summaryrefslogtreecommitdiff
path: root/drivers/pci/iova.h
AgeCommit message (Collapse)Author
2008-04-20PCI: pci-iommu-iotlb-flushing-speedupmark gross
The following patch is an update to use an array instead of a list of IOVA's in the implementation of defered iotlb flushes. It takes inspiration from sba_iommu.c I like this implementation better as it encapsulates the batch process within intel-iommu.c, and no longer touches iova.h (which is shared) Performance data: Netperf 32byte UDP streaming 2.6.25-rc3-mm1: IOMMU-strict : 58Mps @ 62% cpu NO-IOMMU : 71Mbs @ 41% cpu List-based IOMMU-default-batched-IOTLB flush: 66Mbps @ 57% cpu with this patch: IOMMU-strict : 73Mps @ 75% cpu NO-IOMMU : 74Mbs @ 42% cpu Array-based IOMMU-default-batched-IOTLB flush: 72Mbps @ 62% cpu Signed-off-by: <mgross@linux.intel.com> Cc: Grant Grundler <grundler@parisc-linux.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Greg Kroah-Hartman <gregkh@suse.de>
2008-04-20PCI: iommu: iotlb flushingmark gross
This patch is for batching up the flushing of the IOTLB for the DMAR implementation found in the Intel VT-d hardware. It works by building a list of to be flushed IOTLB entries and a bitmap list of which DMAR engine they are from. After either a high water mark (250 accessible via debugfs) or 10ms the list of iova's will be reclaimed and the DMAR engines associated are IOTLB-flushed. This approach recovers 15 to 20% of the performance lost when using the IOMMU for my netperf udp stream benchmark with small packets. It can be disabled with a kernel boot parameter "intel_iommu=strict". Its use does weaken the IOMMU protections a bit. Signed-off-by: Mark Gross <mgross@linux.intel.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Greg Kroah-Hartman <gregkh@suse.de>
2008-02-23copyright owner and author clean up for intel iommu and related filesmark gross
The following is a clean up and correction of the copyright holding entities for the files associated with the intel iommu code. Signed-off-by: <mgross@linux.intel.com> Cc: Greg KH <greg@kroah.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2008-02-06Genericizing iova.[ch]David Miller
I would like to potentially move the sparc64 IOMMU code over to using the nice new drivers/pci/iova.[ch] code for free area management.. In order to do that we have to detach the IOMMU page size assumptions which only really need to exist in the intel-iommu.[ch] code. This patch attempts to implement that. [akpm@linux-foundation.org: build fix] Signed-off-by: David S. Miller <davem@davemloft.net> Acked-by: Anil S Keshavamurthy <anil.s.keshavamurthy@intel.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2007-10-22intel-iommu: optimize sg map/unmap callsKeshavamurthy, Anil S
This patch adds PageSelectiveInvalidation support replacing existing DomainSelectiveInvalidation for intel_{map/unmap}_sg() calls and also enables to mapping one big contiguous DMA virtual address which is mapped to discontiguous physical address for SG map/unmap calls. "Doamin selective invalidations" wipes out the IOMMU address translation cache based on domain ID where as "Page selective invalidations" wipes out the IOMMU address translation cache for that address mask range which is more cache friendly when compared to Domain selective invalidations. Here is how it is done. 1) changes to iova.c alloc_iova() now takes a bool size_aligned argument, which when when set, returns the io virtual address that is naturally aligned to 2 ^ x, where x is the order of the size requested. Returning this io vitual address which is naturally aligned helps iommu to do the "page selective invalidations" which is IOMMU cache friendly over "domain selective invalidations". 2) Changes to driver/pci/intel-iommu.c Clean up intel_{map/unmap}_{single/sg} () calls so that s/g map/unamp calls is no more dependent on intel_{map/unmap}_single() intel_map_sg() now computes the total DMA virtual address required and allocates the size aligned total DMA virtual address and maps the discontiguous physical address to the allocated contiguous DMA virtual address. In the intel_unmap_sg() case since the DMA virtual address is contiguous and size_aligned, PageSelectiveInvalidation is used replacing earlier DomainSelectiveInvalidations. Signed-off-by: Anil S Keshavamurthy <anil.s.keshavamurthy@intel.com> Cc: Greg KH <greg@kroah.com> Cc: Ashok Raj <ashok.raj@intel.com> Cc: Suresh B <suresh.b.siddha@intel.com> Cc: Andi Kleen <ak@suse.de> Cc: Arjan van de Ven <arjan@infradead.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2007-10-22Intel IOMMU: IOVA allocation and management routinesKeshavamurthy, Anil S
This code implements a generic IOVA allocation and management. As per Dave's suggestion we are now allocating IO virtual address from Higher DMA limit address rather than lower end address and this eliminated the need to preserve the IO virtual address for multiple devices sharing the same domain virtual address. Also this code uses red black trees to store the allocated and reserved iova nodes. This showed a good performance improvements over previous linear linked list. [akpm@linux-foundation.org: remove inlines] [akpm@linux-foundation.org: coding style fixes] Signed-off-by: Anil S Keshavamurthy <anil.s.keshavamurthy@intel.com> Cc: Andi Kleen <ak@suse.de> Cc: Peter Zijlstra <a.p.zijlstra@chello.nl> Cc: Muli Ben-Yehuda <muli@il.ibm.com> Cc: "Siddha, Suresh B" <suresh.b.siddha@intel.com> Cc: Arjan van de Ven <arjan@infradead.org> Cc: Ashok Raj <ashok.raj@intel.com> Cc: "David S. Miller" <davem@davemloft.net> Cc: Christoph Lameter <clameter@sgi.com> Cc: Greg KH <greg@kroah.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>