summaryrefslogtreecommitdiff
path: root/include/linux/sched.h
AgeCommit message (Collapse)Author
2008-03-07sched: retain vruntimePeter Zijlstra
Kei Tokunaga reported an interactivity problem when moving tasks between control groups. Tasks would retain their old vruntime when moved between groups, this can cause funny lags. Re-set the vruntime on group move to fit within the new tree. Reported-by: Kei Tokunaga <tokunaga.keiich@jp.fujitsu.com> Signed-off-by: Peter Zijlstra <a.p.zijlstra@chello.nl> Signed-off-by: Ingo Molnar <mingo@elte.hu>
2008-03-04sched: revert load_balance_monitor() changesPeter Zijlstra
The following commits cause a number of regressions: commit 58e2d4ca581167c2a079f4ee02be2f0bc52e8729 Author: Srivatsa Vaddagiri <vatsa@linux.vnet.ibm.com> Date: Fri Jan 25 21:08:00 2008 +0100 sched: group scheduling, change how cpu load is calculated commit 6b2d7700266b9402e12824e11e0099ae6a4a6a79 Author: Srivatsa Vaddagiri <vatsa@linux.vnet.ibm.com> Date: Fri Jan 25 21:08:00 2008 +0100 sched: group scheduler, fix fairness of cpu bandwidth allocation for task groups Namely: - very frequent wakeups on SMP, reported by PowerTop users. - cacheline trashing on (large) SMP - some latencies larger than 500ms While there is a mergeable patch to fix the latter, the former issues are not fixable in a manner suitable for .25 (we're at -rc3 now). Hence we revert them and try again in v2.6.26. Signed-off-by: Peter Zijlstra <a.p.zijlstra@chello.nl> CC: Srivatsa Vaddagiri <vatsa@linux.vnet.ibm.com> Tested-by: Alexey Zaytsev <alexey.zaytsev@gmail.com> Signed-off-by: Ingo Molnar <mingo@elte.hu>
2008-02-26Merge branch 'v2.6.25-rc3-lockdep' of ↵Linus Torvalds
git://git.kernel.org/pub/scm/linux/kernel/git/peterz/linux-2.6-lockdep * 'v2.6.25-rc3-lockdep' of git://git.kernel.org/pub/scm/linux/kernel/git/peterz/linux-2.6-lockdep: Subject: lockdep: include all lock classes in all_lock_classes lockdep: increase MAX_LOCK_DEPTH
2008-02-25lockdep: increase MAX_LOCK_DEPTHPeter Zijlstra
Some code paths exceed the current max lock depth (XFS), so increase this limit a bit. I looked at making this a dynamic allocated array, but we should not advocate insane lock depths, so stay with this as long as it works... Signed-off-by: Peter Zijlstra <a.p.zijlstra@chello.nl> Signed-off-by: Ingo Molnar <mingo@elte.hu>
2008-02-25sched: add declaration of sched_tail to sched.hHarvey Harrison
Avoids sparse warnings: kernel/sched.c:2170:17: warning: symbol 'schedule_tail' was not declared. Should it be static? Avoids the need for an external declaration in arch/um/process.c Signed-off-by: Harvey Harrison <harvey.harrison@gmail.com> Signed-off-by: Ingo Molnar <mingo@elte.hu>
2008-02-13include/linux: Remove all users of FASTCALL() macroHarvey Harrison
FASTCALL() is always expanded to empty, remove it. [akpm@linux-foundation.org: coding-style fixes] Signed-off-by: Harvey Harrison <harvey.harrison@gmail.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2008-02-13sched: rt-group: make rt groups scheduling configurablePeter Zijlstra
Make the rt group scheduler compile time configurable. Keep it experimental for now. Signed-off-by: Peter Zijlstra <a.p.zijlstra@chello.nl> Signed-off-by: Ingo Molnar <mingo@elte.hu>
2008-02-13sched: rt-group: interfacePeter Zijlstra
Change the rt_ratio interface to rt_runtime_us, to match rt_period_us. This avoids picking a granularity for the ratio. Extend the /sys/kernel/uids/<uid>/ interface to allow setting the group's rt_runtime. Signed-off-by: Peter Zijlstra <a.p.zijlstra@chello.nl> Signed-off-by: Ingo Molnar <mingo@elte.hu>
2008-02-08Get rid of the kill_pgrp_info() functionPavel Emelyanov
There's only one caller left - the kill_pgrp one - so merge these two functions and forget the kill_pgrp_info one. Signed-off-by: Pavel Emelyanov <xemul@openvz.org> Reviewed-by: Oleg Nesterov <oleg@tv-sign.ru> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2008-02-08ITIMER_REAL: convert to use struct pidOleg Nesterov
signal_struct->tsk points to the ->group_leader and thus we have the nasty code in de_thread() which has to change it and restart ->real_timer if the leader is changed. Use "struct pid *leader_pid" instead. This also allows us to kill now unneeded send_group_sig_info(). Signed-off-by: Oleg Nesterov <oleg@tv-sign.ru> Acked-by: "Eric W. Biederman" <ebiederm@xmission.com> Cc: Davide Libenzi <davidel@xmailserver.org> Cc: Pavel Emelyanov <xemul@openvz.org> Acked-by: Roland McGrath <roland@redhat.com> Acked-by: Thomas Gleixner <tglx@linutronix.de> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2008-02-08pid: Extend/Fix pid_vnrEric W. Biederman
