482f4ef1093f5961a63359a34612183d6beea0 upstream.
Traditionally, the entire idle task served as an RCU quiescent state.
But when RCU read side critical sections started appearing within the
idle loop, this traditional strategy became untenable. The fix was to
create new RCU APIs named rcu_idle_enter() and rcu_idle_exit(), which
must be called by each architecture's idle loop so that RCU can tell
when it is safe to ignore a given idle CPU.
Unfortunately, this fix was never applied to ia64, a shortcoming remedied
by this commit.
Reported by: Tony Luck <tony.luck@intel.com>
Signed-off-by: Paul E. McKenney <paul.mckenney@linaro.org>
Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
Tested by: Tony Luck <tony.luck@intel.com>
Reviewed-by: Josh Triplett <josh@joshtriplett.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
commit 65fc7f9957c52ad4fdf4ee5dfe3a75aa0a633d39 upstream.
The current dividers in the code are wrong and this
leads to broken CPU frequency calculation on boards
where the fractional part is used.
For example, if the SoC is running from a 40MHz
reference clock, refdiv=1, nint=14, outdiv=0 and
nfrac=31 the real frequency is 579.375MHz but the
current code calculates 569.687MHz instead.
Because the system time is indirectly related to
the CPU frequency the broken computation causes
drift in the system time.
The correct divider is 2^6 for the CPU PLL and 2^10
for the DDR PLL. Use the correct values to fix the
issue.
Signed-off-by: Gabor Juhos <juhosg@openwrt.org>
Cc: linux-mips@linux-mips.org
Patchwork: https://patchwork.linux-mips.org/patch/4305/
Signed-off-by: Ralf Baechle <ralf@linux-mips.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
commit 027ef6c87853b0a9df53175063028edb4950d476 upstream.
In many places !pmd_present has been converted to pmd_none. For pmds
that's equivalent and pmd_none is quicker so using pmd_none is better.
However (unless we delete pmd_present) we should provide an accurate
pmd_present too. This will avoid the risk of code thinking the pmd is non
present because it's under __split_huge_page_map, see the pmd_mknotpresent
there and the comment above it.
If the page has been mprotected as PROT_NONE, it would also lead to a
pmd_present false negative in the same way as the race with
split_huge_page.
Because the PSE bit stays on at all times (both during split_huge_page and
when the _PAGE_PROTNONE bit get set), we could only check for the PSE bit,
but checking the PROTNONE bit too is still good to remember pmd_present
must always keep PROT_NONE into account.
This explains a not reproducible BUG_ON that was seldom reported on the
lists.
The same issue is in pmd_large, it would go wrong with both PROT_NONE and
if it races with split_huge_page.
Signed-off-by: Andrea Arcangeli <aarcange@redhat.com>
Acked-by: Rik van Riel <riel@redhat.com>
Cc: Johannes Weiner <jweiner@redhat.com>
Cc: Hugh Dickins <hughd@google.com>
Cc: Mel Gorman <mgorman@suse.de>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
commit 1e38b7140185e384da216aff66a711df09b5afc9 upstream.
The kernel crash was reported by Alexy. He was testing some feature
with private kernel, in which Alexy added some code in pci_pm_reset()
to read the CSR after writting it. The bug could be reproduced on
Fiber Channel card (Fibre Channel: Emulex Corporation Saturn-X:
LightPulse Fibre Channel Host Adapter (rev 03)) by the following
commands.
# echo 1 > /sys/devices/pci0004:01/0004:01:00.0/reset
# rmmod lpfc
# modprobe lpfc
The history behind the test case is that those additional config
space reading operations in pci_pm_reset() would cause EEH error,
but we didn't detect EEH error until "modprobe lpfc". For the case,
all the PCI devices on PCI bus (0004:01) were removed and added after
PE reset. Then the EEH devices would be figured out again based on
the OF nodes. Unfortunately, there were some child OF nodes under
PCI device (0004:01:00.0), but they didn't have attached PCI_DN since
they're invisible from PCI domain. However, we were still trying to
convert OF node to EEH device without checking on the attached PCI_DN.
