summaryrefslogtreecommitdiff
path: root/drivers/acpi
AgeCommit message (Collapse)Author
2016-10-06Merge tag 'pstore-v4.9-rc1' of ↵Linus Torvalds
git://git.kernel.org/pub/scm/linux/kernel/git/kees/linux Pull pstore updates from Kees Cook: - Fix bug in module unloading - Switch to always using spinlock over cmpxchg - Explicitly define pstore backend's supported modes - Remove bounce buffer from pmsg - Switch to using memcpy_to/fromio() - Error checking improvements * tag 'pstore-v4.9-rc1' of git://git.kernel.org/pub/scm/linux/kernel/git/kees/linux: ramoops: move spin_lock_init after kmalloc error checking pstore/ram: Use memcpy_fromio() to save old buffer pstore/ram: Use memcpy_toio instead of memcpy pstore/pmsg: drop bounce buffer pstore/ram: Set pstore flags dynamically pstore: Split pstore fragile flags pstore/core: drop cmpxchg based updates pstore/ramoops: fixup driver removal
2016-10-03Merge tag 'tty-4.9-rc1' of ↵Linus Torvalds
git://git.kernel.org/pub/scm/linux/kernel/git/gregkh/tty Pull tty and serial updates from Greg KH: "Here is the big tty and serial patch set for 4.9-rc1. It also includes some drivers/dma/ changes, as those were needed by some serial drivers, and they were all acked by the DMA maintainer. Also in here is the long-suffering ACPI SPCR patchset, which was passed around from maintainer to maintainer like a hot-potato. Seems I was the sucker^Wlucky one. All of those patches have been acked by the various subsystem maintainers as well. All of this has been in linux-next with no reported issues" * tag 'tty-4.9-rc1' of git://git.kernel.org/pub/scm/linux/kernel/git/gregkh/tty: (111 commits) Revert "serial: pl011: add console matching function" MAINTAINERS: update entry for atmel_serial driver serial: pl011: add console matching function ARM64: ACPI: enable ACPI_SPCR_TABLE ACPI: parse SPCR and enable matching console of/serial: move earlycon early_param handling to serial Revert "drivers/tty: Explicitly pass current to show_stack" tty: amba-pl011: Don't complain on -EPROBE_DEFER when no irq nios2: dts: 10m50: Add tx-threshold parameter serial: 8250: Set Altera 16550 TX FIFO Threshold serial: 8250: of: Load TX FIFO Threshold from DT Documentation: dt: serial: Add TX FIFO threshold parameter drivers/tty: Explicitly pass current to show_stack serial: imx: Fix DCD reading serial: stm32: mark symbols static where possible serial: xuartps: Add some register initialisation to cdns_early_console_setup() serial: xuartps: Removed unwanted checks while reading the error conditions serial: xuartps: Rewrite the interrupt handling logic serial: stm32: use mapbase instead of membase for DMA tty/serial: atmel: fix fractional baud rate computation ...
2016-10-03Merge branch 'smp-hotplug-for-linus' of ↵Linus Torvalds
git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip Pull CPU hotplug updates from Thomas Gleixner: "Yet another batch of cpu hotplug core updates and conversions: - Provide core infrastructure for multi instance drivers so the drivers do not have to keep custom lists. - Convert custom lists to the new infrastructure. The block-mq custom list conversion comes through the block tree and makes the diffstat tip over to more lines removed than added. - Handle unbalanced hotplug enable/disable calls more gracefully. - Remove the obsolete CPU_STARTING/DYING notifier support. - Convert another batch of notifier users. The relayfs changes which conflicted with the conversion have been shipped to me by Andrew. The remaining lot is targeted for 4.10 so that we finally can remove the rest of the notifiers" * 'smp-hotplug-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip: (46 commits) cpufreq: Fix up conversion to hotplug state machine blk/mq: Reserve hotplug states for block multiqueue x86/apic/uv: Convert to hotplug state machine s390/mm/pfault: Convert to hotplug state machine mips/loongson/smp: Convert to hotplug state machine mips/octeon/smp: Convert to hotplug state machine fault-injection/cpu: Convert to hotplug state machine padata: Convert to hotplug state machine cpufreq: Convert to hotplug state machine ACPI/processor: Convert to hotplug state machine virtio scsi: Convert to hotplug state machine oprofile/timer: Convert to hotplug state machine block/softirq: Convert to hotplug state machine lib/irq_poll: Convert to hotplug state machine x86/microcode: Convert to hotplug state machine sh/SH-X3 SMP: Convert to hotplug state machine ia64/mca: Convert to hotplug state machine ARM/OMAP/wakeupgen: Convert to hotplug state machine ARM/shmobile: Convert to hotplug state machine arm64/FP/SIMD: Convert to hotplug state machine ...
2016-10-03Merge branch 'irq-core-for-linus' of ↵Linus Torvalds
git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip Pull irq updates from Thomas Gleixner: "The irq departement proudly presents: - A rework of the core infrastructure to optimally spread interrupt for multiqueue devices. The first version was a bit naive and failed to take thread siblings and other details into account. Developed in cooperation with Christoph and Keith. - Proper delegation of softirqs to ksoftirqd, so if ksoftirqd is active then no further softirq processsing on interrupt return happens. Otherwise we try to delegate and still run another batch of network packets in the irq return path, which then tries to delegate to ksoftirqd ..... - A proper machine parseable sysfs based alternative for /proc/interrupts. - ACPI support for the GICV3-ITS and ARM interrupt remapping - Two new irq chips from the ARM SoC zoo: STM32-EXTI and MVEBU-PIC - A new irq chip for the JCore (SuperH) - The usual pile of small fixlets in core and irqchip drivers" * 'irq-core-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip: (42 commits) softirq: Let ksoftirqd do its job genirq: Make function __irq_do_set_handler() static ARM/dts: Add EXTI controller node to stm32f429 ARM/STM32: Select external interrupts controller drivers/irqchip: Add STM32 external interrupts support Documentation/dt-bindings: Document STM32 EXTI controller bindings irqchip/mips-gic: Use for_each_set_bit to iterate over local IRQs pci/msi: Retrieve affinity for a vector genirq/affinity: Remove old irq spread infrastructure genirq/msi: Switch to new irq spreading infrastructure genirq/affinity: Provide smarter irq spreading infrastructure genirq/msi: Add cpumask allocation to alloc_msi_entry genirq: Expose interrupt information through sysfs irqchip/gicv3-its: Use MADT ITS subtable to do PCI/MSI domain initialization irqchip/gicv3-its: Factor out PCI-MSI part that might be reused for ACPI irqchip/gicv3-its: Probe ITS in the ACPI way irqchip/gicv3-its: Refactor ITS DT init code to prepare for ACPI irqchip/gicv3-its: Cleanup for ITS domain initialization PCI/MSI: Setup MSI domain on a per-device basis using IORT ACPI table ACPI: Add new IORT functions to support MSI domain handling ...
2016-10-03Merge branch 'x86-apic-for-linus' of ↵Linus Torvalds
git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip Pull x86 apic updates from Ingo Molnar: "The main changes are: - Persistent CPU/node numbering across CPU hotplug/unplug events. This is a pretty involved series of changes that first fetches all the information during bootup and then uses it for the various hotplug/unplug methods. (Gu Zheng, Dou Liyang) - IO-APIC hot-add/remove fixes and enhancements. (Rui Wang) - ... various fixes, cleanups and enhancements" * 'x86-apic-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip: (22 commits) x86/apic: Fix silent & fatal merge conflict in __generic_processor_info() acpi: Fix broken error check in map_processor() acpi: Validate processor id when mapping the processor acpi: Provide mechanism to validate processors in the ACPI tables x86/acpi: Set persistent cpuid <-> nodeid mapping when booting x86/acpi: Enable MADT APIs to return disabled apicids x86/acpi: Introduce persistent storage for cpuid <-> apicid mapping x86/acpi: Enable acpi to register all possible cpus at boot time x86/numa: Online memory-less nodes at boot time x86/apic: Get rid of apic_version[] array x86/apic: Order irq_enter/exit() calls correctly vs. ack_APIC_irq() x86/ioapic: Ignore root bridges without a companion ACPI device x86/apic: Update comment about disabling processor focus x86/smpboot: Check APIC ID before setting up default routing x86/ioapic: Fix IOAPIC failing to request resource x86/ioapic: Fix lost IOAPIC resource after hot-removal and hotadd x86/ioapic: Fix setup_res() failing to get resource x86/ioapic: Support hot-removal of IOAPICs present during boot x86/ioapic: Change prototype of acpi_ioapic_add() x86/apic, ACPI: Fix incorrect assignment when handling apic/x2apic entries ...
