| Age | Commit message (Collapse) | Author |
|
commit 9e0af23764344f7f1b68e4eefbe7dc865018b63d upstream.
This has been reported and discussed for a long time, and this hang occurs in
both 3.15 and 3.16.
Btrfs now migrates to use kernel workqueue, but it introduces this hang problem.
Btrfs has a kind of work queued as an ordered way, which means that its
ordered_func() must be processed in the way of FIFO, so it usually looks like --
normal_work_helper(arg)
work = container_of(arg, struct btrfs_work, normal_work);
work->func() <---- (we name it work X)
for ordered_work in wq->ordered_list
ordered_work->ordered_func()
ordered_work->ordered_free()
The hang is a rare case, first when we find free space, we get an uncached block
group, then we go to read its free space cache inode for free space information,
so it will
file a readahead request
btrfs_readpages()
for page that is not in page cache
__do_readpage()
submit_extent_page()
btrfs_submit_bio_hook()
btrfs_bio_wq_end_io()
submit_bio()
end_workqueue_bio() <--(ret by the 1st endio)
queue a work(named work Y) for the 2nd
also the real endio()
So the hang occurs when work Y's work_struct and work X's work_struct happens
to share the same address.
A bit more explanation,
A,B,C -- struct btrfs_work
arg -- struct work_struct
kthread:
worker_thread()
pick up a work_struct from @worklist
process_one_work(arg)
worker->current_work = arg; <-- arg is A->normal_work
worker->current_func(arg)
normal_work_helper(arg)
A = container_of(arg, struct btrfs_work, normal_work);
A->func()
A->ordered_func()
A->ordered_free() <-- A gets freed
B->ordered_func()
submit_compressed_extents()
find_free_extent()
load_free_space_inode()
... <-- (the above readhead stack)
end_workqueue_bio()
btrfs_queue_work(work C)
B->ordered_free()
As if work A has a high priority in wq->ordered_list and there are more ordered
works queued after it, such as B->ordered_func(), its memory could have been
freed before normal_work_helper() returns, which means that kernel workqueue
code worker_thread() still has worker->current_work pointer to be work
A->normal_work's, ie. arg's address.
Meanwhile, work C is allocated after work A is freed, work C->normal_work
and work A->normal_work are likely to share the same address(I confirmed this
with ftrace output, so I'm not just guessing, it's rare though).
When another kthread picks up work C->normal_work to process, and finds our
kthread is processing it(see find_worker_executing_work()), it'll think
work C as a collision and skip then, which ends up nobody processing work C.
So the situation is that our kthread is waiting forever on work C.
Besides, there're other cases that can lead to deadlock, but the real problem
is that all btrfs workqueue shares one work->func, -- normal_work_helper,
so this makes each workqueue to have its own helper function, but only a
wraper pf normal_work_helper.
With this patch, I no long hit the above hang.
Signed-off-by: Liu Bo <bo.li.liu@oracle.com>
Signed-off-by: Chris Mason <clm@fb.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
commit f6dc45c7a93a011dff6eb9b2ffda59c390c7705a upstream.
We should only be flushing on close if the file was flagged as needing
it during truncate. I broke this with my ordered data vs transaction
commit deadlock fix.
Thanks to Miao Xie for catching this.
Signed-off-by: Chris Mason <clm@fb.com>
Reported-by: Miao Xie <miaox@cn.fujitsu.com>
Reported-by: Fengguang Wu <fengguang.wu@intel.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
commit 38c1c2e44bacb37efd68b90b3f70386a8ee370ee upstream.
The crash is
------------[ cut here ]------------
kernel BUG at fs/btrfs/extent_io.c:2124!
[...]
Workqueue: btrfs-endio normal_work_helper [btrfs]
RIP: 0010:[<ffffffffa02d6055>] [<ffffffffa02d6055>] end_bio_extent_readpage+0xb45/0xcd0 [btrfs]
This is in fact a regression.
It is because we forgot to increase @offset properly in reading corrupted block,
so that the @offset remains, and this leads to checksum errors while reading
left blocks queued up in the same bio, and then ends up with hiting the above
BUG_ON.
Reported-by: Chris Murphy <lists@colorremedies.com>
Signed-off-by: Liu Bo <bo.li.liu@oracle.com>
Signed-off-by: Chris Mason <clm@fb.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
commit 8d875f95da43c6a8f18f77869f2ef26e9594fecc upstream.
Truncates and renames are often used to replace old versions of a file
with new versions. Applications often expect this to be an atomic
replacement, even if they haven't done anything to make sure the new
version is fully on disk.
Btrfs has strict flushing in place to make sure that renaming over an
old file with a new file will fully flush out the new file before
allowing the transaction commit with the rename to complete.
This ordering means the commit code needs to be able to lock file pages,
and there are a few paths in the filesystem where we will try to end a
transaction with the page lock held. It's rare, but these things can
deadlock.
This patch removes the ordered flushes and switches to a best effort
filemap_flush like ext4 uses. It's not perfect, but it should fix the
deadlocks.
Signed-off-by: Chris Mason <clm@fb.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
commit ce62003f690dff38d3164a632ec69efa15c32cbf upstream.
When failing to allocate space for the whole compressed extent, we'll
fallback to uncompressed IO, but we've forgotten to redirty the pages
which belong to this compressed extent, and these 'clean' pages will
simply skip 'submit' part and go to endio directly, at last we got data
corruption as we write nothing.
Signed-off-by: Liu Bo <bo.li.liu@oracle.com>
Tested-By: Martin Steigerwald <martin@lichtvoll.de>
Signed-off-by: Chris Mason <clm@fb.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
commit 6f7ff6d7832c6be13e8c95598884dbc40ad69fb7 upstream.
Before processing the extent buffer, acquire a read lock on it, so
that we're safe against concurrent updates on the extent buffer.
Signed-off-by: Filipe Manana <fdmanana@suse.com>
Signed-off-by: Chris Mason <clm@fb.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
commit 27b9a8122ff71a8cadfbffb9c4f0694300464f3b upstream.
Under rare circumstances we can end up leaving 2 versions of a checksum
for the same file extent range.
The reason for this is that after calling btrfs_next_leaf we process
slot 0 of the leaf it returns, instead of processing the slot set in
path->slots[0]. Most of the time (by far) path->slots[0] is 0, but after
btrfs_next_leaf() releases the path and before it searches for the next
leaf, another task might cause a split of the next leaf, which migrates
some of its keys to the leaf we were processing before calling
btrfs_next_leaf(). In this case btrfs_next_leaf() returns again the
same leaf but with path->slots[0] having a slot number corresponding
to the first new key it got, that is, a slot number that didn't exist
before calling btrfs_next_leaf(), as the leaf now has more keys than
it had before. So we must really process the returned leaf starting at
path->slots[0] always, as it isn't always 0, and the key at slot 0 can
have an offset much lower than our search offset/bytenr.