pid_vnr returns the user space pid with respect to the pid namespace the struct pid was allocated in. What we want before we return a pid to user space is the user space pid with respect to the pid namespace of current. pid_vnr is a very nice optimization but because it isn't quite what we want it is easy to use pid_vnr at times when we aren't certain the struct pid was allocated in our pid namespace. Currently this describes at least tiocgpgrp and tiocgsid in ttyio.c the parent process reported in the core dumps and the parent process in get_signal_to_deliver. So unless the performance impact is huge having an interface that does what we want instead of always what we want should be much more reliable and much less error prone. Signed-off-by: Eric W. Biederman <ebiederm@xmission.com> Cc: Oleg Nesterov <oleg@tv-sign.ru> Acked-by: Pavel Emelyanov <xemul@openvz.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2008-02-08teach set_special_pids() to use struct pidOleg Nesterov
Change set_special_pids() to work with struct pid, not pid_t from global name space. This again speedups and imho cleanups the code, also a preparation for the next patch. Signed-off-by: Oleg Nesterov <oleg@tv-sign.ru> Acked-by: "Eric W. Biederman" <ebiederm@xmission.com> Acked-by: Pavel Emelyanov <xemul@openvz.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2008-02-07Memory controller: accounting setupPavel Emelianov
Basic setup routines, the mm_struct has a pointer to the cgroup that it belongs to and the the page has a page_cgroup associated with it. Signed-off-by: Pavel Emelianov <xemul@openvz.org> Signed-off-by: Balbir Singh <balbir@linux.vnet.ibm.com> Cc: Paul Menage <menage@google.com> Cc: Peter Zijlstra <a.p.zijlstra@chello.nl> Cc: "Eric W. Biederman" <ebiederm@xmission.com> Cc: Nick Piggin <nickpiggin@yahoo.com.au> Cc: Kirill Korotaev <dev@sw.ru> Cc: Herbert Poetzl <herbert@13thfloor.at> Cc: David Rientjes <rientjes@google.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2008-02-06kernel/sys.c: get rid of expensive divides in groups_sort()Eric Dumazet
groups_sort() can be quite long if user loads a large gid table. This is because GROUP_AT(group_info, some_integer) uses an integer divide. So having to do XXX thousand divides during one syscall can lead to very high latencies. (NGROUPS_MAX=65536) In the past (25 Mar 2006), an analog problem was found in groups_search() (commit d74beb9f33a5f16d2965f11b275e401f225c949d ) and at that time I changed some variables to unsigned int. I believe that a more generic fix is to make sure NGROUPS_PER_BLOCK is unsigned. Signed-off-by: Eric Dumazet <dada1@cosmosbay.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2008-02-05capabilities: introduce per-process capability bounding setSerge E. Hallyn
The capability bounding set is a set beyond which capabilities cannot grow. Currently cap_bset is per-system. It can be manipulated through sysctl, but only init can add capabilities. Root can remove capabilities. By default it includes all caps except CAP_SETPCAP. This patch makes the bounding set per-process when file capabilities are enabled. It is inherited at fork from parent. Noone can add elements, CAP_SETPCAP is required to remove them. One example use of this is to start a safer container. For instance, until device namespaces or per-container device whitelists are introduced, it is best to take CAP_MKNOD away from a container. The bounding set will not affect pP and pE immediately. It will only affect pP' and pE' after subsequent exec()s. It also does not affect pI, and exec() does not constrain pI'. So to really start a shell with no way of regain CAP_MKNOD, you would do prctl(PR_CAPBSET_DROP, CAP_MKNOD); cap_t cap = cap_get_proc(); cap_value_t caparray[1]; caparray[0] = CAP_MKNOD; cap_set_flag(cap, CAP_INHERITABLE, 1, caparray, CAP_DROP); cap_set_proc(cap); cap_free(cap); The following test program will get and set the bounding set (but not pI). For instance ./bset get (lists capabilities in bset) ./bset drop cap_net_raw (starts shell with new bset) (use capset, setuid binary, or binary with file capabilities to try to increase caps) ************************************************************ cap_bound.c ************************************************************ #include <sys/prctl.h> #include <linux/capability.h> #include <sys/types.h> #include <unistd.h> #include <stdio.h> #include <stdlib.h> #include <string.h> #ifndef PR_CAPBSET_READ #define PR_CAPBSET_READ 23 #endif #ifndef PR_CAPBSET_DROP #define PR_CAPBSET_DROP 24 #endif int usage(char *me) { printf("Usage: %s get\n", me); printf(" %s drop <capability>\n", me); return 1; } #define numcaps 32 char *captable[numcaps] = { "cap_chown", "cap_dac_override", "cap_dac_read_search", "cap_fowner", "cap_fsetid", "cap_kill", "cap_setgid", "cap_setuid", "cap_setpcap", "cap_linux_immutable", "cap_net_bind_service", "cap_net_broadcast", "cap_net_admin", "cap_net_raw", "cap_ipc_lock", "cap_ipc_owner", "cap_sys_module", "cap_sys_rawio", "cap_sys_chroot", "cap_sys_ptrace", "cap_sys_pacct", "cap_sys_admin", "cap_sys_boot", "cap_sys_nice", "cap_sys_resource", "cap_sys_time", "cap_sys_tty_config", "cap_mknod", "cap_lease", "cap_audit_write", "cap_audit_control", "cap_setfcap" }; int getbcap(void) { int comma=0; unsigned long i; int ret; printf("i know of %d capabilities\n", numcaps); printf("capability bounding set:"); for (i=0; i<numcaps; i++) { ret = prctl(PR_CAPBSET_READ, i); if (ret < 0) perror("prctl"); else if (ret==1) printf("%s%s", (comma++) ? ", " : " ", captable[i]); } printf("\n"); return 0; } int capdrop(char *str) { unsigned long i; int found=0; for (i=0; i<numcaps; i++) { if (strcmp(captable[i], str) == 0) { found=1; break; } } if (!found) return 1; if (prctl(PR_CAPBSET_DROP, i)) { perror("prctl"); return 1; } return 0; } int main(int argc, char *argv[]) { if (argc<2) return usage(argv[0]); if (strcmp(argv[1], "get")==0) return getbcap(); if (strcmp(argv[1], "drop")!=0 || argc<3) return usage(argv[0]); if (capdrop(argv[2])) { printf("unknown capability\n"); return 1; } return execl("/bin/bash", "/bin/bash", NULL); } ************************************************************ [serue@us.ibm.com: fix typo] Signed-off-by: Serge E. Hallyn <serue@us.ibm.com> Signed-off-by: Andrew G. Morgan <morgan@kernel.org> Cc: Stephen Smalley <sds@tycho.nsa.gov> Cc: James Morris <jmorris@namei.org> Cc: Chris Wright <chrisw@sous-sol.org> Cc: Casey Schaufler <casey@schaufler-ca.com>a Signed-off-by: "Serge E. Hallyn" <serue@us.ibm.com> Tested-by: Jiri Slaby <jirislaby@gmail.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2008-02-05maps4: rework TASK_SIZE macrosDave Hansen
The following replaces the earlier patches sent. It should address David Rientjes's comments, and has been compile tested on all the architectures that it touches, save for parisc. For the /proc/<pid>/pagemap code[1], we need to able to query how much virtual address space a particular task has. The trick is that we do it through /proc and can't use TASK_SIZE since it references "current" on some arches. The process opening the /proc file might be a 32-bit process opening a 64-bit process's pagemap file. x86_64 already has a TASK_SIZE_OF() macro: #define TASK_SIZE_OF(child) ((test_tsk_thread_flag(child, TIF_IA32)) ? IA32_PAGE_OFFSET : TASK_SIZE64) I'd like to have that for other architectures. So, add it for all the architectures that actually use "current" in their TASK_SIZE. For the others, just add a quick #define in sched.h to use plain old TASK_SIZE. 1. http://www.linuxworld.com/news/2007/042407-kernel.html - MIPS portion from Ralf Baechle <ralf@linux-mips.org> [akpm@linux-foundation.org: fix mips build] Signed-off-by: Dave Hansen <haveblue@us.ibm.com> Signed-off-by: Ralf Baechle <ralf@linux-mips.org> Signed-off-by: Matt Mackall <mpm@selenic.com> Acked-by: David Rientjes <rientjes@google.com> Cc: Dave Hansen <haveblue@us.ibm.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2008-02-05exec: rework the group exit and fix the race with killOleg Nesterov
As Roland pointed out, we have the very old problem with exec. de_thread() sets SIGNAL_GROUP_EXIT, kills other threads, changes ->group_leader and then clears signal->flags. All signals (even fatal ones) sent in this window (which is not too small) will be lost. With this patch exec doesn't abuse SIGNAL_GROUP_EXIT. signal_group_exit(), the new helper, should be used to detect exit_group() or exec() in progress. It can have more users, but this patch does only strictly necessary changes. Signed-off-by: Oleg Nesterov <oleg@tv-sign.ru> Cc: Davide Libenzi <davidel@xmailserver.org> Cc: Ingo Molnar <mingo@elte.hu> Cc: Robin Holt <holt@sgi.com> Cc: Roland McGrath <roland@redhat.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2008-02-05get_task_comm(): return the resultAndrew Morton