2016-10-03Merge tag 'acpi-4.9-rc1' of ↵Linus Torvalds
git://git.kernel.org/pub/scm/linux/kernel/git/rafael/linux-pm Pull ACPI updates from Rafael Wysocki: "First off, the ACPICA code in the kernel is updated to upstream revision 20160831 that brings in a few bug fixes and cleanups. In particular, it is possible to mask GPEs now (and the sysfs interface for GPE control is fixed on top of that), problems related to the table loading mechanism are fixed and all code related to FADT version 2 (which has never been part of the ACPI specification) is dropped. On the new features front, there is a new watchdog driver based on the ACPI WDAT (ACPI Watchdog Action Table), needed on some platforms to replace the iTCO watchdog that doesn't work there, and some UART devices get new definitions of built-in properties (to be accessed via the generic device properties API). Also, included is a fix for an ACPI-related PCI resorces allocation issue and a few problems in the EC driver and in the button and battery drivers are fixed. In addition to that, the ACPI CPPC library is updated to make batching of requests sent over the PCC channel possible (which reduces the PCC usage overhead substantially in some cases) and to support functional fixed hardware (FFH) type of CPPC registers access (which will allow CPPC to be used on x86 too in the future). As usual, there are some assorted fixes and cleanups too. Specifics: - Update of the ACPICA code in the kernel to upstream revision 20160831 with the following major changes: * New mechanism for GPE masking. * Fixes for issues related to the LoadTable operator and table loading. * Fixes for issues related to so-called module-level code (MLC), that is AML that doesn't belong to any methods. * Change of the return value of the _OSI method to reflect the Windows behavior. * GAS (Generic Address Structure) support fix related to 32-bit FADT addresses. * Elimination of unnecessary FADT version 2 support. * ACPI tools fixes and cleanups. From Bob Moore, Lv Zheng, and Jung-uk Kim. - ACPI sysfs interface updates to fix GPE handling (on top of the new GPE masking mechanism in ACPICA) and issues related to table loading (Lv Zheng). - New watchdog driver based on the ACPI WDAT (ACPI Watchdog Action Table), needed on some platforms to replace the iTCO watchdog that doesn't work there and related updates of the intel_pmc_ipc, i2c/i801 and MFD/lcp_ich drivers (Mika Westerberg). - Driver core fix to prevent it from leaking secondary fwnode objects during device removal (Lukas Wunner). - New definitions of built-in properties for UART in ACPI-based x86 SoC drivers and a 8250_dw driver quirk for the APM X-Gene SoC (Heikki Krogerus). - New device ID for the Vulcan SPI controller and constification of local strucures in the AMD SoC (APD) ACPI driver (Kamlakant Patel, Julia Lawall). - Fix for a bug causing the allocation of PCI resorces to fail if ACPI-enumerated child platform devices are registered below the PCI devices in question (Mika Westerberg). - Change of the default polarity for PCI legacy IRQs to high on systems booting wth ACPI on platforms with a GIC interrupt controller model fixing the discrepancy between the specification and HW behavior (Lorenzo Pieralisi). - Fixes for the handling of system suspend/resume in the ACPI EC driver and update of that driver to make it cope with the cases when the EC device defined in the ECDT has to be used throughout the entire system life cycle (Lv Zheng). - Update of the ACPI CPPC library to allow it to batch requests sent over the PCC channel (to reduce overhead), to support the fixed functional hardware (FFH) CPPC registers access type, to notify the mailbox framework about TX completions when the interrupt flag is set for the PCC mailbox, and to support HW-Reduced Communication Subspace type 2 (Ashwin Chaugule, Prashanth Prakash, Srinivas Pandruvada, Hoan Tran). - ACPI button driver fix and documentation update related to the handling of laptop lids (Lv Zheng). - ACPI battery driver initialization fix (Carlos Garnacho). - ACPI GPIO enumeration documentation update (Mika Westerberg). - Assorted updates of the core ACPI bus type code (Lukas Wunner, Lv Zheng). - Assorted cleanups of the ACPI table parsing code and the x86-specific ACPI code (Al Stone). - Fixes for assorted ACPI-related issues found in linux-next (Wei Yongjun)" * tag 'acpi-4.9-rc1' of git://git.kernel.org/pub/scm/linux/kernel/git/rafael/linux-pm: (98 commits) ACPI / documentation: Use recommended name in GPIO property names watchdog: wdat_wdt: Fix warning for using 0 as NULL watchdog: wdat_wdt: fix return value check in wdat_wdt_probe() platform/x86: intel_pmc_ipc: Do not create iTCO watchdog when WDAT table exists i2c: i801: Do not create iTCO watchdog when WDAT table exists mfd: lpc_ich: Do not create iTCO watchdog when WDAT table exists ACPI / bus: Adjust ACPI subsystem initialization for new table loading mode ACPICA: Parser: Fix a regression in LoadTable support ACPICA: Tables: Fix "UNLOAD" code path lock issues ACPI / watchdog: Add support for WDAT hardware watchdog ACPI / platform: Pay attention to parent device's resources PCI: Add pci_find_resource() ACPI / CPPC: Support PCC with interrupt flag ACPI / sysfs: Update sysfs signature handling code ACPI / sysfs: Fix an issue for LoadTable opcode ACPICA: Tables: Fix a regression in acpi_tb_find_table() ACPI / tables: Remove duplicated include from tables.c ACPI / APD: constify local structures x86: ACPI: make variable names clearer in acpi_parse_madt_lapic_entries() x86: ACPI: remove extraneous white space after semicolon ...
