Age | Commit message (Collapse) | Author |
|
commit 867f9d463b82462793ea4610e748be0b04b37fc7 upstream.
The recently merged change (in v3.14-rc6) to ACPI resource detection
(below) causes all zero length ACPI resources to be elided from the
table:
commit b355cee88e3b1a193f0e9a81db810f6f83ad728b
Author: Zhang Rui <rui.zhang@intel.com>
Date: Thu Feb 27 11:37:15 2014 +0800
ACPI / resources: ignore invalid ACPI device resources
This change has caused a regression in (at least) serial port detection
for a number of machines (see LP#1313981 [1]). These seem to represent
their IO regions (presumably incorrectly) as a zero length region.
Reverting the above commit restores these serial devices.
Only elide zero length resources which lie at address 0.
Fixes: b355cee88e3b (ACPI / resources: ignore invalid ACPI device resources)
Signed-off-by: Andy Whitcroft <apw@canonical.com>
Acked-by: Zhang Rui <rui.zhang@intel.com>
Cc: 3.14+ <stable@vger.kernel.org> # 3.14+
Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
Signed-off-by: Jiri Slaby <jslaby@suse.cz>
|
|
commit 75646e758a0ecbed5024454507d5be5b9ea9dcbf upstream.
Some machines (eg. Lenovo Z480) ECs are not stable during boot up
and causes battery driver fails to be loaded due to failure of getting
battery information from EC sometimes. After several retries, the
operation will work. This patch is to retry to get battery information 5
times if the first try fails.
[ backport to 3.14.5: removed second parameter in acpi_battery_update(),
introduced by the commit 9e50bc14a7f58b5d8a55973b2d69355852ae2dae (ACPI /
battery: Accelerate battery resume callback)]
[naszar <naszar@ya.ru>: backport to 3.14.5]
Link: https://bugzilla.kernel.org/show_bug.cgi?id=75581
Reported-and-tested-by: naszar <naszar@ya.ru>
Cc: All applicable <stable@vger.kernel.org>
Signed-off-by: Lan Tianyu <tianyu.lan@intel.com>
Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
Signed-off-by: Jiri Slaby <jslaby@suse.cz>
|
|
commit c0d653412fc8450370167a3268b78fc772ff9c87 upstream.
There is a race condition in ec_transaction_completed().
When ec_transaction_completed() is called in the GPE handler, it could
return true because of (ec->curr == NULL). Then the wake_up() invocation
could complete the next command unexpectedly since there is no lock between
the 2 invocations. With the previous cleanup, the IBF=0 waiter race need
not be handled any more. It's now safe to return a flag from
advance_condition() to indicate the requirement of wakeup, the flag is
returned from a locked context.
The ec_transaction_completed() is now only invoked by the ec_poll() where
the ec->curr is ensured to be different from NULL.
After cleaning up, the EVT_SCI=1 check should be moved out of the wakeup
condition so that an EVT_SCI raised with (ec->curr == NULL) can trigger a
QR_SC command.
Link: https://bugzilla.kernel.org/show_bug.cgi?id=70891
Link: https://bugzilla.kernel.org/show_bug.cgi?id=63931
Link: https://bugzilla.kernel.org/show_bug.cgi?id=59911
Reported-and-tested-by: Gareth Williams <gareth@garethwilliams.me.uk>
Reported-and-tested-by: Hans de Goede <jwrdegoede@fedoraproject.org>
Reported-by: Barton Xu <tank.xuhan@gmail.com>
Tested-by: Steffen Weber <steffen.weber@gmail.com>
Tested-by: Arthur Chen <axchen@nvidia.com>
Signed-off-by: Lv Zheng <lv.zheng@intel.com>
Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
Signed-off-by: Jiri Slaby <jslaby@suse.cz>
|
|
commit 9b80f0f73ae1583c22325ede341c74195847618c upstream.
After we've added the first command byte write into advance_transaction(),
the IBF=0 waiter is duplicated with the command completion waiter
implemented in the ec_poll() because:
If IBF=1 blocked the first command byte write invoked in the task
context ec_poll(), it would be kicked off upon IBF=0 interrupt or timed
out and retried again in the task context.
Remove this seperate and duplicate IBF=0 waiter. By doing so we can
reduce the overall number of times to access the EC_SC(R) status
register.
Link: https://bugzilla.kernel.org/show_bug.cgi?id=70891
Link: https://bugzilla.kernel.org/show_bug.cgi?id=63931
Link: https://bugzilla.kernel.org/show_bug.cgi?id=59911
Reported-and-tested-by: Gareth Williams <gareth@garethwilliams.me.uk>
Reported-and-tested-by: Hans de Goede <jwrdegoede@fedoraproject.org>
Reported-by: Barton Xu <tank.xuhan@gmail.com>
Tested-by: Steffen Weber <steffen.weber@gmail.com>
Tested-by: Arthur Chen <axchen@nvidia.com>
Signed-off-by: Lv Zheng <lv.zheng@intel.com>
Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
Signed-off-by: Jiri Slaby <jslaby@suse.cz>
|
|
commit f92fca0060fc4dc9227342d0072d75df98c1e5a5 upstream.
Move the first command byte write into advance_transaction() so that all
EC register accesses that can affect the command processing state machine
can happen in this asynchronous state machine advancement function.
The advance_transaction() function then can be a complete implementation
of an asyncrhonous transaction for a single command so that:
1. The first command byte can be written in the interrupt context;
2. The command completion waiter can also be used to wait the first command
byte's timeout;
3. In BURST mode, the follow-up command bytes can be written in the
interrupt context directly, so that it doesn't need to return to the
task context. Returning to the task context reduces the throughput of
the BURST mode and in the worst cases where the system workload is very
high, this leads to the hardware driven automatic BURST mode exit.
In order not to increase memory consumption, convert 'done' into 'flags'
to contain multiple indications:
1. ACPI_EC_COMMAND_COMPLETE: converting from original 'done' condition,
indicating the completion of the command transaction.
2. ACPI_EC_COMMAND_POLL: indicating the availability of writing the first
command byte. A new command can utilize this flag to compete for the
right of accessing the underlying hardware. There is a follow-up bug
fix that has utilized this new flag.
The 2 flags are important because it also reflects a key concept of IO
programs' design used in the system softwares. Normally an IO program
running in the kernel should first be implemented in the asynchronous way.
And the 2 flags are the most common way to implement its synchronous
operations on top of the asynchronous operations:
1. POLL: This flag can be used to block until the asynchronous operations
can happen.
2. COMPLETE: This flag can be used to block until the asynchronous
operations have completed.
By constructing code cleanly in this way, many difficult problems can be
solved smoothly.