It was dumb to make get_task_comm() return void. Change it to return a pointer to the resulting output for caller convenience. Cc: Ulrich Drepper <drepper@redhat.com> Cc: Ingo Molnar <mingo@elte.hu> Cc: Roland McGrath <roland@redhat.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2008-02-01[AUDIT] add session id to audit messagesEric Paris
In order to correlate audit records to an individual login add a session id. This is incremented every time a user logs in and is included in almost all messages which currently output the auid. The field is labeled ses= or oses= Signed-off-by: Eric Paris <eparis@redhat.com>
2008-02-01[PATCH] get rid of loginuid racesAl Viro
Keeping loginuid in audit_context is racy and results in messier code. Taken to task_struct, out of the way of ->audit_context changes. Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
2008-02-01Merge branch 'task_killable' of ↵Linus Torvalds
git://git.kernel.org/pub/scm/linux/kernel/git/willy/misc * 'task_killable' of git://git.kernel.org/pub/scm/linux/kernel/git/willy/misc: (22 commits) Remove commented-out code copied from NFS NFS: Switch from intr mount option to TASK_KILLABLE Add wait_for_completion_killable Add wait_event_killable Add schedule_timeout_killable Use mutex_lock_killable in vfs_readdir Add mutex_lock_killable Use lock_page_killable Add lock_page_killable Add fatal_signal_pending Add TASK_WAKEKILL exit: Use task_is_* signal: Use task_is_* sched: Use task_contributes_to_load, TASK_ALL and TASK_NORMAL ptrace: Use task_is_* power: Use task_is_* wait: Use TASK_NORMAL proc/base.c: Use task_is_* proc/array.c: Use TASK_REPORT perfmon: Use task_is_* ... Fixed up conflicts in NFS/sunrpc manually..
2008-01-30spinlock: lockbreak cleanupNick Piggin
The break_lock data structure and code for spinlocks is quite nasty. Not only does it double the size of a spinlock but it changes locking to a potentially less optimal trylock. Put all of that under CONFIG_GENERIC_LOCKBREAK, and introduce a __raw_spin_is_contended that uses the lock data itself to determine whether there are waiters on the lock, to be used if CONFIG_GENERIC_LOCKBREAK is not set. Rename need_lockbreak to spin_needbreak, make it use spin_is_contended to decouple it from the spinlock implementation, and make it typesafe (rwlocks do not have any need_lockbreak sites -- why do they even get bloated up with that break_lock then?). Signed-off-by: Nick Piggin <npiggin@suse.de> Signed-off-by: Ingo Molnar <mingo@elte.hu> Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
2008-01-28kernel: add CLONE_IO to specifically request sharing of IO contextsJens Axboe
syslets (or other threads/processes that want io context sharing) can set this to enforce sharing of io context. Signed-off-by: Jens Axboe <jens.axboe@oracle.com>
2008-01-28ioprio: move io priority from task_struct to io_contextJens Axboe
This is where it belongs and then it doesn't take up space for a process that doesn't do IO. Signed-off-by: Jens Axboe <jens.axboe@oracle.com>
2008-01-25sched: keep total / count stats in addition to the max forArjan van de Ven
Right now, the linux kernel (with scheduler statistics enabled) keeps track of the maximum time a process is waiting to be scheduled. While the maximum is a very useful metric, tracking average and total is equally useful (at least for latencytop) to figure out the accumulated effect of scheduler delays. The accumulated effect is important to judge the performance impact of scheduler tuning/behavior. Signed-off-by: Arjan van de Ven <arjan@linux.intel.com> Signed-off-by: Ingo Molnar <mingo@elte.hu>
2008-01-25sched, futex: detach sched.h and futex.hAlexey Dobriyan
Signed-off-by: Alexey Dobriyan <adobriyan@gmail.com> Signed-off-by: Ingo Molnar <mingo@elte.hu>
2008-01-25softlockup: fix signednessIngo Molnar
fix softlockup tunables signedness. mark tunables read-mostly. Signed-off-by: Ingo Molnar <mingo@elte.hu>
2008-01-25sched: latencytop supportArjan van de Ven
LatencyTOP kernel infrastructure; it measures latencies in the scheduler and tracks it system wide and per process. Signed-off-by: Arjan van de Ven <arjan@linux.intel.com> Signed-off-by: Ingo Molnar <mingo@elte.hu>
2008-01-25sched: rt throttling vs no_hzPeter Zijlstra
We need to teach no_hz about the rt throttling because its tick driven. Signed-off-by: Peter Zijlstra <a.p.zijlstra@chello.nl> Signed-off-by: Ingo Molnar <mingo@elte.hu>
2008-01-25sched: rt group schedulingPeter Zijlstra