For example, consider the following scenario, where we have:
sums->bytenr: 40157184, sums->len: 16384, sums end: 40173568
four 4kb file data blocks with offsets 40157184, 40161280, 40165376, 40169472
Leaf N:
slot = 0 slot = btrfs_header_nritems() - 1
|-------------------------------------------------------------------|
| [(CSUM CSUM 39239680), size 8] ... [(CSUM CSUM 40116224), size 4] |
|-------------------------------------------------------------------|
Leaf N + 1:
slot = 0 slot = btrfs_header_nritems() - 1
|--------------------------------------------------------------------|
| [(CSUM CSUM 40161280), size 32] ... [((CSUM CSUM 40615936), size 8 |
|--------------------------------------------------------------------|
Because we are at the last slot of leaf N, we call btrfs_next_leaf() to
find the next highest key, which releases the current path and then searches
for that next key. However after releasing the path and before finding that
next key, the item at slot 0 of leaf N + 1 gets moved to leaf N, due to a call
to ctree.c:push_leaf_left() (via ctree.c:split_leaf()), and therefore
btrfs_next_leaf() will returns us a path again with leaf N but with the slot
pointing to its new last key (CSUM CSUM 40161280). This new version of leaf N
is then:
slot = 0 slot = btrfs_header_nritems() - 2 slot = btrfs_header_nritems() - 1
|----------------------------------------------------------------------------------------------------|
| [(CSUM CSUM 39239680), size 8] ... [(CSUM CSUM 40116224), size 4] [(CSUM CSUM 40161280), size 32] |
|----------------------------------------------------------------------------------------------------|
And incorrecly using slot 0, makes us set next_offset to 39239680 and we jump
into the "insert:" label, which will set tmp to:
tmp = min((sums->len - total_bytes) >> blocksize_bits,
(next_offset - file_key.offset) >> blocksize_bits) =
min((16384 - 0) >> 12, (39239680 - 40157184) >> 12) =
min(4, (u64)-917504 = 18446744073708634112 >> 12) = 4
and
ins_size = csum_size * tmp = 4 * 4 = 16 bytes.
In other words, we insert a new csum item in the tree with key
(CSUM_OBJECTID CSUM_KEY 40157184 = sums->bytenr) that contains the checksums
for all the data (4 blocks of 4096 bytes each = sums->len). Which is wrong,
because the item with key (CSUM CSUM 40161280) (the one that was moved from
leaf N + 1 to the end of leaf N) contains the old checksums of the last 12288
bytes of our data and won't get those old checksums removed.
So this leaves us 2 different checksums for 3 4kb blocks of data in the tree,
and breaks the logical rule:
Key_N+1.offset >= Key_N.offset + length_of_data_its_checksums_cover
An obvious bad effect of this is that a subsequent csum tree lookup to get
the checksum of any of the blocks with logical offset of 40161280, 40165376
or 40169472 (the last 3 4kb blocks of file data), will get the old checksums.
Signed-off-by: Filipe Manana <fdmanana@suse.com>
Signed-off-by: Chris Mason <clm@fb.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
commit 4eb1f66dce6c4dc28dd90a7ffbe6b2b1cb08aa4e upstream.
We've got bug reports that btrfs crashes when quota is enabled on
32bit kernel, typically with the Oops like below:
BUG: unable to handle kernel NULL pointer dereference at 00000004
IP: [<f9234590>] find_parent_nodes+0x360/0x1380 [btrfs]
*pde = 00000000
Oops: 0000 [#1] SMP
CPU: 0 PID: 151 Comm: kworker/u8:2 Tainted: G S W 3.15.2-1.gd43d97e-default #1
Workqueue: btrfs-qgroup-rescan normal_work_helper [btrfs]
task: f1478130 ti: f147c000 task.ti: f147c000
EIP: 0060:[<f9234590>] EFLAGS: 00010213 CPU: 0
EIP is at find_parent_nodes+0x360/0x1380 [btrfs]
EAX: f147dda8 EBX: f147ddb0 ECX: 00000011 EDX: 00000000
ESI: 00000000 EDI: f147dda4 EBP: f147ddf8 ESP: f147dd38
DS: 007b ES: 007b FS: 00d8 GS: 00e0 SS: 0068
CR0: 8005003b CR2: 00000004 CR3: 00bf3000 CR4: 00000690
Stack:
00000000 00000000 f147dda4 00000050 00000001 00000000 00000001 00000050
00000001 00000000 d3059000 00000001 00000022 000000a8 00000000 00000000
00000000 000000a1 00000000 00000000 00000001 00000000 00000000 11800000
Call Trace:
[<f923564d>] __btrfs_find_all_roots+0x9d/0xf0 [btrfs]
[<f9237bb1>] btrfs_qgroup_rescan_worker+0x401/0x760 [btrfs]
[<f9206148>] normal_work_helper+0xc8/0x270 [btrfs]
[<c025e38b>] process_one_work+0x11b/0x390
[<c025eea1>] worker_thread+0x101/0x340
[<c026432b>] kthread+0x9b/0xb0
[<c0712a71>] ret_from_kernel_thread+0x21/0x30
[<c0264290>] kthread_create_on_node+0x110/0x110
This indicates a NULL corruption in prefs_delayed list. The further
investigation and bisection pointed that the call of ulist_add_merge()
results in the corruption.
ulist_add_merge() takes u64 as aux and writes a 64bit value into
old_aux. The callers of this function in backref.c, however, pass a
pointer of a pointer to old_aux. That is, the function overwrites
64bit value on 32bit pointer. This caused a NULL in the adjacent
variable, in this case, prefs_delayed.
Here is a quick attempt to band-aid over this: a new function,
ulist_add_merge_ptr() is introduced to pass/store properly a pointer
value instead of u64. There are still ugly void ** cast remaining
in the callers because void ** cannot be taken implicitly. But, it's
safer than explicit cast to u64, anyway.
Bugzilla: https://bugzilla.novell.com/show_bug.cgi?id=887046
Signed-off-by: Takashi Iwai <tiwai@suse.de>
Signed-off-by: Chris Mason <clm@fb.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
git://git.kernel.org/pub/scm/linux/kernel/git/mason/linux-btrfs
Pull btrfs fixes from Chris Mason:
"We have two more fixes in my for-linus branch.