Link: https://bugzilla.kernel.org/show_bug.cgi?id=70891
Link: https://bugzilla.kernel.org/show_bug.cgi?id=63931
Link: https://bugzilla.kernel.org/show_bug.cgi?id=59911
Reported-and-tested-by: Gareth Williams <gareth@garethwilliams.me.uk>
Reported-and-tested-by: Hans de Goede <jwrdegoede@fedoraproject.org>
Reported-by: Barton Xu <tank.xuhan@gmail.com>
Tested-by: Steffen Weber <steffen.weber@gmail.com>
Tested-by: Arthur Chen <axchen@nvidia.com>
Signed-off-by: Lv Zheng <lv.zheng@intel.com>
Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
Signed-off-by: Jiri Slaby <jslaby@suse.cz>
|
|
commit 66b42b78bc1e816f92b662e8888c89195e4199e1 upstream.
The advance_transaction() will be invoked from the IRQ context GPE handler
and the task context ec_poll(). The handling of this function is locked so
that the EC state machine are ensured to be advanced sequentially.
But there is a problem. Before invoking advance_transaction(), EC_SC(R) is
read. Then for advance_transaction(), there could be race condition around
the lock from both contexts. The first one reading the register could fail
this race and when it passes the stale register value to the state machine
advancement code, the hardware condition is totally different from when
the register is read. And the hardware accesses determined from the wrong
hardware status can break the EC state machine. And there could be cases
that the functionalities of the platform firmware are seriously affected.
For example:
1. When 2 EC_DATA(W) writes compete the IBF=0, the 2nd EC_DATA(W) write may
be invalid due to IBF=1 after the 1st EC_DATA(W) write. Then the
hardware will either refuse to respond a next EC_SC(W) write of the next
command or discard the current WR_EC command when it receives a EC_SC(W)
write of the next command.
2. When 1 EC_SC(W) write and 1 EC_DATA(W) write compete the IBF=0, the
EC_DATA(W) write may be invalid due to IBF=1 after the EC_SC(W) write.
The next EC_DATA(R) could never be responded by the hardware. This is
the root cause of the reported issue.
Fix this issue by moving the EC_SC(R) access into the lock so that we can
ensure that the state machine is advanced consistently.
Link: https://bugzilla.kernel.org/show_bug.cgi?id=70891
Link: https://bugzilla.kernel.org/show_bug.cgi?id=63931
Link: https://bugzilla.kernel.org/show_bug.cgi?id=59911
Reported-and-tested-by: Gareth Williams <gareth@garethwilliams.me.uk>
Reported-and-tested-by: Hans de Goede <jwrdegoede@fedoraproject.org>
Reported-by: Barton Xu <tank.xuhan@gmail.com>
Tested-by: Steffen Weber <steffen.weber@gmail.com>
Tested-by: Arthur Chen <axchen@nvidia.com>
Signed-off-by: Lv Zheng <lv.zheng@intel.com>
Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
Signed-off-by: Jiri Slaby <jslaby@suse.cz>
|
|
commit 73577d1df8e1f31f6b1a5eebcdbc334eb0330e47 upstream.
This patch fixes the following issue:
If DSDT is customized, no local DSDT copy is needed.
References: https://bugzilla.kernel.org/show_bug.cgi?id=69711
Signed-off-by: Enrico Etxe Arte <goitizena.generoa@gmail.com>
Signed-off-by: Lv Zheng <lv.zheng@intel.com>
[rjw: Subject]
Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
Signed-off-by: Jiri Slaby <jslaby@suse.cz>
|
|
commit 5d42b0fa25df7ef2f575107597c1aaebe2407d10 upstream.
ACPICA BZ 1077. David Binderman.
References: https://bugs.acpica.org/show_bug.cgi?id=1077
Signed-off-by: David Binderman <dcb314@hotmail.com>
Signed-off-by: Bob Moore <robert.moore@intel.com>
Signed-off-by: Lv Zheng <lv.zheng@intel.com>
Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
Signed-off-by: Jiri Slaby <jslaby@suse.cz>
|
|
commit 545ef368e08fda654b6e63ce522c66339aa29156 upstream.
With commit 2c62333a408f "ACPI / video: Quirk initial backlight level 0"
we do not need to have the following systems in DMI table, so remove them.
HP Pavilion m4, HP 1000 Notebook PC, HP Pavilion g6 Notebook PC,
HP Pavilion dm4, Fujitsu E753, HP Folio 13-2000.
With this change, the use_bios_initial_backlight module parameter is no
longer needed and thus removed.
Signed-off-by: Aaron Lu <aaron.lu@intel.com>
Tested-by: Alex Hung <alex.hung@canonical.com> # for HP 1000 Notebook PC
Tested-by: Gustavo Maciel Dias Vieira <gustavo@sagui.org> # for HP Pavilion dm4
Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
Signed-off-by: Jiri Slaby <jslaby@suse.cz>
Conflicts:
drivers/acpi/video.c
|
|
commit 00159a2013269bc0a617de885e4b921349192bd0 upstream.
When booting a kexec/kdump kernel on a system that has specific memory
hotplug regions the boot will fail with warnings like:
swapper/0: page allocation failure: order:9, mode:0x84d0
CPU: 0 PID: 1 Comm: swapper/0 Not tainted 3.10.0-65.el7.x86_64 #1
Hardware name: QCI QSSC-S4R/QSSC-S4R, BIOS QSSC-S4R.QCI.01.00.S013.032920111005 03/29/2011
0000000000000000 ffff8800341bd8c8 ffffffff815bcc67 ffff8800341bd950
ffffffff8113b1a0 ffff880036339b00 0000000000000009 00000000000084d0
ffff8800341bd950 ffffffff815b87ee 0000000000000000 0000000000000200
Call Trace:
[<ffffffff815bcc67>] dump_stack+0x19/0x1b
[<ffffffff8113b1a0>] warn_alloc_failed+0xf0/0x160
[<ffffffff815b87ee>] ? __alloc_pages_direct_compact+0xac/0x196
[<ffffffff8113f14f>] __alloc_pages_nodemask+0x7ff/0xa00
[<ffffffff815b417c>] vmemmap_alloc_block+0x62/0xba
[<ffffffff815b41e9>] vmemmap_alloc_block_buf+0x15/0x3b
[<ffffffff815b1ff6>] vmemmap_populate+0xb4/0x21b
[<ffffffff815b461d>] sparse_mem_map_populate+0x27/0x35
[<ffffffff815b400f>] sparse_add_one_section+0x7a/0x185
[<ffffffff815a1e9f>] __add_pages+0xaf/0x240
[<ffffffff81047359>] arch_add_memory+0x59/0xd0
[<ffffffff815a21d9>] add_memory+0xb9/0x1b0
[<ffffffff81333b9c>] acpi_memory_device_add+0x18d/0x26d
[<ffffffff81309a01>] acpi_bus_device_attach+0x7d/0xcd
[<ffffffff8132379d>] acpi_ns_walk_namespace+0xc8/0x17f
[<ffffffff81309984>] ? acpi_bus_type_and_status+0x90/0x90
[<ffffffff81309984>] ? acpi_bus_type_and_status+0x90/0x90
[<ffffffff81323c8c>] acpi_walk_namespace+0x95/0xc5
[<ffffffff8130a6d6>] acpi_bus_scan+0x8b/0x9d
[<ffffffff81a2019a>] acpi_scan_init+0x63/0x160
[<ffffffff81a1ffb5>] acpi_init+0x25d/0x2a6
[<ffffffff81a1fd58>] ? acpi_sleep_proc_init+0x2a/0x2a
[<ffffffff810020e2>] do_one_initcall+0xe2/0x190
[<ffffffff819e20c4>] kernel_init_freeable+0x17c/0x207
[<ffffffff819e18d0>] ? do_early_param+0x88/0x88
[<ffffffff8159fea0>] ? rest_init+0x80/0x80
[<ffffffff8159feae>] kernel_init+0xe/0x180
[<ffffffff815cca2c>] ret_from_fork+0x7c/0xb0
[<ffffffff8159fea0>] ? rest_init+0x80/0x80
Mem-Info:
Node 0 DMA per-cpu:
CPU 0: hi: 0, btch: 1 usd: 0
Node 0 DMA32 per-cpu:
CPU 0: hi: 42, btch: 7 usd: 0
active_anon:0 inactive_anon:0 isolated_anon:0
active_file:0 inactive_file:0 isolated_file:0
unevictable:0 dirty:0 writeback:0 unstable:0
free:872 slab_reclaimable:13 slab_unreclaimable:1880
mapped:0 shmem:0 pagetables:0 bounce:0
free_cma:0
because the system has run out of memory at boot time. This occurs
because of the following sequence in the boot:
Main kernel boots and sets E820 map. The second kernel is booted with a
map generated by the kdump service using memmap= and memmap=exactmap.
