Age | Commit message (Collapse) | Author |
|
|
|
Unused hook. Remove.
Signed-off-by: Eric Paris <eparis@redhat.com>
Signed-off-by: James Morris <jmorris@namei.org>
|
|
Unused hook. Remove.
Signed-off-by: Eric Paris <eparis@redhat.com>
Signed-off-by: James Morris <jmorris@namei.org>
|
|
Unused hook. Remove.
Signed-off-by: Eric Paris <eparis@redhat.com>
Signed-off-by: James Morris <jmorris@namei.org>
|
|
Unused hook. Remove.
Signed-off-by: Eric Paris <eparis@redhat.com>
Signed-off-by: James Morris <jmorris@namei.org>
|
|
Unused hook. Remove.
Signed-off-by: Eric Paris <eparis@redhat.com>
Signed-off-by: James Morris <jmorris@namei.org>
|
|
Unused hook. Remove.
Signed-off-by: Eric Paris <eparis@redhat.com>
Signed-off-by: James Morris <jmorris@namei.org>
|
|
Unused hook. Remove.
Signed-off-by: Eric Paris <eparis@redhat.com>
Signed-off-by: James Morris <jmorris@namei.org>
|
|
Unused hook. Remove.
Signed-off-by: Eric Paris <eparis@redhat.com>
Signed-off-by: James Morris <jmorris@namei.org>
|
|
Unused hook. Remove.
Signed-off-by: Eric Paris <eparis@redhat.com>
Signed-off-by: James Morris <jmorris@namei.org>
|
|
Unused hook. Remove.
Signed-off-by: Eric Paris <eparis@redhat.com>
Signed-off-by: James Morris <jmorris@namei.org>
|
|
Unused hook. Remove.
Signed-off-by: Eric Paris <eparis@redhat.com>
Signed-off-by: James Morris <jmorris@namei.org>
|
|
Unused hook. Remove.
Signed-off-by: Eric Paris <eparis@redhat.com>
Signed-off-by: James Morris <jmorris@namei.org>
|
|
Unused hook. Remove it.
Signed-off-by: Eric Paris <eparis@redhat.com>
Signed-off-by: James Morris <jmorris@namei.org>
|
|
implicit slab.h inclusion from percpu.h
percpu.h is included by sched.h and module.h and thus ends up being
included when building most .c files. percpu.h includes slab.h which
in turn includes gfp.h making everything defined by the two files
universally available and complicating inclusion dependencies.
percpu.h -> slab.h dependency is about to be removed. Prepare for
this change by updating users of gfp and slab facilities include those
headers directly instead of assuming availability. As this conversion
needs to touch large number of source files, the following script is
used as the basis of conversion.
http://userweb.kernel.org/~tj/misc/slabh-sweep.py
The script does the followings.
* Scan files for gfp and slab usages and update includes such that
only the necessary includes are there. ie. if only gfp is used,
gfp.h, if slab is used, slab.h.
* When the script inserts a new include, it looks at the include
blocks and try to put the new include such that its order conforms
to its surrounding. It's put in the include block which contains
core kernel includes, in the same order that the rest are ordered -
alphabetical, Christmas tree, rev-Xmas-tree or at the end if there
doesn't seem to be any matching order.
* If the script can't find a place to put a new include (mostly
because the file doesn't have fitting include block), it prints out
an error message indicating which .h file needs to be added to the
file.
The conversion was done in the following steps.
1. The initial automatic conversion of all .c files updated slightly
over 4000 files, deleting around 700 includes and adding ~480 gfp.h
and ~3000 slab.h inclusions. The script emitted errors for ~400
files.
2. Each error was manually checked. Some didn't need the inclusion,
some needed manual addition while adding it to implementation .h or
embedding .c file was more appropriate for others. This step added
inclusions to around 150 files.
3. The script was run again and the output was compared to the edits
from #2 to make sure no file was left behind.
4. Several build tests were done and a couple of problems were fixed.
e.g. lib/decompress_*.c used malloc/free() wrappers around slab
APIs requiring slab.h to be added manually.
5. The script was run on all .h files but without automatically
editing them as sprinkling gfp.h and slab.h inclusions around .h
files could easily lead to inclusion dependency hell. Most gfp.h
inclusion directives were ignored as stuff from gfp.h was usually
wildly available and often used in preprocessor macros. Each
slab.h inclusion directive was examined and added manually as
necessary.
6. percpu.h was updated not to include slab.h.
7. Build test were done on the following configurations and failures
were fixed. CONFIG_GCOV_KERNEL was turned off for all tests (as my
distributed build env didn't work with gcov compiles) and a few
more options had to be turned off depending on archs to make things
build (like ipr on powerpc/64 which failed due to missing writeq).
* x86 and x86_64 UP and SMP allmodconfig and a custom test config.
* powerpc and powerpc64 SMP allmodconfig
* sparc and sparc64 SMP allmodconfig
* ia64 SMP allmodconfig
* s390 SMP allmodconfig
* alpha SMP allmodconfig
* um on x86_64 SMP allmodconfig
8. percpu.h modifications were reverted so that it could be applied as
a separate patch and serve as bisection point.
Given the fact that I had only a couple of failures from tests on step
6, I'm fairly confident about the coverage of this conversion patch.
If there is a breakage, it's likely to be something in one of the arch
headers which should be easily discoverable easily on most builds of
the specific arch.
Signed-off-by: Tejun Heo <tj@kernel.org>
Guess-its-ok-by: Christoph Lameter <cl@linux-foundation.org>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: Lee Schermerhorn <Lee.Schermerhorn@hp.com>
|
|
Enhance the security framework to support resetting the active security
module. This eliminates the need for direct use of the security_ops and
default_security_ops variables outside of security.c, so make security_ops
and default_security_ops static. Also remove the secondary_ops variable as
a cleanup since there is no use for that. secondary_ops was originally used by
SELinux to call the "secondary" security module (capability or dummy),
but that was replaced by direct calls to capability and the only
remaining use is to save and restore the original security ops pointer
value if SELinux is disabled by early userspace based on /etc/selinux/config.
