summaryrefslogtreecommitdiff
path: root/fs/btrfs/ctree.h
AgeCommit message (Collapse)Author
2019-11-06btrfs: qgroup: Always free PREALLOC META reserve in ↵Qu Wenruo
btrfs_delalloc_release_extents() [ Upstream commit 8702ba9396bf7bbae2ab93c94acd4bd37cfa4f09 ] [Background] Btrfs qgroup uses two types of reserved space for METADATA space, PERTRANS and PREALLOC. PERTRANS is metadata space reserved for each transaction started by btrfs_start_transaction(). While PREALLOC is for delalloc, where we reserve space before joining a transaction, and finally it will be converted to PERTRANS after the writeback is done. [Inconsistency] However there is inconsistency in how we handle PREALLOC metadata space. The most obvious one is: In btrfs_buffered_write(): btrfs_delalloc_release_extents(BTRFS_I(inode), reserve_bytes, true); We always free qgroup PREALLOC meta space. While in btrfs_truncate_block(): btrfs_delalloc_release_extents(BTRFS_I(inode), blocksize, (ret != 0)); We only free qgroup PREALLOC meta space when something went wrong. [The Correct Behavior] The correct behavior should be the one in btrfs_buffered_write(), we should always free PREALLOC metadata space. The reason is, the btrfs_delalloc_* mechanism works by: - Reserve metadata first, even it's not necessary In btrfs_delalloc_reserve_metadata() - Free the unused metadata space Normally in: btrfs_delalloc_release_extents() |- btrfs_inode_rsv_release() Here we do calculation on whether we should release or not. E.g. for 64K buffered write, the metadata rsv works like: /* The first page */ reserve_meta: num_bytes=calc_inode_reservations() free_meta: num_bytes=0 total: num_bytes=calc_inode_reservations() /* The first page caused one outstanding extent, thus needs metadata rsv */ /* The 2nd page */ reserve_meta: num_bytes=calc_inode_reservations() free_meta: num_bytes=calc_inode_reservations() total: not changed /* The 2nd page doesn't cause new outstanding extent, needs no new meta rsv, so we free what we have reserved */ /* The 3rd~16th pages */ reserve_meta: num_bytes=calc_inode_reservations() free_meta: num_bytes=calc_inode_reservations() total: not changed (still space for one outstanding extent) This means, if btrfs_delalloc_release_extents() determines to free some space, then those space should be freed NOW. So for qgroup, we should call btrfs_qgroup_free_meta_prealloc() other than btrfs_qgroup_convert_reserved_meta(). The good news is: - The callers are not that hot The hottest caller is in btrfs_buffered_write(), which is already fixed by commit 336a8bb8e36a ("btrfs: Fix wrong btrfs_delalloc_release_extents parameter"). Thus it's not that easy to cause false EDQUOT. - The trans commit in advance for qgroup would hide the bug Since commit f5fef4593653 ("btrfs: qgroup: Make qgroup async transaction commit more aggressive"), when btrfs qgroup metadata free space is slow, it will try to commit transaction and free the wrongly converted PERTRANS space, so it's not that easy to hit such bug. [FIX] So to fix the problem, remove the @qgroup_free parameter for btrfs_delalloc_release_extents(), and always pass true to btrfs_inode_rsv_release(). Reported-by: Filipe Manana <fdmanana@suse.com> Fixes: 43b18595d660 ("btrfs: qgroup: Use separate meta reservation type for delalloc") CC: stable@vger.kernel.org # 4.19+ Reviewed-by: Filipe Manana <fdmanana@suse.com> Signed-off-by: Qu Wenruo <wqu@suse.com> Signed-off-by: David Sterba <dsterba@suse.com> Signed-off-by: Sasha Levin <sashal@kernel.org>
2019-10-29btrfs: don't needlessly create extent-refs kernel threadDavid Sterba
commit 80ed4548d0711d15ca51be5dee0ff813051cfc90 upstream. The patch 32b593bfcb58 ("Btrfs: remove no longer used function to run delayed refs asynchronously") removed the async delayed refs but the thread has been created, without any use. Remove it to avoid resource consumption. Fixes: 32b593bfcb58 ("Btrfs: remove no longer used function to run delayed refs asynchronously") CC: stable@vger.kernel.org # 5.2+ Reviewed-by: Josef Bacik <josef@toxicpanda.com> Signed-off-by: David Sterba <dsterba@suse.com> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2019-10-05btrfs: fix allocation of free space cache v1 bitmap pagesChristophe Leroy
commit 3acd48507dc43eeeb0a1fe965b8bad91cab904a7 upstream. Various notifications of type "BUG kmalloc-4096 () : Redzone overwritten" have been observed recently in various parts of the kernel. After some time, it has been made a relation with the use of BTRFS filesystem and with SLUB_DEBUG turned on. [ 22.809700] BUG kmalloc-4096 (Tainted: G W ): Redzone overwritten [ 22.810286] INFO: 0xbe1a5921-0xfbfc06cd. First byte 0x0 instead of 0xcc [ 22.810866] INFO: Allocated in __load_free_space_cache+0x588/0x780 [btrfs] age=22 cpu=0 pid=224 [ 22.811193] __slab_alloc.constprop.26+0x44/0x70 [ 22.811345] kmem_cache_alloc_trace+0xf0/0x2ec [ 22.811588] __load_free_space_cache+0x588/0x780 [btrfs] [ 22.811848] load_free_space_cache+0xf4/0x1b0 [btrfs] [ 22.812090] cache_block_group+0x1d0/0x3d0 [btrfs] [ 22.812321] find_free_extent+0x680/0x12a4 [btrfs] [ 22.812549] btrfs_reserve_extent+0xec/0x220 [btrfs] [ 22.812785] btrfs_alloc_tree_block+0x178/0x5f4 [btrfs] [ 22.813032] __btrfs_cow_block+0x150/0x5d4 [btrfs] [ 22.813262] btrfs_cow_block+0x194/0x298 [btrfs] [ 22.813484] commit_cowonly_roots+0x44/0x294 [btrfs] [ 22.813718] btrfs_commit_transaction+0x63c/0xc0c [btrfs] [ 22.813973] close_ctree+0xf8/0x2a4 [btrfs] [ 22.814107] generic_shutdown_super+0x80/0x110 [ 22.814250] kill_anon_super+0x18/0x30 [ 22.814437] btrfs_kill_super+0x18/0x90 [btrfs] [ 22.814590] INFO: Freed in proc_cgroup_show+0xc0/0x248 age=41 cpu=0 pid=83 [ 22.814841] proc_cgroup_show+0xc0/0x248 [ 22.814967] proc_single_show+0x54/0x98 [ 22.815086] seq_read+0x278/0x45c [ 22.815190] __vfs_read+0x28/0x17c [ 22.815289] vfs_read+0xa8/0x14c [ 22.815381] ksys_read+0x50/0x94 [ 22.815475] ret_from_syscall+0x0/0x38 Commit 69d2480456d1 ("btrfs: use copy_page for copying pages instead of memcpy") changed the way bitmap blocks are copied. But allthough bitmaps have the size of a page, they were allocated with kzalloc(). Most of the time, kzalloc() allocates aligned blocks of memory, so copy_page() can be used. But when some debug options like SLAB_DEBUG are activated, kzalloc() may return unaligned pointer. On powerpc, memcpy(), copy_page() and other copying functions use 'dcbz' instruction which provides an entire zeroed cacheline to avoid