Eventually, it caused the kernel crash as follows:
Unable to handle kernel paging request for data at address 0x00000030
Faulting instruction address: 0xc00000000004d888
cpu 0x0: Vector: 300 (Data Access) at [c000000fc797b950]
pc: c00000000004d888: .eeh_add_device_tree_early+0x78/0x140
lr: c00000000004d880: .eeh_add_device_tree_early+0x70/0x140
sp: c000000fc797bbd0
msr: 8000000000009032
dar: 30
dsisr: 40000000
current = 0xc000000fc78d9f70
paca = 0xc00000000edb0000 softe: 0 irq_happened: 0x00
pid = 2951, comm = eehd
enter ? for help
[c000000fc797bc50] c00000000004d848 .eeh_add_device_tree_early+0x38/0x140
[c000000fc797bcd0] c00000000004d848 .eeh_add_device_tree_early+0x38/0x140
[c000000fc797bd50] c000000000051b54 .pcibios_add_pci_devices+0x34/0x190
[c000000fc797bde0] c00000000004fb10 .eeh_reset_device+0x100/0x160
[c000000fc797be70] c0000000000502dc .eeh_handle_event+0x19c/0x300
[c000000fc797bf00] c000000000050570 .eeh_event_handler+0x130/0x1a0
[c000000fc797bf90] c000000000020138 .kernel_thread+0x54/0x70
The patch changes of_node_to_eeh_dev() and just returns NULL if the
passed OF node doesn't have attached PCI_DN.
Reported-by: Alexey Kardashevskiy <aik@ozlabs.ru>
Signed-off-by: Gavin Shan <shangw@linux.vnet.ibm.com>
Signed-off-by: Benjamin Herrenschmidt <benh@kernel.crashing.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
commit c8adfeccee01ce3de6a7d14fcd4e3be02e27f03c upstream.
In 2fae7cdb60240e2e2d9b378afbf6d9fcce8a3890 ("powerpc: Fix VMX in
interrupt check in POWER7 copy loops"), Anton inadvertently
introduced a regression for memcpy on POWER7 machines. copyuser and
memcpy diverge slightly in their use of cr1 (copyuser doesn't use it,
but memcpy does) and you end up clobbering that register with your fix.
That results in (taken from an FC18 kernel):
[ 18.824604] Unrecoverable VMX/Altivec Unavailable Exception f20 at c000000000052f40
[ 18.824618] Oops: Unrecoverable VMX/Altivec Unavailable Exception, sig: 6 [#1]
[ 18.824623] SMP NR_CPUS=1024 NUMA pSeries
[ 18.824633] Modules linked in: tg3(+) be2net(+) cxgb4(+) ipr(+) sunrpc xts lrw gf128mul dm_crypt dm_round_robin dm_multipath linear raid10 raid456 async_raid6_recov async_memcpy async_pq raid6_pq async_xor xor async_tx raid1 raid0 scsi_dh_rdac scsi_dh_hp_sw scsi_dh_emc scsi_dh_alua squashfs cramfs
[ 18.824705] NIP: c000000000052f40 LR: c00000000020b874 CTR: 0000000000000512
[ 18.824709] REGS: c000001f1fef7790 TRAP: 0f20 Not tainted (3.6.0-0.rc6.git0.2.fc18.ppc64)
[ 18.824713] MSR: 8000000000009032 <SF,EE,ME,IR,DR,RI> CR: 4802802e XER: 20000010
[ 18.824726] SOFTE: 0
[ 18.824728] CFAR: 0000000000000f20
[ 18.824731] TASK = c000000fa7128400[0] 'swapper/24' THREAD: c000000fa7480000 CPU: 24
GPR00: 00000000ffffffc0 c000001f1fef7a10 c00000000164edc0 c000000f9b9a8120
GPR04: c000000f9b9a8124 0000000000001438 0000000000000060 03ffffff064657ee