Extend group scheduling to also cover the realtime classes. It uses the time limiting introduced by the previous patch to allow multiple realtime groups. The hard time limit is required to keep behaviour deterministic. The algorithms used make the realtime scheduler O(tg), linear scaling wrt the number of task groups. This is the worst case behaviour I can't seem to get out of, the avg. case of the algorithms can be improved, I focused on correctness and worst case. [ akpm@linux-foundation.org: move side-effects out of BUG_ON(). ] Signed-off-by: Peter Zijlstra <a.p.zijlstra@chello.nl> Signed-off-by: Ingo Molnar <mingo@elte.hu>
2008-01-25sched: rt time limitPeter Zijlstra
Very simple time limit on the realtime scheduling classes. Allow the rq's realtime class to consume sched_rt_ratio of every sched_rt_period slice. If the class exceeds this quota the fair class will preempt the realtime class. Signed-off-by: Peter Zijlstra <a.p.zijlstra@chello.nl> Signed-off-by: Ingo Molnar <mingo@elte.hu>
2008-01-25sched: high-res preemption tickPeter Zijlstra
Use HR-timers (when available) to deliver an accurate preemption tick. The regular scheduler tick that runs at 1/HZ can be too coarse when nice level are used. The fairness system will still keep the cpu utilisation 'fair' by then delaying the task that got an excessive amount of CPU time but try to minimize this by delivering preemption points spot-on. The average frequency of this extra interrupt is sched_latency / nr_latency. Which need not be higher than 1/HZ, its just that the distribution within the sched_latency period is important. Signed-off-by: Peter Zijlstra <a.p.zijlstra@chello.nl> Signed-off-by: Ingo Molnar <mingo@elte.hu>
2008-01-25sched: do not do cond_resched() when CONFIG_PREEMPTHerbert Xu
Why do we even have cond_resched when real preemption is on? It seems to be a waste of space and time. remove cond_resched with CONFIG_PREEMPT on. Signed-off-by: Ingo Molnar <mingo@elte.hu>
2008-01-25sched: SCHED_FIFO/SCHED_RR watchdog timerPeter Zijlstra
Introduce a new rlimit that allows the user to set a runtime timeout on real-time tasks their slice. Once this limit is exceeded the task will receive SIGXCPU. So it measures runtime since the last sleep. Input and ideas by Thomas Gleixner and Lennart Poettering. Signed-off-by: Peter Zijlstra <a.p.zijlstra@chello.nl> CC: Lennart Poettering <mzxreary@0pointer.de> CC: Michael Kerrisk <mtk.manpages@googlemail.com> CC: Ulrich Drepper <drepper@redhat.com> Signed-off-by: Ingo Molnar <mingo@elte.hu>
2008-01-25sched: sched_rt_entityPeter Zijlstra
Move the task_struct members specific to rt scheduling together. A future optimization could be to put sched_entity and sched_rt_entity into a union. Signed-off-by: Peter Zijlstra <a.p.zijlstra@chello.nl> CC: Srivatsa Vaddagiri <vatsa@linux.vnet.ibm.com> Signed-off-by: Ingo Molnar <mingo@elte.hu>
2008-01-25Preempt-RCU: implementationPaul E. McKenney
This patch implements a new version of RCU which allows its read-side critical sections to be preempted. It uses a set of counter pairs to keep track of the read-side critical sections and flips them when all tasks exit read-side critical section. The details of this implementation can be found in this paper - http://www.rdrop.com/users/paulmck/RCU/OLSrtRCU.2006.08.11a.pdf and the article- http://lwn.net/Articles/253651/ This patch was developed as a part of the -rt kernel development and meant to provide better latencies when read-side critical sections of RCU don't disable preemption. As a consequence of keeping track of RCU readers, the readers have a slight overhead (optimizations in the paper). This implementation co-exists with the "classic" RCU implementations and can be switched to at compiler. Also includes RCU tracing summarized in debugfs. [ akpm@linux-foundation.org: build fixes on non-preempt architectures ] Signed-off-by: Gautham R Shenoy <ego@in.ibm.com> Signed-off-by: Dipankar Sarma <dipankar@in.ibm.com> Signed-off-by: Paul E. McKenney <paulmck@us.ibm.com> Reviewed-by: Steven Rostedt <srostedt@redhat.com> Signed-off-by: Ingo Molnar <mingo@elte.hu>
2008-01-25sched: RT-balance, add new methods to sched_classSteven Rostedt