memory read when the intention is to overwrite a full line. Functions like memcpy() are writen to care about partial cachelines at the start and end of the destination, but copy_page() assumes it gets pages. As pages are naturally cache aligned, copy_page() doesn't care about partial lines. This means that when copy_page() is called with a misaligned pointer, a few leading bytes are zeroed. To fix it, allocate bitmaps through kmem_cache instead of using kzalloc() The cache pool is created with PAGE_SIZE alignment constraint. Reported-by: Erhard F. <erhard_f@mailbox.org> Bugzilla: https://bugzilla.kernel.org/show_bug.cgi?id=204371 Fixes: 69d2480456d1 ("btrfs: use copy_page for copying pages instead of memcpy") Cc: stable@vger.kernel.org # 4.19+ Signed-off-by: Christophe Leroy <christophe.leroy@c-s.fr> Reviewed-by: David Sterba <dsterba@suse.com> [ rename to btrfs_free_space_bitmap ] Signed-off-by: David Sterba <dsterba@suse.com> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2019-08-07Btrfs: fix sysfs warning and missing raid sysfs directoriesFilipe Manana
In the 5.3 merge window, commit 7c7e301406d0a9 ("btrfs: sysfs: Replace default_attrs in ktypes with groups"), we started using the member "defaults_groups" for the kobject type "btrfs_raid_ktype". That leads to a series of warnings when running some test cases of fstests, such as btrfs/027, btrfs/124 and btrfs/176. The traces produced by those warnings are like the following: [116648.059212] kernfs: can not remove 'total_bytes', no directory [116648.060112] WARNING: CPU: 3 PID: 28500 at fs/kernfs/dir.c:1504 kernfs_remove_by_name_ns+0x75/0x80 (...) [116648.066482] CPU: 3 PID: 28500 Comm: umount Tainted: G W 5.3.0-rc3-btrfs-next-54 #1 (...) [116648.069376] RIP: 0010:kernfs_remove_by_name_ns+0x75/0x80 (...) [116648.072385] RSP: 0018:ffffabfd0090bd08 EFLAGS: 00010282 [116648.073437] RAX: 0000000000000000 RBX: ffffffffc0c11998 RCX: 0000000000000000 [116648.074201] RDX: ffff9fff603a7a00 RSI: ffff9fff603978a8 RDI: ffff9fff603978a8 [116648.074956] RBP: ffffffffc0b9ca2f R08: 0000000000000000 R09: 0000000000000001 [116648.075708] R10: ffff9ffe1f72e1c0 R11: 0000000000000000 R12: ffffffffc0b94120 [116648.076434] R13: ffffffffb3d9b4e0 R14: 0000000000000000 R15: dead000000000100 [116648.077143] FS: 00007f9cdc78a2c0(0000) GS:ffff9fff60380000(0000) knlGS:0000000000000000 [116648.077852] CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033 [116648.078546] CR2: 00007f9fc4747ab4 CR3: 00000005c7832003 CR4: 00000000003606e0 [116648.079235] DR0: 0000000000000000 DR1: 0000000000000000 DR2: 0000000000000000 [116648.079907] DR3: 0000000000000000 DR6: 00000000fffe0ff0 DR7: 0000000000000400 [116648.080585] Call Trace: [116648.081262] remove_files+0x31/0x70 [116648.081929] sysfs_remove_group+0x38/0x80 [116648.082596] sysfs_remove_groups+0x34/0x70 [116648.083258] kobject_del+0x20/0x60 [116648.083933] btrfs_free_block_groups+0x405/0x430 [btrfs] [116648.084608] close_ctree+0x19a/0x380 [btrfs] [116648.085278] generic_shutdown_super+0x6c/0x110 [116648.085951] kill_anon_super+0xe/0x30 [116648.086621] btrfs_kill_super+0x12/0xa0 [btrfs] [116648.087289] deactivate_locked_super+0x3a/0x70 [116648.087956] cleanup_mnt+0xb4/0x160 [116648.088620] task_work_run+0x7e/0xc0 [116648.089285] exit_to_usermode_loop+0xfa/0x100 [116648.089933] do_syscall_64+0x1cb/0x220 [116648.090567] entry_SYSCALL_64_after_hwframe+0x49/0xbe [116648.091197] RIP: 0033:0x7f9cdc073b37 (...) [116648.100046] ---[ end trace 22e24db328ccadf8 ]--- [116648.100618] ------------[ cut here ]------------ [116648.101175] kernfs: can not remove 'used_bytes', no directory [116648.101731] WARNING: CPU: 3 PID: 28500 at fs/kernfs/dir.c:1504 kernfs_remove_by_name_ns+0x75/0x80 (...) [116648.105649] CPU: 3 PID: 28500 Comm: umount Tainted: G W 5.3.0-rc3-btrfs-next-54 #1 (...) [116648.107461] RIP: 0010:kernfs_remove_by_name_ns+0x75/0x80 (...) [116648.109336] RSP: 0018:ffffabfd0090bd08 EFLAGS: 00010282 [116648.109979] RAX: 0000000000000000 RBX: ffffffffc0c119a0 RCX: 0000000000000000 [116648.110625] RDX: ffff9fff603a7a00 RSI: ffff9fff603978a8 RDI: ffff9fff603978a8 [116648.111283] RBP: ffffffffc0b9ca41 R08: 0000000000000000 R09: 0000000000000001 [116648.111940] R10: ffff9ffe1f72e1c0 R11: 0000000000000000 R12: ffffffffc0b94120 [116648.112603] R13: ffffffffb3d9b4e0 R14: 0000000000000000 R15: dead000000000100 [116648.113268] FS: 00007f9cdc78a2c0(0000) GS:ffff9fff60380000(0000) knlGS:0000000000000000 [116648.113939] CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033 [116648.114607] CR2: 00007f9fc4747ab4 CR3: 00000005c7832003 CR4: 00000000003606e0 [116648.115286] DR0: 0000000000000000 DR1: 0000000000000000 DR2: 0000000000000000 [116648.115966] DR3: 0000000000000000 DR6: 00000000fffe0ff0 DR7: 0000000000000400 [116648.116649] Call Trace: [116648.117326] remove_files+0x31/0x70 [116648.117997] sysfs_remove_group+0x38/0x80 [116648.118671] sysfs_remove_groups+0x34/0x70 [116648.119342] kobject_del+0x20/0x60 [116648.120022] btrfs_free_block_groups+0x405/0x430 [btrfs] [116648.120707] close_ctree+0x19a/0x380 [btrfs] [116648.121396] generic_shutdown_super+0x6c/0x110 [116648.122057] kill_anon_super+0xe/0x30 [116648.122702] btrfs_kill_super+0x12/0xa0 [btrfs] [116648.123335] deactivate_locked_super+0x3a/0x70 [116648.123961] cleanup_mnt+0xb4/0x160 [116648.124586] task_work_run+0x7e/0xc0 [116648.125210] exit_to_usermode_loop+0xfa/0x100 [116648.125830] do_syscall_64+0x1cb/0x220 [116648.126463] entry_SYSCALL_64_after_hwframe+0x49/0xbe [116648.127080] RIP: 0033:0x7f9cdc073b37 (...) [116648.135923] ---[ end trace 22e24db328ccadf9 ]--- These happen because, during the unmount path, we call kobject_del() for raid kobjects that are not fully initialized, meaning that we set their ktype (as btrfs_raid_ktype) through link_block_group() but we didn't set their parent kobject, which is done through btrfs_add_raid_kobjects(). We have this split raid kobject setup since commit 75cb379d263521 ("btrfs: defer adding raid type kobject until after chunk relocation") in order to avoid triggering reclaim during contextes where we can not (either we are holding a transaction handle or some lock required by the transaction commit path), so that we do the calls to kobject_add(), which triggers GFP_KERNEL allocations, through btrfs_add_raid_kobjects() in contextes where it is safe to trigger reclaim. That change expected that a new raid kobject can only be created either when mounting the filesystem or after raid profile conversion through the relocation path. However, we can have new raid kobject created in other two cases at least: 1) During device replace (or scrub) after adding a device a to the filesystem. The replace procedure (and scrub) do calls to btrfs_inc_block_group_ro() which can allocate a new block group with a new raid profile (because we now have more devices). This can be triggered by test cases btrfs/027 and btrfs/176. 