2016-10-02Merge branches 'acpi-button', 'acpi-battery' and 'acpi-doc'Rafael J. Wysocki
* acpi-button: ACPI / button: Add document for ACPI control method lid device restrictions ACPI / button: Fix an issue in button.lid_init_state=ignore mode * acpi-battery: ACPI / battery: Add sysfs representation after checking _BST * acpi-doc: ACPI / documentation: Use recommended name in GPIO property names
2016-10-02Merge branches 'acpi-wdat' and 'acpi-ec'Rafael J. Wysocki
* acpi-wdat: watchdog: wdat_wdt: Fix warning for using 0 as NULL watchdog: wdat_wdt: fix return value check in wdat_wdt_probe() platform/x86: intel_pmc_ipc: Do not create iTCO watchdog when WDAT table exists i2c: i801: Do not create iTCO watchdog when WDAT table exists mfd: lpc_ich: Do not create iTCO watchdog when WDAT table exists ACPI / watchdog: Add support for WDAT hardware watchdog * acpi-ec: ACPI / EC: Fix issues related to boot_ec ACPI / EC: Fix a gap that ECDT EC cannot handle EC events ACPI / EC: Fix a memory leakage issue in acpi_ec_add() ACPI / EC: Cleanup first_ec/boot_ec code ACPI / EC: Enable event freeze mode to improve event handling for suspend process ACPI / EC: Add PM operations to improve event handling for suspend process ACPI / EC: Add PM operations to improve event handling for resume process ACPI / EC: Fix an issue that SCI_EVT cannot be detected after event is enabled ACPI / EC: Add EC_FLAGS_QUERY_ENABLED to reveal a hidden logic ACPI / EC: Add PM operations for suspend/resume noirq stage
2016-10-02Merge branches 'acpi-x86', 'acpi-cppc' and 'acpi-soc'Rafael J. Wysocki
* acpi-x86: x86: ACPI: make variable names clearer in acpi_parse_madt_lapic_entries() x86: ACPI: remove extraneous white space after semicolon * acpi-cppc: ACPI / CPPC: Support PCC with interrupt flag ACPI / CPPC: Add prefix cppc to cpudata structure name ACPI / CPPC: Add support for functional fixed hardware address ACPI / CPPC: Don't return on CPPC probe failure ACPI / CPPC: Allow build with ACPI_CPU_FREQ_PSS config ACPI / CPPC: check for error bit in PCC status field ACPI / CPPC: move all PCC related information into pcc_data ACPI / CPPC: add sysfs support to compute delivered performance ACPI / CPPC: set a non-zero value for transition_latency ACPI / CPPC: support for batching CPPC requests ACPI / CPPC: acquire pcc_lock only while accessing PCC subspace ACPI / CPPC: restructure read/writes for efficient sys mapped reg ops mailbox: pcc: Support HW-Reduced Communication Subspace type 2 * acpi-soc: ACPI / APD: constify local structures ACPI / APD: Add device HID for Vulcan SPI controller
2016-10-02Merge branch 'acpi-bus'Rafael J. Wysocki
* acpi-bus: ACPI / bus: Adjust ACPI subsystem initialization for new table loading mode ACPI / bus: Make acpi_get_first_physical_node() public
2016-10-02Merge branches 'acpi-sysfs', 'acpi-pci' and 'acpi-tables'Rafael J. Wysocki
* acpi-sysfs: ACPI / sysfs: Update sysfs signature handling code ACPI / sysfs: Fix an issue for LoadTable opcode ACPI / sysfs: Use new GPE masking mechanism in GPE interface * acpi-pci: ACPI / platform: Pay attention to parent device's resources PCI: Add pci_find_resource() ACPI / PCI: fix GIC irq model default PCI IRQ polarity * acpi-tables: ACPI / tables: Remove duplicated include from tables.c ACPI / tables: do not report the number of entries ignored by acpi_parse_entries() ACPI / tables: fix acpi_parse_entries_array() so it traverses all subtables ACPI / tables: fix incorrect counts returned by acpi_parse_entries_array()
2016-10-02Merge branch 'acpica'Rafael J. Wysocki
* acpica: (45 commits) ACPICA: Parser: Fix a regression in LoadTable support ACPICA: Tables: Fix "UNLOAD" code path lock issues ACPICA: Tables: Fix a regression in acpi_tb_find_table() ACPICA: Update version to 20160831 ACPICA: Tables: Tune table mutex to be a leaf lock ACPICA: Dispatcher: Fix a mutex issue for method auto serialization ACPICA: Namespace: Fix dynamic table loading issues ACPICA: Namespace: Add acpi_ns_get_node_unlocked() ACPICA: Interpreter: Fix MLC issues by switching to new term_list grammar for table loading ACPICA: Update return value for intenal _OSI method ACPICA: Tables: Override all 64-bit GAS fields when acpi_gbl_use32_bit_fadt_addresses is TRUE ACPICA: Tables: Add new table events indicating table installation/uninstallation ACPICA: Tables: Remove wrong table event macros ACPICA: Tables: Remove acpi_tb_install_fixed_table() ACPICA: Add a couple of casts to uthex.c ACPICA: Cleanup for all string-to-integer conversions ACPICA: Debugger: Add subcommand for predefined name execution ACPICA: Update version to 20160729 ACPICA: OSL: Fix a regression that old GCC requires a workaround for strchr() ACPICA: OSL: Cleanup the inclusion order of the compiler-specific headers ...
2016-10-02Merge branch 'device-properties'Rafael J. Wysocki
* device-properties: serial: 8250_dw: Add quirk for APM X-Gene SoC ACPI / LPSS: Provide build-in properties of the UART ACPI / APD: Provide build-in properties of the UART driver core: Don't leak secondary fwnode on device removal
2016-09-28ACPI: parse SPCR and enable matching consoleAleksey Makarov
'ARM Server Base Boot Requiremets' [1] mentions SPCR (Serial Port Console Redirection Table) [2] as a mandatory ACPI table that specifies the configuration of serial console. Defer initialization of DT earlycon until ACPI/DT decision is made. Parse the ACPI SPCR table, setup earlycon if required, enable specified console. Thanks to Peter Hurley for explaining how this should work. [1] http://infocenter.arm.com/help/index.jsp?topic=/com.arm.doc.den0044a/index.html [2] https://msdn.microsoft.com/en-us/library/windows/hardware/dn639132(v=vs.85).aspx Signed-off-by: Aleksey Makarov <aleksey.makarov@linaro.org> Acked-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com> Reviewed-by: Peter Hurley <peter@hurleysoftware.com> Tested-by: Kefeng Wang <wangkefeng.wang@huawei.com> Tested-by: Christopher Covington <cov@codeaurora.org> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2016-09-26Merge branch 'x86/urgent' into x86/apicThomas Gleixner
Bring in the upstream modifications so we can fixup the silent merge conflict which is introduced by this merge. Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
2016-09-26ACPI / bus: Adjust ACPI subsystem initialization for new table loading modeLv Zheng
This patch enables the following initialization order for the new table loading mode (which is enabled by setting acpi_gbl_parse_table_as_term_list to TRUE): 1. Install default region handlers (SystemMemory, SystemIo, PciConfig, EmbeddedControl via ECDT) without evaluating _REG; 2. Load the table and execute the module level AML opcodes instantly. Signed-off-by: Lv Zheng <lv.zheng@intel.com> [ rjw: Subject ] Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
2016-09-26Merge branch 'acpica' into acpi-busRafael J. Wysocki
2016-09-24ACPICA: Parser: Fix a regression in LoadTable supportLv Zheng
ACPICA commit a78506e0ce8ab1d20db2a055d99cf9143e89eb29 LoadTable allows an alternative RootPathString than the default "\", while the new table execution support fails to keep this logic. This regression can be detected by ASLTS - TLT0.tst4, this patch fixes this regression. Linux upstream is not affected by this regression as we haven't enabled the new table execution support there. BZ 1326, Lv Zheng. Link: https://github.com/acpica/acpica/commit/a78506e0 Link: https://bugs.acpica.org/show_bug.cgi?id=1326 Signed-off-by: Lv Zheng <lv.zheng@intel.com> Signed-off-by: Bob Moore <robert.moore@intel.com> Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
2016-09-24ACPICA: Tables: Fix "UNLOAD" code path lock issuesLv Zheng
ACPICA commit 39227380f5b99c51b897a3ffedd88508aa26789b The previous lock fixes didn't cover "Unload" opcode and table unload APIs, this patch fixes lock issues in the "Unload" code path. BZ 1325, Lv Zheng. Link: https://github.com/acpica/acpica/commit/39227380 Link: https://bugs.acpica.org/show_bug.cgi?id=1325 Signed-off-by: Lv Zheng <lv.zheng@intel.com> Signed-off-by: Bob Moore <robert.moore@intel.com> Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