Dmitry Adamushko found that the current implementation of the RT balancing code left out changes to the sched_setscheduler and rt_mutex_setprio. This patch addresses this issue by adding methods to the schedule classes to handle being switched out of (switched_from) and being switched into (switched_to) a sched_class. Also a method for changing of priorities is also added (prio_changed). This patch also removes some duplicate logic between rt_mutex_setprio and sched_setscheduler. Signed-off-by: Steven Rostedt <srostedt@redhat.com> Signed-off-by: Ingo Molnar <mingo@elte.hu>
2008-01-25sched: RT-balance, replace hooks with pre/post schedule and wakeup methodsSteven Rostedt
To make the main sched.c code more agnostic to the schedule classes. Instead of having specific hooks in the schedule code for the RT class balancing. They are replaced with a pre_schedule, post_schedule and task_wake_up methods. These methods may be used by any of the classes but currently, only the sched_rt class implements them. Signed-off-by: Steven Rostedt <srostedt@redhat.com> Signed-off-by: Ingo Molnar <mingo@elte.hu>
2008-01-25sched: add sched-domain rootsGregory Haskins
We add the notion of a root-domain which will be used later to rescope global variables to per-domain variables. Each exclusive cpuset essentially defines an island domain by fully partitioning the member cpus from any other cpuset. However, we currently still maintain some policy/state as global variables which transcend all cpusets. Consider, for instance, rt-overload state. Whenever a new exclusive cpuset is created, we also create a new root-domain object and move each cpu member to the root-domain's span. By default the system creates a single root-domain with all cpus as members (mimicking the global state we have today). We add some plumbing for storing class specific data in our root-domain. Whenever a RQ is switching root-domains (because of repartitioning) we give each sched_class the opportunity to remove any state from its old domain and add state to the new one. This logic doesn't have any clients yet but it will later in the series. Signed-off-by: Gregory Haskins <ghaskins@novell.com> CC: Christoph Lameter <clameter@sgi.com> CC: Paul Jackson <pj@sgi.com> CC: Simon Derr <simon.derr@bull.net> Signed-off-by: Ingo Molnar <mingo@elte.hu>
2008-01-25sched: de-SCHED_OTHER-ize the RT pathGregory Haskins
The current wake-up code path tries to determine if it can optimize the wake-up to "this_cpu" by computing load calculations. The problem is that these calculations are only relevant to SCHED_OTHER tasks where load is king. For RT tasks, priority is king. So the load calculation is completely wasted bandwidth. Therefore, we create a new sched_class interface to help with pre-wakeup routing decisions and move the load calculation as a function of CFS task's class. Signed-off-by: Gregory Haskins <ghaskins@novell.com> Signed-off-by: Steven Rostedt <srostedt@redhat.com> Signed-off-by: Ingo Molnar <mingo@elte.hu>
2008-01-25sched: add RT-balance cpu-weightGregory Haskins
Some RT tasks (particularly kthreads) are bound to one specific CPU. It is fairly common for two or more bound tasks to get queued up at the same time. Consider, for instance, softirq_timer and softirq_sched. A timer goes off in an ISR which schedules softirq_thread to run at RT50. Then the timer handler determines that it's time to smp-rebalance the system so it schedules softirq_sched to run. So we are in a situation where we have two RT50 tasks queued, and the system will go into rt-overload condition to request other CPUs for help. This causes two problems in the current code: 1) If a high-priority bound task and a low-priority unbounded task queue up behind the running task, we will fail to ever relocate the unbounded task because we terminate the search on the first unmovable task. 2) We spend precious futile cycles in the fast-path trying to pull overloaded tasks over. It is therefore optimial to strive to avoid the overhead all together if we can cheaply detect the condition before overload even occurs. This patch tries to achieve this optimization by utilizing the hamming weight of the task->cpus_allowed mask. A weight of 1 indicates that the task cannot be migrated. We will then utilize this information to skip non-migratable tasks and to eliminate uncessary rebalance attempts. We introduce a per-rq variable to count the number of migratable tasks that are currently running. We only go into overload if we have more than one rt task, AND at least one of them is migratable. In addition, we introduce a per-task variable to cache the cpus_allowed weight, since the hamming calculation is probably relatively expensive. We only update the cached value when the mask is updated which should be relatively infrequent, especially compared to scheduling frequency in the fast path. Signed-off-by: Gregory Haskins <ghaskins@novell.com> Signed-off-by: Steven Rostedt <srostedt@redhat.com> Signed-off-by: Ingo Molnar <mingo@elte.hu>