I was hoping to also include a fix for a btrfs deadlock with
compression enabled, but we're still nailing that one down"
* 'for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/mason/linux-btrfs:
btrfs: test for valid bdev before kobj removal in btrfs_rm_device
Btrfs: fix abnormal long waiting in fsync
|
|
commit 99994cd btrfs: dev delete should remove sysfs entry
added a btrfs_kobj_rm_device, which dereferences device->bdev...
right after we check whether device->bdev might be NULL.
I don't honestly know if it's possible to have a NULL device->bdev
here, but assuming that it is (given the test), we need to move
the kobject removal to be under that test.
(Coverity spotted this)
Signed-off-by: Eric Sandeen <sandeen@redhat.com>
Signed-off-by: Chris Mason <clm@fb.com>
|
|
xfstests generic/127 detected this problem.
With commit 7fc34a62ca4434a79c68e23e70ed26111b7a4cf8, now fsync will only flush
data within the passed range. This is the cause of the above problem,
-- btrfs's fsync has a stage called 'sync log' which will wait for all the
ordered extents it've recorded to finish.
In xfstests/generic/127, with mixed operations such as truncate, fallocate,
punch hole, and mapwrite, we get some pre-allocated extents, and mapwrite will
mmap, and then msync. And I find that msync will wait for quite a long time
(about 20s in my case), thanks to ftrace, it turns out that the previous
fallocate calls 'btrfs_wait_ordered_range()' to flush dirty pages, but as the
range of dirty pages may be larger than 'btrfs_wait_ordered_range()' wants,
there can be some ordered extents created but not getting corresponding pages
flushed, then they're left in memory until we fsync which runs into the
stage 'sync log', and fsync will just wait for the system writeback thread
to flush those pages and get ordered extents finished, so the latency is
inevitable.
This adds a flush similar to btrfs_start_ordered_extent() in
btrfs_wait_logged_extents() to fix that.
Reviewed-by: Miao Xie <miaox@cn.fujitsu.com>
Signed-off-by: Liu Bo <bo.li.liu@oracle.com>
Signed-off-by: Chris Mason <clm@fb.com>
|
|
git://git.kernel.org/pub/scm/linux/kernel/git/mason/linux-btrfs
Pull btrfs fixes from Chris Mason:
"We've queued up a few fixes in my for-linus branch"
* 'for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/mason/linux-btrfs:
Btrfs: fix crash when starting transaction
Btrfs: fix btrfs_print_leaf for skinny metadata
Btrfs: fix race of using total_bytes_pinned
btrfs: use E2BIG instead of EIO if compression does not help
btrfs: remove stale comment from btrfs_flush_all_pending_stuffs
Btrfs: fix use-after-free when cloning a trailing file hole
btrfs: fix null pointer dereference in btrfs_show_devname when name is null
btrfs: fix null pointer dereference in clone_fs_devices when name is null
btrfs: fix nossd and ssd_spread mount option regression
Btrfs: fix race between balance recovery and root deletion
Btrfs: atomically set inode->i_flags in btrfs_update_iflags
btrfs: only unlock block in verify_parent_transid if we locked it
Btrfs: assert send doesn't attempt to start transactions
btrfs compression: reuse recently used workspace
Btrfs: fix crash when mounting raid5 btrfs with missing disks
btrfs: create sprout should rename fsid on the sysfs as well
btrfs: dev replace should replace the sysfs entry
btrfs: dev add should add its sysfs entry
btrfs: dev delete should remove sysfs entry
btrfs: rename add_device_membership to btrfs_kobj_add_device
|
|
Often when starting a transaction we commit the currently running transaction,
which can end up writing block group caches when the current process has its
journal_info set to NULL (and not to a transaction). This makes our assertion
at btrfs_check_data_free_space() (current_journal != NULL) fail, resulting
in a crash/hang. Therefore fix it by setting journal_info.
Two different traces of this issue follow below.
1)
[51502.241936] BTRFS: assertion failed: current->journal_info, file: fs/btrfs/extent-tree.c, line: 3670
[51502.242213] ------------[ cut here ]------------
[51502.242493] kernel BUG at fs/btrfs/ctree.h:3964!
[51502.242669] invalid opcode: 0000 [#1] SMP DEBUG_PAGEALLOC
(...)
[51502.244010] Call Trace:
[51502.244010] [<ffffffffa02bc025>] btrfs_check_data_free_space+0x395/0x3a0 [btrfs]
[51502.244010] [<ffffffffa02c3bdc>] btrfs_write_dirty_block_groups+0x4ac/0x640 [btrfs]
[51502.244010] [<ffffffffa0357a6a>] commit_cowonly_roots+0x164/0x226 [btrfs]
[51502.244010] [<ffffffffa02d53cd>] btrfs_commit_transaction+0x4ed/0xab0 [btrfs]
[51502.244010] [<ffffffff8168ec7b>] ? _raw_spin_unlock+0x2b/0x40
[51502.244010] [<ffffffffa02d6259>] start_transaction+0x459/0x620 [btrfs]
[51502.244010] [<ffffffffa02d67ab>] btrfs_start_transaction+0x1b/0x20 [btrfs]
[51502.244010] [<ffffffffa02d73e1>] __unlink_start_trans+0x31/0xe0 [btrfs]
[51502.244010] [<ffffffffa02dea67>] btrfs_unlink+0x37/0xc0 [btrfs]
[51502.244010] [<ffffffff811bb054>] ? do_unlinkat+0x114/0x2a0
[51502.244010] [<ffffffff811baebc>] vfs_unlink+0xcc/0x150
[51502.244010] [<ffffffff811bb1a0>] do_unlinkat+0x260/0x2a0
[51502.244010] [<ffffffff811a9ef4>] ? filp_close+0x64/0x90
[51502.244010] [<ffffffff810aaea6>] ? trace_hardirqs_on_caller+0x16/0x1e0
[51502.244010] [<ffffffff81349cab>] ? trace_hardirqs_on_thunk+0x3a/0x3f
[51502.244010] [<ffffffff811be9eb>] SyS_unlinkat+0x1b/0x40
[51502.244010] [<ffffffff81698452>] system_call_fastpath+0x16/0x1b
[51502.244010] Code: 0b 55 48 89 e5 0f 0b 55 48 89 e5 0f 0b 55 89 f1 48 c7 c2 71 13 36 a0 48 89 fe 31 c0 48 c7 c7 b8 43 36 a0 48 89 e5 e8 5d b0 32 e1 <0f> 0b 0f 1f 44 00 00 55 b9 11 00 00 00 48 89 e5 41 55 49 89 f5
[51502.244010] RIP [<ffffffffa03575da>] assfail.constprop.88+0x1e/0x20 [btrfs]
2)
[25405.097230] BTRFS: assertion failed: current->journal_info, file: fs/btrfs/extent-tree.c, line: 3670
[25405.097488] ------------[ cut here ]------------
[25405.097767] kernel BUG at fs/btrfs/ctree.h:3964!