These parameters are added to the kernel parameters of the kexec/kdump
kernel. The kexec/kdump kernel has limited memory resources so as not
to severely impact the main kernel.
The system then panics and the kdump/kexec kernel boots (which is a
completely new kernel boot). During this boot ACPI is initialized and the
kernel (as can be seen above) traverses the ACPI namespace and finds an
entry for a memory device to be hotadded.
ie)
[<ffffffff815a1e9f>] __add_pages+0xaf/0x240
[<ffffffff81047359>] arch_add_memory+0x59/0xd0
[<ffffffff815a21d9>] add_memory+0xb9/0x1b0
[<ffffffff81333b9c>] acpi_memory_device_add+0x18d/0x26d
[<ffffffff81309a01>] acpi_bus_device_attach+0x7d/0xcd
[<ffffffff8132379d>] acpi_ns_walk_namespace+0xc8/0x17f
[<ffffffff81309984>] ? acpi_bus_type_and_status+0x90/0x90
[<ffffffff81309984>] ? acpi_bus_type_and_status+0x90/0x90
[<ffffffff81323c8c>] acpi_walk_namespace+0x95/0xc5
[<ffffffff8130a6d6>] acpi_bus_scan+0x8b/0x9d
[<ffffffff81a2019a>] acpi_scan_init+0x63/0x160
[<ffffffff81a1ffb5>] acpi_init+0x25d/0x2a6
At this point the kernel adds page table information and the the kexec/kdump
kernel runs out of memory.
This can also be reproduced by using the memmap=exactmap and mem=X
parameters on the main kernel and booting.
This patchset resolves the problem by adding a kernel parameter,
acpi_no_memhotplug, to disable ACPI memory hotplug.
Signed-off-by: Prarit Bhargava <prarit@redhat.com>
Acked-by: Vivek Goyal <vgoyal@redhat.com>
Acked-by: Toshi Kani <toshi.kani@hp.com>
Acked-by: David Rientjes <rientjes@google.com>
Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
Signed-off-by: Jiri Slaby <jslaby@suse.cz>
|
|
commit b753631b3576bf343151a82513c5d56fcda1e24f upstream.
With win8 capabiltiy, the machine will boot itself immediately after
shutdown command has executed.
Work around this issue by disabling win8 capcability. This workaround
also makes wireless hotkey work.
Signed-off-by: Edward Lin <yidi.lin@canonical.com>
Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
Signed-off-by: Jiri Slaby <jslaby@suse.cz>
|
|
commit 0b9d46dd7debf8e6dc8614106f1c1909fa8de64d upstream.
acpi_processor_add() assumes that present at boot CPUs
are always onlined, it is not so if a CPU failed to become
onlined. As result acpi_processor_add() will mark such CPU
device as onlined in sysfs and following attempts to
online/offline it using /sys/device/system/cpu/cpuX/online
attribute will fail.
Do not poke into device internals in acpi_processor_add()
and touch "struct device { .offline }" attribute, since
for CPUs onlined at boot it's set by:
topology_init() -> arch_register_cpu() -> register_cpu()
before ACPI device tree is parsed, and for hotplugged
CPUs it's set when userspace onlines CPU via sysfs.
Signed-off-by: Igor Mammedov <imammedo@redhat.com>
Acked-by: Toshi Kani <toshi.kani@hp.com>
Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
Signed-off-by: Jiri Slaby <jslaby@suse.cz>
|
|
commit f6e6e1b9fee88c90586787b71dc49bb3ce62bb89 upstream.
Without this this EEE PC exports a non working WMI interface, with this it
exports a working "good old" eeepc_laptop interface, fixing brightness control
not working as well as rfkill being stuck in a permanent wireless blocked
state.
This is not an ideal way to fix this, but various attempts to fix this
otherwise have failed, see:
References: https://bugzilla.redhat.com/show_bug.cgi?id=1067181
Reported-and-tested-by: lou.cardone@gmail.com
Signed-off-by: Hans de Goede <hdegoede@redhat.com>
Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
Signed-off-by: Jiri Slaby <jslaby@suse.cz>
|
|
commit 9efa5e50598c5568b0678bb411b239a0b6e9a328 upstream.
When testing if the firmware's initial value is valid, we should use
the corrected level value instead of the raw value returned from
firmware.
Signed-off-by: Aaron Lu <aaron.lu@intel.com>
Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
Signed-off-by: Jiri Slaby <jslaby@suse.cz>
|
|
commit 61db45ca21630f5ab7f678d54c5d969c21647854 upstream.
The original code was lost accidently, it was not generated along with the
following commit of mechanism improvements and thus not get merged:
Commit: d5a36100f62fa6db5541344e08b361b34e9114c5
Subject: ACPICA: Add mechanism for early object repairs on a per-name basis
Adds the framework to allow object repairs very early in the
return object analysis. Enables repairs like string->unicode,
etc.
This patch restores the implementation of the NULL element repair code for
ACPI_RTYPE_NONE. In the original design, ACPI_RTYPE_NONE is defined to
collect simple NULL object repairs.
Lv Zheng.
