Age | Commit message (Collapse) | Author |
|
commit 5d6dee80a1e94cc284d03e06d930e60e8d3ecf7d upstream.
At the point where the kvm-vfio pseudo device wants to release its
vfio group reference, we can't always acquire a new reference to make
that happen. The group can be in a state where we wouldn't allow a
new reference to be added. This new helper function allows a caller
to match a file to a group to facilitate this. Given a file and
group, report if they match. Thus the caller needs to already have a
group reference to match to the file. This allows the deletion of a
group without acquiring a new reference.
Signed-off-by: Alex Williamson <alex.williamson@redhat.com>
Reviewed-by: Eric Auger <eric.auger@redhat.com>
Reviewed-by: Paolo Bonzini <pbonzini@redhat.com>
Tested-by: Eric Auger <eric.auger@redhat.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
commit 138d351eefb727ab9e41a3dc5f112ceb4f6e59f2 upstream.
This patch re-introduces part of a long standing login workaround that
was recently dropped by:
commit 1c99de981f30b3e7868b8d20ce5479fa1c0fea46
Author: Nicholas Bellinger <nab@linux-iscsi.org>
Date: Sun Apr 2 13:36:44 2017 -0700
iscsi-target: Drop work-around for legacy GlobalSAN initiator
Namely, the workaround for FirstBurstLength ended up being required by
Mellanox Flexboot PXE boot ROMs as reported by Robert.
So this patch re-adds the work-around for FirstBurstLength within
iscsi_check_proposer_for_optional_reply(), and makes the key optional
to respond when the initiator does not propose, nor respond to it.
Also as requested by Arun, this patch introduces a new TPG attribute
named 'login_keys_workaround' that controls the use of both the
FirstBurstLength workaround, as well as the two other existing
workarounds for gPXE iSCSI boot client.
By default, the workaround is enabled with login_keys_workaround=1,
since Mellanox FlexBoot requires it, and Arun has verified the Qlogic
MSFT initiator already proposes FirstBurstLength, so it's uneffected
by this re-adding this part of the original work-around.
Reported-by: Robert LeBlanc <robert@leblancnet.us>
Cc: Robert LeBlanc <robert@leblancnet.us>
Reviewed-by: Arun Easi <arun.easi@cavium.com>
Signed-off-by: Nicholas Bellinger <nab@linux-iscsi.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
commit f77af15165847406b15d8f70c382c4cb15846b2a upstream.
The TPM class has some common shutdown code that must be executed for
all drivers. This adds some needed functionality for that.
Signed-off-by: Josh Zimmerman <joshz@google.com>
Acked-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Fixes: 74d6b3ceaa17 ("tpm: fix suspend/resume paths for TPM 2.0")
Reviewed-by: Jarkko Sakkinen <jarkko.sakkinen@linux.intel.com>
Tested-by: Jarkko Sakkinen <jarkko.sakkinen@linux.intel.com>
Signed-off-by: Jarkko Sakkinen <jarkko.sakkinen@linux.intel.com>
Signed-off-by: James Morris <james.l.morris@oracle.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
commit 2c80cd57c74339889a8752b20862a16c28929c3a upstream.
list_lru_count_node() iterates over all memcgs to get the total number of
entries on the node but it can race with memcg_drain_all_list_lrus(),
which migrates the entries from a dead cgroup to another. This can return
incorrect number of entries from list_lru_count_node().
Fix this by keeping track of entries per node and simply return it in
list_lru_count_node().
Link: http://lkml.kernel.org/r/1498707555-30525-1-git-send-email-stummala@codeaurora.org
Signed-off-by: Sahitya Tummala <stummala@codeaurora.org>
Acked-by: Vladimir Davydov <vdavydov.dev@gmail.com>
Cc: Jan Kara <jack@suse.cz>
Cc: Alexander Polakov <apolyakov@beget.ru>
Cc: Al Viro <viro@zeniv.linux.org.uk>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
commit f06b7549b79e29a672336d4e134524373fb7a232 upstream.
Lennert reported a failure to add different mpls encaps in a multipath
route:
$ ip -6 route add 1234::/16 \
nexthop encap mpls 10 via fe80::1 dev ens3 \
nexthop encap mpls 20 via fe80::1 dev ens3
RTNETLINK answers: File exists
The problem is that the duplicate nexthop detection does not compare
lwtunnel configuration. Add it.
Fixes: 19e42e451506 ("ipv6: support for fib route lwtunnel encap attributes")
Signed-off-by: David Ahern <dsahern@gmail.com>
Reported-by: João Taveira Araújo <joao.taveira@gmail.com>
Reported-by: Lennert Buytenhek <buytenh@wantstofly.org>
Acked-by: Roopa Prabhu <roopa@cumulusnetworks.com>
Tested-by: Lennert Buytenhek <buytenh@wantstofly.org>
Signed-off-by: David S. Miller <davem@davemloft.net>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
commit 7cf916bd639bd26db7214f2205bccdb4b9306256 upstream.