[25405.097940] invalid opcode: 0000 [#1] SMP DEBUG_PAGEALLOC
(...)
[25405.100008] Call Trace:
[25405.100008] [<ffffffffa02bc025>] btrfs_check_data_free_space+0x395/0x3a0 [btrfs]
[25405.100008] [<ffffffffa02c3bdc>] btrfs_write_dirty_block_groups+0x4ac/0x640 [btrfs]
[25405.100008] [<ffffffffa035755a>] commit_cowonly_roots+0x164/0x226 [btrfs]
[25405.100008] [<ffffffffa02d53cd>] btrfs_commit_transaction+0x4ed/0xab0 [btrfs]
[25405.100008] [<ffffffff8109c170>] ? bit_waitqueue+0xc0/0xc0
[25405.100008] [<ffffffffa02d6259>] start_transaction+0x459/0x620 [btrfs]
[25405.100008] [<ffffffffa02d67ab>] btrfs_start_transaction+0x1b/0x20 [btrfs]
[25405.100008] [<ffffffffa02e3407>] btrfs_create+0x47/0x210 [btrfs]
[25405.100008] [<ffffffffa02d74cc>] ? btrfs_permission+0x3c/0x80 [btrfs]
[25405.100008] [<ffffffff811bc63b>] vfs_create+0x9b/0x130
[25405.100008] [<ffffffff811bcf19>] do_last+0x849/0xe20
[25405.100008] [<ffffffff811b9409>] ? link_path_walk+0x79/0x820
[25405.100008] [<ffffffff811bd5b5>] path_openat+0xc5/0x690
[25405.100008] [<ffffffff810ab07d>] ? trace_hardirqs_on+0xd/0x10
[25405.100008] [<ffffffff811cdcd2>] ? __alloc_fd+0x32/0x1d0
[25405.100008] [<ffffffff811be2a3>] do_filp_open+0x43/0xa0
[25405.100008] [<ffffffff811cddf1>] ? __alloc_fd+0x151/0x1d0
[25405.100008] [<ffffffff811abcfc>] do_sys_open+0x13c/0x230
[25405.100008] [<ffffffff810aaea6>] ? trace_hardirqs_on_caller+0x16/0x1e0
[25405.100008] [<ffffffff811abe12>] SyS_open+0x22/0x30
[25405.100008] [<ffffffff81698452>] system_call_fastpath+0x16/0x1b
[25405.100008] Code: 0b 55 48 89 e5 0f 0b 55 48 89 e5 0f 0b 55 89 f1 48 c7 c2 51 13 36 a0 48 89 fe 31 c0 48 c7 c7 d0 43 36 a0 48 89 e5 e8 6d b5 32 e1 <0f> 0b 0f 1f 44 00 00 55 b9 11 00 00 00 48 89 e5 41 55 49 89 f5
[25405.100008] RIP [<ffffffffa03570ca>] assfail.constprop.88+0x1e/0x20 [btrfs]
Signed-off-by: Filipe David Borba Manana <fdmanana@gmail.com>
Signed-off-by: Chris Mason <clm@fb.com>
|
|
We wouldn't actuall print the extent information if we had a skinny metadata
item, this fixes that. Thanks,
Signed-off-by: Josef Bacik <jbacik@fb.com>
Signed-off-by: Chris Mason <clm@fb.com>
|
|
This percpu counter @total_bytes_pinned is introduced to skip unnecessary
operations of 'commit transaction', it accounts for those space we may free
but are stuck in delayed refs.
And we zero out @space_info->total_bytes_pinned every transaction period so
we have a better idea of how much space we'll actually free up by committing
this transaction. However, we do the 'zero out' part a little earlier, before
we actually unpin space, so we end up returning ENOSPC when we actually have
free space that's just unpinned from committing transaction.
xfstests/generic/074 complained then.
This fixes it by actually accounting the percpu pinned number when 'unpin',
and since it's protected by space_info->lock, the race is gone now.
Signed-off-by: Liu Bo <bo.li.liu@oracle.com>
Reviewed-by: Miao Xie <miaox@cn.fujitsu.com>
Signed-off-by: Chris Mason <clm@fb.com>
|
|
Return codes got updated in 60e1975acb48fc3d74a3422b21dde74c977ac3d5
(btrfs: return errno instead of -1 from compression)
lzo wrapper returns E2BIG in this case, do the same for zlib.
Signed-off-by: David Sterba <dsterba@suse.cz>
|
|
Commit fcebe4562dec83b3f8d3088d77584727b09130b2 (Btrfs: rework qgroup
accounting) removed the qgroup accounting after delayed refs.
Signed-off-by: David Sterba <dsterba@suse.cz>
|
|
The transaction handle was being used after being freed.
Cc: Chris Mason <clm@fb.com>
Signed-off-by: Filipe David Borba Manana <fdmanana@gmail.com>
Signed-off-by: Chris Mason <clm@fb.com>
|
|
dev->name is null but missing flag is not set.
Strictly speaking the missing flag should have been set, but there
are more places where code just checks if name is null. For now this
patch does the same.
stack:
BUG: unable to handle kernel NULL pointer dereference at 0000000000000064
IP: [<ffffffffa0228908>] btrfs_show_devname+0x58/0xf0 [btrfs]
[<ffffffff81198879>] show_vfsmnt+0x39/0x130
[<ffffffff81178056>] m_show+0x16/0x20
[<ffffffff8117d706>] seq_read+0x296/0x390
[<ffffffff8115aa7d>] vfs_read+0x9d/0x160
[<ffffffff8115b549>] SyS_read+0x49/0x90
[<ffffffff817abe52>] system_call_fastpath+0x16/0x1b
reproducer:
mkfs.btrfs -draid1 -mraid1 /dev/sdg1 /dev/sdg2
btrfstune -S 1 /dev/sdg1
modprobe -r btrfs && modprobe btrfs
mount -o degraded /dev/sdg1 /btrfs
btrfs dev add /dev/sdg3 /btrfs
Signed-off-by: Anand Jain <Anand.Jain@oracle.com>
Signed-off-by: Chris Mason <clm@fb.com>
|
|
when one of the device path is missing btrfs_device name is null. So this
patch will check for that.