2) During a degraded mount trough any write path. This can be triggered by test case btrfs/124. Fixing this by adding extra calls to btrfs_add_raid_kobjects(), not only makes things more complex and fragile, can also introduce deadlocks with reclaim the following way: 1) Calling btrfs_add_raid_kobjects() at btrfs_inc_block_group_ro() or anywhere in the replace/scrub path will cause a deadlock with reclaim because if reclaim happens and a transaction commit is triggered, the transaction commit path will block at btrfs_scrub_pause(). 2) During degraded mounts it is essentially impossible to figure out where to add extra calls to btrfs_add_raid_kobjects(), because allocation of a block group with a new raid profile can happen anywhere, which means we can't safely figure out which contextes are safe for reclaim, as we can either hold a transaction handle or some lock needed by the transaction commit path. So it is too complex and error prone to have this split setup of raid kobjects. So fix the issue by consolidating the setup of the kobjects in a single place, at link_block_group(), and setup a nofs context there in order to prevent reclaim being triggered by the memory allocations done through the call chain of kobject_add(). Besides fixing the sysfs warnings during kobject_del(), this also ensures the sysfs directories for the new raid profiles end up created and visible to users (a bug that existed before the 5.3 commit 7c7e301406d0a9 ("btrfs: sysfs: Replace default_attrs in ktypes with groups")). Fixes: 75cb379d263521 ("btrfs: defer adding raid type kobject until after chunk relocation") Fixes: 7c7e301406d0a9 ("btrfs: sysfs: Replace default_attrs in ktypes with groups") Signed-off-by: Filipe Manana <fdmanana@suse.com> Reviewed-by: David Sterba <dsterba@suse.com> Signed-off-by: David Sterba <dsterba@suse.com>
2019-07-04btrfs: migrate the delalloc space stuff to it's own homeJosef Bacik
We have code for data and metadata reservations for delalloc. There's quite a bit of code here, and it's used in a lot of places so I've separated it out to it's own file. inode.c and file.c are already pretty large, and this code is complicated enough to live in its own space. Signed-off-by: Josef Bacik <josef@toxicpanda.com> Signed-off-by: David Sterba <dsterba@suse.com>
2019-07-04btrfs: migrate btrfs_trans_release_chunk_metadataJosef Bacik
Move this into transaction.c with the rest of the transaction related code. Signed-off-by: Josef Bacik <josef@toxicpanda.com> Signed-off-by: David Sterba <dsterba@suse.com>
2019-07-04btrfs: migrate the delayed refs rsv codeJosef Bacik
These belong with the delayed refs related code, not in extent-tree.c. Signed-off-by: Josef Bacik <josef@toxicpanda.com> Signed-off-by: David Sterba <dsterba@suse.com>
2019-07-02btrfs: move btrfs_block_rsv definitions into it's own headerJosef Bacik
Prep work for separating out all of the block_rsv related code into its own file. Signed-off-by: Josef Bacik <josef@toxicpanda.com> Signed-off-by: David Sterba <dsterba@suse.com>
2019-07-02btrfs: export block_rsv_use_bytesJosef Bacik
We are going to need this to move the metadata reservation stuff to space_info.c. Reviewed-by: Nikolay Borisov <nborisov@suse.com> Signed-off-by: Josef Bacik <josef@toxicpanda.com> Signed-off-by: David Sterba <dsterba@suse.com>
2019-07-02btrfs: rename do_chunk_alloc to btrfs_chunk_allocJosef Bacik
Really we just need the enum, but as we break more things up it'll help to have this external to extent-tree.c. Reviewed-by: Nikolay Borisov <nborisov@suse.com> Signed-off-by: Josef Bacik <josef@toxicpanda.com> Signed-off-by: David Sterba <dsterba@suse.com>
2019-07-02btrfs: move space_info to space-info.hJosef Bacik
Migrate the struct definition and the one helper that's in ctree.h into space-info.h Reviewed-by: Nikolay Borisov <nborisov@suse.com> Signed-off-by: Josef Bacik <josef@toxicpanda.com> Signed-off-by: David Sterba <dsterba@suse.com>
2019-07-02btrfs: improve messages when updating feature flagsDavid Sterba
Currently the messages printed after setting an incompat feature are cryptis, we can easily make it better as the textual description is passed to the helpers. Old: setting 128 feature flag updated: setting incompat feature flag for RAID56 (0x80) Signed-off-by: David Sterba <dsterba@suse.com>
2019-07-02Btrfs: prevent send failures and crashes due to concurrent relocationFilipe Manana
Send always operates on read-only trees and always expected that while it is in progress, nothing changes in those trees. Due to that expectation and the fact that send is a read-only operation, it operates on commit roots and does not hold transaction handles. However relocation can COW nodes and leafs from read-only trees, which can cause unexpected failures and crashes (hitting BUG_ONs). while send using a node/leaf, it gets COWed, the transaction used to COW it is committed, a new transaction starts, the extent previously used for that node/leaf gets allocated, possibly for another tree, and the respective extent buffer' content changes while send is still using it. When this happens send normally fails with EIO being returned to user space and messages like the following are found in dmesg/syslog: [ 3408.699121] BTRFS error (device sdc): parent transid verify failed on 58703872 wanted 250 found 253 [ 3441.523123] BTRFS error (device sdc): did not find backref in send_root. inode=63211, offset=0, disk_byte=5222825984 found extent=5222825984 Other times, less often, we hit a BUG_ON() because an extent buffer that send is using used to be a node, and while send is still using it, it got COWed and got reused as a leaf while send is still using, producing the following trace: [ 3478.466280] ------------[ cut here ]------------ [ 3478.466282] kernel BUG at fs/btrfs/ctree.c:1806! [ 3478.466965] invalid opcode: 0000 [#1] SMP DEBUG_PAGEALLOC PTI [ 3478.467635] CPU: 0 PID: 2165 Comm: btrfs Not tainted 5.0.0-btrfs-next-46 #1 [ 