Further, if we support this directly in the security framework, then we can
just use &default_security_ops for this purpose since that is now available.
Signed-off-by: Zhitong Wang <zhitong.wangzt@alibaba-inc.com>
Acked-by: Stephen Smalley <sds@tycho.nsa.gov>
Signed-off-by: James Morris <jmorris@namei.org>
|
|
This allows the LSM to distinguish between syslog functions originating
from /proc/kmsg access and direct syscalls. By default, the commoncaps
will now no longer require CAP_SYS_ADMIN to read an opened /proc/kmsg
file descriptor. For example the kernel syslog reader can now drop
privileges after opening /proc/kmsg, instead of staying privileged with
CAP_SYS_ADMIN. MAC systems that implement security_syslog have unchanged
behavior.
Signed-off-by: Kees Cook <kees.cook@canonical.com>
Acked-by: Serge Hallyn <serue@us.ibm.com>
Acked-by: John Johansen <john.johansen@canonical.com>
Signed-off-by: James Morris <jmorris@namei.org>
|
|
|
|
It is not permitted to do sleeping operation inside security_sock_rcv_skb().
Signed-off-by: Tetsuo Handa <penguin-kernel@I-love.SAKURA.ne.jp>
Acked-by: Serge Hallyn <serue@us.ibm.com>
--
Signed-off-by: James Morris <jmorris@namei.org>
|
|
In NOMMU mode clamp dac_mmap_min_addr to zero to cause the tests on it to be
skipped by the compiler. We do this as the minimum mmap address doesn't make
any sense in NOMMU mode.
mmap_min_addr and round_hint_to_min() can be discarded entirely in NOMMU mode.
Signed-off-by: David Howells <dhowells@redhat.com>
Acked-by: Eric Paris <eparis@redhat.com>
Signed-off-by: James Morris <jmorris@namei.org>
|
|
For SELinux to do better filtering in userspace we send the name of the
module along with the AVC denial when a program is denied module_request.
Example output:
type=SYSCALL msg=audit(11/03/2009 10:59:43.510:9) : arch=x86_64 syscall=write success=yes exit=2 a0=3 a1=7fc28c0d56c0 a2=2 a3=7fffca0d7440 items=0 ppid=1727 pid=1729 auid=unset uid=root gid=root euid=root suid=root fsuid=root egid=root sgid=root fsgid=root tty=(none) ses=unset comm=rpc.nfsd exe=/usr/sbin/rpc.nfsd subj=system_u:system_r:nfsd_t:s0 key=(null)
type=AVC msg=audit(11/03/2009 10:59:43.510:9) : avc: denied { module_request } for pid=1729 comm=rpc.nfsd kmod="net-pf-10" scontext=system_u:system_r:nfsd_t:s0 tcontext=system_u:system_r:kernel_t:s0 tclass=system
Signed-off-by: Eric Paris <eparis@redhat.com>
Signed-off-by: James Morris <jmorris@namei.org>
|
|
This patch allows pathname based LSM modules to check chroot() operations.
This hook is used by TOMOYO.
Signed-off-by: Tetsuo Handa <penguin-kernel@I-love.SAKURA.ne.jp>
Signed-off-by: James Morris <jmorris@namei.org>
|
|
This patch allows pathname based LSM modules to check chmod()/chown()
operations. Since notify_change() does not receive "struct vfsmount *",
we add security_path_chmod() and security_path_chown() to the caller of
notify_change().
These hooks are used by TOMOYO.
Signed-off-by: Tetsuo Handa <penguin-kernel@I-love.SAKURA.ne.jp>
Signed-off-by: James Morris <jmorris@namei.org>
|
|
It's unused.
It isn't needed -- read or write flag is already passed and sysctl
shouldn't care about the rest.
It _was_ used in two places at arch/frv for some reason.
Signed-off-by: Alexey Dobriyan <adobriyan@gmail.com>
Cc: David Howells <dhowells@redhat.com>
Cc: "Eric W. Biederman" <ebiederm@xmission.com>
Cc: Al Viro <viro@zeniv.linux.org.uk>
Cc: Ralf Baechle <ralf@linux-mips.org>
Cc: Martin Schwidefsky <schwidefsky@de.ibm.com>
Cc: Ingo Molnar <mingo@elte.hu>
Cc: "David S. Miller" <davem@davemloft.net>
Cc: James Morris <jmorris@namei.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
context information.
This patch introduces three new hooks. The inode_getsecctx hook is used to get
all relevant information from an LSM about an inode. The inode_setsecctx is
used to set both the in-core and on-disk state for the inode based on a context
derived from inode_getsecctx.The final hook inode_notifysecctx will notify the
LSM of a change for the in-core state of the inode in question. These hooks are
for use in the labeled NFS code and addresses concerns of how to set security
on an inode in a multi-xattr LSM. For historical reasons Stephen Smalley's
explanation of the reason for these hooks is pasted below.
Quote Stephen Smalley
inode_setsecctx: Change the security context of an inode. Updates the
in core security context managed by the security module and invokes the
fs code as needed (via __vfs_setxattr_noperm) to update any backing
xattrs that represent the context. Example usage: NFS server invokes
this hook to change the security context in its incore inode and on the
backing file system to a value provided by the client on a SETATTR
operation.
inode_notifysecctx: Notify the security module of what the security
context of an inode should be. Initializes the incore security context
managed by the security module for this inode. Example usage: NFS
client invokes this hook to initialize the security context in its
incore inode to the value provided by the server for the file when the
server returned the file's attributes to the client.
Signed-off-by: David P. Quigley <dpquigl@tycho.nsa.gov>
Acked-by: Serge Hallyn <serue@us.ibm.com>
Signed-off-by: James Morris <jmorris@namei.org>
|
|
Fix the default security_session_to_parent() in linux/security.h to have a
body.