stack:
BUG: unable to handle kernel NULL pointer dereference at 0000000000000010
IP: [<ffffffff812e18c0>] strlen+0x0/0x30
[<ffffffffa01cd92a>] ? clone_fs_devices+0xaa/0x160 [btrfs]
[<ffffffffa01cdcf7>] btrfs_init_new_device+0x317/0xca0 [btrfs]
[<ffffffff81155bca>] ? __kmalloc_track_caller+0x15a/0x1a0
[<ffffffffa01d6473>] btrfs_ioctl+0xaa3/0x2860 [btrfs]
[<ffffffff81132a6c>] ? handle_mm_fault+0x48c/0x9c0
[<ffffffff81192a61>] ? __blkdev_put+0x171/0x180
[<ffffffff817a784c>] ? __do_page_fault+0x4ac/0x590
[<ffffffff81193426>] ? blkdev_put+0x106/0x110
[<ffffffff81179175>] ? mntput+0x35/0x40
[<ffffffff8116d4b0>] do_vfs_ioctl+0x460/0x4a0
[<ffffffff8115c72e>] ? ____fput+0xe/0x10
[<ffffffff81068033>] ? task_work_run+0xb3/0xd0
[<ffffffff8116d547>] SyS_ioctl+0x57/0x90
[<ffffffff817a793e>] ? do_page_fault+0xe/0x10
[<ffffffff817abe52>] system_call_fastpath+0x16/0x1b
reproducer:
mkfs.btrfs -draid1 -mraid1 /dev/sdg1 /dev/sdg2
btrfstune -S 1 /dev/sdg1
modprobe -r btrfs && modprobe btrfs
mount -o degraded /dev/sdg1 /btrfs
btrfs dev add /dev/sdg3 /btrfs
Signed-off-by: Anand Jain <Anand.Jain@oracle.com>
Signed-off-by: Chris Mason <clm@fb.com>
|
|
The commit
0780253 btrfs: Cleanup the btrfs_parse_options for remount.
broke ssd options quite badly; it stopped making ssd_spread
imply ssd, and it made "nossd" unsettable.
Put things back at least as well as they were before
(though ssd mount option handling is still pretty odd:
# mount -o "nossd,ssd_spread" works?)
Reported-by: Roman Mamedov <rm@romanrm.net>
Signed-off-by: Eric Sandeen <sandeen@redhat.com>
Signed-off-by: Chris Mason <clm@fb.com>
|
|
Balance recovery is called when RW mounting or remounting from
RO to RW, it is called to finish roots merging.
When doing balance recovery, relocation root's corresponding
fs root(whose root refs is 0) might be destroyed by cleaner
thread, this will make btrfs fail to mount.
Fix this problem by holding @cleaner_mutex when doing balance
recovery.
Signed-off-by: Wang Shilong <wangsl.fnst@cn.fujitsu.com>
Signed-off-by: Chris Mason <clm@fb.com>
|
|
This change is based on the corresponding recent change for ext4:
ext4: atomically set inode->i_flags in ext4_set_inode_flags()
That has the following commit message that applies to btrfs as well:
"Use cmpxchg() to atomically set i_flags instead of clearing out the
S_IMMUTABLE, S_APPEND, etc. flags and then setting them from the
EXT4_IMMUTABLE_FL, EXT4_APPEND_FL flags, since this opens up a race
where an immutable file has the immutable flag cleared for a brief
window of time."
Replacing EXT4_IMMUTABLE_FL and EXT4_APPEND_FL with BTRFS_INODE_IMMUTABLE
and BTRFS_INODE_APPEND, respectively.
Reviewed-by: David Sterba <dsterba@suse.cz>
Reviewed-by: Satoru Takeuchi <takeuchi_satoru@jp.fujitsu.com>
Signed-off-by: Filipe David Borba Manana <fdmanana@gmail.com>
Signed-off-by: Chris Mason <clm@fb.com>
|
|
This is a regression from my patch a26e8c9f75b0bfd8cccc9e8f110737b136eb5994, we
need to only unlock the block if we were the one who locked it. Otherwise this
will trip BUG_ON()'s in locking.c Thanks,
cc: stable@vger.kernel.org
Signed-off-by: Josef Bacik <jbacik@fb.com>
Signed-off-by: Chris Mason <clm@fb.com>
|
|
When starting a transaction just assert that current->journal_info
doesn't contain a send transaction stub, since send isn't supposed
to start transactions and when it finishes (either successfully or
not) it's supposed to set current->journal_info to NULL.
This is motivated by the change titled:
Btrfs: fix crash when starting transaction
Signed-off-by: Filipe David Borba Manana <fdmanana@gmail.com>
Signed-off-by: Chris Mason <clm@fb.com>
|
|
Add compression `workspace' in free_workspace() to
`idle_workspace' list head, instead of tail. So we have
better chances to reuse most recently used `workspace'.
Signed-off-by: Sergey Senozhatsky <sergey.senozhatsky@gmail.com>
Reviewed-by: David Sterba <dsterba@suse.cz>
Signed-off-by: Chris Mason <clm@fb.com>
|
|
The reproducer is
$ mkfs.btrfs D1 D2 D3 -mraid5
$ mkfs.ext4 D2 && mkfs.ext4 D3
$ mount D1 /btrfs -odegraded
-------------------
[ 87.672992] ------------[ cut here ]------------
[ 87.673845] kernel BUG at fs/btrfs/raid56.c:1828!
...
[ 87.673845] RIP: 0010:[<ffffffff813efc7e>] [<ffffffff813efc7e>] __raid_recover_end_io+0x4ae/0x4d0
...
[ 87.673845] Call Trace:
[ 87.673845] [<ffffffff8116bbc6>] ? mempool_free+0x36/0xa0
[ 87.673845] [<ffffffff813f0255>] raid_recover_end_io+0x75/0xa0
[ 87.673845] [<ffffffff81447c5b>] bio_endio+0x5b/0xa0
[ 87.673845] [<ffffffff81447cb2>] bio_endio_nodec+0x12/0x20
[ 87.673845] [<ffffffff81374621>] end_workqueue_fn+0x41/0x50
[ 87.673845] [<ffffffff813ad2aa>] normal_work_helper+0xca/0x2c0
[ 87.673845] [<ffffffff8108ba2b>] process_one_work+0x1eb/0x530
[ 87.673845] [<ffffffff8108b9c9>] ? process_one_work+0x189/0x530
[ 87.673845] [<ffffffff8108c15b>] worker_thread+0x11b/0x4f0
[ 87.673845] [<ffffffff8108c040>] ? rescuer_thread+0x290/0x290
[ 87.673845] [<ffffffff810939c4>] kthread+0xe4/0x100
[ 87.673845] [<ffffffff810938e0>] ? kthread_create_on_node+0x220/0x220
[ 87.673845] [<ffffffff817e7c7c>] ret_from_fork+0x7c/0xb0
[ 87.673845] [<ffffffff810938e0>] ? kthread_create_on_node+0x220/0x220
-------------------
It's because that we miscalculate @rbio->bbio->error so that it doesn't
reach maximum of tolerable errors while it should have.
