summaryrefslogtreecommitdiff
path: root/include/asm-i386/kexec.h
AgeCommit message (Collapse)Author
2007-05-08kdump/kexec: calculate note size at compile timeSimon Horman
Currently the size of the per-cpu region reserved to save crash notes is set by the per-architecture value MAX_NOTE_BYTES. Which in turn is currently set to 1024 on all supported architectures. While testing ia64 I recently discovered that this value is in fact too small. The particular setup I was using actually needs 1172 bytes. This lead to very tedious failure mode where the tail of one elf note would overwrite the head of another if they ended up being alocated sequentially by kmalloc, which was often the case. It seems to me that a far better approach is to caclculate the size that the area needs to be. This patch does just that. If a simpler stop-gap patch for ia64 to be squeezed into 2.6.21(.X) is needed then this should be as easy as making MAX_NOTE_BYTES larger in arch/asm-ia64/kexec.h. Perhaps 2048 would be a good choice. However, I think that the approach in this patch is a much more robust idea. Acked-by: Vivek Goyal <vgoyal@in.ibm.com> Signed-off-by: Simon Horman <horms@verge.net.au> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2007-05-02[PATCH] i386: Allow i386 crash kernels to handle x86_64 dumpsIan Campbell
The specific case I am encountering is kdump under Xen with a 64 bit hypervisor and 32 bit kernel/userspace. The dump created is 64 bit due to the hypervisor but the dump kernel is 32 bit for maximum compatibility. It's possibly less likely to be useful in a purely native scenario but I see no reason to disallow it. [akpm@linux-foundation.org: build fix] Signed-off-by: Ian Campbell <ian.campbell@xensource.com> Signed-off-by: Andi Kleen <ak@suse.de> Acked-by: Vivek Goyal <vgoyal@in.ibm.com> Cc: Horms <horms@verge.net.au> Cc: Magnus Damm <magnus.damm@gmail.com> Cc: "Eric W. Biederman" <ebiederm@xmission.com> Cc: Andi Kleen <ak@suse.de> Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2007-05-02[PATCH] x86: adjust inclusion of asm/fixmap.hJan Beulich
Move inclusion of asm/fixmap.h to where it is really used rather than where it may have been used long ago (requires a few other adjustments to includes due to previous implicit dependencies). Signed-off-by: Jan Beulich <jbeulich@novell.com> Signed-off-by: Andi Kleen <ak@suse.de>
2006-09-26[PATCH] i386: Avoid overwriting the current pgd (V4, i386)Magnus Damm
kexec: Avoid overwriting the current pgd (V4, i386) This patch upgrades the i386-specific kexec code to avoid overwriting the current pgd. Overwriting the current pgd is bad when CONFIG_CRASH_DUMP is used to start a secondary kernel that dumps the memory of the previous kernel. The code introduces a new set of page tables. These tables are used to provide an executable identity mapping without overwriting the current pgd. Signed-off-by: Magnus Damm <magnus@valinux.co.jp> Signed-off-by: Andi Kleen <ak@suse.de>
2006-01-10[PATCH] Kdump: i386 compiler warning fixVivek Goyal
Fixes a compilation warning message in i386 Signed-off-by: Vivek Goyal <vgoyal@in.ibm.com> Signed-off-by: Andrew Morton <akpm@osdl.org> Signed-off-by: Linus Torvalds <torvalds@osdl.org>
2006-01-10[PATCH] kdump: save registers early (inline functions)Vivek Goyal
- If system panics then cpu register states are captured through funciton crash_get_current_regs(). This is not a inline function hence a stack frame is pushed on to the stack and then cpu register state is captured. Later this frame is popped and new frames are pushed (machine_kexec). - In theory this is not very right as we are capturing register states for a frame and that frame is no more valid. This seems to have created back trace problems for ppc64. - This patch fixes it up. The very first thing it does after entering crash_kexec() is to capture the register states. Anyway we don't want the back trace beyond crash_kexec(). crash_get_current_regs() has been made inline - crash_setup_regs() is the top architecture dependent function which should be responsible for capturing the register states as well as to do some architecture dependent tricks. For ex. fixing up ss and esp for i386. crash_setup_regs() has also been made inline to ensure no new call frame is pushed onto stack. Signed-off-by: Vivek Goyal <vgoyal@in.ibm.com> Signed-off-by: Andrew Morton <akpm@osdl.org> Signed-off-by: Linus Torvalds <torvalds@osdl.org>
2006-01-10[PATCH] kdump: dynamic per cpu allocation of memory for saving cpu registersVivek Goyal
- In case of system crash, current state of cpu registers is saved in memory in elf note format. So far memory for storing elf notes was being allocated statically for NR_CPUS. - This patch introduces dynamic allocation of memory for storing elf notes. It uses alloc_percpu() interface. This should lead to better memory usage. - Introduced based on Andi Kleen's and Eric W. Biederman's suggestions. - This patch also moves memory allocation for elf notes from architecture dependent portion to architecture independent portion. Now crash_notes is architecture independent. The whole idea is that size of memory to be allocated per cpu (MAX_NOTE_BYTES) can be architecture dependent and allocation of this memory can be architecture independent. Signed-off-by: Vivek Goyal <vgoyal@in.ibm.com> Signed-off-by: Andrew Morton <akpm@osdl.org> Signed-off-by: Linus Torvalds <torvalds@osdl.org>
2005-06-25[PATCH] Kdump: Export crash notes section address through sysfsVivek Goyal
o Following patch exports kexec global variable "crash_notes" to user space through sysfs as kernel attribute in /sys/kernel. Signed-off-by: Maneesh Soni <maneesh@in.ibm.com> Signed-off-by: Andrew Morton <akpm@osdl.org> Signed-off-by: Linus Torvalds <torvalds@osdl.org>
2005-06-25[PATCH] kexec: x86 kexec coreEric W. Biederman
This is the i386 implementation of kexec. Signed-off-by: Eric Biederman <ebiederm@xmission.com> Signed-off-by: Andrew Morton <akpm@osdl.org> Signed-off-by: Linus Torvalds <torvalds@osdl.org>