Signed-off-by: David Howells <dhowells@redhat.com>
Signed-off-by: James Morris <jmorris@namei.org>
|
|
Make security_cred_alloc_blank() return int, not void, when CONFIG_SECURITY=n.
Signed-off-by: David Howells <dhowells@redhat.com>
Signed-off-by: James Morris <jmorris@namei.org>
|
|
Add a keyctl to install a process's session keyring onto its parent. This
replaces the parent's session keyring. Because the COW credential code does
not permit one process to change another process's credentials directly, the
change is deferred until userspace next starts executing again. Normally this
will be after a wait*() syscall.
To support this, three new security hooks have been provided:
cred_alloc_blank() to allocate unset security creds, cred_transfer() to fill in
the blank security creds and key_session_to_parent() - which asks the LSM if
the process may replace its parent's session keyring.
The replacement may only happen if the process has the same ownership details
as its parent, and the process has LINK permission on the session keyring, and
the session keyring is owned by the process, and the LSM permits it.
Note that this requires alteration to each architecture's notify_resume path.
This has been done for all arches barring blackfin, m68k* and xtensa, all of
which need assembly alteration to support TIF_NOTIFY_RESUME. This allows the
replacement to be performed at the point the parent process resumes userspace
execution.
This allows the userspace AFS pioctl emulation to fully emulate newpag() and
the VIOCSETTOK and VIOCSETTOK2 pioctls, all of which require the ability to
alter the parent process's PAG membership. However, since kAFS doesn't use
PAGs per se, but rather dumps the keys into the session keyring, the session
keyring of the parent must be replaced if, for example, VIOCSETTOK is passed
the newpag flag.
This can be tested with the following program:
#include <stdio.h>
#include <stdlib.h>
#include <keyutils.h>
#define KEYCTL_SESSION_TO_PARENT 18
#define OSERROR(X, S) do { if ((long)(X) == -1) { perror(S); exit(1); } } while(0)
int main(int argc, char **argv)
{
key_serial_t keyring, key;
long ret;
keyring = keyctl_join_session_keyring(argv[1]);
OSERROR(keyring, "keyctl_join_session_keyring");
key = add_key("user", "a", "b", 1, keyring);
OSERROR(key, "add_key");
ret = keyctl(KEYCTL_SESSION_TO_PARENT);
OSERROR(ret, "KEYCTL_SESSION_TO_PARENT");
return 0;
}
Compiled and linked with -lkeyutils, you should see something like:
[dhowells@andromeda ~]$ keyctl show
Session Keyring
-3 --alswrv 4043 4043 keyring: _ses
355907932 --alswrv 4043 -1 \_ keyring: _uid.4043
[dhowells@andromeda ~]$ /tmp/newpag
[dhowells@andromeda ~]$ keyctl show
Session Keyring
-3 --alswrv 4043 4043 keyring: _ses
1055658746 --alswrv 4043 4043 \_ user: a
[dhowells@andromeda ~]$ /tmp/newpag hello
[dhowells@andromeda ~]$ keyctl show
Session Keyring
-3 --alswrv 4043 4043 keyring: hello
340417692 --alswrv 4043 4043 \_ user: a
Where the test program creates a new session keyring, sticks a user key named
'a' into it and then installs it on its parent.
Signed-off-by: David Howells <dhowells@redhat.com>
Signed-off-by: James Morris <jmorris@namei.org>
|
|
The TUN driver lacks any LSM hooks which makes it difficult for LSM modules,
such as SELinux, to enforce access controls on network traffic generated by
TUN users; this is particularly problematic for virtualization apps such as
QEMU and KVM. This patch adds three new LSM hooks designed to control the
creation and attachment of TUN devices, the hooks are:
* security_tun_dev_create()
Provides access control for the creation of new TUN devices
* security_tun_dev_post_create()
Provides the ability to create the necessary socket LSM state for newly
created TUN devices
* security_tun_dev_attach()
Provides access control for attaching to existing, persistent TUN devices
and the ability to update the TUN device's socket LSM state as necessary
Signed-off-by: Paul Moore <paul.moore@hp.com>
Acked-by: Eric Paris <eparis@parisplace.org>
Acked-by: Serge Hallyn <serue@us.ibm.com>
Acked-by: David S. Miller <davem@davemloft.net>
Signed-off-by: James Morris <jmorris@namei.org>
|
|
Update documentation for security_request_module to indicate
return value, as suggested by Serge Hallyn.
Signed-off-by: James Morris <jmorris@namei.org>
|
|
Calling request_module() will trigger a userspace upcall which will load a
new module into the kernel. This can be a dangerous event if the process
able to trigger request_module() is able to control either the modprobe
binary or the module binary. This patch adds a new security hook to
request_module() which can be used by an LSM to control a processes ability
to call request_module().
Signed-off-by: Eric Paris <eparis@redhat.com>
Acked-by: Serge Hallyn <serue@us.ibm.com>
Signed-off-by: James Morris <jmorris@namei.org>
|
|
Fix the header files to define round_hint_to_min() and to define
mmap_min_addr_handler() in the !CONFIG_SECURITY case.
Built and tested with !CONFIG_SECURITY
Signed-off-by: Eric Paris <eparis@redhat.com>
Signed-off-by: James Morris <jmorris@namei.org>
|
|
Currently SELinux enforcement of controls on the ability to map low memory
is determined by the mmap_min_addr tunable. This patch causes SELinux to
ignore the tunable and instead use a seperate Kconfig option specific to how
much space the LSM should protect.
The tunable will now only control the need for CAP_SYS_RAWIO and SELinux
permissions will always protect the amount of low memory designated by
CONFIG_LSM_MMAP_MIN_ADDR.
This allows users who need to disable the mmap_min_addr controls (usual reason
being they run WINE as a non-root user) to do so and still have SELinux
controls preventing confined domains (like a web server) from being able to
map some area of low memory.
Signed-off-by: Eric Paris <eparis@redhat.com>
Signed-off-by: James Morris <jmorris@namei.org>
|
|
Currently we duplicate the mmap_min_addr test in cap_file_mmap and in
security_file_mmap if !CONFIG_SECURITY. This patch moves cap_file_mmap
into commoncap.c and then calls that function directly from
security_file_mmap ifndef CONFIG_SECURITY like all of the other capability
checks are done.