Signed-off-by: Liu Bo <bo.li.liu@oracle.com>
Tested-by: Satoru Takeuchi<takeuchi_satoru@jp.fujitsu.com>
Signed-off-by: Chris Mason <clm@fb.com>
|
|
Creating sprout will change the fsid of the mounted root.
do the same on the sysfs as well.
reproducer:
mount /dev/sdb /btrfs (seed disk)
btrfs dev add /dev/sdc /btrfs
mount -o rw,remount /btrfs
btrfs dev del /dev/sdb /btrfs
mount /dev/sdb /btrfs
Error:
kobject_add_internal failed for fe350492-dc28-4051-a601-e017b17e6145 with -EEXIST, don't try to register things with the same name in the same directory.
Signed-off-by: Anand Jain <anand.jain@oracle.com>
Reviewed-by: David Sterba <dsterba@suse.cz>
Signed-off-by: Chris Mason <clm@fb.com>
|
|
when we replace the device its corresponding sysfs
entry has to be replaced as well
Signed-off-by: Anand Jain <anand.jain@oracle.com>
Reviewed-by: David Sterba <dsterba@suse.cz>
Signed-off-by: Chris Mason <clm@fb.com>
|
|
we would need the device links to be created,
when device is added.
Signed-off-by: Anand Jain <Anand.Jain@oracle.com>
Reviewed-by: David Sterba <dsterba@suse.cz>
Signed-off-by: Chris Mason <clm@fb.com>
|
|
when we delete the device from the mounted btrfs,
we would need its corresponding sysfs enty to
be removed as well.
Signed-off-by: Anand Jain <Anand.Jain@oracle.com>
Reviewed-by: David Sterba <dsterba@suse.cz>
Signed-off-by: Chris Mason <clm@fb.com>
|
|
Signed-off-by: Anand Jain <anand.jain@oracle.com>
Reviewed-by: David Sterba <dsterba@suse.cz>
Signed-off-by: Chris Mason <clm@fb.com>
|
|
git://git.kernel.org/pub/scm/linux/kernel/git/mason/linux-btrfs
Pull btrfs fixes from Chris Mason:
"This fixes some lockups in btrfs reported with rc1. It probably has
some performance impact because it is backing off our spinning locks
more often and switching to a blocking lock. I'll be able to nail
that down next week, but for now I want to get the lockups taken care
of.
Otherwise some more stack reduction and assorted fixes"
* 'for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/mason/linux-btrfs:
Btrfs: fix wrong error handle when the device is missing or is not writeable
Btrfs: fix deadlock when mounting a degraded fs
Btrfs: use bio_endio_nodec instead of open code
Btrfs: fix NULL pointer crash when running balance and scrub concurrently
btrfs: Skip scrubbing removed chunks to avoid -ENOENT.
Btrfs: fix broken free space cache after the system crashed
Btrfs: make free space cache write out functions more readable
Btrfs: remove unused wait queue in struct extent_buffer
Btrfs: fix deadlocks with trylock on tree nodes
|
|
The original bio might be submitted, so we shoud increase bi_remaining to
account for it when we deal with the error that the device is missing or
is not writeable, or we would skip the endio handle.
Signed-off-by: Miao Xie <miaox@cn.fujitsu.com>
Signed-off-by: Chris Mason <clm@fb.com>
|
|
The deadlock happened when we mount degraded filesystem, the reproduced
steps are following:
# mkfs.btrfs -f -m raid1 -d raid1 <dev0> <dev1>
# echo 1 > /sys/block/`basename <dev0>`/device/delete
# mount -o degraded <dev1> <mnt>
The reason was that the counter -- bi_remaining was wrong. If the missing
or unwriteable device was the last device in the mapping array, we would
not submit the original bio, so we shouldn't increase bi_remaining of it
in btrfs_end_bio(), or we would skip the final endio handle.
Fix this problem by adding a flag into btrfs bio structure. If we submit
the original bio, we will set the flag, and we increase bi_remaining counter,
or we don't.
Though there is another way to fix it -- decrease bi_remaining counter of the
original bio when we make sure the original bio is not submitted, this method
need add more check and is easy to make mistake.
Signed-off-by: Miao Xie <miaox@cn.fujitsu.com>
Reviewed-by: Liu Bo <bo.li.liu@oracle.com>
Signed-off-by: Chris Mason <clm@fb.com>
|
|
Signed-off-by: Miao Xie <miaox@cn.fujitsu.com>
Signed-off-by: Chris Mason <clm@fb.com>
|
|
While running balance, scrub, fsstress concurrently we hit the
following kernel crash:
[56561.448845] BTRFS info (device sde): relocating block group 11005853696 flags 132
[56561.524077] BUG: unable to handle kernel NULL pointer dereference at 0000000000000078
[56561.524237] IP: [<ffffffffa038956d>] scrub_chunk.isra.12+0xdd/0x130 [btrfs]
[56561.524297] PGD 9be28067 PUD 7f3dd067 PMD 0
[56561.524325] Oops: 0000 [#1] SMP
[....]
[56561.527237] Call Trace:
[56561.527309] [<ffffffffa038980e>] scrub_enumerate_chunks+0x24e/0x490 [btrfs]
[56561.527392] [<ffffffff810abe00>] ? abort_exclusive_wait+0x50/0xb0
[56561.527476] [<ffffffffa038add4>] btrfs_scrub_dev+0x1a4/0x530 [btrfs]
[56561.527561] [<ffffffffa0368107>] btrfs_ioctl+0x13f7/0x2a90 [btrfs]
[56561.527639] [<ffffffff811c82f0>] do_vfs_ioctl+0x2e0/0x4c0
[56561.527712] [<ffffffff8109c384>] ? vtime_account_user+0x54/0x60
[56561.527788] [<ffffffff810f768c>] ? __audit_syscall_entry+0x9c/0xf0
[56561.527870] [<ffffffff811c8551>] SyS_ioctl+0x81/0xa0
[56561.527941] [<ffffffff815707f7>] tracesys+0xdd/0xe2
[...]
[56561.528304] RIP [<ffffffffa038956d>] scrub_chunk.isra.12+0xdd/0x130 [btrfs]
[56561.528395] RSP <ffff88004c0f5be8>
[56561.528454] CR2: 0000000000000078
This is because in btrfs_relocate_chunk(), we will free @bdev directly while
scrub may still hold extent mapping, and may access freed memory.
Fix this problem by wrapping freeing @bdev work into free_extent_map() which
is based on reference count.