The current definition is wrong. This breaks my upcoming
Aspeed virtual hub driver.
Signed-off-by: Benjamin Herrenschmidt <benh@kernel.crashing.org>
Acked-by: Alan Stern <stern@rowland.harvard.edu>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
commit 80f18379a7c350c011d30332658aa15fe49a8fa5 upstream.
Add a central define for all valid open flags, and use it in the uniqueness
check.
Signed-off-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
commit 9b3eb54106cf6acd03f07cf0ab01c13676a226c2 upstream.
When CONFIG_XFRM_SUB_POLICY=y, xfrm_dst stores a copy of the flowi for
that dst. Unfortunately, the code that allocates and fills this copy
doesn't care about what type of flowi (flowi, flowi4, flowi6) gets
passed. In multiple code paths (from raw_sendmsg, from TCP when
replying to a FIN, in vxlan, geneve, and gre), the flowi that gets
passed to xfrm is actually an on-stack flowi4, so we end up reading
stuff from the stack past the end of the flowi4 struct.
Since xfrm_dst->origin isn't used anywhere following commit
ca116922afa8 ("xfrm: Eliminate "fl" and "pol" args to
xfrm_bundle_ok()."), just get rid of it. xfrm_dst->partner isn't used
either, so get rid of that too.
Fixes: 9d6ec938019c ("ipv4: Use flowi4 in public route lookup interfaces.")
Signed-off-by: Sabrina Dubroca <sd@queasysnail.net>
Signed-off-by: Steffen Klassert <steffen.klassert@secunet.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
[ Upstream commit 4d22c75d4c7b5c5f4bd31054f09103ee490878fd ]
If the last section of a core file ends with an unmapped or zero page,
the size of the file does not correspond with the last dump_skip() call.
gdb complains that the file is truncated and can be confusing to users.
After all of the vma sections are written, make sure that the file size
is no smaller than the current file position.
This problem can be demonstrated with gdb's bigcore testcase on the
sparc architecture.
Signed-off-by: Dave Kleikamp <dave.kleikamp@oracle.com>
Cc: Alexander Viro <viro@zeniv.linux.org.uk>
Cc: linux-fsdevel@vger.kernel.org
Cc: linux-kernel@vger.kernel.org
Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
Signed-off-by: Sasha Levin <alexander.levin@verizon.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
commit ceea5e3771ed2378668455fa21861bead7504df5 upstream.
In tests, which excercise switching of clocksources, a NULL
pointer dereference can be observed on AMR64 platforms in the
clocksource read() function:
u64 clocksource_mmio_readl_down(struct clocksource *c)
{
return ~(u64)readl_relaxed(to_mmio_clksrc(c)->reg) & c->mask;
}
This is called from the core timekeeping code via:
cycle_now = tkr->read(tkr->clock);
tkr->read is the cached tkr->clock->read() function pointer.
When the clocksource is changed then tkr->clock and tkr->read
are updated sequentially. The code above results in a sequential
load operation of tkr->read and tkr->clock as well.
If the store to tkr->clock hits between the loads of tkr->read
and tkr->clock, then the old read() function is called with the
new clock pointer. As a consequence the read() function
dereferences a different data structure and the resulting 'reg'
pointer can point anywhere including NULL.
This problem was introduced when the timekeeping code was
switched over to use struct tk_read_base. Before that, it was
theoretically possible as well when the compiler decided to
reload clock in the code sequence:
now = tk->clock->read(tk->clock);
Add a helper function which avoids the issue by reading
tk_read_base->clock once into a local variable clk and then issue
the read function via clk->read(clk). This guarantees that the
read() function always gets the proper clocksource pointer handed
in.
Since there is now no use for the tkr.read pointer, this patch
also removes it, and to address stopping the fast timekeeper
during suspend/resume, it introduces a dummy clocksource to use
rather then just a dummy read function.
Signed-off-by: John Stultz <john.stultz@linaro.org>
Acked-by: Ingo Molnar <mingo@kernel.org>
Cc: Prarit Bhargava <prarit@redhat.com>
Cc: Richard Cochran <richardcochran@gmail.com>
Cc: Stephen Boyd <stephen.boyd@linaro.org>
Cc: Miroslav Lichvar <mlichvar@redhat.com>
Cc: Daniel Mentz <danielmentz@google.com>
Link: http://lkml.kernel.org/r/1496965462-20003-2-git-send-email-john.stultz@linaro.org
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
commit 1be7107fbe18eed3e319a6c3e83c78254b693acb upstream.
Stack guard page is a useful feature to reduce a risk of stack smashing
into a different mapping. We have been using a single page gap which
is sufficient to prevent having stack adjacent to a different mapping.