Signed-off-by: Eric Paris <eparis@redhat.com>
Acked-by: Serge Hallyn <serue@us.ibm.com>
Signed-off-by: James Morris <jmorris@namei.org>
|
|
The ->ptrace_may_access() methods are named confusingly - the real
ptrace_may_access() returns a bool, while these security checks have
a retval convention.
Rename it to ptrace_access_check, to reduce the confusion factor.
[ Impact: cleanup, no code changed ]
Signed-off-by: Ingo Molnar <mingo@elte.hu>
Signed-off-by: James Morris <jmorris@namei.org>
|
|
This patch removes the dependency of mmap_min_addr on CONFIG_SECURITY.
It also sets a default mmap_min_addr of 4096.
mmapping of addresses below 4096 will only be possible for processes
with CAP_SYS_RAWIO.
Signed-off-by: Christoph Lameter <cl@linux-foundation.org>
Acked-by: Eric Paris <eparis@redhat.com>
Looks-ok-by: Linus Torvalds <torvalds@linux-foundation.org>
Signed-off-by: James Morris <jmorris@namei.org>
|
|
linux/security.h
Impact: cleanup
We want to remove percpu.h from rcupdate.h (for upcoming kmemtrace
changes), but this is not possible currently without breaking the
build because fs.h has implicit include file depedencies: it uses
GFP_* types in inlines but does not include gfp.h.
In practice most fs.h using .c files get gfp.h included implicitly,
via an indirect route: via rcupdate.h inclusion - so this underlying
problem gets masked in practice.
So we want to solve fs.h's dependency on gfp.h.
gfp.h can not be included here directly because it is not exported and it
would break the build the following way:
/home/mingo/tip/usr/include/linux/bsg.h:11: found __[us]{8,16,32,64} type without #include <linux/types.h>
/home/mingo/tip/usr/include/linux/fs.h:11: included file 'linux/gfp.h' is not exported
make[3]: *** [/home/mingo/tip/usr/include/linux/.check] Error 1
make[2]: *** [linux] Error 2
As suggested by Alexey Dobriyan, move alloc_secdata() and free_secdata()
to linux/security.h - they belong there. This also cleans fs.h of GFP_*
usage.
Suggested-by: Alexey Dobriyan <adobriyan@gmail.com>
Signed-off-by: Pekka Enberg <penberg@cs.helsinki.fi>
Cc: Eduard - Gabriel Munteanu <eduard.munteanu@linux360.ro>
LKML-Reference: <1237906803.25315.96.camel@penberg-laptop>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
|
|
The socket_post_accept() hook is not currently used by any in-tree modules
and its existence continues to cause problems by confusing people about
what can be safely accomplished using this hook. If a legitimate need for
this hook arises in the future it can always be reintroduced.
Signed-off-by: Paul Moore <paul.moore@hp.com>
Signed-off-by: James Morris <jmorris@namei.org>
|
|
|
|
Fix a regression in cap_capable() due to:
commit 3b11a1decef07c19443d24ae926982bc8ec9f4c0
Author: David Howells <dhowells@redhat.com>
Date: Fri Nov 14 10:39:26 2008 +1100
CRED: Differentiate objective and effective subjective credentials on a task
The problem is that the above patch allows a process to have two sets of
credentials, and for the most part uses the subjective credentials when
accessing current's creds.
There is, however, one exception: cap_capable(), and thus capable(), uses the
real/objective credentials of the target task, whether or not it is the current
task.
Ordinarily this doesn't matter, since usually the two cred pointers in current
point to the same set of creds. However, sys_faccessat() makes use of this
facility to override the credentials of the calling process to make its test,
without affecting the creds as seen from other processes.
One of the things sys_faccessat() does is to make an adjustment to the
effective capabilities mask, which cap_capable(), as it stands, then ignores.
The affected capability check is in generic_permission():
if (!(mask & MAY_EXEC) || execute_ok(inode))
if (capable(CAP_DAC_OVERRIDE))
return 0;
This change passes the set of credentials to be tested down into the commoncap
and SELinux code. The security functions called by capable() and
has_capability() select the appropriate set of credentials from the process
being checked.
This can be tested by compiling the following program from the XFS testsuite:
/*
* t_access_root.c - trivial test program to show permission bug.
*
* Written by Michael Kerrisk - copyright ownership not pursued.