Reported-by: Qu Wenruo <quwenruo@cn.fujitsu.com>
Signed-off-by: Wang Shilong <wangsl.fnst@cn.fujitsu.com>
Signed-off-by: Miao Xie <miaox@cn.fujitsu.com>
Signed-off-by: Chris Mason <clm@fb.com>
|
|
When run scrub with balance, sometimes -ENOENT will be returned, since
in scrub_enumerate_chunks() will search dev_extent in *COMMIT_ROOT*, but
btrfs_lookup_block_group() will search block group in *MEMORY*, so if a
chunk is removed but not committed, -ENOENT will be returned.
However, there is no need to stop scrubbing since other chunks may be
scrubbed without problem.
So this patch changes the behavior to skip removed chunks and continue
to scrub the rest.
Signed-off-by: Qu Wenruo <quwenruo@cn.fujitsu.com>
Signed-off-by: Miao Xie <miaox@cn.fujitsu.com>
Signed-off-by: Chris Mason <clm@fb.com>
|
|
When we mounted the filesystem after the crash, we got the following
message:
BTRFS error (device xxx): block group xxxx has wrong amount of free space
BTRFS error (device xxx): failed to load free space cache for block group xxx
It is because we didn't update the metadata of the allocated space (in extent
tree) until the file data was written into the disk. During this time, there was
no information about the allocated spaces in either the extent tree nor the
free space cache. when we wrote out the free space cache at this time (commit
transaction), those spaces were lost. In fact, only the free space that is
used to store the file data had this problem, the others didn't because
the metadata of them is updated in the same transaction context.
There are many methods which can fix the above problem
- track the allocated space, and write it out when we write out the free
space cache
- account the size of the allocated space that is used to store the file
data, if the size is not zero, don't write out the free space cache.
The first one is complex and may make the performance drop down.
This patch chose the second method, we use a per-block-group variant to
account the size of that allocated space. Besides that, we also introduce
a per-block-group read-write semaphore to avoid the race between
the allocation and the free space cache write out.
Signed-off-by: Miao Xie <miaox@cn.fujitsu.com>
Signed-off-by: Chris Mason <clm@fb.com>
|
|
This patch makes the free space cache write out functions more readable,
and beisdes that, it also reduces the stack space that the function --
__btrfs_write_out_cache uses from 194bytes to 144bytes.
Signed-off-by: Miao Xie <miaox@cn.fujitsu.com>
Signed-off-by: Chris Mason <clm@fb.com>
|
|
The lock_wq wait queue is not used anywhere, therefore just remove it.
On a x86_64 system, this reduced sizeof(struct extent_buffer) from 320
bytes down to 296 bytes, which means a 4Kb page can now be used for
13 extent buffers instead of 12.
Signed-off-by: Filipe David Borba Manana <fdmanana@gmail.com>
Signed-off-by: Chris Mason <clm@fb.com>
|
|
The Btrfs tree trylock function is poorly named. It always takes
the spinlock and backs off if the blocking lock is held. This
can lead to surprising lockups because people expect it to really be a
trylock.
This commit makes it a pure trylock, both for the spinlock and the
blocking lock. It also reworks the nested lock handling slightly to
avoid taking the read lock while a spinning write lock might be held.
Signed-off-by: Chris Mason <clm@fb.com>
|
|
git://git.kernel.org/pub/scm/linux/kernel/git/mason/linux-btrfs
Pull more btrfs updates from Chris Mason:
"This has a few fixes since our last pull and a new ioctl for doing
btree searches from userland. It's very similar to the existing
ioctl, but lets us return larger items back down to the app"
* 'for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/mason/linux-btrfs:
btrfs: fix error handling in create_pending_snapshot
btrfs: fix use of uninit "ret" in end_extent_writepage()
btrfs: free ulist in qgroup_shared_accounting() error path
Btrfs: fix qgroups sanity test crash or hang
btrfs: prevent RCU warning when dereferencing radix tree slot
Btrfs: fix unfinished readahead thread for raid5/6 degraded mounting
btrfs: new ioctl TREE_SEARCH_V2
btrfs: tree_search, search_ioctl: direct copy to userspace
btrfs: new function read_extent_buffer_to_user
btrfs: tree_search, copy_to_sk: return needed size on EOVERFLOW
btrfs: tree_search, copy_to_sk: return EOVERFLOW for too small buffer
btrfs: tree_search, search_ioctl: accept varying buffer
btrfs: tree_search: eliminate redundant nr_items check
|
|
fcebe456 cut and pasted some code to a later point
in create_pending_snapshot(), but didn't switch
to the appropriate error handling for this stage
of the function.
Signed-off-by: Eric Sandeen <sandeen@redhat.com>
Signed-off-by: Chris Mason <clm@fb.com>
|
|
If this condition in end_extent_writepage() is false:
if (tree->ops && tree->ops->writepage_end_io_hook)
we will then test an uninitialized "ret" at:
ret = ret < 0 ? ret : -EIO;
The test for ret is for the case where ->writepage_end_io_hook
failed, and we'd choose that ret as the error; but if
there is no ->writepage_end_io_hook, nothing sets ret.
Initializing ret to 0 should be sufficient; if
writepage_end_io_hook wasn't set, (!uptodate) means
non-zero err was passed in, so we choose -EIO in that case.
Signed-of-by: Eric Sandeen <sandeen@redhat.com>
Signed-off-by: Chris Mason <clm@fb.com>
|
|
If tmp = ulist_alloc(GFP_NOFS) fails, we return without
freeing the previously allocated qgroups = ulist_alloc(GFP_NOFS)
and cause a memory leak.
Signed-off-by: Eric Sandeen <sandeen@redhat.com>
Signed-off-by: Chris Mason <clm@fb.com>
|
|
Often when running the qgroups sanity test, a crash or a hang happened.
This is because the extent buffer the test uses for the root node doesn't
have an header level explicitly set, making it have a random level value.
This is a problem when it's not zero for the btrfs_search_slot() calls
the test ends up doing, resulting in crashes or hangs such as the following:
[ 6454.127192] Btrfs loaded, debug=on, assert=on, integrity-checker=on
(...)