2016-09-24ACPI / watchdog: Add support for WDAT hardware watchdogMika Westerberg
Starting from Intel Skylake the iTCO watchdog timer registers were moved to reside in the same register space with SMBus host controller. Not all needed registers are available though and we need to unhide P2SB (Primary to Sideband) device briefly to be able to read status of required NO_REBOOT bit. The i2c-i801.c SMBus driver used to handle this and creation of the iTCO watchdog platform device. Windows, on the other hand, does not use the iTCO watchdog hardware directly even if it is available. Instead it relies on ACPI Watchdog Action Table (WDAT) table to describe the watchdog hardware to the OS. This table contains necessary information about the the hardware and also set of actions which are executed by a driver as needed. This patch implements a new watchdog driver that takes advantage of the ACPI WDAT table. We split the functionality into two parts: first part enumerates the WDAT table and if found, populates resources and creates platform device for the actual driver. The second part is the driver itself. The reason for the split is that this way we can make the driver itself to be a module and loaded automatically if the WDAT table is found. Otherwise the module is not loaded. Signed-off-by: Mika Westerberg <mika.westerberg@linux.intel.com> Reviewed-by: Guenter Roeck <linux@roeck-us.net> Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
2016-09-23acpi: Fix broken error check in map_processor()Thomas Gleixner
map_processor() checks the cpuid value returned by acpi_map_cpuid() for -1 but acpi_map_cpuid() returns -EINVAL in case of error. As a consequence the error is ignored and the following access into percpu data with that negative cpuid results in a boot crash. This happens always when NR_CPUS/nr_cpu_ids is smaller than the number of processors listed in the ACPI tables. Use a proper error check for id < 0 so the function returns instead of trying to map CPU#(-EINVAL). Reported-by: Ingo Molnar <mingo@kernel.org> Signed-off-by: Thomas Gleixner <tglx@linutronix.de> Cc: Dou Liyang <douly.fnst@cn.fujitsu.com> Cc: Gu Zheng <guz.fnst@cn.fujitsu.com> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Tang Chen <tangchen@cn.fujitsu.com> Cc: Zhu Guihua <zhugh.fnst@cn.fujitsu.com> Cc: akpm@linux-foundation.org Cc: chen.tang@easystack.cn Cc: cl@linux.com Cc: gongzhaogang@inspur.com Cc: isimatu.yasuaki@jp.fujitsu.com Cc: izumi.taku@jp.fujitsu.com Cc: kamezawa.hiroyu@jp.fujitsu.com Cc: len.brown@intel.com Cc: lenb@kernel.org Cc: linux-acpi@vger.kernel.org Cc: linux-mm@kvack.org Cc: mika.j.penttila@gmail.com Cc: rafael@kernel.org Cc: rjw@rjwysocki.net Cc: tj@kernel.org Cc: yasu.isimatu@gmail.com Fixes: dc6db24d2476 ("x86/acpi: Set persistent cpuid <-> nodeid mapping when booting") Link: http://lkml.kernel.org/r/alpine.DEB.2.20.1609231705570.5640@nanos Signed-off-by: Ingo Molnar <mingo@kernel.org>
2016-09-21acpi: Validate processor id when mapping the processorDou Liyang
When we want to identify whether the proc_id is unreasonable or not, we can call the "acpi_processor_validate_proc_id" function. It will search in the duplicate IDs. If we find the proc_id in the IDs, we return true to the call function. Conversely, the false represents available. When we establish all possible cpuid <-> nodeid mapping to handle the cpu hotplugs, we will use the proc_id from ACPI table. We do validation when we get the proc_id. If the result is true, we will stop the mapping. [ tglx: Mark the new function __init ] Signed-off-by: Dou Liyang <douly.fnst@cn.fujitsu.com> Acked-by: Ingo Molnar <mingo@kernel.org> Cc: mika.j.penttila@gmail.com Cc: len.brown@intel.com Cc: rafael@kernel.org Cc: rjw@rjwysocki.net Cc: yasu.isimatu@gmail.com Cc: linux-mm@kvack.org Cc: linux-acpi@vger.kernel.org Cc: isimatu.yasuaki@jp.fujitsu.com Cc: gongzhaogang@inspur.com Cc: tj@kernel.org Cc: izumi.taku@jp.fujitsu.com Cc: cl@linux.com Cc: chen.tang@easystack.cn Cc: akpm@linux-foundation.org Cc: kamezawa.hiroyu@jp.fujitsu.com Cc: lenb@kernel.org Link: http://lkml.kernel.org/r/1472114120-3281-8-git-send-email-douly.fnst@cn.fujitsu.com Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
2016-09-21acpi: Provide mechanism to validate processors in the ACPI tablesDou Liyang
[Problem] When we set cpuid <-> nodeid mapping to be persistent, it will use the DSDT As we know, the ACPI tables are just like user's input in that respect, and we don't crash if user's input is unreasonable. Such as, the mapping of the proc_id and pxm in some machine's ACPI table is like this: proc_id | pxm -------------------- 0 <-> 0 1 <-> 0 2 <-> 1 3 <-> 1 89 <-> 0 89 <-> 0 89 <-> 0 89 <-> 1 89 <-> 1 89 <-> 2 89 <-> 3 ..... We can't be sure which one is correct to the proc_id 89. We may map a wrong node to a cpu. When pages are allocated, this may cause a kernal panic. So, we should provide mechanisms to validate the ACPI tables, just like we do validation to check user's input in web project. The mechanism is that the processor objects which have the duplicate IDs are not valid. [Solution] We add a validation function, like this: foreach Processor in DSDT proc_id = get_ACPI_Processor_number(Processor) if (proc_id exists ) mark both of them as being unreasonable; The function will record the unique or duplicate processor IDs. The duplicate processor IDs such as 89 are regarded as the unreasonable IDs which mean that the processor objects in question are not valid. [ tglx: Add __init[data] annotations ] Signed-off-by: Dou Liyang <douly.fnst@cn.fujitsu.com> Acked-by: Ingo Molnar <mingo@kernel.org> Cc: mika.j.penttila@gmail.com Cc: len.brown@intel.com Cc: rafael@kernel.org Cc: rjw@rjwysocki.net Cc: yasu.isimatu@gmail.com Cc: linux-mm@kvack.org Cc: linux-acpi@vger.kernel.org Cc: isimatu.yasuaki@jp.fujitsu.com Cc: gongzhaogang@inspur.com Cc: tj@kernel.org Cc: izumi.taku@jp.fujitsu.com Cc: cl@linux.com Cc: chen.tang@easystack.cn Cc: akpm@linux-foundation.org Cc: kamezawa.hiroyu@jp.fujitsu.com Cc: lenb@kernel.org Link: http://lkml.kernel.org/r/1472114120-3281-7-git-send-email-douly.fnst@cn.fujitsu.com Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
2016-09-21x86/acpi: Set persistent cpuid <-> nodeid mapping when bootingGu Zheng
The whole patch-set aims at making cpuid <-> nodeid mapping persistent. So that, when node online/offline happens, cache based on cpuid <-> nodeid mapping such as wq_numa_possible_cpumask will not cause any problem. It contains 4 steps: 1. Enable apic registeration flow to handle both enabled and disabled cpus. 2. Introduce a new array storing all possible cpuid <-> apicid mapping. 3. Enable _MAT and MADT relative apis to return non-present or disabled cpus' apicid. 4. Establish all possible cpuid <-> nodeid mapping. This patch finishes step 4. This patch set the persistent cpuid <-> nodeid mapping for all enabled/disabled processors at boot time via an additional acpi namespace walk for processors. [ tglx: Remove the unneeded exports ] Signed-off-by: Gu Zheng <guz.fnst@cn.fujitsu.com> Signed-off-by: Tang Chen <tangchen@cn.fujitsu.com> Signed-off-by: Zhu Guihua <zhugh.fnst@cn.fujitsu.com> Signed-off-by: Dou Liyang <douly.fnst@cn.fujitsu.com> Acked-by: Ingo Molnar <mingo@kernel.org> Cc: mika.j.penttila@gmail.com Cc: len.brown@intel.com Cc: rafael@kernel.org Cc: rjw@rjwysocki.net Cc: yasu.isimatu@gmail.com Cc: linux-mm@kvack.org Cc: linux-acpi@vger.kernel.org Cc: isimatu.yasuaki@jp.fujitsu.com Cc: gongzhaogang@inspur.com Cc: tj@kernel.org Cc: izumi.taku@jp.fujitsu.com Cc: cl@linux.com Cc: chen.tang@easystack.cn Cc: akpm@linux-foundation.org Cc: kamezawa.hiroyu@jp.fujitsu.com Cc: lenb@kernel.org Link: http://lkml.kernel.org/r/1472114120-3281-6-git-send-email-douly.fnst@cn.fujitsu.com Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
2016-09-21x86/acpi: Enable MADT APIs to return disabled apicidsGu Zheng