3478.468311] Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS rel-1.11.2-0-gf9626ccb91-prebuilt.qemu-project.org 04/01/2014 [ 3478.469681] RIP: 0010:read_node_slot+0x122/0x130 [btrfs] (...) [ 3478.471758] RSP: 0018:ffffa437826bfaa0 EFLAGS: 00010246 [ 3478.472457] RAX: ffff961416ed7000 RBX: 000000000000003d RCX: 0000000000000002 [ 3478.473151] RDX: 000000000000003d RSI: ffff96141e387408 RDI: ffff961599b30000 [ 3478.473837] RBP: ffffa437826bfb8e R08: 0000000000000001 R09: ffffa437826bfb8e [ 3478.474515] R10: ffffa437826bfa70 R11: 0000000000000000 R12: ffff9614385c8708 [ 3478.475186] R13: 0000000000000000 R14: 0000000000000000 R15: 0000000000000000 [ 3478.475840] FS: 00007f8e0e9cc8c0(0000) GS:ffff9615b6a00000(0000) knlGS:0000000000000000 [ 3478.476489] CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033 [ 3478.477127] CR2: 00007f98b67a056e CR3: 0000000005df6005 CR4: 00000000003606f0 [ 3478.477762] DR0: 0000000000000000 DR1: 0000000000000000 DR2: 0000000000000000 [ 3478.478385] DR3: 0000000000000000 DR6: 00000000fffe0ff0 DR7: 0000000000000400 [ 3478.479003] Call Trace: [ 3478.479600] ? do_raw_spin_unlock+0x49/0xc0 [ 3478.480202] tree_advance+0x173/0x1d0 [btrfs] [ 3478.480810] btrfs_compare_trees+0x30c/0x690 [btrfs] [ 3478.481388] ? process_extent+0x1280/0x1280 [btrfs] [ 3478.481954] btrfs_ioctl_send+0x1037/0x1270 [btrfs] [ 3478.482510] _btrfs_ioctl_send+0x80/0x110 [btrfs] [ 3478.483062] btrfs_ioctl+0x13fe/0x3120 [btrfs] [ 3478.483581] ? rq_clock_task+0x2e/0x60 [ 3478.484086] ? wake_up_new_task+0x1f3/0x370 [ 3478.484582] ? do_vfs_ioctl+0xa2/0x6f0 [ 3478.485075] ? btrfs_ioctl_get_supported_features+0x30/0x30 [btrfs] [ 3478.485552] do_vfs_ioctl+0xa2/0x6f0 [ 3478.486016] ? __fget+0x113/0x200 [ 3478.486467] ksys_ioctl+0x70/0x80 [ 3478.486911] __x64_sys_ioctl+0x16/0x20 [ 3478.487337] do_syscall_64+0x60/0x1b0 [ 3478.487751] entry_SYSCALL_64_after_hwframe+0x49/0xbe [ 3478.488159] RIP: 0033:0x7f8e0d7d4dd7 (...) [ 3478.489349] RSP: 002b:00007ffcf6fb4908 EFLAGS: 00000202 ORIG_RAX: 0000000000000010 [ 3478.489742] RAX: ffffffffffffffda RBX: 0000000000000105 RCX: 00007f8e0d7d4dd7 [ 3478.490142] RDX: 00007ffcf6fb4990 RSI: 0000000040489426 RDI: 0000000000000005 [ 3478.490548] RBP: 0000000000000005 R08: 00007f8e0d6f3700 R09: 00007f8e0d6f3700 [ 3478.490953] R10: 00007f8e0d6f39d0 R11: 0000000000000202 R12: 0000000000000005 [ 3478.491343] R13: 00005624e0780020 R14: 0000000000000000 R15: 0000000000000001 (...) [ 3478.493352] ---[ end trace d5f537302be4f8c8 ]--- Another possibility, much less likely to happen, is that send will not fail but the contents of the stream it produces may not be correct. To avoid this, do not allow send and relocation (balance) to run in parallel. In the long term the goal is to allow for both to be able to run concurrently without any problems, but that will take a significant effort in development and testing. Signed-off-by: Filipe Manana <fdmanana@suse.com> Reviewed-by: David Sterba <dsterba@suse.com> Signed-off-by: David Sterba <dsterba@suse.com>
2019-07-02btrfs: document BTRFS_MAX_MIRRORSDavid Sterba
The real meaning of that constant is not clear from the context due to the target device inclusion. Signed-off-by: David Sterba <dsterba@suse.com>
2019-07-01btrfs: use file:line format for assertion reportDavid Sterba
The filename:line format is commonly understood by editors and can be copy&pasted more easily than the current format. Signed-off-by: David Sterba <dsterba@suse.com>
2019-07-01btrfs: add boilerplate code for directly including the crypto frameworkJohannes Thumshirn
Add boilerplate code for directly including the crypto framework. This helps us flipping the switch for new algorithms. Reviewed-by: Nikolay Borisov <nborisov@suse.com> Signed-off-by: Johannes Thumshirn <jthumshirn@suse.de> Reviewed-by: David Sterba <dsterba@suse.com> Signed-off-by: David Sterba <dsterba@suse.com>
2019-07-01btrfs: don't assume ordered sums to be 4 bytesJohannes Thumshirn
BTRFS has the implicit assumption that a checksum in btrfs_orderd_sums is 4 bytes. While this is true for CRC32C, it is not for any other checksum. Change the data type to be a byte array and adjust loop index calculation accordingly. This includes moving the adjustment of 'index' by 'ins_size' in btrfs_csum_file_blocks() before dividing 'ins_size' by the checksum size, because before this patch the 'sums' member of 'struct btrfs_ordered_sum' was 4 Bytes in size and afterwards it is only one byte. Reviewed-by: Nikolay Borisov <nborisov@suse.com> Signed-off-by: Johannes Thumshirn <jthumshirn@suse.de> Reviewed-by: David Sterba <dsterba@suse.com> Signed-off-by: David Sterba <dsterba@suse.com>
2019-07-01btrfs: resurrect btrfs_crc32c()Johannes Thumshirn
Commit 9678c54388b6 ("btrfs: Remove custom crc32c init code") removed the btrfs_crc32c() function, because it was a duplicate of the crc32c() library function we already have in the kernel. Resurrect it as a shim wrapper over crc32c() to make following transformations of the checksumming code in btrfs easier. Also provide a btrfs_crc32_final() to ease following transformations. Reviewed-by: Nikolay Borisov <nborisov@suse.com> Signed-off-by: Johannes Thumshirn <jthumshirn@suse.de> Reviewed-by: David Sterba <dsterba@suse.com> Signed-off-by: David Sterba <dsterba@suse.com>
2019-07-01btrfs: remove mapping tree structures indirectionDavid Sterba
fs_info::mapping_tree is the physical<->logical mapping tree and uses the same underlying structure as extents, but is embedded to another structure. There are no other members and this indirection is useless. No functional change. Signed-off-by: David Sterba <dsterba@suse.com>
2019-07-01btrfs: detect fast implementation of crc32c on all architecturesDavid Sterba
Currently, there's only check for fast crc32c implementation on X86, based on the CPU flags. This is used to decide if checksumming should be offloaded to worker threads or can be calculated by the caller. As there are more architectures that implement a faster version of crc32c (ARM, SPARC, s390, MIPS, PowerPC), also there are specialized hw cards. The detection is based on driver name, all generic C implementations contain 'generic', while the specialized versions do not. Alternatively the priority could be used, but this is not currently provided by the crypto API. The flag is set per-filesystem at mount time and used for the offloading decisions. Signed-off-by: David Sterba <dsterba@suse.com>