But this seems to be insufficient in the light of the stack usage in
userspace. E.g. glibc uses as large as 64kB alloca() in many commonly
used functions. Others use constructs liks gid_t buffer[NGROUPS_MAX]
which is 256kB or stack strings with MAX_ARG_STRLEN.
This will become especially dangerous for suid binaries and the default
no limit for the stack size limit because those applications can be
tricked to consume a large portion of the stack and a single glibc call
could jump over the guard page. These attacks are not theoretical,
unfortunatelly.
Make those attacks less probable by increasing the stack guard gap
to 1MB (on systems with 4k pages; but make it depend on the page size
because systems with larger base pages might cap stack allocations in
the PAGE_SIZE units) which should cover larger alloca() and VLA stack
allocations. It is obviously not a full fix because the problem is
somehow inherent, but it should reduce attack space a lot.
One could argue that the gap size should be configurable from userspace,
but that can be done later when somebody finds that the new 1MB is wrong
for some special case applications. For now, add a kernel command line
option (stack_guard_gap) to specify the stack gap size (in page units).
Implementation wise, first delete all the old code for stack guard page:
because although we could get away with accounting one extra page in a
stack vma, accounting a larger gap can break userspace - case in point,
a program run with "ulimit -S -v 20000" failed when the 1MB gap was
counted for RLIMIT_AS; similar problems could come with RLIMIT_MLOCK
and strict non-overcommit mode.
Instead of keeping gap inside the stack vma, maintain the stack guard
gap as a gap between vmas: using vm_start_gap() in place of vm_start
(or vm_end_gap() in place of vm_end if VM_GROWSUP) in just those few
places which need to respect the gap - mainly arch_get_unmapped_area(),
and and the vma tree's subtree_gap support for that.
Original-patch-by: Oleg Nesterov <oleg@redhat.com>
Original-patch-by: Michal Hocko <mhocko@suse.com>
Signed-off-by: Hugh Dickins <hughd@google.com>
Acked-by: Michal Hocko <mhocko@suse.com>
Tested-by: Helge Deller <deller@gmx.de> # parisc
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
[wt: backport to 4.11: adjust context]
[wt: backport to 4.9: adjust context ; kernel doc was not in admin-guide]
[wt: backport to 4.4: adjust context ; drop ppc hugetlb_radix changes]
Signed-off-by: Willy Tarreau <w@1wt.eu>
[gkh: minor build fixes for 4.4]
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
commit 93491ced3c87c94b12220dbac0527e1356702179 upstream.
Add define for the maximum number of ports on a SuperSpeed hub as per
USB 3.1 spec Table 10-5, and use it when verifying the retrieved hub
descriptor.
This specifically avoids benign attempts to update the DeviceRemovable
mask for non-existing ports (should we get that far).
Fixes: dbe79bbe9dcb ("USB 3.0 Hub Changes")
Acked-by: Alan Stern <stern@rowland.harvard.edu>
Signed-off-by: Johan Hovold <johan@kernel.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
[ Upstream commit 90427ef5d2a4b9a24079889bf16afdcdaebc4240 ]
ip6_make_flowlabel() determines the flow label for IPv6 packets. It's
supposed to be passed a flow label, which it returns as is if non-0 and
in some other cases, otherwise it calculates a new value.
The problem is callers often pass a flowi6.flowlabel, which may also
contain traffic class bits. If the traffic class is non-0
ip6_make_flowlabel() mistakes the non-0 it gets as a flow label and
returns the whole thing. Thus it can return a 'flow label' longer than
20b and the low 20b of that is typically 0 resulting in packets with 0
label. Moreover, different packets of a flow may be labeled differently.