GPR08: 0000000080000000 0000000000000010 0000000000000020 0000000000000030
GPR12: 0000000028028022 c00000000ff25400 0000000000000001 0000000000000000
GPR16: 0000000000000000 7fffffffffffffff c0000000016b2180 c00000000156a500
GPR20: c000000f968c7a90 c0000000131c31d8 c000001f1fef4000 c000000001561d00
GPR24: 000000000000000a 0000000000000000 0000000000000001 0000000000000012
GPR28: c000000fa5c04f80 00000000000008bc c0000000015c0a28 000000000000022e
[ 18.824792] NIP [c000000000052f40] .memcpy_power7+0x5a0/0x7c4
[ 18.824797] LR [c00000000020b874] .pcpu_free_area+0x174/0x2d0
[ 18.824800] Call Trace:
[ 18.824803] [c000001f1fef7a10] [c000000000052c14] .memcpy_power7+0x274/0x7c4 (unreliable)
[ 18.824809] [c000001f1fef7b10] [c00000000020b874] .pcpu_free_area+0x174/0x2d0
[ 18.824813] [c000001f1fef7bb0] [c00000000020ba88] .free_percpu+0xb8/0x1b0
[ 18.824819] [c000001f1fef7c50] [c00000000043d144] .throtl_pd_exit+0x94/0xd0
[ 18.824824] [c000001f1fef7cf0] [c00000000043acf8] .blkg_free+0x88/0xe0
[ 18.824829] [c000001f1fef7d90] [c00000000018c048] .rcu_process_callbacks+0x2e8/0x8a0
[ 18.824835] [c000001f1fef7e90] [c0000000000a8ce8] .__do_softirq+0x158/0x4d0
[ 18.824840] [c000001f1fef7f90] [c000000000025ecc] .call_do_softirq+0x14/0x24
[ 18.824845] [c000000fa7483650] [c000000000010e80] .do_softirq+0x160/0x1a0
[ 18.824850] [c000000fa74836f0] [c0000000000a94a4] .irq_exit+0xf4/0x120
[ 18.824854] [c000000fa7483780] [c000000000020c44] .timer_interrupt+0x154/0x4d0
[ 18.824859] [c000000fa7483830] [c000000000003be0] decrementer_common+0x160/0x180
[ 18.824866] --- Exception: 901 at .plpar_hcall_norets+0x84/0xd4
[ 18.824866] LR = .check_and_cede_processor+0x48/0x80
[ 18.824871] [c000000fa7483b20] [c00000000007f018] .check_and_cede_processor+0x18/0x80 (unreliable)
[ 18.824877] [c000000fa7483b90] [c00000000007f104] .dedicated_cede_loop+0x84/0x150
[ 18.824883] [c000000fa7483c50] [c0000000006bc030] .cpuidle_enter+0x30/0x50
[ 18.824887] [c000000fa7483cc0] [c0000000006bc9f4] .cpuidle_idle_call+0x104/0x720
[ 18.824892] [c000000fa7483d80] [c000000000070af8] .pSeries_idle+0x18/0x40
[ 18.824897] [c000000fa7483df0] [c000000000019084] .cpu_idle+0x1a4/0x380
[ 18.824902] [c000000fa7483ec0] [c0000000008a4c18] .start_secondary+0x520/0x528
[ 18.824907] [c000000fa7483f90] [c0000000000093f0] .start_secondary_prolog+0x10/0x14
[ 18.824911] Instruction dump:
[ 18.824914] 38840008 90030000 90e30004 38630008 7ca62850 7cc300d0 78c7e102 7cf01120
[ 18.824923] 78c60660 39200010 39400020 39600030 <7e00200c> 7c0020ce 38840010 409f001c
[ 18.824935] ---[ end trace 0bb95124affaaa45 ]---
[ 18.825046] Unrecoverable VMX/Altivec Unavailable Exception f20 at c000000000052d08
I believe the right fix is to make memcpy match usercopy and not use
cr1.
Signed-off-by: Nishanth Aravamudan <nacc@us.ibm.com>
Signed-off-by: Benjamin Herrenschmidt <benh@kernel.crashing.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|