* Sourced from: http://linux.derkeiler.com/Mailing-Lists/Kernel/2003-10/6030.html
*/
#include <limits.h>
#include <unistd.h>
#include <stdio.h>
#include <stdlib.h>
#include <fcntl.h>
#include <sys/stat.h>
#define UID 500
#define GID 100
#define PERM 0
#define TESTPATH "/tmp/t_access"
static void
errExit(char *msg)
{
perror(msg);
exit(EXIT_FAILURE);
} /* errExit */
static void
accessTest(char *file, int mask, char *mstr)
{
printf("access(%s, %s) returns %d\n", file, mstr, access(file, mask));
} /* accessTest */
int
main(int argc, char *argv[])
{
int fd, perm, uid, gid;
char *testpath;
char cmd[PATH_MAX + 20];
testpath = (argc > 1) ? argv[1] : TESTPATH;
perm = (argc > 2) ? strtoul(argv[2], NULL, 8) : PERM;
uid = (argc > 3) ? atoi(argv[3]) : UID;
gid = (argc > 4) ? atoi(argv[4]) : GID;
unlink(testpath);
fd = open(testpath, O_RDWR | O_CREAT, 0);
if (fd == -1) errExit("open");
if (fchown(fd, uid, gid) == -1) errExit("fchown");
if (fchmod(fd, perm) == -1) errExit("fchmod");
close(fd);
snprintf(cmd, sizeof(cmd), "ls -l %s", testpath);
system(cmd);
if (seteuid(uid) == -1) errExit("seteuid");
accessTest(testpath, 0, "0");
accessTest(testpath, R_OK, "R_OK");
accessTest(testpath, W_OK, "W_OK");
accessTest(testpath, X_OK, "X_OK");
accessTest(testpath, R_OK | W_OK, "R_OK | W_OK");
accessTest(testpath, R_OK | X_OK, "R_OK | X_OK");
accessTest(testpath, W_OK | X_OK, "W_OK | X_OK");
accessTest(testpath, R_OK | W_OK | X_OK, "R_OK | W_OK | X_OK");
exit(EXIT_SUCCESS);
} /* main */
This can be run against an Ext3 filesystem as well as against an XFS
filesystem. If successful, it will show:
[root@andromeda src]# ./t_access_root /tmp/xxx 0 4043 4043
---------- 1 dhowells dhowells 0 2008-12-31 03:00 /tmp/xxx
access(/tmp/xxx, 0) returns 0
access(/tmp/xxx, R_OK) returns 0
access(/tmp/xxx, W_OK) returns 0
access(/tmp/xxx, X_OK) returns -1
access(/tmp/xxx, R_OK | W_OK) returns 0
access(/tmp/xxx, R_OK | X_OK) returns -1
access(/tmp/xxx, W_OK | X_OK) returns -1
access(/tmp/xxx, R_OK | W_OK | X_OK) returns -1
If unsuccessful, it will show:
[root@andromeda src]# ./t_access_root /tmp/xxx 0 4043 4043
---------- 1 dhowells dhowells 0 2008-12-31 02:56 /tmp/xxx
access(/tmp/xxx, 0) returns 0
access(/tmp/xxx, R_OK) returns -1
access(/tmp/xxx, W_OK) returns -1
access(/tmp/xxx, X_OK) returns -1
access(/tmp/xxx, R_OK | W_OK) returns -1
access(/tmp/xxx, R_OK | X_OK) returns -1
access(/tmp/xxx, W_OK | X_OK) returns -1
access(/tmp/xxx, R_OK | W_OK | X_OK) returns -1
I've also tested the fix with the SELinux and syscalls LTP testsuites.
Signed-off-by: David Howells <dhowells@redhat.com>
Tested-by: J. Bruce Fields <bfields@citi.umich.edu>
Acked-by: Serge Hallyn <serue@us.ibm.com>
Signed-off-by: James Morris <jmorris@namei.org>
|
|
[ver #2]"
This reverts commit 14eaddc967b16017d4a1a24d2be6c28ecbe06ed8.
David has a better version to come.
|
|
Fix a regression in cap_capable() due to:
commit 5ff7711e635b32f0a1e558227d030c7e45b4a465
Author: David Howells <dhowells@redhat.com>
Date: Wed Dec 31 02:52:28 2008 +0000
CRED: Differentiate objective and effective subjective credentials on a task
The problem is that the above patch allows a process to have two sets of
credentials, and for the most part uses the subjective credentials when
accessing current's creds.
There is, however, one exception: cap_capable(), and thus capable(), uses the
real/objective credentials of the target task, whether or not it is the current
task.
Ordinarily this doesn't matter, since usually the two cred pointers in current
point to the same set of creds. However, sys_faccessat() makes use of this
facility to override the credentials of the calling process to make its test,
without affecting the creds as seen from other processes.
One of the things sys_faccessat() does is to make an adjustment to the
effective capabilities mask, which cap_capable(), as it stands, then ignores.
The affected capability check is in generic_permission():
if (!(mask & MAY_EXEC) || execute_ok(inode))
if (capable(CAP_DAC_OVERRIDE))
return 0;
This change splits capable() from has_capability() down into the commoncap and
SELinux code. The capable() security op now only deals with the current
process, and uses the current process's subjective creds. A new security op -
task_capable() - is introduced that can check any task's objective creds.
strictly the capable() security op is superfluous with the presence of the
task_capable() op, however it should be faster to call the capable() op since
two fewer arguments need be passed down through the various layers.
This can be tested by compiling the following program from the XFS testsuite:
/*
* t_access_root.c - trivial test program to show permission bug.
*
* Written by Michael Kerrisk - copyright ownership not pursued.
* Sourced from: http://linux.derkeiler.com/Mailing-Lists/Kernel/2003-10/6030.html
*/
#include <limits.h>
#include <unistd.h>
#include <stdio.h>
#include <stdlib.h>
#include <fcntl.h>
#include <sys/stat.h>
#define UID 500
#define GID 100
#define PERM 0
#define TESTPATH "/tmp/t_access"
static void
errExit(char *msg)
{
perror(msg);
exit(EXIT_FAILURE);
} /* errExit */
static void
accessTest(char *file, int mask, char *mstr)
{
printf("access(%s, %s) returns %d\n", file, mstr, access(file, mask));
} /* accessTest */
int
main(int argc, char *argv[])
{
int fd, perm, uid, gid;
char *testpath;
char cmd[PATH_MAX + 20];
testpath = (argc > 1) ? argv[1] : TESTPATH;
perm = (argc > 2) ? strtoul(argv[2], NULL, 8) : PERM;
uid = (argc > 3) ? atoi(argv[3]) : UID;
gid = (argc > 4) ? atoi(argv[4]) : GID;
unlink(testpath);
fd = open(testpath, O_RDWR | O_CREAT, 0);
if (fd == -1) errExit("open");
if (fchown(fd, uid, gid) == -1) errExit("fchown");
if (fchmod(fd, perm) == -1) errExit("fchmod");
close(fd);
snprintf(cmd, sizeof(cmd), "ls -l %s", testpath);
system(cmd);
if (seteuid(uid) == -1) errExit("seteuid");
accessTest(testpath, 0, "0");
accessTest(testpath, R_OK, "R_OK");
accessTest(testpath, W_OK, "W_OK");
accessTest(testpath, X_OK, "X_OK");
accessTest(testpath, R_OK | W_OK, "R_OK | W_OK");
accessTest(testpath, R_OK | X_OK, "R_OK | X_OK");
accessTest(testpath, W_OK | X_OK, "W_OK | X_OK");
accessTest(testpath, R_OK | W_OK | X_OK, "R_OK | W_OK | X_OK");
exit(EXIT_SUCCESS);
} /* main */
This can be run against an Ext3 filesystem as well as against an XFS
filesystem. If successful, it will show:
[root@andromeda src]# ./t_access_root /tmp/xxx 0 4043 4043
---------- 1 dhowells dhowells 0 2008-12-31 03:00 /tmp/xxx
access(/tmp/xxx, 0) returns 0
access(/tmp/xxx, R_OK) returns 0
access(/tmp/xxx, W_OK) returns 0
access(/tmp/xxx, X_OK) returns -1
access(/tmp/xxx, R_OK | W_OK) returns 0
access(/tmp/xxx, R_OK | X_OK) returns -1
access(/tmp/xxx, W_OK | X_OK) returns -1
access(/tmp/xxx, R_OK | W_OK | X_OK) returns -1
If unsuccessful, it will show:
[root@andromeda src]# ./t_access_root /tmp/xxx 0 4043 4043
---------- 1 dhowells dhowells 0 2008-12-31 02:56 /tmp/xxx
access(/tmp/xxx, 0) returns 0
access(/tmp/xxx, R_OK) returns -1
access(/tmp/xxx, W_OK) returns -1
access(/tmp/xxx, X_OK) returns -1
access(/tmp/xxx, R_OK | W_OK) returns -1
access(/tmp/xxx, R_OK | X_OK) returns -1
access(/tmp/xxx, W_OK | X_OK) returns -1
access(/tmp/xxx, R_OK | W_OK | X_OK) returns -1
I've also tested the fix with the SELinux and syscalls LTP testsuites.