For a TCP flow with ECN non-payload and payload packets get different
labels as exemplified by this pair of consecutive packets:
(pure ACK)
Internet Protocol Version 6, Src: 2002:af5:11a3::, Dst: 2002:af5:11a2::
0110 .... = Version: 6
.... 0000 0000 .... .... .... .... .... = Traffic Class: 0x00 (DSCP: CS0, ECN: Not-ECT)
.... 0000 00.. .... .... .... .... .... = Differentiated Services Codepoint: Default (0)
.... .... ..00 .... .... .... .... .... = Explicit Congestion Notification: Not ECN-Capable Transport (0)
.... .... .... 0001 1100 1110 0100 1001 = Flow Label: 0x1ce49
Payload Length: 32
Next Header: TCP (6)
(payload)
Internet Protocol Version 6, Src: 2002:af5:11a3::, Dst: 2002:af5:11a2::
0110 .... = Version: 6
.... 0000 0010 .... .... .... .... .... = Traffic Class: 0x02 (DSCP: CS0, ECN: ECT(0))
.... 0000 00.. .... .... .... .... .... = Differentiated Services Codepoint: Default (0)
.... .... ..10 .... .... .... .... .... = Explicit Congestion Notification: ECN-Capable Transport codepoint '10' (2)
.... .... .... 0000 0000 0000 0000 0000 = Flow Label: 0x00000
Payload Length: 688
Next Header: TCP (6)
This patch allows ip6_make_flowlabel() to be passed more than just a
flow label and has it extract the part it really wants. This was simpler
than modifying the callers. With this patch packets like the above become
Internet Protocol Version 6, Src: 2002:af5:11a3::, Dst: 2002:af5:11a2::
0110 .... = Version: 6
.... 0000 0000 .... .... .... .... .... = Traffic Class: 0x00 (DSCP: CS0, ECN: Not-ECT)
.... 0000 00.. .... .... .... .... .... = Differentiated Services Codepoint: Default (0)
.... .... ..00 .... .... .... .... .... = Explicit Congestion Notification: Not ECN-Capable Transport (0)
.... .... .... 1010 1111 1010 0101 1110 = Flow Label: 0xafa5e
Payload Length: 32
Next Header: TCP (6)
Internet Protocol Version 6, Src: 2002:af5:11a3::, Dst: 2002:af5:11a2::
0110 .... = Version: 6
.... 0000 0010 .... .... .... .... .... = Traffic Class: 0x02 (DSCP: CS0, ECN: ECT(0))
.... 0000 00.. .... .... .... .... .... = Differentiated Services Codepoint: Default (0)
.... .... ..10 .... .... .... .... .... = Explicit Congestion Notification: ECN-Capable Transport codepoint '10' (2)
.... .... .... 1010 1111 1010 0101 1110 = Flow Label: 0xafa5e
Payload Length: 688
Next Header: TCP (6)
Signed-off-by: Dimitris Michailidis <dmichail@google.com>
Acked-by: Eric Dumazet <edumazet@google.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
Signed-off-by: Sasha Levin <alexander.levin@verizon.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
[ Upstream commit e26bfebdfc0d212d366de9990a096665d5c0209a ]
Under some circumstances, an fscache object can become queued such that it
fscache_object_work_func() can be called once the object is in the
OBJECT_DEAD state. This results in the kernel oopsing when it tries to
invoke the handler for the state (which is hard coded to 0x2).
The way this comes about is something like the following:
(1) The object dispatcher is processing a work state for an object. This
is done in workqueue context.
(2) An out-of-band event comes in that isn't masked, causing the object to
be queued, say EV_KILL.
(3) The object dispatcher finishes processing the current work state on
that object and then sees there's another event to process, so,
without returning to the workqueue core, it processes that event too.
It then follows the chain of events that initiates until we reach
OBJECT_DEAD without going through a wait state (such as
WAIT_FOR_CLEARANCE).
At this point, object->events may be 0, object->event_mask will be 0
and oob_event_mask will be 0.
(4) The object dispatcher returns to the workqueue processor, and in due
course, this sees that the object's work item is still queued and
invokes it again.
(5) The current state is a work state (OBJECT_DEAD), so the dispatcher
jumps to it - resulting in an OOPS.
When I'm seeing this, the work state in (1) appears to have been either
LOOK_UP_OBJECT or CREATE_OBJECT (object->oob_table is
fscache_osm_lookup_oob).
The window for (2) is very small:
(A) object->event_mask is cleared whilst the event dispatch process is
underway - though there's no memory barrier to force this to the top
of the function.
The window, therefore is from the time the object was selected by the
workqueue processor and made requeueable to the time the mask was
cleared.
(B) fscache_raise_event() will only queue the object if it manages to set
the event bit and the corresponding event_mask bit was set.
The enqueuement is then deferred slightly whilst we get a ref on the
object and get the per-CPU variable for workqueue congestion. This
slight deferral slightly increases the probability by allowing extra
time for the workqueue to make the item requeueable.
Handle this by giving the dead state a processor function and checking the
for the dead state address rather than seeing if the processor function is
address 0x2. The dead state processor function can then set a flag to
indicate that it's occurred and give a warning if it occurs more than once
per object.
If this race occurs, an oops similar to the following is seen (note the RIP
value):
BUG: unable to handle kernel NULL pointer dereference at 0000000000000002
IP: [<0000000000000002>] 0x1
PGD 0
Oops: 0010 [#1] SMP
Modules linked in: ...