Buglink: https://bugzilla.kernel.org/show_bug.cgi?id=67901
Signed-off-by: Lv Zheng <lv.zheng@intel.com>
Signed-off-by: Bob Moore <robert.moore@intel.com>
Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
Signed-off-by: Jiri Slaby <jslaby@suse.cz>
|
|
commit 0bf6368ee8f25826d0645c0f7a4f17c8845356a4 upstream.
Commit 1696d9d (ACPI: Remove the old /proc/acpi/event interface)
removed ACPI Button event which originally was sent to userspace via
/proc/acpi/event. This caused ACPI shutdown regression on gentoo
in VirtualBox. Now ACPI events are sent to userspace via netlink,
so add ACPI Button event back via netlink routine.
References: https://bugzilla.kernel.org/show_bug.cgi?id=71721
Reported-and-tested-by: Richard Musil <richard.musil@gmail.com>
Signed-off-by: Lan Tianyu <tianyu.lan@intel.com>
Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
Signed-off-by: Jiri Slaby <jslaby@suse.cz>
|
|
commit 5c551e624abba6782034edd5b9eb58ac6f146b38 upstream.
Some BIOSes change hardware based on the state of
a laptop's lid. If the lid is closed, the touchpad is
disabled and the checksum changes. Windows 8 no longer
aborts resume if the checksum has changed.
Signed-off-by: Oliver Neukum <oneukum@suse.de>
[rjw: Use pr_crit() for the message and don't break the string]
Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
Signed-off-by: Jiri Slaby <jslaby@suse.cz>
|
|
commit 3eba563e280101209bad27d40bfc83ddf1489234 upstream.
Address a regression caused by commit ad332c8a4533:
(ACPI / EC: Clear stale EC events on Samsung systems)
After the earlier patch, there was found to be a race condition on some
earlier Samsung systems (N150/N210/N220). The function acpi_ec_clear was
sometimes discarding a new EC event before its GPE was triggered by the
system. In the case of these systems, this meant that the "lid open"
event was not registered on resume if that was the cause of the wake,
leading to problems when attempting to close the lid to suspend again.
After testing on a number of Samsung systems, both those affected by the
previous EC bug and those affected by the race condition, it seemed that
the best course of action was to process rather than discard the events.
On Samsung systems which accumulate stale EC events, there does not seem
to be any adverse side-effects of running the associated _Q methods.
This patch adds an argument to the static function acpi_ec_sync_query so
that it may be used within the acpi_ec_clear loop in place of
acpi_ec_query_unlocked which was used previously.
With thanks to Stefan Biereigel for reporting the issue, and for all the
people who helped test the new patch on affected systems.
Fixes: ad332c8a4533 (ACPI / EC: Clear stale EC events on Samsung systems)
References: https://lkml.kernel.org/r/532FE3B2.9060808@biereigel-wb.de
References: https://bugzilla.kernel.org/show_bug.cgi?id=44161#c173
Reported-by: Stefan Biereigel <stefan@biereigel.de>
Signed-off-by: Kieran Clancy <clancy.kieran@gmail.com>
Tested-by: Stefan Biereigel <stefan@biereigel.de>
Tested-by: Dennis Jansen <dennis.jansen@web.de>
Tested-by: Nicolas Porcel <nicolasporcel06@gmail.com>
Tested-by: Maurizio D'Addona <mauritiusdadd@gmail.com>
Tested-by: Juan Manuel Cabo <juanmanuel.cabo@gmail.com>
Tested-by: Giannis Koutsou <giannis.koutsou@gmail.com>
Tested-by: Kieran Clancy <clancy.kieran@gmail.com>
Cc: 3.14+ <stable@vger.kernel.org> # 3.14+
Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
Signed-off-by: Jiri Slaby <jslaby@suse.cz>
|
|
commit a4e90bed511220ff601d064c9e5d583e91308f65 upstream.
If the HW Reduced ACPI mode bit is set in the FADT, ACPICA uses
the optional sleep control and sleep status registers for making
the system enter sleep states (including S5), so it is not possible
to use system sleep states or power it off using ACPI if the HW
Reduced ACPI mode bit is set and those registers are not available.
For this reason, add a new function, acpi_sleep_state_supported(),
checking if the HW Reduced ACPI mode bit is set and whether or not
system sleep states are usable in that case in addition to checking
the return value of acpi_get_sleep_type_data() and make the ACPI
sleep setup routines use that function to check the availability of
system sleep states.
Among other things, this prevents the kernel from attempting to
use ACPI for powering off HW Reduced ACPI systems without the sleep
control and sleep status registers, because ACPI power off doesn't
have a chance to work on them. That allows alternative power off
mechanisms that may actually work to be used on those systems. The
affected machines include Dell Venue 8 Pro, Asus T100TA, Haswell
Desktop SDP and Ivy Bridge EP Demo depot.
References: https://bugzilla.kernel.org/show_bug.cgi?id=70931
Reported-by: Adam Williamson <awilliam@redhat.com>
Tested-by: Aubrey Li <aubrey.li@linux.intel.com>
Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
Signed-off-by: Jiri Slaby <jslaby@suse.cz>
|
|
commit ad332c8a45330d170bb38b95209de449b31cd1b4 upstream.
A number of Samsung notebooks (530Uxx/535Uxx/540Uxx/550Pxx/900Xxx/etc)
continue to log events during sleep (lid open/close, AC plug/unplug,
battery level change), which accumulate in the EC until a buffer fills.
After the buffer is full (tests suggest it holds 8 events), GPEs stop
being triggered for new events. This state persists on wake or even on
power cycle, and prevents new events from being registered until the EC
is manually polled.
This is the root cause of a number of bugs, including AC not being
detected properly, lid close not triggering suspend, and low ambient
light not triggering the keyboard backlight. The bug also seemed to be
responsible for performance issues on at least one user's machine.
Juan Manuel Cabo found the cause of bug and the workaround of polling
the EC manually on wake.
The loop which clears the stale events is based on an earlier patch by
Lan Tianyu (see referenced attachment).
This patch:
- Adds a function acpi_ec_clear() which polls the EC for stale _Q
events at most ACPI_EC_CLEAR_MAX (currently 100) times. A warning is
logged if this limit is reached.
- Adds a flag EC_FLAGS_CLEAR_ON_RESUME which is set to 1 if the DMI
system vendor is Samsung. This check could be replaced by several
more specific DMI vendor/product pairs, but it's likely that the bug
affects more Samsung products than just the five series mentioned
above. Further, it should not be harmful to run acpi_ec_clear() on
systems without the bug; it will return immediately after finding no
data waiting.