2008-01-25softlockup: automatically detect hung TASK_UNINTERRUPTIBLE tasksIngo Molnar
this patch extends the soft-lockup detector to automatically detect hung TASK_UNINTERRUPTIBLE tasks. Such hung tasks are printed the following way: ------------------> INFO: task prctl:3042 blocked for more than 120 seconds. "echo 0 > /proc/sys/kernel/hung_task_timeout_secs" disables this message prctl D fd5e3793 0 3042 2997 f6050f38 00000046 00000001 fd5e3793 00000009 c06d8264 c06dae80 00000286 f6050f40 f6050f00 f7d34d90 f7d34fc8 c1e1be80 00000001 f6050000 00000000 f7e92d00 00000286 f6050f18 c0489d1a f6050f40 00006605 00000000 c0133a5b Call Trace: [<c04883a5>] schedule_timeout+0x6d/0x8b [<c04883d8>] schedule_timeout_uninterruptible+0x15/0x17 [<c0133a76>] msleep+0x10/0x16 [<c0138974>] sys_prctl+0x30/0x1e2 [<c0104c52>] sysenter_past_esp+0x5f/0xa5 ======================= 2 locks held by prctl/3042: #0: (&sb->s_type->i_mutex_key#5){--..}, at: [<c0197d11>] do_fsync+0x38/0x7a #1: (jbd_handle){--..}, at: [<c01ca3d2>] journal_start+0xc7/0xe9 <------------------ the current default timeout is 120 seconds. Such messages are printed up to 10 times per bootup. If the system has crashed already then the messages are not printed. if lockdep is enabled then all held locks are printed as well. this feature is a natural extension to the softlockup-detector (kernel locked up without scheduling) and to the NMI watchdog (kernel locked up with IRQs disabled). [ Gautham R Shenoy <ego@in.ibm.com>: CPU hotplug fixes. ] [ Andrew Morton <akpm@linux-foundation.org>: build warning fix. ] Signed-off-by: Ingo Molnar <mingo@elte.hu> Signed-off-by: Arjan van de Ven <arjan@linux.intel.com>
2008-01-25sched: group scheduler, fix fairness of cpu bandwidth allocation for task groupsSrivatsa Vaddagiri
The current load balancing scheme isn't good enough for precise group fairness. For example: on a 8-cpu system, I created 3 groups as under: a = 8 tasks (cpu.shares = 1024) b = 4 tasks (cpu.shares = 1024) c = 3 tasks (cpu.shares = 1024) a, b and c are task groups that have equal weight. We would expect each of the groups to receive 33.33% of cpu bandwidth under a fair scheduler. This is what I get with the latest scheduler git tree: Signed-off-by: Ingo Molnar <mingo@elte.hu> -------------------------------------------------------------------------------- Col1 | Col2 | Col3 | Col4 ------|---------|-------|------------------------------------------------------- a | 277.676 | 57.8% | 54.1% 54.1% 54.1% 54.2% 56.7% 62.2% 62.8% 64.5% b | 116.108 | 24.2% | 47.4% 48.1% 48.7% 49.3% c | 86.326 | 18.0% | 47.5% 47.9% 48.5% -------------------------------------------------------------------------------- Explanation of o/p: Col1 -> Group name Col2 -> Cumulative execution time (in seconds) received by all tasks of that group in a 60sec window across 8 cpus Col3 -> CPU bandwidth received by the group in the 60sec window, expressed in percentage. Col3 data is derived as: Col3 = 100 * Col2 / (NR_CPUS * 60) Col4 -> CPU bandwidth received by each individual task of the group. Col4 = 100 * cpu_time_recd_by_task / 60 [I can share the test case that produces a similar o/p if reqd] The deviation from desired group fairness is as below: a = +24.47% b = -9.13% c = -15.33% which is quite high. After the patch below is applied, here are the results: -------------------------------------------------------------------------------- Col1 | Col2 | Col3 | Col4 ------|---------|-------|------------------------------------------------------- a | 163.112 | 34.0% | 33.2% 33.4% 33.5% 33.5% 33.7% 34.4% 34.8% 35.3% b | 156.220 | 32.5% | 63.3% 64.5% 66.1% 66.5% c | 160.653 | 33.5% | 85.8% 90.6% 91.4% -------------------------------------------------------------------------------- Deviation from desired group fairness is as below: a = +0.67% b = -0.83% c = +0.17% which is far better IMO. Most of other runs have yielded a deviation within +-2% at the most, which is good. Why do we see bad (group) fairness with current scheuler? ========================================================= Currently cpu's weight is just the summation of individual task weights. This can yield incorrect results. For ex: consider three groups as below on a 2-cpu