CPU: 17 PID: 16077 Comm: kworker/u48:9 Not tainted 3.10.0-327.18.2.el7.x86_64 #1
Hardware name: HP ProLiant DL380 Gen9/ProLiant DL380 Gen9, BIOS P89 12/27/2015
Workqueue: fscache_object fscache_object_work_func [fscache]
task: ffff880302b63980 ti: ffff880717544000 task.ti: ffff880717544000
RIP: 0010:[<0000000000000002>] [<0000000000000002>] 0x1
RSP: 0018:ffff880717547df8 EFLAGS: 00010202
RAX: ffffffffa0368640 RBX: ffff880edf7a4480 RCX: dead000000200200
RDX: 0000000000000002 RSI: 00000000ffffffff RDI: ffff880edf7a4480
RBP: ffff880717547e18 R08: 0000000000000000 R09: dfc40a25cb3a4510
R10: dfc40a25cb3a4510 R11: 0000000000000400 R12: 0000000000000000
R13: ffff880edf7a4510 R14: ffff8817f6153400 R15: 0000000000000600
FS: 0000000000000000(0000) GS:ffff88181f420000(0000) knlGS:0000000000000000
CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033
CR2: 0000000000000002 CR3: 000000000194a000 CR4: 00000000001407e0
DR0: 0000000000000000 DR1: 0000000000000000 DR2: 0000000000000000
DR3: 0000000000000000 DR6: 00000000ffff0ff0 DR7: 0000000000000400
Stack:
ffffffffa0363695 ffff880edf7a4510 ffff88093f16f900 ffff8817faa4ec00
ffff880717547e60 ffffffff8109d5db 00000000faa4ec18 0000000000000000
ffff8817faa4ec18 ffff88093f16f930 ffff880302b63980 ffff88093f16f900
Call Trace:
[<ffffffffa0363695>] ? fscache_object_work_func+0xa5/0x200 [fscache]
[<ffffffff8109d5db>] process_one_work+0x17b/0x470
[<ffffffff8109e4ac>] worker_thread+0x21c/0x400
[<ffffffff8109e290>] ? rescuer_thread+0x400/0x400
[<ffffffff810a5acf>] kthread+0xcf/0xe0
[<ffffffff810a5a00>] ? kthread_create_on_node+0x140/0x140
[<ffffffff816460d8>] ret_from_fork+0x58/0x90
[<ffffffff810a5a00>] ? kthread_create_on_node+0x140/0x140
Signed-off-by: David Howells <dhowells@redhat.com>
Acked-by: Jeremy McNicoll <jeremymc@redhat.com>
Tested-by: Frank Sorenson <sorenson@redhat.com>
Tested-by: Benjamin Coddington <bcodding@redhat.com>
Reviewed-by: Benjamin Coddington <bcodding@redhat.com>
Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
Signed-off-by: Sasha Levin <alexander.levin@verizon.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
commit 29905b52fad0854351f57bab867647e4982285bf upstream.
The function order_base_2() is defined (according to the comment block)
as returning zero on input zero, but subsequently passes the input into
roundup_pow_of_two(), which is explicitly undefined for input zero.
This has gone unnoticed until now, but optimization passes in GCC 7 may
produce constant folded function instances where a constant value of
zero is passed into order_base_2(), resulting in link errors against the
deliberately undefined '____ilog2_NaN'.
So update order_base_2() to adhere to its own documented interface.
[ See
http://marc.info/?l=linux-kernel&m=147672952517795&w=2
and follow-up discussion for more background. The gcc "optimization
pass" is really just broken, but now the GCC trunk problem seems to
have escaped out of just specially built daily images, so we need to
work around it in mainline. - Linus ]
Signed-off-by: Ard Biesheuvel <ard.biesheuvel@linaro.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Signed-off-by: Sasha Levin <alexander.levin@verizon.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
commit 864b9a393dcb5aed09b8fd31b9bbda0fdda99374 upstream.