2019-05-07Merge tag 'for-5.2-tag' of ↵Linus Torvalds
git://git.kernel.org/pub/scm/linux/kernel/git/kdave/linux Pull btrfs updates from David Sterba: "This time the majority of changes are cleanups, though there's still a number of changes of user interest. User visible changes: - better read time and write checks to catch errors early and before writing data to disk (to catch potential memory corruption on data that get checksummed) - qgroups + metadata relocation: last speed up patch int the series to address the slowness, there should be no overhead comparing balance with and without qgroups - FIEMAP ioctl does not start a transaction unnecessarily, this can result in a speed up and less blocking due to IO - LOGICAL_INO (v1, v2) does not start transaction unnecessarily, this can speed up the mentioned ioctl and scrub as well - fsync on files with many (but not too many) hardlinks is faster, finer decision if the links should be fsynced individually or completely - send tries harder to find ranges to clone - trim/discard will skip unallocated chunks that haven't been touched since the last mount Fixes: - send flushes delayed allocation before start, otherwise it could miss some changes in case of a very recent rw->ro switch of a subvolume - fix fallocate with qgroups that could lead to space accounting underflow, reported as a warning - trim/discard ioctl honours the requested range - starting send and dedupe on a subvolume at the same time will let only one of them succeed, this is to prevent changes that send could miss due to dedupe; both operations are restartable Core changes: - more tree-checker validations, errors reported by fuzzing tools: - device item - inode item - block group profiles - tracepoints for extent buffer locking - async cow preallocates memory to avoid errors happening too deep in the call chain - metadata reservations for delalloc reworked to better adapt in many-writers/low-space scenarios - improved space flushing logic for intense DIO vs buffered workloads - lots of cleanups - removed unused struct members - redundant argument removal - properties and xattrs - extent buffer locking - selftests - use common file type conversions - many-argument functions reduction" * tag 'for-5.2-tag' of git://git.kernel.org/pub/scm/linux/kernel/git/kdave/linux: (227 commits) btrfs: Use kvmalloc for allocating compressed path context btrfs: Factor out common extent locking code in submit_compressed_extents btrfs: Set io_tree only once in submit_compressed_extents btrfs: Replace clear_extent_bit with unlock_extent btrfs: Make compress_file_range take only struct async_chunk btrfs: Remove fs_info from struct async_chunk btrfs: Rename async_cow to async_chunk btrfs: Preallocate chunks in cow_file_range_async btrfs: reserve delalloc metadata differently btrfs: track DIO bytes in flight btrfs: merge calls of btrfs_setxattr and btrfs_setxattr_trans in btrfs_set_prop btrfs: delete unused function btrfs_set_prop_trans btrfs: start transaction in xattr_handler_set_prop btrfs: drop local copy of inode i_mode btrfs: drop old_fsflags in btrfs_ioctl_setflags btrfs: modify local copy of btrfs_inode flags btrfs: drop useless inode i_flags copy and restore btrfs: start transaction in btrfs_ioctl_setflags() btrfs: export btrfs_set_prop btrfs: refactor btrfs_set_props to validate externally ...
2019-05-01btrfs: use ->free_inode()Al Viro
a lot of stuff remains in ->destroy_inode() Acked-by: David Sterba <dsterba@suse.com> Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
2019-04-29btrfs: track DIO bytes in flightJosef Bacik
When diagnosing a slowdown of generic/224 I noticed we were not doing anything when calling into shrink_delalloc(). This is because all writes in 224 are O_DIRECT, not delalloc, and thus our delalloc_bytes counter is 0, which short circuits most of the work inside of shrink_delalloc(). However O_DIRECT writes still consume metadata resources and generate ordered extents, which we can still wait on. Fix this by tracking outstanding DIO write bytes, and use this as well as the delalloc bytes counter to decide if we need to lookup and wait on any ordered extents. If we have more DIO writes than delalloc bytes we'll go ahead and wait on any ordered extents regardless of our flush state as flushing delalloc is likely to not gain us anything. Signed-off-by: Josef Bacik <josef@toxicpanda.com> [ use dio instead of odirect in identifiers ] Signed-off-by: David Sterba <dsterba@suse.com>
2019-04-29Btrfs: fix race between send and deduplication that lead to failures and crashesFilipe Manana
Send operates on read only trees and expects them to never change while it is using them. This is part of its initial design, and this expection is due to two different reasons: 1) When it was introduced, no operations were allowed to modifiy read-only subvolumes/snapshots (including defrag for example). 2) It keeps send from having an impact on other filesystem operations. Namely send does not need to keep locks on the trees nor needs to hold on to transaction handles and delay transaction commits. This ends up being a consequence of the former reason. However the deduplication feature was introduced later (on September 2013, while send was introduced in July 2012) and it allowed for deduplication with destination files that belong to read-only trees (subvolumes and snapshots). That means that having a send operation (either full or incremental) running in parallel with a deduplication that has the destination inode in one of the trees used by the send operation, can result in tree nodes and leaves getting freed and reused while send is using them. This problem is similar to the problem solved for the root nodes getting freed and reused when a snapshot is made against one tree that is currenly being used by a send operation, fixed in commits [1] and [2]. These commits explain in detail how the problem happens and the explanation is valid for any node or leaf that is not the root of a tree as well. This problem was also discussed and explained recently in a thread [3]. The problem is very easy to reproduce when using send with large trees (snapshots) and just a few concurrent deduplication operations that target files in the trees used by send. A stress test case is being sent for fstests that triggers the issue easily. The most common error to hit is the send ioctl return -EIO with the following messages in dmesg/syslog: [1631617.204075] BTRFS