The whole patch-set aims at making cpuid <-> nodeid mapping persistent. So that, when node online/offline happens, cache based on cpuid <-> nodeid mapping such as wq_numa_possible_cpumask will not cause any problem. It contains 4 steps: 1. Enable apic registeration flow to handle both enabled and disabled cpus. 2. Introduce a new array storing all possible cpuid <-> apicid mapping. 3. Enable _MAT and MADT relative apis to return non-present or disabled cpus' apicid. 4. Establish all possible cpuid <-> nodeid mapping. This patch finishes step 3. There are four mappings in the kernel: 1. nodeid (logical node id) <-> pxm (persistent) 2. apicid (physical cpu id) <-> nodeid (persistent) 3. cpuid (logical cpu id) <-> apicid (not persistent, now persistent by step 2) 4. cpuid (logical cpu id) <-> nodeid (not persistent) So, in order to setup persistent cpuid <-> nodeid mapping for all possible CPUs, we should: 1. Setup cpuid <-> apicid mapping for all possible CPUs, which has been done in step 1, 2. 2. Setup cpuid <-> nodeid mapping for all possible CPUs. But before that, we should obtain all apicids from MADT. All processors' apicids can be obtained by _MAT method or from MADT in ACPI. The current code ignores disabled processors and returns -ENODEV. After this patch, a new parameter will be added to MADT APIs so that caller is able to control if disabled processors are ignored. Signed-off-by: Gu Zheng <guz.fnst@cn.fujitsu.com> Signed-off-by: Tang Chen <tangchen@cn.fujitsu.com> Signed-off-by: Zhu Guihua <zhugh.fnst@cn.fujitsu.com> Signed-off-by: Dou Liyang <douly.fnst@cn.fujitsu.com> Acked-by: Ingo Molnar <mingo@kernel.org> Cc: mika.j.penttila@gmail.com Cc: len.brown@intel.com Cc: rafael@kernel.org Cc: rjw@rjwysocki.net Cc: yasu.isimatu@gmail.com Cc: linux-mm@kvack.org Cc: linux-acpi@vger.kernel.org Cc: isimatu.yasuaki@jp.fujitsu.com Cc: gongzhaogang@inspur.com Cc: tj@kernel.org Cc: izumi.taku@jp.fujitsu.com Cc: cl@linux.com Cc: chen.tang@easystack.cn Cc: akpm@linux-foundation.org Cc: kamezawa.hiroyu@jp.fujitsu.com Cc: lenb@kernel.org Link: http://lkml.kernel.org/r/1472114120-3281-5-git-send-email-douly.fnst@cn.fujitsu.com Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
2016-09-21nfit: fail DSMs that return non-zero status by defaultDan Williams
For the DSMs where the kernel knows the format of the output buffer and originates those DSMs from within the kernel, return -EIO for any non-zero status. If the BIOS is indicating a status that we do not know how to handle, fail the DSM. Cc: <stable@vger.kernel.org> Signed-off-by: Dan Williams <dan.j.williams@intel.com>
2016-09-19ACPI/processor: Convert to hotplug state machineSebastian Andrzej Siewior
Install the callbacks via the state machine. Signed-off-by: Sebastian Andrzej Siewior <bigeasy@linutronix.de> Acked-by: "Rafael J. Wysocki" <rjw@rjwysocki.net> Cc: Peter Zijlstra <peterz@infradead.org> Cc: linux-acpi@vger.kernel.org Cc: rt@linutronix.de Cc: Len Brown <lenb@kernel.org> Link: http://lkml.kernel.org/r/20160906170457.32393-12-bigeasy@linutronix.de Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
2016-09-17ACPI / platform: Pay attention to parent device's resourcesMika Westerberg
Given following simplified device hierarchy: // PCI device having BAR0 (RMEM) split between 4 GPIO devices. Device (P2S) { Name (_ADR, 0x000d0000) Device (GPO0) { Name (_HID, "INT3452") Name (_UID, 1) Name (_CRS, ResourceTemplate () { Memory32Fixed (ReadWrite, 0, 0x4000, RMEM + 0x0000) }) } Device (GPO1) { Name (_HID, "INT3452") Name (_UID, 2) Name (_CRS, ResourceTemplate () { Memory32Fixed (ReadWrite, 0, 0x4000, RMEM + 0x4000) }) } Device (GPO2) { Name (_HID, "INT3452") Name (_UID, 3) Name (_CRS, ResourceTemplate () { Memory32Fixed (ReadWrite, 0, 0x4000, RMEM + 0x8000) }) } Device (GPO3) { Name (_HID, "INT3452") Name (_UID, 4) Name (_CRS, ResourceTemplate () { Memory32Fixed (ReadWrite, 0, 0x4000, RMEM + 0xc000) }) } } The current ACPI platform enumeration code allocates resources from the global MMIO resource pool (/proc/iomem) for all the four GPIO devices. After this PCI core calls pcibios_resource_survey() to allocate resources for all PCI devices including the parent device for these GPIO devices (P2S). Since that resource range has already been reserved the allocation fails. The reason for this is that we never bother with parent device's resources when ACPI platform devices are created. Fix this by checking whether there is a parent device and in that case make sure we assign correct parent resource to the resources for the child ACPI platform device. Currently we only deal with parent devices if they are PCI devices but we may expand this later to cover other bus types as well. Reported-by: Aaron Durbin <adurbin@google.com> Signed-off-by: Mika Westerberg <mika.westerberg@linux.intel.com> Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
2016-09-17ACPI / CPPC: Support PCC with interrupt flagHoan Tran
For PCC mailbox with interrupt flag, CPPC should call mbox_chan_txdone() function to notify the mailbox framework about TX completion. Signed-off-by: Hoan Tran <hotran@apm.com> Reviewed-by: Prashanth Prakash <pprakash@codeaurora.org> Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
2016-09-17ACPI / sysfs: Update sysfs signature handling codeLv Zheng
This patch cleans up sysfs table signature handling code: 1. Convert the signature handling code to use the ACPICA APIs to benefit from the future improvements of the APIs. 2. Add 'filename' attribute in order to handle both BE/LE name tags. 3. Add instance check in order to avoid the possible buffer overflow related to the table file name. Signed-off-by: Lv Zheng <lv.zheng@intel.com> [ rjw: Changelog ] Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
2016-09-17ACPI / sysfs: Fix an issue for LoadTable opcodeLv Zheng
OEM tables can be installed via RSDT/XSDT, in this case, they have already been created under /sys/firmware/acpi/tables. For this kind of tables, normally LoadTable opcode will be executed to load them. If LoadTable opcode is executed after acpi_sysfs_init(), acpi_sysfs_table_handler() will be invoked, thus a redundant table file will be created under /sys/firmware/acpi/tables/dynamic. Then running "acpidump" on such platform results in an error, complaining blank empty table (see Link 1 below). The bug can be reproduced by customizing an OEM1 table, allowing it to be overridden via 'table_sigs' (drivers/acpi/tables.c), adding the following code to the customized DSDT to load it: Name (OEMH, Zero) Name (OEMF, One) If (LEqual (OEMF, One)) { Store (LoadTable ("OEM1", "Intel", "Test"), OEMH) Store (Zero, OEMF) } In order to make sure that the OEM1 table is installed after acpi_sysfs_init(), acpi_sysfs_init() can be moved before invoking acpi_load_tables(). Then the following command execution result can be seen: # acpidump > acpidump.txt Could not read table header: /sysfs/firmware/acpi/tables/dynamic/OEM12 Could not get ACPI table at index 17, AE_BAD_HEADER Link: https://bugzilla.kernel.org/show_bug.cgi?id=150841 # [1] Link: https://github.com/acpica/acpica/commit/ed6a5fbc Reported-by: Jason Voelz <jason.voelz@intel.com> Reported-by: Francisco Leoner <francisco.j.lenoer.soto@intel.com> Signed-off-by: Lv Zheng <lv.zheng@intel.com> Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
2016-09-17Merge branch 'acpica' into acpi-sysfsRafael J. Wysocki
2016-09-17ACPICA: Tables: Fix a regression in acpi_tb_find_table()Lv Zheng
In the following commit, the return value of acpi_tb_find_table() is incorrect: commit ac0f06ebb815dabe42f2b2886ee9f879a2170ce4 Author: Lv Zheng <lv.zheng@intel.com> Date: Wed Sep 7 14:07:24 2016 +0800 ACPICA: Tables: Tune table mutex to be a leaf lock ACPICA commit f564d57c6501b97a2871f0b4c048e79910f71783 This causes LoadTable opcode to fail. Fix this mistake. Signed-off-by: Lv Zheng <lv.zheng@intel.com> [ rjw: Changelog ] Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
2016-09-17ACPI / tables: Remove duplicated include from tables.cWei Yongjun
Remove duplicated include. Signed-off-by: Wei Yongjun <weiyongjun1@huawei.com> Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
2016-09-13ACPI / APD: constify local structuresJulia Lawall