We have seen an early OOM killer invocation on ppc64 systems with
crashkernel=4096M:
kthreadd invoked oom-killer: gfp_mask=0x16040c0(GFP_KERNEL|__GFP_COMP|__GFP_NOTRACK), nodemask=7, order=0, oom_score_adj=0
kthreadd cpuset=/ mems_allowed=7
CPU: 0 PID: 2 Comm: kthreadd Not tainted 4.4.68-1.gd7fe927-default #1
Call Trace:
dump_stack+0xb0/0xf0 (unreliable)
dump_header+0xb0/0x258
out_of_memory+0x5f0/0x640
__alloc_pages_nodemask+0xa8c/0xc80
kmem_getpages+0x84/0x1a0
fallback_alloc+0x2a4/0x320
kmem_cache_alloc_node+0xc0/0x2e0
copy_process.isra.25+0x260/0x1b30
_do_fork+0x94/0x470
kernel_thread+0x48/0x60
kthreadd+0x264/0x330
ret_from_kernel_thread+0x5c/0xa4
Mem-Info:
active_anon:0 inactive_anon:0 isolated_anon:0
active_file:0 inactive_file:0 isolated_file:0
unevictable:0 dirty:0 writeback:0 unstable:0
slab_reclaimable:5 slab_unreclaimable:73
mapped:0 shmem:0 pagetables:0 bounce:0
free:0 free_pcp:0 free_cma:0
Node 7 DMA free:0kB min:0kB low:0kB high:0kB active_anon:0kB inactive_anon:0kB active_file:0kB inactive_file:0kB unevictable:0kB isolated(anon):0kB isolated(file):0kB present:52428800kB managed:110016kB mlocked:0kB dirty:0kB writeback:0kB mapped:0kB shmem:0kB slab_reclaimable:320kB slab_unreclaimable:4672kB kernel_stack:1152kB pagetables:0kB unstable:0kB bounce:0kB free_pcp:0kB local_pcp:0kB free_cma:0kB writeback_tmp:0kB pages_scanned:0 all_unreclaimable? yes
lowmem_reserve[]: 0 0 0 0
Node 7 DMA: 0*64kB 0*128kB 0*256kB 0*512kB 0*1024kB 0*2048kB 0*4096kB 0*8192kB 0*16384kB = 0kB
0 total pagecache pages
0 pages in swap cache
Swap cache stats: add 0, delete 0, find 0/0
Free swap = 0kB
Total swap = 0kB
819200 pages RAM
0 pages HighMem/MovableOnly
817481 pages reserved
0 pages cma reserved
0 pages hwpoisoned
the reason is that the managed memory is too low (only 110MB) while the
rest of the the 50GB is still waiting for the deferred intialization to
be done. update_defer_init estimates the initial memoty to initialize
to 2GB at least but it doesn't consider any memory allocated in that
range. In this particular case we've had
Reserving 4096MB of memory at 128MB for crashkernel (System RAM: 51200MB)
so the low 2GB is mostly depleted.
Fix this by considering memblock allocations in the initial static
initialization estimation. Move the max_initialise to
reset_deferred_meminit and implement a simple memblock_reserved_memory
helper which iterates all reserved blocks and sums the size of all that
start below the given address. The cumulative size is than added on top
of the initial estimation. This is still not ideal because
reset_deferred_meminit doesn't consider holes and so reservation might
be above the initial estimation whihch we ignore but let's make the
logic simpler until we really need to handle more complicated cases.
Fixes: 3a80a7fa7989 ("mm: meminit: initialise a subset of struct pages if CONFIG_DEFERRED_STRUCT_PAGE_INIT is set")
Link: http://lkml.kernel.org/r/20170531104010.GI27783@dhcp22.suse.cz
Signed-off-by: Michal Hocko <mhocko@suse.com>
Acked-by: Mel Gorman <mgorman@suse.de>
Tested-by: Srikar Dronamraju <srikar@linux.vnet.ibm.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
commit 52bd2d62ce6758d811edcbd2256eb9ea7f6a56cb upstream.
skb->sender_cpu and skb->napi_id share a common storage,
and we had various bugs about this.
We had to call skb_sender_cpu_clear() in some places to
not leave a prior skb->napi_id and fool netdev_pick_tx()
As suggested by Alexei, we could split the space so that
these errors can not happen.
0 value being reserved as the common (not initialized) value,
let's reserve [1 .. NR_CPUS] range for valid sender_cpu,
and [NR_CPUS+1 .. ~0U] for valid napi_id.
This will allow proper busy polling support over tunnels.
Signed-off-by: Eric Dumazet <edumazet@google.com>
Suggested-by: Alexei Starovoitov <ast@kernel.org>
Acked-by: Alexei Starovoitov <ast@kernel.org>
Signed-off-by: David S. Miller <davem@davemloft.net>
Cc: Paul Menzel <pmenzel@molgen.mpg.de>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
commit 93407472a21b82f39c955ea7787e5bc7da100642 upstream.
Replace all 1 << inode->i_blkbits and (1 << inode->i_blkbits) in fs
branch.
This patch also fixes multiple checkpatch warnings: WARNING: Prefer
'unsigned int' to bare use of 'unsigned'
Thanks to Andrew Morton for suggesting more appropriate function instead
of macro.
[geliangtang@gmail.com: truncate: use i_blocksize()]
Link: http://lkml.kernel.org/r/9c8b2cd83c8f5653805d43debde9fa8817e02fc4.1484895804.git.geliangtang@gmail.com
Link: http://lkml.kernel.org/r/1481319905-10126-1-git-send-email-fabf@skynet.be
Signed-off-by: Fabian Frederick <fabf@skynet.be>
Signed-off-by: Geliang Tang <geliangtang@gmail.com>
Cc: Alexander Viro <viro@zeniv.linux.org.uk>
Cc: Ross Zwisler <ross.zwisler@linux.intel.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
commit 41c25707d21716826e3c1f60967f5550610ec1c9 upstream.