- Runs acpi_ec_clear() on initialisation (boot), from acpi_ec_add()
- Runs acpi_ec_clear() on wake, from acpi_ec_unblock_transactions()
References: https://bugzilla.kernel.org/show_bug.cgi?id=44161
References: https://bugzilla.kernel.org/show_bug.cgi?id=45461
References: https://bugzilla.kernel.org/show_bug.cgi?id=57271
References: https://bugzilla.kernel.org/attachment.cgi?id=126801
Suggested-by: Juan Manuel Cabo <juanmanuel.cabo@gmail.com>
Signed-off-by: Kieran Clancy <clancy.kieran@gmail.com>
Reviewed-by: Lan Tianyu <tianyu.lan@intel.com>
Reviewed-by: Dennis Jansen <dennis.jansen@web.de>
Tested-by: Kieran Clancy <clancy.kieran@gmail.com>
Tested-by: Juan Manuel Cabo <juanmanuel.cabo@gmail.com>
Tested-by: Dennis Jansen <dennis.jansen@web.de>
Tested-by: Maurizio D'Addona <mauritiusdadd@gmail.com>
Tested-by: San Zamoyski <san@plusnet.pl>
Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
Signed-off-by: Jiri Slaby <jslaby@suse.cz>
|
|
commit b355cee88e3b1a193f0e9a81db810f6f83ad728b upstream.
ACPI table may export resource entry with 0 length.
But the current code interprets this kind of resource in a wrong way.
It will create a resource structure with
res->end = acpi_resource->start + acpi_resource->len - 1;
This patch fixes a problem on my machine that a platform device fails
to be created because one of its ACPI IO resource entry (start = 0,
end = 0, length = 0) is translated into a generic resource with
start = 0, end = 0xffffffff.
Signed-off-by: Zhang Rui <rui.zhang@intel.com>
Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
Signed-off-by: Jiri Slaby <jslaby@suse.cz>
|
|
commit b4cb9244a544a1623305eb58267a90418268d31e upstream.
More people have reported they need this for their machines to work
correctly.
References: https://bugzilla.kernel.org/show_bug.cgi?id=60682
Reported-by: Stefan Hellermann <bugzilla.kernel.org@the2masters.de>
Reported-by: Benedikt Sauer <filmor@gmail.com>
Reported-by: Erno Kuusela <erno@iki.fi>
Reported-by: Jonathan Doman <jonathan.doman@gmail.com>
Reported-by: Christoph Klaffl <christophklaffl@gmail.com>
Reported-by: Jan Hendrik Nielsen <jan.hendrik.nielsen@informatik.hu-berlin.de>
Signed-off-by: Felipe Contreras <felipe.contreras@gmail.com>
Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
Signed-off-by: Jiri Slaby <jslaby@suse.cz>
|
|
commit f3ca4164529b875374c410193bbbac0ee960895f upstream.
acpi_processor_set_throttling() uses set_cpus_allowed_ptr() to make
sure that the (struct acpi_processor)->acpi_processor_set_throttling()
callback will run on the right CPU. However, the function may be
called from a worker thread already bound to a different CPU in which
case that won't work.
Make acpi_processor_set_throttling() use work_on_cpu() as appropriate
instead of abusing set_cpus_allowed_ptr().
Reported-and-tested-by: Jiri Olsa <jolsa@redhat.com>
Signed-off-by: Lan Tianyu <tianyu.lan@intel.com>
[rjw: Changelog]
Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
Signed-off-by: Jiri Slaby <jslaby@suse.cz>
|
|
commit bd8ba20597f0cfef3ef65c3fd2aa92ab23d4c8e1 upstream.
Some devices have duplicate entries in there brightness levels table, ie
on my Dell Latitude E6430 the table looks like this:
[ 3.686060] acpi backlight index 0, val 80
[ 3.686095] acpi backlight index 1, val 50
[ 3.686122] acpi backlight index 2, val 5
[ 3.686147] acpi backlight index 3, val 5
[ 3.686172] acpi backlight index 4, val 5
[ 3.686197] acpi backlight index 5, val 5
[ 3.686223] acpi backlight index 6, val 5
[ 3.686248] acpi backlight index 7, val 5
[ 3.686273] acpi backlight index 8, val 6
[ 3.686332] acpi backlight index 9, val 7
[ 3.686356] acpi backlight index 10, val 8
[ 3.686380] acpi backlight index 11, val 9
etc.
Notice that brightness values 0-5 are all mapped to 5. This means that
if userspace writes any value between 0 and 5 to the brightness sysfs attribute
and then reads it, it will always return 0, which is somewhat unexpected.
This is a problem for ie gnome-settings-daemon, which uses read-modify-write
logic when the users presses the brightness up or down keys. This is done
this way to take brightness changes from other sources into account.
On this specific laptop what happens once the brightness has been set to 0,
is that gsd reads 0, adds 5, writes 5, and on the next brightness up key press
again reads 0, so things get stuck at the lowest brightness setting.
Filtering out the duplicate table entries, makes any write to brightness
read back as the written value as one would expect, fixing this.
Signed-off-by: Hans de Goede <hdegoede@redhat.com>
Reviewed-by: Aaron Lu <aaron.lu@intel.com>
Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
Signed-off-by: Jiri Slaby <jslaby@suse.cz>
|
|
commit b685f3b1744061aa9ad822548ba9c674de5be7c6 upstream.
acpi_pci_link_allocate_irq() can return negative gsi even if
entry != NULL. For that case we have a memory leak, so free
entry before returning from acpi_pci_irq_enable() for gsi < 0.
Signed-off-by: Tomasz Nowicki <tomasz.nowicki@linaro.org>
[rjw: Subject and changelog]
Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
Signed-off-by: Jiri Slaby <jslaby@suse.cz>
|
|
regulator API
commit 49a12877d2777cadcb838981c3c4f5a424aef310 upstream.
There is currently no facility in ACPI to express the hookup of voltage
regulators, the expectation is that the regulators that exist in the
system will be handled transparently by firmware if they need software
control at all. This means that if for some reason the regulator API is
enabled on such a system it should assume that any supplies that devices
need are provided by the system at all relevant times without any software
intervention.
Tell the regulator core to make this assumption by calling
regulator_has_full_constraints(). Do this as soon as we know we are using
ACPI so that the information is available to the regulator core as early
as possible. This will cause the regulator core to pretend that there is
an always on regulator supplying any supply that is requested but that has
not otherwise been mapped which is the behaviour expected on a system with
ACPI.
Should the ability to specify regulators be added in future revisions of
ACPI then once we have support for ACPI mappings in the kernel the same
assumptions will apply. It is also likely that systems will default to a
mode of operation which does not require any interpretation of these
mappings in order to be compatible with existing operating system releases
so it should remain safe to make these assumptions even if the mappings
exist but are not supported by the kernel.
Signed-off-by: Mark Brown <broonie@linaro.org>
Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
commit 2b844ba79f4a114bd228ad6fee040ffd99a0963d upstream.
This reverts commit f6308b36c411 (ACPI: Add BayTrail SoC GPIO and LPSS
ACPI IDs), because it causes the Alan Cox' ASUS T100TA to "crash and
burn" during boot if the Baytrail pinctrl driver is compiled in.