Signed-off-by: David Howells <dhowells@redhat.com>
Signed-off-by: James Morris <jmorris@namei.org>
|
|
Add new LSM hooks for path-based checks. Call them on directory-modifying
operations at the points where we still know the vfsmount involved.
Signed-off-by: Kentaro Takeda <takedakn@nttdata.co.jp>
Signed-off-by: Tetsuo Handa <penguin-kernel@I-love.SAKURA.ne.jp>
Signed-off-by: Toshiharu Harada <haradats@nttdata.co.jp>
Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
|
|
Pass mount flags to security_sb_kern_mount(), so security modules
can determine if a mount operation is being performed by the kernel.
Signed-off-by: James Morris <jmorris@namei.org>
Acked-by: Stephen Smalley <sds@tycho.nsa.gov>
|
|
Conflicts:
fs/nfsd/nfs4recover.c
Manually fixed above to use new creds API functions, e.g.
nfs4_save_creds().
Signed-off-by: James Morris <jmorris@namei.org>
|
|
The previous patch from Alan Cox ("nfsd: fix vm overcommit crash",
commit 731572d39fcd3498702eda4600db4c43d51e0b26) fixed the problem where
knfsd crashes on exported shmemfs objects and strict overcommit is set.
But the patch forgot supporting the case when CONFIG_SECURITY is
disabled.
This patch copies a part of his fix which is mainly for detecting a bug
earlier.
Acked-by: James Morris <jmorris@namei.org>
Signed-off-by: Alan Cox <alan@redhat.com>
Signed-off-by: Junjiro R. Okajima <hooanon05@yahoo.co.jp>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
Allow kernel services to override LSM settings appropriate to the actions
performed by a task by duplicating a set of credentials, modifying it and then
using task_struct::cred to point to it when performing operations on behalf of
a task.
This is used, for example, by CacheFiles which has to transparently access the
cache on behalf of a process that thinks it is doing, say, NFS accesses with a
potentially inappropriate (with respect to accessing the cache) set of
credentials.
This patch provides two LSM hooks for modifying a task security record:
(*) security_kernel_act_as() which allows modification of the security datum
with which a task acts on other objects (most notably files).
(*) security_kernel_create_files_as() which allows modification of the
security datum that is used to initialise the security data on a file that
a task creates.
The patch also provides four new credentials handling functions, which wrap the
LSM functions:
(1) prepare_kernel_cred()
Prepare a set of credentials for a kernel service to use, based either on
a daemon's credentials or on init_cred. All the keyrings are cleared.
(2) set_security_override()
Set the LSM security ID in a set of credentials to a specific security
context, assuming permission from the LSM policy.
(3) set_security_override_from_ctx()
As (2), but takes the security context as a string.
(4) set_create_files_as()
Set the file creation LSM security ID in a set of credentials to be the
same as that on a particular inode.
Signed-off-by: Casey Schaufler <casey@schaufler-ca.com> [Smack changes]
Signed-off-by: David Howells <dhowells@redhat.com>
Signed-off-by: James Morris <jmorris@namei.org>
|
|
Make execve() take advantage of copy-on-write credentials, allowing it to set
up the credentials in advance, and then commit the whole lot after the point
of no return.
This patch and the preceding patches have been tested with the LTP SELinux
testsuite.
This patch makes several logical sets of alteration:
(1) execve().
The credential bits from struct linux_binprm are, for the most part,
replaced with a single credentials pointer (bprm->cred). This means that
all the creds can be calculated in advance and then applied at the point
of no return with no possibility of failure.
I would like to replace bprm->cap_effective with:
cap_isclear(bprm->cap_effective)
but this seems impossible due to special behaviour for processes of pid 1
(they always retain their parent's capability masks where normally they'd
be changed - see cap_bprm_set_creds()).
The following sequence of events now happens:
(a) At the start of do_execve, the current task's cred_exec_mutex is
locked to prevent PTRACE_ATTACH from obsoleting the calculation of
creds that we make.
(a) prepare_exec_creds() is then called to make a copy of the current
task's credentials and prepare it. This copy is then assigned to
bprm->cred.
This renders security_bprm_alloc() and security_bprm_free()
unnecessary, and so they've been removed.