In most cases, a cgroup controller don't care about the liftimes of
cgroups. For the controller, a css becomes online when ->css_online()
is called on it and offline when ->css_offline() is called.
However, cpuset is special in that the user interface it exposes cares
whether certain cgroups exist or not. Combined with the RCU delay
between cgroup removal and css offlining, this can lead to user
visible behavior oddities where operations which should succeed after
cgroup removals fail for some time period. The effects of cgroup
removals are delayed when seen from userland.
This patch adds css_is_dying() which tests whether offline is pending
and updates is_cpuset_online() so that the function returns false also
while offline is pending. This gets rid of the userland visible
delays.
Signed-off-by: Tejun Heo <tj@kernel.org>
Reported-by: Daniel Jordan <daniel.m.jordan@oracle.com>
Link: http://lkml.kernel.org/r/327ca1f5-7957-fbb9-9e5f-9ba149d40ba2@oracle.com
Signed-off-by: Tejun Heo <tj@kernel.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
commit ec9ee4acd97c0039a61c0ae4f12705767ae62153 upstream.
Commit d07e22597d1d ("mm: mmap: add new /proc tunable for mmap_base
ASLR") added the ability to choose from a range of values to use for
entropy count in generating the random offset to the mmap_base address.
The maximum value on this range was set to 32 bits for 64-bit x86
systems, but this value could be increased further, requiring more than
the 32 bits of randomness provided by get_random_int(), as is already
possible for arm64. Add a new function: get_random_long() which more
naturally fits with the mmap usage of get_random_int() but operates
exactly the same as get_random_int().
Also, fix the shifting constant in mmap_rnd() to be an unsigned long so
that values greater than 31 bits generate an appropriate mask without
overflow. This is especially important on x86, as its shift instruction
uses a 5-bit mask for the shift operand, which meant that any value for
mmap_rnd_bits over 31 acts as a no-op and effectively disables mmap_base
randomization.
Finally, replace calls to get_random_int() with get_random_long() where
appropriate.
This patch (of 2):
Add get_random_long().
Signed-off-by: Daniel Cashman <dcashman@android.com>
Acked-by: Kees Cook <keescook@chromium.org>
Cc: "Theodore Ts'o" <tytso@mit.edu>
Cc: Arnd Bergmann <arnd@arndb.de>
Cc: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Cc: Catalin Marinas <catalin.marinas@arm.com>
Cc: Will Deacon <will.deacon@arm.com>
Cc: Ralf Baechle <ralf@linux-mips.org>
Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org>
Cc: Paul Mackerras <paulus@samba.org>
Cc: Michael Ellerman <mpe@ellerman.id.au>
Cc: David S. Miller <davem@davemloft.net>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: H. Peter Anvin <hpa@zytor.com>
Cc: Al Viro <viro@zeniv.linux.org.uk>
Cc: Nick Kralevich <nnk@google.com>
Cc: Jeff Vander Stoep <jeffv@google.com>
Cc: Mark Salyzyn <salyzyn@android.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
commit c70d9d809fdeecedb96972457ee45c49a232d97f upstream.
When I introduced ptracer_cred I failed to consider the weirdness of
fork where the task_struct copies the old value by default. This
winds up leaving ptracer_cred set even when a process forks and
the child process does not wind up being ptraced.
Because ptracer_cred is not set on non-ptraced processes whose
parents were ptraced this has broken the ability of the enlightenment
window manager to start setuid children.
Fix this by properly initializing ptracer_cred in ptrace_init_task
This must be done with a little bit of care to preserve the current value
of ptracer_cred when ptrace carries through fork. Re-reading the
ptracer_cred from the ptracing process at this point is inconsistent
with how PT_PTRACE_CAP has been maintained all of these years.
Tested-by: Takashi Iwai <tiwai@suse.de>
Fixes: 64b875f7ac8a ("ptrace: Capture the ptracer's creds not PT_PTRACE_CAP")
Signed-off-by: "Eric W. Biederman" <ebiederm@xmission.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
[ Upstream commit 77d4b1d36926a9b8387c6b53eeba42bcaaffcea3 ]
Alexander reported various KASAN messages triggered in recent kernels
The problem is that ping sockets should not use udp_poll() in the first
place, and recent changes in UDP stack finally exposed this old bug.
Fixes: c319b4d76b9e ("net: ipv4: add IPPROTO_ICMP socket kind")
Fixes: 6d0bfe226116 ("net: ipv6: Add IPv6 support to the ping socket.")
Signed-off-by: Eric Dumazet <edumazet@google.com>
Reported-by: Sasha Levin <alexander.levin@verizon.com>
Cc: Solar Designer <solar@openwall.com>
Cc: Vasiliy Kulikov <segoon@openwall.com>
Cc: Lorenzo Colitti <lorenzo@google.com>
Acked-By: Lorenzo Colitti <lorenzo@google.com>
Tested-By: Lorenzo Colitti <lorenzo@google.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
commit 35d2f80b07bbe03fb358afb0bdeff7437a7d67ff upstream.