Fixes: f6308b36c411 (ACPI: Add BayTrail SoC GPIO and LPSS ACPI IDs)
Reported-by: One Thousand Gnomes <gnomes@lxorguk.ukuu.org.uk>
Requested-by: Linus Walleij <linus.walleij@linaro.org>
Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
commit a90b40385735af0d3031f98e97b439e8944a31b3 upstream.
The AML method _BIX of NEC LZ750/LS returns a broken package which
skips the first member "Revision" (ACPI 5.0, Table 10-234).
Add a quirk for this machine to skip member "Revision" during parsing
the package returned by _BIX.
Reference: https://bugzilla.kernel.org/show_bug.cgi?id=67351
Reported-and-tested-by: Francisco Castro <fcr@adinet.com.uy>
Signed-off-by: Lan Tianyu <tianyu.lan@intel.com>
Reviewed-by: Dmitry Torokhov <dmitry.torokhov@gmail.com>
Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
commit f244d8b623dae7a7bc695b0336f67729b95a9736 upstream.
The changes in the ACPI-based PCI hotplug (ACPIPHP) subsystem made
during the 3.12 development cycle uncovered a problem with VGA
switcheroo that on some systems, when the device-specific method
(ATPX in the radeon case, _DSM in the nouveau case) is used to turn
off the discrete graphics, the BIOS generates ACPI hotplug events for
that device and those events cause ACPIPHP to attempt to remove the
device from the system (they are events for a device that was present
previously and is not present any more, so that's what should be done
according to the spec). Then, the system stops functioning correctly.
Since the hotplug events in question were simply silently ignored
previously, the least intrusive way to address that problem is to
make ACPIPHP ignore them again. For this purpose, introduce a new
ACPI device flag, no_hotplug, and modify ACPIPHP to ignore hotplug
events for PCI devices whose ACPI companions have that flag set.
Next, make the radeon and nouveau switcheroo detection code set the
no_hotplug flag for the discrete graphics' ACPI companion.
Fixes: bbd34fcdd1b2 (ACPI / hotplug / PCI: Register all devices under the given bridge)
References: https://bugzilla.kernel.org/show_bug.cgi?id=61891
References: https://bugzilla.kernel.org/show_bug.cgi?id=64891
Reported-and-tested-by: Mike Lothian <mike@fireburn.co.uk>
Reported-and-tested-by: <madcatx@atlas.cz>
Reported-and-tested-by: Joaquín Aramendía <samsagax@gmail.com>
Cc: Alex Deucher <alexdeucher@gmail.com>
Cc: Dave Airlie <airlied@linux.ie>
Cc: Takashi Iwai <tiwai@suse.de>
Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
commit f6308b36c411dc5afd6a6f73e6454722bfde57b7 upstream.
This adds the new ACPI ID (INT33FC) for the BayTrail GPIO
banks as seen on a BayTrail M System-On-Chip platform. This
ACPI ID is used by the BayTrail GPIO (pinctrl) driver to
manage the Low Power Subsystem (LPSS).
Signed-off-by: Paul Drews <paul.drews@intel.com>
Acked-by: Linus Walleij <linus.walleij@linaro.org>
Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
commit ca499fc87ed945094d952da0eb7eea7dbeb1feec upstream.
The PCI host bridge scan handler installs its own notify handler,
handle_hotplug_event_root(), by itself. Nevertheless, the ACPI
hotplug framework also installs the common notify handler,
acpi_hotplug_notify_cb(), for PCI root bridges. This causes
acpi_hotplug_notify_cb() to call _OST method with unsupported
error as hotplug.enabled is not set.
To address this issue, introduce hotplug.ignore flag, which
indicates that the scan handler installs its own notify handler by
itself. The ACPI hotplug framework does not install the common
notify handler when this flag is set.
Signed-off-by: Toshi Kani <toshi.kani@hp.com>
[rjw: Changed the name of the new flag]
Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
commit 176a88d79d6b5aebabaff16734e8b3107efcaaad upstream.
According to the ACPI spec (5.0, Section 6.3.5), the "Device
insertion in progress (pending)" (0x80) _OST status code is
reserved for the "Insertion Processing" (0x200) source event
which is "a result of an OSPM action". Specifically, it is not
a notification, so that status code should not be used during
notification processing, which unfortunately is done by
acpi_scan_bus_device_check().
For this reason, drop the ACPI_OST_SC_INSERT_IN_PROGRESS _OST
status evaluation from there (it was a mistake to put it in there
in the first place).
Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
commit 2441191a19039002b2c454a261fb45986df15184 upstream.
It is required to do get_device() on the struct acpi_device in
question before passing it to acpi_bus_hot_remove_device() through
acpi_os_hotplug_execute(), because acpi_bus_hot_remove_device()
calls acpi_scan_hot_remove() that does put_device() on that
object.
The ACPI PCI root removal routine, handle_root_bridge_removal(),
doesn't do that, which may lead to premature freeing of the
device object or to executing put_device() on an object that
has been freed already.
Fix this problem by making handle_root_bridge_removal() use
get_device() as appropriate.
Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
Acked-by: Toshi Kani <toshi.kani@hp.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
commit 2c62333a408f5badd2d2ffd7177f95deeccc5ca4 upstream.
Some firmware doesn't initialize initial backlight level to a proper
value and _BQC will return 0 on first time evaluation. We used to be
able to detect such incorrect value with our code logic, as value 0
normally isn't a valid value in _BCL. But with the introduction of Win8,
firmware begins to fill _BCL with values from 0 to 100, now 0 becomes
a valid value but that value will make user's screen black. This patch
test initial _BQC for value 0, if such a value is returned, do not use
it.
References: https://bugzilla.kernel.org/show_bug.cgi?id=64031
References: https://bugzilla.kernel.org/show_bug.cgi?id=61231
References: https://bugzilla.kernel.org/show_bug.cgi?id=63111
Reported-by: Qingshuai Tian <qingshuai.tian@intel.com>
Tested-by: Aaron Lu <aaron.lu@intel.com> # on "Idealpad u330p"
Reported-and-tested-by: <erno@iki.fi> # on "Acer Aspire V5-573G"
Reported-and-tested-by: Kirill Tkhai <tkhai@yandex.ru> # on "HP 250 G1"
Signed-off-by: Aaron Lu <aaron.lu@intel.com>
Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
commit 36b15875a7819a2ec4cb5748ff7096ad7bd86cbb upstream.
A bug was introduced by commit b76b51ba0cef ('ACPI / EC: Add more debug
info and trivial code cleanup') that erroneously caused the struct member
to be accessed before acquiring the required lock. This change fixes
it by ensuring the lock acquisition is done first.