(b) The determination of unsafe execution is now performed immediately
after (a) rather than later on in the code. The result is stored in
bprm->unsafe for future reference.
(c) prepare_binprm() is called, possibly multiple times.
(i) This applies the result of set[ug]id binaries to the new creds
attached to bprm->cred. Personality bit clearance is recorded,
but now deferred on the basis that the exec procedure may yet
fail.
(ii) This then calls the new security_bprm_set_creds(). This should
calculate the new LSM and capability credentials into *bprm->cred.
This folds together security_bprm_set() and parts of
security_bprm_apply_creds() (these two have been removed).
Anything that might fail must be done at this point.
(iii) bprm->cred_prepared is set to 1.
bprm->cred_prepared is 0 on the first pass of the security
calculations, and 1 on all subsequent passes. This allows SELinux
in (ii) to base its calculations only on the initial script and
not on the interpreter.
(d) flush_old_exec() is called to commit the task to execution. This
performs the following steps with regard to credentials:
(i) Clear pdeath_signal and set dumpable on certain circumstances that
may not be covered by commit_creds().
(ii) Clear any bits in current->personality that were deferred from
(c.i).
(e) install_exec_creds() [compute_creds() as was] is called to install the
new credentials. This performs the following steps with regard to
credentials:
(i) Calls security_bprm_committing_creds() to apply any security
requirements, such as flushing unauthorised files in SELinux, that
must be done before the credentials are changed.
This is made up of bits of security_bprm_apply_creds() and
security_bprm_post_apply_creds(), both of which have been removed.
This function is not allowed to fail; anything that might fail
must have been done in (c.ii).
(ii) Calls commit_creds() to apply the new credentials in a single
assignment (more or less). Possibly pdeath_signal and dumpable
should be part of struct creds.
(iii) Unlocks the task's cred_replace_mutex, thus allowing
PTRACE_ATTACH to take place.
(iv) Clears The bprm->cred pointer as the credentials it was holding
are now immutable.
(v) Calls security_bprm_committed_creds() to apply any security
alterations that must be done after the creds have been changed.
SELinux uses this to flush signals and signal handlers.
(f) If an error occurs before (d.i), bprm_free() will call abort_creds()
to destroy the proposed new credentials and will then unlock
cred_replace_mutex. No changes to the credentials will have been
made.
(2) LSM interface.
A number of functions have been changed, added or removed:
(*) security_bprm_alloc(), ->bprm_alloc_security()
(*) security_bprm_free(), ->bprm_free_security()
Removed in favour of preparing new credentials and modifying those.
(*) security_bprm_apply_creds(), ->bprm_apply_creds()
(*) security_bprm_post_apply_creds(), ->bprm_post_apply_creds()
Removed; split between security_bprm_set_creds(),
security_bprm_committing_creds() and security_bprm_committed_creds().
(*) security_bprm_set(), ->bprm_set_security()
Removed; folded into security_bprm_set_creds().
(*) security_bprm_set_creds(), ->bprm_set_creds()
New. The new credentials in bprm->creds should be checked and set up
as appropriate. bprm->cred_prepared is 0 on the first call, 1 on the
second and subsequent calls.
(*) security_bprm_committing_creds(), ->bprm_committing_creds()
(*) security_bprm_committed_creds(), ->bprm_committed_creds()
New. Apply the security effects of the new credentials. This
includes closing unauthorised files in SELinux. This function may not
fail. When the former is called, the creds haven't yet been applied
to the process; when the latter is called, they have.
The former may access bprm->cred, the latter may not.
(3) SELinux.
SELinux has a number of changes, in addition to those to support the LSM
interface changes mentioned above:
(a) The bprm_security_struct struct has been removed in favour of using
the credentials-under-construction approach.
(c) flush_unauthorized_files() now takes a cred pointer and passes it on
to inode_has_perm(), file_has_perm() and dentry_open().
Signed-off-by: David Howells <dhowells@redhat.com>
Acked-by: James Morris <jmorris@namei.org>
Acked-by: Serge Hallyn <serue@us.ibm.com>
Signed-off-by: James Morris <jmorris@namei.org>
|
|
Inaugurate copy-on-write credentials management. This uses RCU to manage the
credentials pointer in the task_struct with respect to accesses by other tasks.
A process may only modify its own credentials, and so does not need locking to
access or modify its own credentials.
A mutex (cred_replace_mutex) is added to the task_struct to control the effect
of PTRACE_ATTACHED on credential calculations, particularly with respect to
execve().
With this patch, the contents of an active credentials struct may not be
changed directly; rather a new set of credentials must be prepared, modified
and committed using something like the following sequence of events:
struct cred *new = prepare_creds();
int ret = blah(new);
if (ret < 0) {
abort_creds(new);
return ret;
}
return commit_creds(new);
There are some exceptions to this rule: the keyrings pointed to by the active
credentials may be instantiated - keyrings violate the COW rule as managing
COW keyrings is tricky, given that it is possible for a task to directly alter
the keys in a keyring in use by another task.
To help enforce this, various pointers to sets of credentials, such as those in
the task_struct, are declared const. The purpose of this is compile-time
discouragement of altering credentials through those pointers. Once a set of
credentials has been made public through one of these pointers, it may not be
modified, except under special circumstances:
(1) Its reference count may incremented and decremented.
(2) The keyrings to which it points may be modified, but not replaced.
The only safe way to modify anything else is to create a replacement and commit
using the functions described in Documentation/credentials.txt (which will be
added by a later patch).
This patch and the preceding patches have been tested with the LTP SELinux
testsuite.
This patch makes several logical sets of alteration:
(1) execve().
This now prepares and commits credentials in various places in the
security code rather than altering the current creds directly.
(2) Temporary credential overrides.
do_coredump() and sys_faccessat() now prepare their own credentials and
temporarily override the ones currently on the acting thread, whilst
preventing interference from other threads by holding cred_replace_mutex
on the thread being dumped.
This will be replaced in a future patch by something that hands down the
credentials directly to the functions being called, rather than altering
the task's objective credentials.