error (device sdc): did not find backref in send_root. inode=63292, offset=0, disk_byte=5228134400 found extent=5228134400 [1631633.251754] BTRFS error (device sdc): parent transid verify failed on 32243712 wanted 24 found 27 The first one is very easy to hit while the second one happens much less frequently, except for very large trees (in that test case, snapshots with 100000 files having large xattrs to get deep and wide trees). Less frequently, at least one BUG_ON can be hit: [1631742.130080] ------------[ cut here ]------------ [1631742.130625] kernel BUG at fs/btrfs/ctree.c:1806! [1631742.131188] invalid opcode: 0000 [#6] SMP DEBUG_PAGEALLOC PTI [1631742.131726] CPU: 1 PID: 13394 Comm: btrfs Tainted: G B D W 5.0.0-rc8-btrfs-next-45 #1 [1631742.132265] Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS rel-1.11.2-0-gf9626ccb91-prebuilt.qemu-project.org 04/01/2014 [1631742.133399] RIP: 0010:read_node_slot+0x122/0x130 [btrfs] (...) [1631742.135061] RSP: 0018:ffffb530021ebaa0 EFLAGS: 00010246 [1631742.135615] RAX: ffff93ac8912e000 RBX: 000000000000009d RCX: 0000000000000002 [1631742.136173] RDX: 000000000000009d RSI: ffff93ac564b0d08 RDI: ffff93ad5b48c000 [1631742.136759] RBP: ffffb530021ebb7d R08: 0000000000000001 R09: ffffb530021ebb7d [1631742.137324] R10: ffffb530021eba70 R11: 0000000000000000 R12: ffff93ac87d0a708 [1631742.137900] R13: 0000000000000000 R14: 0000000000000000 R15: 0000000000000001 [1631742.138455] FS: 00007f4cdb1528c0(0000) GS:ffff93ad76a80000(0000) knlGS:0000000000000000 [1631742.139010] CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033 [1631742.139568] CR2: 00007f5acb3d0420 CR3: 000000012be3e006 CR4: 00000000003606e0 [1631742.140131] DR0: 0000000000000000 DR1: 0000000000000000 DR2: 0000000000000000 [1631742.140719] DR3: 0000000000000000 DR6: 00000000fffe0ff0 DR7: 0000000000000400 [1631742.141272] Call Trace: [1631742.141826] ? do_raw_spin_unlock+0x49/0xc0 [1631742.142390] tree_advance+0x173/0x1d0 [btrfs] [1631742.142948] btrfs_compare_trees+0x268/0x690 [btrfs] [1631742.143533] ? process_extent+0x1070/0x1070 [btrfs] [1631742.144088] btrfs_ioctl_send+0x1037/0x1270 [btrfs] [1631742.144645] _btrfs_ioctl_send+0x80/0x110 [btrfs] [1631742.145161] ? trace_sched_stick_numa+0xe0/0xe0 [1631742.145685] btrfs_ioctl+0x13fe/0x3120 [btrfs] [1631742.146179] ? account_entity_enqueue+0xd3/0x100 [1631742.146662] ? reweight_entity+0x154/0x1a0 [1631742.147135] ? update_curr+0x20/0x2a0 [1631742.147593] ? check_preempt_wakeup+0x103/0x250 [1631742.148053] ? do_vfs_ioctl+0xa2/0x6f0 [1631742.148510] ? btrfs_ioctl_get_supported_features+0x30/0x30 [btrfs] [1631742.148942] do_vfs_ioctl+0xa2/0x6f0 [1631742.149361] ? __fget+0x113/0x200 [1631742.149767] ksys_ioctl+0x70/0x80 [1631742.150159] __x64_sys_ioctl+0x16/0x20 [1631742.150543] do_syscall_64+0x60/0x1b0 [1631742.150931] entry_SYSCALL_64_after_hwframe+0x49/0xbe [1631742.151326] RIP: 0033:0x7f4cd9f5add7 (...) [1631742.152509] RSP: 002b:00007ffe91017708 EFLAGS: 00000202 ORIG_RAX: 0000000000000010 [1631742.152892] RAX: ffffffffffffffda RBX: 0000000000000105 RCX: 00007f4cd9f5add7 [1631742.153268] RDX: 00007ffe91017790 RSI: 0000000040489426 RDI: 0000000000000007 [1631742.153633] RBP: 0000000000000007 R08: 00007f4cd9e79700 R09: 00007f4cd9e79700 [1631742.153999] R10: 00007f4cd9e799d0 R11: 0000000000000202 R12: 0000000000000003 [1631742.154365] R13: 0000555dfae53020 R14: 0000000000000000 R15: 0000000000000001 (...) [1631742.156696] ---[ end trace 5dac9f96dcc3fd6b ]--- That BUG_ON happens because while send is using a node, that node is COWed by a concurrent deduplication, gets freed and gets reused as a leaf (because a transaction commit happened in between), so when it attempts to read a slot from the extent buffer, at ctree.c:read_node_slot(), the extent buffer contents were wiped out and it now matches a leaf (which can even belong to some other tree now), hitting the BUG_ON(level == 0). Fix this concurrency issue by not allowing send and deduplication to run in parallel if both operate on the same readonly trees, returning EAGAIN to user space and logging an exlicit warning in dmesg/syslog. [1] https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git/commit/?id=be6821f82c3cc36e026f5afd10249988852b35ea [2] https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git/commit/?id=6f2f0b394b54e2b159ef969a0b5274e9bbf82ff2 [3] https://lore.kernel.org/linux-btrfs/CAL3q7H7iqSEEyFaEtpRZw3cp613y+4k2Q8b4W7mweR3tZA05bQ@mail.gmail.com/ CC: stable@vger.kernel.org # 4.4+ Signed-off-by: Filipe Manana <fdmanana@suse.com> Reviewed-by: David Sterba <dsterba@suse.com> Signed-off-by: David Sterba <dsterba@suse.com>
2019-04-29btrfs: remove unused parameter fs_info from btrfs_set_disk_extent_flagsDavid Sterba
Signed-off-by: David Sterba <dsterba@suse.com>
2019-04-29btrfs: remove unused parameter fs_info from btrfs_extend_itemDavid Sterba
Signed-off-by: David Sterba <dsterba@suse.com>
2019-04-29btrfs: remove unused parameter fs_info from btrfs_truncate_itemDavid Sterba
Signed-off-by: David Sterba <dsterba@suse.com>
2019-04-29btrfs: extent-tree: Use btrfs_ref to refactor btrfs_free_extent()Qu Wenruo
Similar to btrfs_inc_extent_ref(), use btrfs_ref to replace the long parameter list and the confusing @owner parameter. Signed-off-by: Qu Wenruo <wqu@suse.com> Reviewed-by: David Sterba <dsterba@suse.com> Signed-off-by: David Sterba <dsterba@suse.com>
2019-04-29btrfs: extent-tree: Use btrfs_ref to refactor btrfs_inc_extent_ref()Qu Wenruo
Use the new btrfs_ref structure and replace parameter list to clean up the usage of owner and level to distinguish the extent types. Signed-off-by: Qu Wenruo <wqu@suse.com> Reviewed-by: David Sterba <dsterba@suse.com> Signed-off-by: David Sterba <dsterba@suse.com>
2019-04-29btrfs: get fs_info from device in btrfs_scrub_cancel_devDavid Sterba
We can read fs_info from the device and can drop it from the parameters. Signed-off-by: David Sterba <dsterba@suse.com>
2019-04-29Btrfs: remove no longer used function to run delayed refs asynchronouslyFilipe Manana
It used to be called from only two places (truncate path and releasing a transaction handle), but commits 28bad2125767c5 ("btrfs: fix truncate throttling") and db2462a6ad3dc4 ("btrfs: don't run delayed refs in the end transaction logic") removed their calls to this function, so it's not used anymore. Just remove it and all its helpers. Reviewed-by: Qu Wenruo <wqu@suse.com> Signed-off-by: Filipe Manana <fdmanana@suse.com> Signed-off-by: David Sterba <dsterba@suse.com>