Found by Aaron Durbin <adurbin@chromium.org>
Fixes: b76b51ba0cef ('ACPI / EC: Add more debug info and trivial code cleanup')
References: http://crbug.com/319019
Signed-off-by: Puneet Kumar <puneetster@chromium.org>
Reviewed-by: Aaron Durbin <adurbin@chromium.org>
[olof: Commit message reworded a bit]
Signed-off-by: Olof Johansson <olof@lixom.net>
Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
commit ea8117478918a4734586d35ff530721b682425be upstream.
Mike reported that commit 7d1a9417 ("x86: Use generic idle loop")
regressed several workloads and caused excessive reschedule
interrupts.
The patch in question failed to notice that the x86 code had an
inverted sense of the polling state versus the new generic code (x86:
default polling, generic: default !polling).
Fix the two prominent x86 mwait based idle drivers and introduce a few
new generic polling helpers (fixing the wrong smp_mb__after_clear_bit
usage).
Also switch the idle routines to using tif_need_resched() which is an
immediate TIF_NEED_RESCHED test as opposed to need_resched which will
end up being slightly different.
Reported-by: Mike Galbraith <bitbucket@online.de>
Signed-off-by: Peter Zijlstra <peterz@infradead.org>
Cc: lenb@kernel.org
Cc: tglx@linutronix.de
Link: http://lkml.kernel.org/n/tip-nc03imb0etuefmzybzj7sprf@git.kernel.org
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
Two functions defined in device_pm.c, acpi_dev_pm_add_dependent()
and acpi_dev_pm_remove_dependent(), have no callers and may be
dropped, so drop them.
Moreover, they are the only functions adding entries to and removing
entries from the power_dependent list in struct acpi_device, so drop
that list too.
Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
|
|
The mechanism causing devices depending on a given power resource
(that is, devices that can be in D0 only if that power resource is
on) to be resumed automatically when the power resource is turned
on (and their "inferred" power state becomes D0 as a result) is
inherently racy and in fact unnecessary.
It is racy, because if the power resource is turned on and then
immediately off, the device resume triggered by the first transition
to "on" may still happen, causing the power resource to be turned
on again. That again will trigger the "resume of dependent devices"
mechanism, but if the devices in question are not in use, they will
be suspended in the meantime causing the power resource to be turned
off. However, the "resume of dependent devices" will next resume
them again and so on. In some cases (USB port PM in particular) that
leads to an endless busy loop of flipping the resource on and off
continuously.
It is needless, because whoever turns a power resource on will most
likely turn it off at some point and the devices that go into "D0"
as a result of turning it on will then go back into D3cold
(generally, the state they were in before).
Moreover, turning on all power resources a device needs to go into
D0 is not sufficient for a full transition into D0 in general.
Namely, _PS0 may need to be executed in addition to that in some
cases. This means that the whole rationale of the "resume of
dependent devices" mechanism was incorrect to begin with and it's
best to remove it entirely.
Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
|
|
Commit 1696d9d (ACPI: Remove the old /proc/acpi/event interface)
left /proc/acpi/event in the ACPI_BUTTON help in Kconfig, so
remove it from there.
[rjw: Changelog]
Signed-off-by: Krzysztof Mazur <krzysiek@podlesie.net>
Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
|
|
In acpi_resume_power_resources() resource_lock should be released
when acpi_power_get_state() fails and before passing to next power
resource on the list.
Signed-off-by: Lan Tianyu <tianyu.lan@intel.com>
Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
|
|
Some links to projects web pages and e-mail addresses in ACPI/PM
documentation and Kconfig are outdated, so update them.
Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
|
|
Commit caf5c03f (ACPI: Move acpi_bus_get_device() from bus.c to
scan.c) caused acpi_bus_get_device() to be exported using
EXPORT_SYMBOL_GPL(), but that broke some binary drivers in
existence, so revert that change.
Reported-by: Peter Hurley <peter@hurleysoftware.com>
Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
|
|
"APIC" should be "ACPI" here.
Signed-off-by: Hanjun Guo <hanjun.guo@linaro.org>
Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
|
|
This patch fixes the issues indicated by the test results that
ipmi_msg_handler() is invoked in atomic context.
BUG: scheduling while atomic: kipmi0/18933/0x10000100
Modules linked in: ipmi_si acpi_ipmi ...
CPU: 3 PID: 18933 Comm: kipmi0 Tainted: G AW 3.10.0-rc7+ #2
Hardware name: QCI QSSC-S4R/QSSC-S4R, BIOS QSSC-S4R.QCI.01.00.0027.070120100606 07/01/2010
ffff8838245eea00 ffff88103fc63c98 ffffffff814c4a1e ffff88103fc63ca8
ffffffff814bfbab ffff88103fc63d28 ffffffff814c73e0 ffff88103933cbd4
0000000000000096 ffff88103fc63ce8 ffff88102f618000 ffff881035c01fd8
Call Trace:
<IRQ> [<ffffffff814c4a1e>] dump_stack+0x19/0x1b
[<ffffffff814bfbab>] __schedule_bug+0x46/0x54
[<ffffffff814c73e0>] __schedule+0x83/0x59c
[<ffffffff81058853>] __cond_resched+0x22/0x2d
[<ffffffff814c794b>] _cond_resched+0x14/0x1d
[<ffffffff814c6d82>] mutex_lock+0x11/0x32
[<ffffffff8101e1e9>] ? __default_send_IPI_dest_field.constprop.0+0x53/0x58
[<ffffffffa09e3f9c>] ipmi_msg_handler+0x23/0x166 [ipmi_si]
[<ffffffff812bf6e4>] deliver_response+0x55/0x5a
[<ffffffff812c0fd4>] handle_new_recv_msgs+0xb67/0xc65
[<ffffffff81007ad1>] ? read_tsc+0x9/0x19
[<ffffffff814c8620>] ? _raw_spin_lock_irq+0xa/0xc
[<ffffffffa09e1128>] ipmi_thread+0x5c/0x146 [ipmi_si]
...
Also Tony Camuso says:
We were getting occasional "Scheduling while atomic" call traces
during boot on some systems. Problem was first seen on a Cisco C210
but we were able to reproduce it on a Cisco c220m3. Setting
CONFIG_LOCKDEP and LOCKDEP_SUPPORT to 'y' exposed a lockdep around
tx_msg_lock in acpi_ipmi.c struct acpi_ipmi_device.
=================================
[ INFO: inconsistent lock state ]
2.6.32-415.el6.x86_64-debug-splck #1
---------------------------------
inconsistent {SOFTIRQ-ON-W} -> {IN-SOFTIRQ-W} usage.
ksoftirqd/3/17 [HC0[0]:SC1[1]:HE1:SE0] takes:
(&ipmi_device->tx_msg_lock){+.?...}, at: [<ffffffff81337a27>] ipmi_msg_handler+0x71/0x126
{SOFTIRQ-ON-W} state was registered at:
[<ffffffff810ba11c>] __lock_acquire+0x63c/0x1570
[<ffffffff810bb0f4>] lock_acquire+0xa4/0x120
[<ffffffff815581cc>] __mutex_lock_common+0x4c/0x400
[<ffffffff815586ea>] mutex_lock_nested+0x4a/0x60
[<ffffffff8133789d>] acpi_ipmi_space_handler+0x11b/0x234
[<ffffffff81321c62>] acpi_ev_address_space_dispatch+0x170/0x1be
The fix implemented by this change has been tested by Tony:
Tested the patch in a boot loop with lockdep debug enabled and never
saw the problem in over 400 reboots.