For structure types defined in the same file or local header files, find top-level static structure declarations that have the following properties: 1. Never reassigned. 2. Address never taken 3. Not passed to a top-level macro call 4. No pointer or array-typed field passed to a function or stored in a variable. Declare structures having all of these properties as const. Done using Coccinelle. Based on a suggestion by Joe Perches <joe@perches.com>. Signed-off-by: Julia Lawall <Julia.Lawall@lip6.fr> Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
2016-09-13Merge branch 'device-properties' into acpi-socRafael J. Wysocki
2016-09-12ACPI: Add new IORT functions to support MSI domain handlingTomasz Nowicki
For ITS, MSI functionality consists on building domain stack and during that process we need to reference to domain stack components e.g. before we create new DOMAIN_BUS_PCI_MSI domain we need to specify its DOMAIN_BUS_NEXUS parent domain. In order to manage that process properly, maintain list which elements contain domain token (unique for MSI domain stack) and ITS ID: iort_register_domain_token() and iort_deregister_domain_token(). Then retrieve domain token any time later with ITS ID being key off: iort_find_domain_token(). With domain token and domain type we are able to find corresponding IRQ domain. Since IORT is prepared to describe MSI domain on a per-device basis, use existing IORT helpers and implement two calls: 1. iort_msi_map_rid() to map MSI RID for a device 2. iort_get_device_domain() to find domain token for a device Signed-off-by: Tomasz Nowicki <tn@semihalf.com> Acked-by: Rafael J. Wysocki <rjw@rjwysocki.net> Reviewed-by: Hanjun Guo <hanjun.guo@linaro.org> Signed-off-by: Marc Zyngier <marc.zyngier@arm.com>
2016-09-12ACPI: I/O Remapping Table (IORT) initial supportTomasz Nowicki
IORT shows representation of IO topology for ARM based systems. It describes how various components are connected together on parent-child basis e.g. PCI RC -> SMMU -> ITS. Also see IORT spec. http://infocenter.arm.com/help/topic/com.arm.doc.den0049b/DEN0049B_IO_Remapping_Table.pdf Initial support allows to detect IORT table presence and save its root pointer obtained through acpi_get_table(). The pointer validity depends on acpi_gbl_permanent_mmap because if acpi_gbl_permanent_mmap is not set while using IORT nodes we would dereference unmapped pointers. For the aforementioned reason call acpi_iort_init() from acpi_init() which guarantees acpi_gbl_permanent_mmap to be set at that point. Add generic helpers which are helpful for scanning and retrieving information from IORT table content. List of the most important helpers: - iort_find_dev_node() finds IORT node for a given device - iort_node_map_rid() maps device RID and returns IORT node which provides final translation IORT support is placed under drivers/acpi/arm64/ new directory due to its ARM64 specific nature. The code there is considered only for ARM64. The long term plan is to keep all ARM64 specific tables support in this place e.g. GTDT table. Signed-off-by: Tomasz Nowicki <tn@semihalf.com> Acked-by: Rafael J. Wysocki <rjw@rjwysocki.net> Reviewed-by: Hanjun Guo <hanjun.guo@linaro.org> Reviewed-by: Lorenzo Pieralisi <lorenzo.pieralisi@arm.com> Signed-off-by: Marc Zyngier <marc.zyngier@arm.com>
2016-09-10Merge branch 'libnvdimm-fixes' of ↵Linus Torvalds
git://git.kernel.org/pub/scm/linux/kernel/git/nvdimm/nvdimm Pull libnvdimm fixes from Dan Williams: "nvdimm fixes for v4.8, two of them are tagged for -stable: - Fix devm_memremap_pages() to use track_pfn_insert(). Otherwise, DAX pmd mappings end up with an uncached pgprot, and unusable performance for the device-dax interface. The device-dax interface appeared in 4.7 so this is tagged for -stable. - Fix a couple VM_BUG_ON() checks in the show_smaps() path to understand DAX pmd entries. This fix is tagged for -stable. - Fix a mis-merge of the nfit machine-check handler to flip the polarity of an if() to match the final version of the patch that Vishal sent for 4.8-rc1. Without this the nfit machine check handler never detects / inserts new 'badblocks' entries which applications use to identify lost portions of files. - For test purposes, fix the nvdimm_clear_poison() path to operate on legacy / simulated nvdimm memory ranges. Without this fix a test can set badblocks, but never clear them on these ranges. - Fix the range checking done by dax_dev_pmd_fault(). This is not tagged for -stable since this problem is mitigated by specifying aligned resources at device-dax setup time. These patches have appeared in a next release over the past week. The recent rebase you can see in the timestamps was to drop an invalid fix as identified by the updated device-dax unit tests [1]. The -mm touches have an ack from Andrew" [1]: "[ndctl PATCH 0/3] device-dax test for recent kernel bugs" https://lists.01.org/pipermail/linux-nvdimm/2016-September/006855.html * 'libnvdimm-fixes' of git://git.kernel.org/pub/scm/linux/kernel/git/nvdimm/nvdimm: libnvdimm: allow legacy (e820) pmem region to clear bad blocks nfit, mce: Fix SPA matching logic in MCE handler mm: fix cache mode of dax pmd mappings mm: fix show_smap() for zone_device-pmd ranges dax: fix mapping size check
2016-09-10ACPI / PCI: fix GIC irq model default PCI IRQ polarityLorenzo Pieralisi
On ACPI ARM based systems the GIC interrupt controller and corresponding interrupt model permit only the high polarity for level interrupts. ACPI firmware describes PCI legacy IRQs through entries in the _PRT objects. Entries in the _PRT can be of two types: - Static: not configurable, trigger/polarity default to level-low, _PRT entry defines the global GSI interrupt number - Configurable: _PRT interrupt entry contains a reference to the corresponding PCI interrupt link device (that in turn provides the interrupt descriptor through its _CRS/_PRS methods) Configurable IRQ entries are not currently allowed by the ACPI specification on ARM since they can only be used for interrupt pins that are routable, as per ACPI specifications (version 6.1, 6.2.13): "[...] There are two ways that _PRT can be used. Typically, the interrupt input that a given PCI interrupt is on is configurable. For example, a given PCI interrupt might be configured for either IRQ 10 or 11 on an 8259 interrupt controller. In this model, each interrupt is represented in the ACPI namespace as a PCI Interrupt Link Device. [...]" ARM platforms GIC configurations do not allow dynamic IRQ routing, since routing is statically laid out at synthesis time; therefore PCI interrupt links cannot be used for PCI legacy IRQ descriptions in the _PRT on ARM systems. On the other hand, current core ACPI code handling PCI legacy IRQs consider IRQ trigger/polarity for static _PRT entries as level-low. On ARM systems with a GIC interrupt controller and corresponding ACPI interrupt model this does not work in that GIC interrupt controller is only capable of handling level interrupts whose polarity is high (for PCI legacy IRQs - that are level-low by specification - this means that the legacy IRQs are inverted before reaching the interrupt controller pin), resulting in IRQ allocation failures such as: genirq: Setting trigger mode 8 for irq 18 failed (gic_set_type+0x0/0x48) Change the default polarity for PCI legacy IRQs to high on systems booting wth ACPI on platforms with a GIC interrupt controller model, fixing the discrepancy between specification and HW behaviour. Signed-off-by: Lorenzo Pieralisi <lorenzo.pieralisi@arm.com> Acked-by: Marc Zyngier <marc.zyngier@arm.com> Tested-by: Duc Dang <dhdang@apm.com> Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
2016-09-10ACPICA: Tables: Tune table mutex to be a leaf lockLv Zheng
ACPICA commit f564d57c6501b97a2871f0b4c048e79910f71783 This patch tunes MTX_TABLES into a leaf lock by always ensuring it is released before holding other locks. This patch also collects all table loading related functions into acpi_tb_load_table() (invoked by load_table opcode) and acpi_tb_install_and_load_table() (invoked by Load opcode and acpi_load_table()) so that we can have lock tuning code collected at the boundary of these 2 functions. Lv Zheng. Link: https://github.com/acpica/acpica/commit/f564d57c Tested-by: Mika Westerberg <mika.westerberg@linux.intel.com> Tested-by: Dutch Guy <lucht_piloot@gmx.net> Signed-off-by: Lv Zheng <lv.zheng@intel.com> Signed-off-by: Bob Moore <robert.moore@intel.com> Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