system: CPU0 CPU1 --------------------------- A (10) B(5) C(5) --------------------------- Group A has 10 tasks, all on CPU0, Group B and C have 5 tasks each all of which are on CPU1. Each task has the same weight (NICE_0_LOAD = 1024). The current scheme would yield a cpu weight of 10240 (10*1024) for each cpu and the load balancer will think both CPUs are perfectly balanced and won't move around any tasks. This, however, would yield this bandwidth: A = 50% B = 25% C = 25% which is not the desired result. What's changing in the patch? ============================= - How cpu weights are calculated when CONFIF_FAIR_GROUP_SCHED is defined (see below) - API Change - Two tunables introduced in sysfs (under SCHED_DEBUG) to control the frequency at which the load balance monitor thread runs. The basic change made in this patch is how cpu weight (rq->load.weight) is calculated. Its now calculated as the summation of group weights on a cpu, rather than summation of task weights. Weight exerted by a group on a cpu is dependent on the shares allocated to it and also the number of tasks the group has on that cpu compared to the total number of (runnable) tasks the group has in the system. Let, W(K,i) = Weight of group K on cpu i T(K,i) = Task load present in group K's cfs_rq on cpu i T(K) = Total task load of group K across various cpus S(K) = Shares allocated to group K NRCPUS = Number of online cpus in the scheduler domain to which group K is assigned. Then, W(K,i) = S(K) * NRCPUS * T(K,i) / T(K) A load balance monitor thread is created at bootup, which periodically runs and adjusts group's weight on each cpu. To avoid its overhead, two min/max tunables are introduced (under SCHED_DEBUG) to control the rate at which it runs. Fixes from: Peter Zijlstra <a.p.zijlstra@chello.nl> - don't start the load_balance_monitor when there is only a single cpu. - rename the kthread because its currently longer than TASK_COMM_LEN Signed-off-by: Srivatsa Vaddagiri <vatsa@linux.vnet.ibm.com> Signed-off-by: Ingo Molnar <mingo@elte.hu>
2008-01-24fix struct user_info export's sysfs interactionKay Sievers
Clean up the use of ksets and kobjects. Kobjects are instances of objects (like struct user_info), ksets are collections of objects of a similar type (like the uids directory containing the user_info directories). So, use kobjects for the user_info directories, and a kset for the "uids" directory. On object cleanup, the final kobject_put() was missing. Cc: Dhaval Giani <dhaval@linux.vnet.ibm.com> Cc: Srivatsa Vaddagiri <vatsa@linux.vnet.ibm.com> Signed-off-by: Kay Sievers <kay.sievers@vrfy.org> Signed-off-by: Greg Kroah-Hartman <gregkh@suse.de>
2008-01-13remove task_ppid_nr_nsRoland McGrath
task_ppid_nr_ns is called in three places. One of these should never have called it. In the other two, using it broke the existing semantics. This was presumably accidental. If the function had not been there, it would have been much more obvious to the eye that those patches were changing the behavior. We don't need this function. In task_state, the pid of the ptracer is not the ppid of the ptracer. In do_task_stat, ppid is the tgid of the real_parent, not its pid. I also moved the call outside of lock_task_sighand, since it doesn't need it. In sys_getppid, ppid is the tgid of the real_parent, not its pid. Signed-off-by: Roland McGrath <roland@redhat.com> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2007-12-06Add schedule_timeout_killableMatthew Wilcox
Signed-off-by: Matthew Wilcox <willy@linux.intel.com>
2007-12-06Add fatal_signal_pendingMatthew Wilcox
Like signal_pending, but it's only true for signals which are fatal to this process Signed-off-by: Matthew Wilcox <willy@linux.intel.com>
2007-12-06Add TASK_WAKEKILLMatthew Wilcox
Set TASK_WAKEKILL for TASK_STOPPED and TASK_TRACED, add TASK_KILLABLE and use TASK_WAKEKILL in signal_wake_up() Signed-off-by: Matthew Wilcox <willy@linux.intel.com>
2007-12-06Add macros to replace direct uses of TASK_ flagsMatthew Wilcox
With the changes to support TASK_KILLABLE, ->state becomes a bitmask, and moving these tests to convenience macros will fix all the users. Signed-off-by: Matthew Wilcox <willy@linux.intel.com>
2007-11-28sched: clean up, move __sched_text_start/end to sched.hIngo Molnar
move __sched_text_start/end to sched.h. No code changed: text data bss dec hex filename 26582 2310 28 28920 70f8 sched.o.before 26582 2310 28 28920 70f8 sched.o.after Signed-off-by: Ingo Molnar <mingo@elte.hu>