Age | Commit message (Collapse) | Author |
|
The vunmap() function performs also input parameter validation.
Thus the test around the call is not needed.
This issue was detected by using the Coccinelle software.
Signed-off-by: Markus Elfring <elfring@users.sourceforge.net>
Acked-by: Eli Cohen <eli@mellanox.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
|
|
Maintain a persistent memory that should survive reset flow/PCI error.
This comes as a preparation for coming series to support above flows.
Signed-off-by: Yishai Hadas <yishaih@mellanox.com>
Signed-off-by: Or Gerlitz <ogerlitz@mellanox.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
|
|
The zone allocator is a mechanism which manages a few mlx4_bitmaps.
When allocating a resource, the user indicates the desired zone of
which this resource will be allocated from. If possible, the resource
will be allocated from this zone. Otherwise, the resource will be
allocated from a less-than, equal-to, higher-than priority zone,
according to the desired zone's properties with that respective
allocation order.
Signed-off-by: Matan Barak <matanb@mellanox.com>
Signed-off-by: Or Gerlitz <ogerlitz@mellanox.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
|
|
When using BF (Blue-Flame), the QPN overrides the VLAN, CV, and SV fields
in the WQE. Thus, BF may only be used for QPNs with bits 6,7 unset.
The current Ethernet driver code reserves a Tx QP range with 256b alignment.
This is wrong because if there are more than 64 Tx QPs in use,
QPNs >= base + 65 will have bits 6/7 set.
This problem is not specific for the Ethernet driver, any entity that
tries to reserve more than 64 BF-enabled QPs should fail. Also, using
ranges is not necessary here and is wasteful.
The new mechanism introduced here will support reservation for
"Eth QPs eligible for BF" for all drivers: bare-metal, multi-PF, and VFs
(when hypervisors support WC in VMs). The flow we use is:
1. In mlx4_en, allocate Tx QPs one by one instead of a range allocation,
and request "BF enabled QPs" if BF is supported for the function
2. In the ALLOC_RES FW command, change param1 to:
a. param1[23:0] - number of QPs
b. param1[31-24] - flags controlling QPs reservation
Bit 31 refers to Eth blueflame supported QPs. Those QPs must have
bits 6 and 7 unset in order to be used in Ethernet.
Bits 24-30 of the flags are currently reserved.
When a function tries to allocate a QP, it states the required attributes
for this QP. Those attributes are considered "best-effort". If an attribute,
such as Ethernet BF enabled QP, is a must-have attribute, the function has
to check that attribute is supported before trying to do the allocation.
In a lower layer of the code, mlx4_qp_reserve_range masks out the bits
which are unsupported. If SRIOV is used, the PF validates those attributes
and masks out unsupported attributes as well. In order to notify VFs which
attributes are supported, the VF uses QUERY_FUNC_CAP command. This command's
mailbox is filled by the PF, which notifies which QP allocation attributes
it supports.
Signed-off-by: Eugenia Emantayev <eugenia@mellanox.co.il>
Signed-off-by: Matan Barak <matanb@mellanox.com>
Signed-off-by: Or Gerlitz <ogerlitz@mellanox.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
|
|
Modify the various routines used to allocate memory resources which
serve QPs in mlx4 to get an input GFP directive. Have the Ethernet
driver to use GFP_KERNEL in it's QP allocations as done prior to this
commit, and the IB driver to use GFP_NOIO when the IB verbs
IB_QP_CREATE_USE_GFP_NOIO QP creation flag is provided.
Signed-off-by: Mel Gorman <mgorman@suse.de>
Signed-off-by: Jiri Kosina <jkosina@suse.cz>
Signed-off-by: Or Gerlitz <ogerlitz@mellanox.com>
Signed-off-by: Roland Dreier <roland@purestorage.com>
|
|
MPTs
Commit f4ec9e9 "mlx4_core: Change bitmap allocator to work in round-robin fashion"
introduced round-robin allocation (via bitmap) for all resources which allocate
via a bitmap.
Round robin allocation is desirable for mcgs, counters, pd's, UARs, and xrcds.
These are simply numbers, with no involvement of ICM memory mapping.
Round robin is required for QPs, since we had a problem with immediate
reuse of a 24-bit QP number (commit f4ec9e9).
However, for other resources which use the bitmap allocator and involve
mapping ICM memory -- MPTs, CQs, SRQs -- round-robin is not desirable.
What happens in these cases is the following:
ICM memory is allocated and mapped in chunks of 256K.
Since the resource allocation index goes up monotonically, the allocator
will eventually require mapping a new chunk. Now, chunks are also unmapped
when their reference count goes back to zero. Thus, if a single app is
running and starts/exits frequently we will have the following situation:
When the app starts, a new chunk must be allocated and mapped.
When the app exits, the chunk reference count goes back to zero, and the
chunk is unmapped and freed. Therefore, the app must pay the cost of allocation
and mapping of ICM memory each time it runs (although the price is paid only when
allocating the initial entry in the new chunk).
For apps which allocate MPTs/SRQs/CQs and which operate as described above,
this presented a performance problem.
We therefore roll back the round-robin allocator modification for MPTs, CQs, SRQs.
Reported-by: Matthew Finlay <matt@mellanox.com>
Signed-off-by: Jack Morgenstein <jackm@dev.mellanox.co.il>
Signed-off-by: Or Gerlitz <ogerlitz@mellanox.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
|
|
Under most circumstances, the bitmap allocator does not allocate the
same full 24-bit QP number immediately after a QP is destroyed.
This works by using the upper bits of a 24-bit QP number, beyond the
number of QPs that are actually available in the low level driver.
For example, say that the HCA is willing to allocate a maximum of 64K
qps. We use the bits 23..16 as a "counter" which is incremented by 1
at each allocation so that even if the same physical QP is
re-allocated, it will not receive the same 24-bit QP number.
However, we have seen the following scenario:
1. Allocate, say, 255 QPs in succession. This will cause a wrap of the "counter".
2. Destroy the first QP allocated, then allocate a new QP. The new QP,
because of the counter wraparound, will get the same FULL QP number as
the QP just destroyed!
This is a problem because packets in transit can be erroneously
delivered to the new QP when they were meant for the old (destroyed)
QP, because the full QP number of the new QP is identical to the
destroyed QP. (The "counter" mechanism is meant to prevent this by
having the full 24-bit QP numbers differ even if the physical QP on
the HCA is the same. As we see above, however, this mechanism does
not always work).
The best fix for this problem is to allocate QPs in round-robin mode,
so that the physical QP numbers are not immediately re-used.
Found-by: Matthew Finlay <matt@mellanox.com>
Signed-off-by: Jack Morgenstein <jackm@dev.mellanox.co.il>
Signed-off-by: Roland Dreier <roland@purestorage.com>
|
|
These were getting the macros from an implicit module.h
include via device.h, but we are planning to clean that up.
Signed-off-by: Paul Gortmaker <paul.gortmaker@windriver.com>
drivers/net: Add export.h to wireless/brcm80211/brcmfmac/bcmsdh.c
This relatively recently added file uses EXPORT_SYMBOL and hence
needs export.h included so that it is compatible with the module.h
split up work.
Signed-off-by: Paul Gortmaker <paul.gortmaker@windriver.com>
|
|
Moves the Mellanox driver into drivers/net/ethernet/mellanox/ and
make the necessary Kconfig and Makefile changes.
CC: Roland Dreier <roland@kernel.org>
Signed-off-by: Jeff Kirsher <jeffrey.t.kirsher@intel.com>
|