2016-09-10ACPICA: Dispatcher: Fix a mutex issue for method auto serializationLv Zheng
ACPICA commit fd305eda14f1a1e684edef4fac53f194bf00ed3f This patch fixes an issue with acpi_ds_auto_serialized_method(). The parser will invoke acpi_ex_release_all_mutexes(), which in return cause mutexes held in ACPI_ERROR_METHOD() failed. Lv Zheng. Link: https://bugs.acpica.org/show_bug.cgi?id=1324 Link: https://github.com/acpica/acpica/commit/fd305eda Tested-by: Mika Westerberg <mika.westerberg@linux.intel.com> Tested-by: Greg White <gwhite@kupulau.com> Tested-by: Dutch Guy <lucht_piloot@gmx.net> Signed-off-by: Lv Zheng <lv.zheng@intel.com> Signed-off-by: Bob Moore <robert.moore@intel.com> Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
2016-09-10ACPICA: Namespace: Fix dynamic table loading issuesLv Zheng
ACPICA commit 767ee53354e0c4b7e8e7c57c6dd7bf569f0d52bb There are issues related to the namespace/interpreter locks, which causes several ACPI functionalities not specification compliant. The lock issues were detectec when we were trying to fix the functionalities (please see Link # [1] for the details). What's the lock issues? Let's first look into the namespace/interpreter lock usages inside of the object evaluation and the table loading which are the key AML interpretion code paths: Table loading: acpi_ns_load_table L(Namespace) acpi_ns_parse_table acpi_ns_one_complete_parse(LOAD_PASS1/LOAD_PASS2) acpi_ds_load1_begion_op acpi_ds_load1_end_op acpi_ds_load2_begion_op acpi_ds_load2_end_op U(Namespace) Object evaluation: acpi_ns_evaluate L(Interpreter) acpi_ps_execute_method acpi_ds_exec_begin_op acpi_ds_exec_end_op U(Interpreter) acpi_ns_load_table L(Namespace) U(Namespace) acpi_ev_initialize_region L(Namespace) U(Namespace) address_space.Setup address_space.Handler acpi_os_wait_semaphore acpi_os_acquire_mutex acpi_os_sleep L(Interpreter) U(Interpreter) L(Interpreter) acpi_ex_resolve_node_to_value U(Interpreter) acpi_ns_check_return_value Where: 1. L(Interpreter) means acquire(MTX_INTERPRETER); 2. U(Interpreter) means release(MTX_INTERPRETER); 3. L(Namespace) means acquire(MTX_NAMESPACE); 4. U(Namespace) means release(MTX_NAMESPACE); We can see that acpi_ns_exec_module_code() (which invokes acpi_ns_evaluate) is implemented in a deferred way just in order to avoid to reacquire the namespace lock. This is in fact the root cause of many other ACPICA issues: 1. We now know for sure that the module code should be executed right in place by the Windows AML interpreter. So in the current design, if the region initializations/accesses or the table loadings (where the namespace surely should be locked again) happening during the table loading period, dead lock could happen because ACPICA never unlocks the namespace during the AML interpretion. 2. ACPICA interpreter just ensures that all static namespace nodes (named objects created during the acpi_load_tables()) are created (acpi_ns_lookup()) with the correct lock held, but doesn't ensure that the named objects created by the control method are created with the same correct lock held. It requires the control methods to be executed in a serial way after "loading a table", that's why ACPICA requires method auto serialization. This patch fixes these software design issues by extending interpreter enter/exit APIs to hold both interpreter/namespace locks to ensure the lock order correctness, so that we can get these code paths: Table loading: acpi_ns_load_table E(Interpreter) acpi_ns_parse_table acpi_ns_one_complete_parse acpi_ns_execute_table X(Interpreter) acpi_ns_load_table acpi_ev_initialize_region address_space.Setup address_space.Handler acpi_os_wait_semaphore acpi_os_acquire_mutex acpi_os_sleep E(Interpreter) X(Interpreter) Object evaluation: acpi_ns_evaluate E(Interpreter) acpi_ps_execute_method X(Interpreter) acpi_ns_load_table acpi_ev_initialize_region address_space.Setup address_space.Handler acpi_os_wait_semaphore acpi_os_acquire_mutex acpi_os_sleep E(Interpreter) X(Interpreter) Where: 1. E(Interpreter) means acquire(MTX_INTERPRETER, MTX_NAMESPACE); 2. X(Interpreter) means release(MTX_NAMESPACE, MTX_INTERPRETER); After this change, we can see: 1. All namespace nodes creations are locked by the namespace lock. 2. All namespace nodes referencing are locked with the same lock. 3. But we also can notice a defact that, all namespace nodes deletions could be affected by this change. As a consequence, acpi_ns_delete_namespace_subtree() may delete a static namespace node that is still referenced by the interpreter (for example, the parser scopes). Currently, we needn't worry about the last defact because in ACPICA, table unloading is not fully functioning, its design strictly relies on the fact that when the namespace deletion happens, either the AML table or the OSPMs should have been notified and thus either the AML table or the OSPMs shouldn't reference deletion-related namespace nodes during the namespace deletion. And this change still works with the above restrictions applied. While making this a-step-forward helps us to correct the wrong grammar to pull many things back to the correct rail. And pulling things back to the correct rail in return makes it possible for us to support fully functioning table unloading after doing many cleanups. While this patch is generated, all namespace locks are examined to ensure that they can meet either of the following pattens: 1. L(Namespace) U(Namespace) 2. E(Interpreter) X(Interpreter) 3. E(Interpreter) X(Interpreter) L(Namespace) U(Namespace) E(Interpreter) X(Interpreter) We ensure this by adding X(Interpreter)/E(Interpreter) or removing U(Namespace)/L(Namespace) for those currently are executed in the following order: E(Interpreter) L(Namespace) U(Namespace) X(Interpreter) And adding E(Interpreter)/X(Interpreter) for those currently are executed in the following order: X(Interpreter) E(Interpreter) Originally, the interpreter lock is held for the execution AML opcodes, the namespace lock is held for the named object creation AML opcodes. Since they are actually same in MS interpreter (can all be executed during the table loading), we can combine the 2 locks and tune the locking code better in this way. Lv Zheng. Link: https://bugzilla.kernel.org/show_bug.cgi?id=153541 # [1] Link: https://bugzilla.kernel.org/show_bug.cgi?id=121701 # [1] Link: https://bugs.acpica.org/show_bug.cgi?id=1323 Link: https://github.com/acpica/acpica/commit/767ee533 Reported-and-tested-by: Mika Westerberg <mika.westerberg@linux.intel.com> Reported-and-tested-by: Greg White <gwhite@kupulau.com> Reported-and-tested-by: Dutch Guy <lucht_piloot@gmx.net> Signed-off-by: Lv Zheng <lv.zheng@intel.com> Signed-off-by: Bob Moore <robert.moore@intel.com> Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
2016-09-10ACPICA: Namespace: Add acpi_ns_get_node_unlocked()Lv Zheng
ACPICA commit 3ef1a1bf5612fe1a629424c09eaaeb6f299d313c Add acpi_ns_get_node_unlocked() to be used when ACPI_MTX_NAMESPACE is locked. Lv Zheng. Link: https://github.com/acpica/acpica/commit/3ef1a1bf Tested-by: Mika Westerberg <mika.westerberg@linux.intel.com> Tested-by: Greg White <gwhite@kupulau.com> Tested-by: Dutch Guy <lucht_piloot@gmx.net> Signed-off-by: Lv Zheng <lv.zheng@intel.com> Signed-off-by: Bob Moore <robert.moore@intel.com> Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
2016-09-10ACPICA: Interpreter: Fix MLC issues by switching to new term_list grammar ↵Lv Zheng