2019-04-29btrfs: get fs_info from trans in btrfs_write_dirty_block_groupsDavid Sterba
We can read fs_info from the transaction and can drop it from the parameters. Signed-off-by: David Sterba <dsterba@suse.com>
2019-04-29btrfs: get fs_info from trans in btrfs_setup_space_cacheDavid Sterba
We can read fs_info from the transaction and can drop it from the parameters. Signed-off-by: David Sterba <dsterba@suse.com>
2019-04-29btrfs: Factor out in_range macroNikolay Borisov
This is used in more than one places so let's factor it out in ctree.h. No functional changes. Signed-off-by: Nikolay Borisov <nborisov@suse.com> Reviewed-by: David Sterba <dsterba@suse.com> Signed-off-by: David Sterba <dsterba@suse.com>
2019-04-29btrfs: replace pending/pinned chunks lists with io treeJeff Mahoney
The pending chunks list contains chunks that are allocated in the current transaction but haven't been created yet. The pinned chunks list contains chunks that are being released in the current transaction. Both describe chunks that are not reflected on disk as in use but are unavailable just the same. The pending chunks list is anchored by the transaction handle, which means that we need to hold a reference to a transaction when working with the list. The way we use them is by iterating over both lists to perform comparisons on the stripes they describe for each device. This is backwards and requires that we keep a transaction handle open while we're trimming. This patchset adds an extent_io_tree to btrfs_device that maintains the allocation state of the device. Extents are set dirty when chunks are first allocated -- when the extent maps are added to the mapping tree. They're cleared when last removed -- when the extent maps are removed from the mapping tree. This matches the lifespan of the pending and pinned chunks list and allows us to do trims on unallocated space safely without pinning the transaction for what may be a lengthy operation. We can also use this io tree to mark which chunks have already been trimmed so we don't repeat the operation. Signed-off-by: Jeff Mahoney <jeffm@suse.com> Signed-off-by: Nikolay Borisov <nborisov@suse.com> Signed-off-by: David Sterba <dsterba@suse.com>
2019-04-29btrfs: tree-checker: Verify inode itemQu Wenruo
There is a report in kernel bugzilla about mismatch file type in dir item and inode item. This inspires us to check inode mode in inode item. This patch will check the following members: - inode key objectid Should be ROOT_DIR_DIR or [256, (u64)-256] or FREE_INO. - inode key offset Should be 0 - inode item generation - inode item transid No newer than sb generation + 1. The +1 is for log tree. - inode item mode No unknown bits. No invalid S_IF* bit. NOTE: S_IFMT check is not enough, need to check every know type. - inode item nlink Dir should have no more link than 1. - inode item flags Reviewed-by: Nikolay Borisov <nborisov@suse.com> Reviewed-by: Johannes Thumshirn <jthumshirn@suse.de> Signed-off-by: Qu Wenruo <wqu@suse.com> Reviewed-by: David Sterba <dsterba@suse.com> Signed-off-by: David Sterba <dsterba@suse.com>
2019-04-29btrfs: qgroup: remove obsolete fs_info membersDavid Sterba
The commit fcebe4562dec ("Btrfs: rework qgroup accounting") reworked qgroups and added some new structures. Another rework of qgroup mechanics e69bcee37692 ("btrfs: qgroup: Cleanup the old ref_node-oriented mechanism.") stopped using them and left uncleaned. Reviewed-by: Qu Wenruo <wqu@suse.com> Signed-off-by: David Sterba <dsterba@suse.com>
2019-04-29btrfs: get fs_info from eb in btrfs_leaf_free_spaceDavid Sterba
We can read fs_info from extent buffer and can drop it from the parameters. Signed-off-by: David Sterba <dsterba@suse.com>
2019-04-29btrfs: get fs_info from eb in btrfs_exclude_logged_extentsDavid Sterba
We can read fs_info from extent buffer and can drop it from the parameters. Signed-off-by: David Sterba <dsterba@suse.com>
2019-04-29btrfs: get fs_info from eb in leaf_data_endDavid Sterba
We can read fs_info from extent buffer and can drop it from the parameters. Signed-off-by: David Sterba <dsterba@suse.com>
2019-04-29btrfs: Make btrfs_(set|clear)_header_flag return voidQu Wenruo
From the introduction of btrfs_(set|clear)_header_flag, there is no usage of its return value. So just make it return void. Reviewed-by: Nikolay Borisov <nborisov@suse.com> Signed-off-by: Qu Wenruo <wqu@suse.com> Reviewed-by: David Sterba <dsterba@suse.com> Signed-off-by: David Sterba <dsterba@suse.com>
2019-03-12Merge tag 'for-5.1-part2-tag' of ↵Linus Torvalds
git://git.kernel.org/pub/scm/linux/kernel/git/kdave/linux Pull btrfs fixes from David Sterba: "Correctness and a deadlock fixes" * tag 'for-5.1-part2-tag' of git://git.kernel.org/pub/scm/linux/kernel/git/kdave/linux: btrfs: zstd: ensure reclaim timer is properly cleaned up btrfs: move ulist allocation out of transaction in quota enable btrfs: save drop_progress if we drop refs at all btrfs: check for refs on snapshot delete resume Btrfs: fix deadlock between clone/dedupe and rename Btrfs: fix corruption reading shared and compressed extents after hole punching
2019-03-07Merge branch 'akpm' (patches from Andrew)Linus Torvalds
Merge more updates from Andrew Morton: - some of the rest of MM - various misc things - dynamic-debug updates - checkpatch - some epoll speedups - autofs - rapidio - lib/, lib/lzo/ updates * emailed patches from Andrew Morton <akpm@linux-foundation.org>: (83 commits) samples/mic/mpssd/mpssd.h: remove duplicate header kernel/fork.c: remove duplicated include include/linux/relay.h: fix percpu annotation in struct rchan arch/nios2/mm/fault.c: remove duplicate include unicore32: stop printing the virtual memory layout MAINTAINERS: fix GTA02 entry and mark as orphan mm: create the new vm_fault_t type arm, s390, unicore32: remove oneliner wrappers for memblock_alloc() arch: simplify several early memory allocations openrisc: simplify pte_alloc_one_kernel() sh: prefer memblock APIs returning virtual address microblaze: prefer memblock API returning virtual address powerpc: prefer memblock APIs returning virtual address lib/lzo: separate lzo-rle from lzo lib/lzo: implement run-length encoding lib/lzo: fast 8-byte copy on arm64 lib/lzo: 64-bit CTZ on arm64 lib/lzo: tidy-up ifdefs ipc/sem.c: replace kvmalloc/memset with kvzalloc and use struct_size ipc: annotate implicit fall through ...