(3) LSM interface.
A number of functions have been changed, added or removed:
(*) security_capset_check(), ->capset_check()
(*) security_capset_set(), ->capset_set()
Removed in favour of security_capset().
(*) security_capset(), ->capset()
New. This is passed a pointer to the new creds, a pointer to the old
creds and the proposed capability sets. It should fill in the new
creds or return an error. All pointers, barring the pointer to the
new creds, are now const.
(*) security_bprm_apply_creds(), ->bprm_apply_creds()
Changed; now returns a value, which will cause the process to be
killed if it's an error.
(*) security_task_alloc(), ->task_alloc_security()
Removed in favour of security_prepare_creds().
(*) security_cred_free(), ->cred_free()
New. Free security data attached to cred->security.
(*) security_prepare_creds(), ->cred_prepare()
New. Duplicate any security data attached to cred->security.
(*) security_commit_creds(), ->cred_commit()
New. Apply any security effects for the upcoming installation of new
security by commit_creds().
(*) security_task_post_setuid(), ->task_post_setuid()
Removed in favour of security_task_fix_setuid().
(*) security_task_fix_setuid(), ->task_fix_setuid()
Fix up the proposed new credentials for setuid(). This is used by
cap_set_fix_setuid() to implicitly adjust capabilities in line with
setuid() changes. Changes are made to the new credentials, rather
than the task itself as in security_task_post_setuid().
(*) security_task_reparent_to_init(), ->task_reparent_to_init()
Removed. Instead the task being reparented to init is referred
directly to init's credentials.
NOTE! This results in the loss of some state: SELinux's osid no
longer records the sid of the thread that forked it.
(*) security_key_alloc(), ->key_alloc()
(*) security_key_permission(), ->key_permission()
Changed. These now take cred pointers rather than task pointers to
refer to the security context.
(4) sys_capset().
This has been simplified and uses less locking. The LSM functions it
calls have been merged.
(5) reparent_to_kthreadd().
This gives the current thread the same credentials as init by simply using
commit_thread() to point that way.
(6) __sigqueue_alloc() and switch_uid()
__sigqueue_alloc() can't stop the target task from changing its creds
beneath it, so this function gets a reference to the currently applicable
user_struct which it then passes into the sigqueue struct it returns if
successful.
switch_uid() is now called from commit_creds(), and possibly should be
folded into that. commit_creds() should take care of protecting
__sigqueue_alloc().
(7) [sg]et[ug]id() and co and [sg]et_current_groups.
The set functions now all use prepare_creds(), commit_creds() and
abort_creds() to build and check a new set of credentials before applying
it.
security_task_set[ug]id() is called inside the prepared section. This
guarantees that nothing else will affect the creds until we've finished.
The calling of set_dumpable() has been moved into commit_creds().
Much of the functionality of set_user() has been moved into
commit_creds().
The get functions all simply access the data directly.
(8) security_task_prctl() and cap_task_prctl().
security_task_prctl() has been modified to return -ENOSYS if it doesn't
want to handle a function, or otherwise return the return value directly
rather than through an argument.
Additionally, cap_task_prctl() now prepares a new set of credentials, even
if it doesn't end up using it.
(9) Keyrings.
A number of changes have been made to the keyrings code:
(a) switch_uid_keyring(), copy_keys(), exit_keys() and suid_keys() have
all been dropped and built in to the credentials functions directly.
They may want separating out again later.
(b) key_alloc() and search_process_keyrings() now take a cred pointer
rather than a task pointer to specify the security context.
(c) copy_creds() gives a new thread within the same thread group a new
thread keyring if its parent had one, otherwise it discards the thread
keyring.
(d) The authorisation key now points directly to the credentials to extend
the search into rather pointing to the task that carries them.
(e) Installing thread, process or session keyrings causes a new set of
credentials to be created, even though it's not strictly necessary for
process or session keyrings (they're shared).
(10) Usermode helper.
The usermode helper code now carries a cred struct pointer in its
subprocess_info struct instead of a new session keyring pointer. This set
of credentials is derived from init_cred and installed on the new process
after it has been cloned.
call_usermodehelper_setup() allocates the new credentials and
call_usermodehelper_freeinfo() discards them if they haven't been used. A
special cred function (prepare_usermodeinfo_creds()) is provided
specifically for call_usermodehelper_setup() to call.
call_usermodehelper_setkeys() adjusts the credentials to sport the
supplied keyring as the new session keyring.
(11) SELinux.
SELinux has a number of changes, in addition to those to support the LSM
interface changes mentioned above:
(a) selinux_setprocattr() no longer does its check for whether the
current ptracer can access processes with the new SID inside the lock
that covers getting the ptracer's SID. Whilst this lock ensures that
the check is done with the ptracer pinned, the result is only valid
until the lock is released, so there's no point doing it inside the
lock.
(12) is_single_threaded().
This function has been extracted from selinux_setprocattr() and put into
a file of its own in the lib/ directory as join_session_keyring() now
wants to use it too.
The code in SELinux just checked to see whether a task shared mm_structs
with other tasks (CLONE_VM), but that isn't good enough. We really want
to know if they're part of the same thread group (CLONE_THREAD).
(13) nfsd.
The NFS server daemon now has to use the COW credentials to set the
credentials it is going to use. It really needs to pass the credentials
down to the functions it calls, but it can't do that until other patches
in this series have been applied.
Signed-off-by: David Howells <dhowells@redhat.com>
Acked-by: James Morris <jmorris@namei.org>
Signed-off-by: James Morris <jmorris@namei.org>
|
|
Pass credentials through dentry_open() so that the COW creds patch can have
SELinux's flush_unauthorized_files() pass the appropriate creds back to itself
when it opens its null chardev.
The security_dentry_open() call also now takes a creds pointer, as does the
dentry_open hook in struct security_operations.
Signed-off-by: David Howells <dhowells@redhat.com>
Acked-by: James Morris <jmorris@namei.org>
Signed-off-by: James Morris <jmorris@namei.org>
|