for table loading ACPICA commit 0e24fb67cde08d7df7671d7d7b183490dc79707e The MLC (Module Level Code) is an ACPICA terminology describing the AML code out of any control method, its support is an indication of the interpreter behavior during the table loading. The original implementation of MLC in ACPICA had several issues: 1. Out of any control method, besides of the object creating opcodes, only the code blocks wrapped by "If/Else/While" opcodes were supported. 2. The supported MLC code blocks were executed after loading the table rather than being executed right in place. ============================================================ The demo of this order issue is as follows: Name (OBJ1, 1) If (CND1 == 1) { Name (OBJ2, 2) } Name (OBJ3, 3) The original MLC support created OBJ2 after OBJ3's creation. ============================================================ Other than these limitations, MLC support in ACPICA looks correct. And supporting this should be easy/natural for ACPICA, but enabling of this was blocked by some ACPICA internal and OSPM specific initialization order issues we've fixed recently. The wrong support started from the following false bug fixing commit: Commit: 7f0c826a437157d2b19662977e9cf3b472cf24a6 Subject: ACPICA: Add support for module-level executable AML code Commit: 9a884ab64a4d092b4c3bf24fd9a30f7fbd4591e7 Subject: ACPICA: Add additional module-level code support ... We can confirm Windows interpreter behavior via reverse engineering means. It can be proven that not only If/Else/While wrapped code blocks, all opcodes can be executed at the module level, including operation region accesses. And it can be proven that the MLC should be executed right in place, not in such a deferred way executed after loading the table. And the above facts indeed reflect the spec words around ACPI definition block tables (DSDT/SSDT/...), the entire table and the Scope object is defined by the AML specification in BNF style as: AMLCode := def_block_header term_list def_scope := scope_op pkg_length name_string term_list The bodies of the scope opening terms (AMLCode/Scope) are all term_list, thus the table loading should be no difference than the control method evaluations as the body of the Method is also defined by the AML specification as term_list: def_method := method_op pkg_length name_string method_flags term_list The only difference is: after evaluating control method, created named objects may be freed due to no reference, while named objects created by the table loading should only be freed after unloading the table. So this patch follows the spec and the de-facto standard behavior, enables the new grammar (term_list) for the table loading. By doing so, beyond the fixes to the above issues, we can see additional differences comparing to the old grammar based table loading: 1. Originally, beyond the scope opening terms (AMLCode/Scope), If/Else/While wrapped code blocks under the scope creating terms (Device/power_resource/Processor/thermal_zone) are also supported as deferred MLC, which violates the spec defined grammar where object_list is enforced. With MLC support improved as non-deferred, the interpreter parses such scope creating terms as term_list rather object_list like the scope opening terms. After probing the Windows behavior and proving that it also parses these terms as term_list, we submitted an ECR (Engineering Change Request) to the ASWG (ACPI Specification Working Group) to clarify this. The ECR is titled as "ASL Grammar Clarification for Executable AML Opcodes" and has been accepted by the ASWG. The new grammar will appear in ACPI specification 6.2. 2. Originally, Buffer/Package/operation_region/create_XXXField/bank_field arguments are evaluated in a deferred way after loading the table. With MLC support improved, they are also parsed right in place during the table loading. This is also Windows compliant and the only difference is the removal of the debugging messages implemented before acpi_ds_execute_arguments(), see Link # [1] for the details. A previous commit should have ensured that acpi_check_address_range() won't regress. Note that enabling this feature may cause regressions due to long term Linux ACPI support on top of the wrong grammar. So this patch also prepares a global option to be used to roll back to the old grammar during the period between a regression is reported and the regression is root-cause-fixed. Lv Zheng. Link: https://bugzilla.kernel.org/show_bug.cgi?id=112911 # [1] Link: https://bugzilla.kernel.org/show_bug.cgi?id=117671 # [1] Link: https://bugzilla.kernel.org/show_bug.cgi?id=153541 # [1] Link: https://github.com/acpica/acpica/issues/122 Link: https://bugs.acpica.org/show_bug.cgi?id=963 Link: https://github.com/acpica/acpica/commit/0e24fb67 Reported-and-tested-by: Chris Bainbridge <chris.bainbridge@gmail.com> Reported-by: Ehsan <dashesy@gmail.com> Reported-and-tested-by: Dutch Guy <lucht_piloot@gmx.net> Tested-by: Mika Westerberg <mika.westerberg@linux.intel.com> Signed-off-by: Lv Zheng <lv.zheng@intel.com> Signed-off-by: Bob Moore <robert.moore@intel.com> Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
2016-09-10ACPICA: Update return value for intenal _OSI methodBob Moore
ACPICA commit 82101009c7c04845edb3495e66a274a613758bca Instead of 0xFFFFFFFF, _OSI is now defined to return "Ones". This is for compatibility with Windows. The ACPI spec will be updated to reflect this. Link: https://github.com/acpica/acpica/commit/82101009 Reported-by: Daniel Drake <drake@endlessm.com> Signed-off-by: Bob Moore <robert.moore@intel.com> Signed-off-by: Lv Zheng <lv.zheng@intel.com> Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
2016-09-10ACPICA: Tables: Override all 64-bit GAS fields when ↵Lv Zheng
acpi_gbl_use32_bit_fadt_addresses is TRUE ACPICA commit aaace77db4c3b267a65b75c33f84ace6f65bbcf7 Originally, when acpi_gbl_use32_bit_fadt_addresses is TRUE, GAS override can only happen when the Address field mismatches. According to the investigation result, Windows may favor 32-bit FADT addresses in some cases. So we need this quirk working after enabling full GAS support. This requires us to override GAS access_size/bit_width/bit_offset fields as long as acpi_gbl_use32_bit_fadt_addresses is TRUE. This patch enhances this quirk mechanism to make it working with full GAS support. Lv Zheng. Link: https://bugzilla.kernel.org/show_bug.cgi?id=151501 Link: https://github.com/acpica/acpica/commit/aaace77d Reported-and-tested-by: Andrey Skvortsov <andrej.skvortzov@gmail.com> Signed-off-by: Lv Zheng <lv.zheng@intel.com> Signed-off-by: Bob Moore <robert.moore@intel.com> Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
2016-09-10ACPICA: Tables: Add new table events indicating table ↵Lv Zheng
installation/uninstallation ACPICA commit ed6a5fbc694f3a27d93014391aa9a6f6fe490461 This patch adds 2 new table events to indicate table installation/uninstallation. Currently, as ACPICA never uninstalls tables, this patch thus only adds table handler invocation for the table installation event. Lv Zheng. The 2 events are to be used to fix a sysfs table handling issue related to LoadTable opcode (see Link # [1] below). The actual sysfs fixing code is not included, the sysfs fixes will be sent as separate patches. Link: https://bugzilla.kernel.org/show_bug.cgi?id=150841 # [1] Link: https://github.com/acpica/acpica/commit/ed6a5fbc Reported-by: Jason Voelz <jason.voelz@intel.com> Reported-by: Francisco Leoner <francisco.j.lenoer.soto@intel.com> Signed-off-by: Lv Zheng <lv.zheng@intel.com> Signed-off-by: Bob Moore <robert.moore@intel.com> Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
2016-09-10ACPICA: Tables: Remove acpi_tb_install_fixed_table()Lv Zheng
ACPICA commit 42c7b848d2faa02c7691ef2c53ea741c23cd4665 acpi_tb_install_fixed_table() is now redundant as we've removed the fixed table indexing mechanism: Commit: 8ec3f459073e67e5c6d78507dec693064b3040a2 Subject: ACPICA: Tables: Fix global table list issues by removing fixed table indexes This patch cleans up the code accordingly. No functional change. Lv Zheng. Link: https://bugs.acpica.org/show_bug.cgi?id=1320 Link: https://github.com/acpica/acpica/commit/42c7b848 Signed-off-by: Lv Zheng <lv.zheng@intel.com> Signed-off-by: Bob Moore <robert.moore@intel.com> Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
2016-09-10ACPICA: Add a couple of casts to uthex.cBob Moore
ACPICA commit 2ba5d3fdaa24d66d67694cbae6ec66971a7a67c1 Required in some environments. Link: https://github.com/acpica/acpica/commit/2ba5d3fd Signed-off-by: Bob Moore <robert.moore@intel.com> Signed-off-by: Lv Zheng <lv.zheng@intel.com> Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>