[ 6454.127760] BTRFS: selftest: Running qgroup tests
[ 6454.127964] BTRFS: selftest: Running test_test_no_shared_qgroup
[ 6454.127966] BTRFS: selftest: Qgroup basic add
[ 6480.152005] BUG: soft lockup - CPU#0 stuck for 23s! [modprobe:5383]
[ 6480.152005] Modules linked in: btrfs(+) xor raid6_pq binfmt_misc nfsd auth_rpcgss oid_registry nfs_acl nfs lockd fscache sunrpc i2c_piix4 i2c_core pcspkr evbug psmouse serio_raw e1000 [last unloaded: btrfs]
[ 6480.152005] irq event stamp: 188448
[ 6480.152005] hardirqs last enabled at (188447): [<ffffffff8168ef5c>] restore_args+0x0/0x30
[ 6480.152005] hardirqs last disabled at (188448): [<ffffffff81698e6a>] apic_timer_interrupt+0x6a/0x80
[ 6480.152005] softirqs last enabled at (188446): [<ffffffff810516cf>] __do_softirq+0x1cf/0x450
[ 6480.152005] softirqs last disabled at (188441): [<ffffffff81051c25>] irq_exit+0xb5/0xc0
[ 6480.152005] CPU: 0 PID: 5383 Comm: modprobe Not tainted 3.15.0-rc8-fdm-btrfs-next-33+ #4
[ 6480.152005] Hardware name: Bochs Bochs, BIOS Bochs 01/01/2011
[ 6480.152005] task: ffff8802146125a0 ti: ffff8800d0d00000 task.ti: ffff8800d0d00000
[ 6480.152005] RIP: 0010:[<ffffffff81349a63>] [<ffffffff81349a63>] __write_lock_failed+0x13/0x20
[ 6480.152005] RSP: 0018:ffff8800d0d038e8 EFLAGS: 00000287
[ 6480.152005] RAX: 0000000000000000 RBX: ffffffff8168ef5c RCX: 000005deb8525852
[ 6480.152005] RDX: 0000000000000000 RSI: 0000000000001d45 RDI: ffff8802105000b8
[ 6480.152005] RBP: ffff8800d0d038e8 R08: fffffe12710f63db R09: ffffffffa03196fb
[ 6480.152005] R10: ffff8802146125a0 R11: ffff880214612e28 R12: ffff8800d0d03858
[ 6480.152005] R13: 0000000000000000 R14: ffff8800d0d00000 R15: ffff8802146125a0
[ 6480.152005] FS: 00007f14ff804700(0000) GS:ffff880215e00000(0000) knlGS:0000000000000000
[ 6480.152005] CS: 0010 DS: 0000 ES: 0000 CR0: 000000008005003b
[ 6480.152005] CR2: 00007fff4df0dac8 CR3: 00000000d1796000 CR4: 00000000000006f0
[ 6480.152005] Stack:
[ 6480.152005] ffff8800d0d03908 ffffffff810ae967 0000000000000001 ffff8802105000b8
[ 6480.152005] ffff8800d0d03938 ffffffff8168e57e ffffffffa0319c16 0000000000000007
[ 6480.152005] ffff880210500000 ffff880210500100 ffff8800d0d039b8 ffffffffa0319c16
[ 6480.152005] Call Trace:
[ 6480.152005] [<ffffffff810ae967>] do_raw_write_lock+0x47/0xa0
[ 6480.152005] [<ffffffff8168e57e>] _raw_write_lock+0x5e/0x80
[ 6480.152005] [<ffffffffa0319c16>] ? btrfs_tree_lock+0x116/0x270 [btrfs]
[ 6480.152005] [<ffffffffa0319c16>] btrfs_tree_lock+0x116/0x270 [btrfs]
[ 6480.152005] [<ffffffffa02b2acb>] btrfs_lock_root_node+0x3b/0x50 [btrfs]
[ 6480.152005] [<ffffffffa02b81a6>] btrfs_search_slot+0x916/0xa20 [btrfs]
[ 6480.152005] [<ffffffff811a727f>] ? create_object+0x23f/0x300
[ 6480.152005] [<ffffffffa02b9958>] btrfs_insert_empty_items+0x78/0xd0 [btrfs]
[ 6480.152005] [<ffffffffa036041a>] insert_normal_tree_ref.constprop.4+0xa2/0x19a [btrfs]
[ 6480.152005] [<ffffffffa03605c3>] test_no_shared_qgroup+0xb1/0x1ca [btrfs]
[ 6480.152005] [<ffffffff8108cad6>] ? local_clock+0x16/0x30
[ 6480.152005] [<ffffffffa035ef8e>] btrfs_test_qgroups+0x1ae/0x1d7 [btrfs]
[ 6480.152005] [<ffffffffa03a69d2>] ? ftrace_define_fields_btrfs_space_reservation+0xfd/0xfd [btrfs]
[ 6480.152005] [<ffffffffa03a6a86>] init_btrfs_fs+0xb4/0x153 [btrfs]
[ 6480.152005] [<ffffffff81000352>] do_one_initcall+0x102/0x150
[ 6480.152005] [<ffffffff8103d223>] ? set_memory_nx+0x43/0x50
[ 6480.152005] [<ffffffff81682668>] ? set_section_ro_nx+0x6d/0x74
[ 6480.152005] [<ffffffff810d91cc>] load_module+0x1cdc/0x2630
(...)
Therefore initialize the extent buffer as an empty leaf (level 0).
Issue easy to reproduce when btrfs is built as a module via:
$ for ((i = 1; i <= 1000000; i++)); do rmmod btrfs; modprobe btrfs; done
Signed-off-by: Filipe David Borba Manana <fdmanana@gmail.com>
Signed-off-by: Chris Mason <clm@fb.com>
|
|
Mark the dereference as protected by lock. Not doing so triggers
an RCU warning since the radix tree assumed that RCU is in use.
Signed-off-by: Sasha Levin <sasha.levin@oracle.com>
Signed-off-by: Chris Mason <clm@fb.com>
|
|
Steps to reproduce:
# mkfs.btrfs -f /dev/sd[b-f] -m raid5 -d raid5
# mkfs.ext4 /dev/sdc --->corrupt one of btrfs device
# mount /dev/sdb /mnt -o degraded
# btrfs scrub start -BRd /mnt
This is because readahead would skip missing device, this is not true
for RAID5/6, because REQ_GET_READ_MIRRORS return 1 for RAID5/6 block
mapping. If expected data locates in missing device, readahead thread
would not call __readahead_hook() which makes event @rc->elems=0
wait forever.
Fix this problem by checking return value of btrfs_map_block(),we
can only skip missing device safely if there are several mirrors.
Signed-off-by: Wang Shilong <wangsl.fnst@cn.fujitsu.com>
Signed-off-by: Chris Mason <clm@fb.com>
|
|
This new ioctl call allows the user to supply a buffer of varying size in which
a tree search can store its results. This is much more flexible if you want to
receive items which are larger than the current fixed buffer of 3992 bytes or
if you want to fetch more items at once. Items larger than this buffer are for
example some of the type EXTENT_CSUM.
Signed-off-by: Gerhard Heift <Gerhard@Heift.Name>
Signed-off-by: Chris Mason <clm@fb.com>
Acked-by: David Sterba <dsterba@suse.cz>
|