2019-03-07btrfs: implement btrfs_debug* in terms of helper macroRasmus Villemoes
First, the btrfs_debug macros open-code (one possible definition of) DYNAMIC_DEBUG_BRANCH, so they don't benefit from the CONFIG_JUMP_LABEL optimization. Second, a planned change of struct _ddebug (to reduce its size on 64 bit machines) requires that all descriptors in a translation unit use distinct identifiers. Using the new _dynamic_func_call_no_desc helper macro from dynamic_debug.h takes care of both of these. No functional change. Link: http://lkml.kernel.org/r/20190212214150.4807-12-linux@rasmusvillemoes.dk Signed-off-by: Rasmus Villemoes <linux@rasmusvillemoes.dk> Acked-by: David Sterba <dsterba@suse.com> Acked-by: Jason Baron <jbaron@akamai.com> Cc: Greg Kroah-Hartman <gregkh@linuxfoundation.org> Cc: Ingo Molnar <mingo@kernel.org> Cc: Petr Mladek <pmladek@suse.com> Cc: "Rafael J . Wysocki" <rafael.j.wysocki@intel.com> Cc: Steven Rostedt <rostedt@goodmis.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2019-02-27btrfs: check for refs on snapshot delete resumeJosef Bacik
There's a bug in snapshot deletion where we won't update the drop_progress key if we're in the UPDATE_BACKREF stage. This is a problem because we could drop refs for blocks we know don't belong to ours. If we crash or umount at the right time we could experience messages such as the following when snapshot deletion resumes BTRFS error (device dm-3): unable to find ref byte nr 66797568 parent 0 root 258 owner 1 offset 0 ------------[ cut here ]------------ WARNING: CPU: 3 PID: 16052 at fs/btrfs/extent-tree.c:7108 __btrfs_free_extent.isra.78+0x62c/0xb30 [btrfs] CPU: 3 PID: 16052 Comm: umount Tainted: G W OE 5.0.0-rc4+ #147 Hardware name: To Be Filled By O.E.M. To Be Filled By O.E.M./890FX Deluxe5, BIOS P1.40 05/03/2011 RIP: 0010:__btrfs_free_extent.isra.78+0x62c/0xb30 [btrfs] RSP: 0018:ffffc90005cd7b18 EFLAGS: 00010286 RAX: 0000000000000000 RBX: 0000000000000001 RCX: 0000000000000000 RDX: ffff88842fade680 RSI: ffff88842fad6b18 RDI: ffff88842fad6b18 RBP: ffffc90005cd7bc8 R08: 0000000000000000 R09: 0000000000000001 R10: 0000000000000001 R11: ffffffff822696b8 R12: 0000000003fb4000 R13: 0000000000000001 R14: 0000000000000102 R15: ffff88819c9d67e0 FS: 00007f08bb138fc0(0000) GS:ffff88842fac0000(0000) knlGS:0000000000000000 CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033 CR2: 00007f8f5d861ea0 CR3: 00000003e99fe000 CR4: 00000000000006e0 Call Trace: ? _raw_spin_unlock+0x27/0x40 ? btrfs_merge_delayed_refs+0x356/0x3e0 [btrfs] __btrfs_run_delayed_refs+0x75a/0x13c0 [btrfs] ? join_transaction+0x2b/0x460 [btrfs] btrfs_run_delayed_refs+0xf3/0x1c0 [btrfs] btrfs_commit_transaction+0x52/0xa50 [btrfs] ? start_transaction+0xa6/0x510 [btrfs] btrfs_sync_fs+0x79/0x1c0 [btrfs] sync_filesystem+0x70/0x90 generic_shutdown_super+0x27/0x120 kill_anon_super+0x12/0x30 btrfs_kill_super+0x16/0xa0 [btrfs] deactivate_locked_super+0x43/0x70 deactivate_super+0x40/0x60 cleanup_mnt+0x3f/0x80 __cleanup_mnt+0x12/0x20 task_work_run+0x8b/0xc0 exit_to_usermode_loop+0xce/0xd0 do_syscall_64+0x20b/0x210 entry_SYSCALL_64_after_hwframe+0x49/0xbe To fix this simply mark dead roots we read from disk as DEAD and then set the walk_control->restarted flag so we know we have a restarted deletion. From here whenever we try to drop refs for blocks we check to verify our ref is set on them, and if it is not we skip it. Once we find a ref that is set we unset walk_control->restarted since the tree should be in a normal state from then on, and any problems we run into from there are different issues. I tested this with an existing broken fs and my reproducer that creates a broken fs and it fixed both file systems. Reviewed-by: Filipe Manana <fdmanana@suse.com> Signed-off-by: Josef Bacik <josef@toxicpanda.com> Signed-off-by: David Sterba <dsterba@suse.com>
2019-02-25btrfs: scrub: remove unused nocow worker pointerDavid Sterba
The member btrfs_fs_info::scrub_nocow_workers is unused since the nocow optimization was removed from scrub in 9bebe665c3e4 ("btrfs: scrub: Remove unused copy_nocow_pages and its callchain"). Reviewed-by: Anand Jain <anand.jain@oracle.com> Signed-off-by: David Sterba <dsterba@suse.com>
2019-02-25btrfs: scrub: add assertions for worker pointersDavid Sterba
The scrub worker pointers are not NULL iff the scrub is running, so reset them back once the last reference is dropped. Add assertions to the initial phase of scrub to verify that. Reviewed-by: Anand Jain <anand.jain@oracle.com> Signed-off-by: David Sterba <dsterba@suse.com>
2019-02-25btrfs: scrub: convert scrub_workers_refcnt to refcount_tAnand Jain
Use the refcount_t for fs_info::scrub_workers_refcnt instead of int so we get the extra checks. All reference changes are still done under scrub_lock. Signed-off-by: Anand Jain <anand.jain@oracle.com> Reviewed-by: David Sterba <dsterba@suse.com> Signed-off-by: David Sterba <dsterba@suse.com>
2019-02-25btrfs: don't use global reserve for chunk allocationJosef Bacik
We've done this forever because of the voodoo around knowing how much space we have. However, we have better ways of doing this now, and on normal file systems we'll easily have a global reserve of 512MiB, and since metadata chunks are usually 1GiB that means we'll allocate metadata chunks more readily. Instead use the actual used amount when determining if we need to allocate a chunk or not. This has a side effect for mixed block group fs'es where we are no longer allocating enough chunks for the data/metadata requirements. To deal with this add a ALLOC_CHUNK_FORCE step to the flushing state machine. This will only get used if we've already made a full loop through the flushing machinery and tried committing the transaction. If we have then we can try and force a chunk allocation since we likely need it to make progress. This resolves issues I was seeing with the mixed bg tests in xfstests without the new flushing state. Reviewed-by: Nikolay Borisov <nborisov@suse.com> Signed-off-by: Josef Bacik <josef@toxicpanda.com> [ merged with patch "add ALLOC_CHUNK_FORCE to the flushing code" ] Signed-off-by: David Sterba <dsterba@suse.com>
2019-02-25btrfs: replace cleaner_delayed_iput_mutex with a waitqueueJosef Bacik
The throttle path doesn't take cleaner_delayed_iput_mutex, which means we could think we're done flushing iputs in the data space reservation path when we could have a throttler doing an iput. There's no real reason to serialize the delayed iput flushing, so instead of taking the cleaner_delayed_iput_mutex whenever we flush the delayed iputs just replace it with an atomic counter and a waitqueue. This removes the short (or long depending on how big the inode is) window where we think there are no more pending iputs when there really are some. The waiting is killable as it could be indirectly called from user operations like fallocate or zero-range. Such call sites should handle the error but otherwise it's not necessary. Eg. flush_space just needs to attempt to make space by waiting on iputs. Signed-off-by: Josef Bacik <josef@toxicpanda.com> [ add killable comment and changelog parts ] Signed-off-by: David Sterba <dsterba@suse.com>