Reported-and-tested-by: Tony Camuso <tcamuso@redhat.com>
Signed-off-by: Lv Zheng <lv.zheng@intel.com>
Reviewed-by: Huang Ying <ying.huang@intel.com>
Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
|
|
git://git.kernel.org/pub/scm/linux/kernel/git/rafael/linux-pm
Pull ACPI and power management fixes from Rafael Wysocki:
"All of these commits are fixes that have emerged recently and some of
them fix bugs introduced during this merge window.
Specifics:
1) ACPI-based PCI hotplug (ACPIPHP) fixes related to spurious events
After the recent ACPIPHP changes we've seen some interesting
breakage on a system that triggers device check notifications
during boot for non-existing devices. Although those
notifications are really spurious, we should be able to deal with
them nevertheless and that shouldn't introduce too much overhead.
Four commits to make that work properly.
2) Memory hotplug and hibernation mutual exclusion rework
This was maent to be a cleanup, but it happens to fix a classical
ABBA deadlock between system suspend/hibernation and ACPI memory
hotplug which is possible if they are started roughly at the same
time. Three commits rework memory hotplug so that it doesn't
acquire pm_mutex and make hibernation use device_hotplug_lock
which prevents it from racing with memory hotplug.
3) ACPI Intel LPSS (Low-Power Subsystem) driver crash fix
The ACPI LPSS driver crashes during boot on Apple Macbook Air with
Haswell that has slightly unusual BIOS configuration in which one
of the LPSS device's _CRS method doesn't return all of the
information expected by the driver. Fix from Mika Westerberg, for
stable.
4) ACPICA fix related to Store->ArgX operation
AML interpreter fix for obscure breakage that causes AML to be
executed incorrectly on some machines (observed in practice).
From Bob Moore.
5) ACPI core fix for PCI ACPI device objects lookup
There still are cases in which there is more than one ACPI device
object matching a given PCI device and we don't choose the one
that the BIOS expects us to choose, so this makes the lookup take
more criteria into account in those cases.
6) Fix to prevent cpuidle from crashing in some rare cases
If the result of cpuidle_get_driver() is NULL, which can happen on
some systems, cpuidle_driver_ref() will crash trying to use that
pointer and the Daniel Fu's fix prevents that from happening.
7) cpufreq fixes related to CPU hotplug
Stephen Boyd reported a number of concurrency problems with
cpufreq related to CPU hotplug which are addressed by a series of
fixes from Srivatsa S Bhat and Viresh Kumar.
8) cpufreq fix for time conversion in time_in_state attribute
Time conversion carried out by cpufreq when user space attempts to
read /sys/devices/system/cpu/cpu*/cpufreq/stats/time_in_state
won't work correcty if cputime_t doesn't map directly to jiffies.
Fix from Andreas Schwab.
9) Revert of a troublesome cpufreq commit
Commit 7c30ed5 (cpufreq: make sure frequency transitions are
serialized) was intended to address some known concurrency
problems in cpufreq related to the ordering of transitions, but
unfortunately it introduced several problems of its own, so I
decided to revert it now and address the original problems later
in a more robust way.
10) Intel Haswell CPU models for intel_pstate from Nell Hardcastle.
11) cpufreq fixes related to system suspend/resume
The recent cpufreq changes that made it preserve CPU sysfs
attributes over suspend/resume cycles introduced a possible NULL
pointer dereference that caused it to crash during the second
attempt to suspend. Three commits from Srivatsa S Bhat fix that
problem and a couple of related issues.
12) cpufreq locking fix
cpufreq_policy_restore() should acquire the lock for reading, but
it acquires it for writing. Fix from Lan Tianyu"
* tag 'pm+acpi-fixes-3.12-rc1' of git://git.kernel.org/pub/scm/linux/kernel/git/rafael/linux-pm: (25 commits)
cpufreq: Acquire the lock in cpufreq_policy_restore() for reading
cpufreq: Prevent problems in update_policy_cpu() if last_cpu == new_cpu
cpufreq: Restructure if/else block to avoid unintended behavior
cpufreq: Fix crash in cpufreq-stats during suspend/resume
intel_pstate: Add Haswell CPU models
Revert "cpufreq: make sure frequency transitions are serialized"
cpufreq: Use signed type for 'ret' variable, to store negative error values
cpufreq: Remove temporary fix for race between CPU hotplug and sysfs-writes
cpufreq: Synchronize the cpufreq store_*() routines with CPU hotplug
cpufreq: Invoke __cpufreq_remove_dev_finish() after releasing cpu_hotplug.lock
cpufreq: Split __cpufreq_remove_dev() into two parts
cpufreq: Fix wrong time unit conversion
cpufreq: serialize calls to __cpufreq_governor()
cpufreq: don't allow governor limits to be changed when it is disabled
ACPI / bind: Prefer device objects with _STA to those without it
ACPI / hotplug / PCI: Avoid parent bus rescans on spurious device checks
ACPI / hotplug / PCI: Use _OST to notify firmware about notify status
ACPI / hotplug / PCI: Avoid doing too much for spurious notifies
ACPICA: Fix for a Store->ArgX when ArgX contains a reference to a field.
ACPI / hotplug / PCI: Don't trim devices before scanning the namespace
...
|
|
* acpi-bind:
ACPI / bind: Prefer device objects with _STA to those without it
|
|
* acpi-assorted:
ACPI / LPSS: don't crash if a device has no MMIO resources
|
|
* acpica:
ACPICA: Fix for a Store->ArgX when ArgX contains a reference to a field.
|
|
* acpi-hotplug:
PM / hibernate / memory hotplug: Rework mutual exclusion
PM / hibernate: Create memory bitmaps after freezing user space
ACPI / scan: Change ordering of locks for device hotplug
|
|
As reported at https://bugzilla.kernel.org/show_bug.cgi?id=60829,
there still are cases in which do_find_child() doesn't choose the
ACPI device object it is "expected" to choose if there are more such
objects matching one PCI device present. This particular problem may
be worked around by making do_find_child() return device obejcts witn
_STA whose result indicates that the device is enabled before device
objects without _STA if there's more than one device object to choose
from.
This change doesn't affect the case in which there's only one
matching ACPI device object per PCI device.
References: https://bugzilla.kernel.org/show_bug.cgi?id=60829
Reported-by: Peter Wu <lekensteyn@gmail.com>
Tested-by: Felix Lisczyk <felix.lisczyk@gmail.com>
Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
|