It appears that TCP checksum offloading has been broken for
Q-in-Q vlans. The behavior was execerbated by the
series
commit afb0bc972b52 ("Merge branch 'stacked_vlan_tso'")
that that enabled accleleration features on stacked vlans.
However, event without that series, it is possible to trigger
this issue. It just requires a lot more specialized configuration.
The root cause is the interaction between how
netdev_intersect_features() works, the features actually set on
the vlan devices and HW having the ability to run checksum with
longer headers.
The issue starts when netdev_interesect_features() replaces
NETIF_F_HW_CSUM with a combination of NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM,
if the HW advertises IP|IPV6 specific checksums. This happens
for tagged and multi-tagged packets. However, HW that enables
IP|IPV6 checksum offloading doesn't gurantee that packets with
arbitrarily long headers can be checksummed.
This patch disables IP|IPV6 checksums on the packet for multi-tagged
packets.
CC: Toshiaki Makita <makita.toshiaki@lab.ntt.co.jp>
CC: Michal Kubecek <mkubecek@suse.cz>
Signed-off-by: Vladislav Yasevich <vyasevic@redhat.com>
Acked-by: Toshiaki Makita <makita.toshiaki@lab.ntt.co.jp>
Signed-off-by: David S. Miller <davem@davemloft.net>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
[ Upstream commit 3fb07daff8e99243366a081e5129560734de4ada ]
Andrey Konovalov reported crashes in ipv4_mtu()
I could reproduce the issue with KASAN kernels, between
10.246.7.151 and 10.246.7.152 :
1) 20 concurrent netperf -t TCP_RR -H 10.246.7.152 -l 1000 &
2) At the same time run following loop :
while :
do
ip ro add 10.246.7.152 dev eth0 src 10.246.7.151 mtu 1500
ip ro del 10.246.7.152 dev eth0 src 10.246.7.151 mtu 1500
done
Cong Wang attempted to add back rt->fi in commit
82486aa6f1b9 ("ipv4: restore rt->fi for reference counting")
but this proved to add some issues that were complex to solve.
Instead, I suggested to add a refcount to the metrics themselves,
being a standalone object (in particular, no reference to other objects)
I tried to make this patch as small as possible to ease its backport,
instead of being super clean. Note that we believe that only ipv4 dst
need to take care of the metric refcount. But if this is wrong,
this patch adds the basic infrastructure to extend this to other
families.
Many thanks to Julian Anastasov for reviewing this patch, and Cong Wang
for his efforts on this problem.
Fixes: 2860583fe840 ("ipv4: Kill rt->fi")
Signed-off-by: Eric Dumazet <edumazet@google.com>
Reported-by: Andrey Konovalov <andreyknvl@google.com>
Reviewed-by: Julian Anastasov <ja@ssi.bg>
Acked-by: Cong Wang <xiyou.wangcong@gmail.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
commit 30e7d894c1478c88d50ce94ddcdbd7f9763d9cdd upstream.
Enabling the tracer selftest triggers occasionally the warning in
text_poke(), which warns when the to be modified page is not marked
reserved.
The reason is that the tracer selftest installs kprobes on functions marked
__init for testing. These probes are removed after the tests, but that
removal schedules the delayed kprobes_optimizer work, which will do the
actual text poke. If the work is executed after the init text is freed,
then the warning triggers. The bug can be reproduced reliably when the work
delay is increased.
Flush the optimizer work and wait for the optimizing/unoptimizing lists to
become empty before returning from the kprobes tracer selftest. That
ensures that all operations which were queued due to the probes removal
have completed.
Link: http://lkml.kernel.org/r/20170516094802.76a468bb@gandalf.local.home
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Acked-by: Masami Hiramatsu <mhiramat@kernel.org>
Fixes: 6274de498 ("kprobes: Support delayed unoptimizing")
Signed-off-by: Steven Rostedt (VMware) <rostedt@goodmis.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
commit 480dd46b9d6812e5fb7172c305ee0f1154c26eed upstream.
The ability to change the max_rx_aggregation frames is useful
in cases of IOP.
There exist some devices (latest mobile phones and some AP's)
that tend to not respect a BA sessions maximum size (in Kbps).
These devices won't respect the AMPDU size that was negotiated during
association (even though they do respect the maximal number of packets).
This violation is characterized by a valid number of packets in
a single AMPDU. Even so, the total size will exceed the size negotiated
during association.
Eventually, this will cause some undefined behavior, which in turn
causes the hw to drop packets, causing the throughput to plummet.
This patch will make the subframe limitation to be held by each station,
instead of being held only by hw.
Signed-off-by: Maxim Altshul <maxim.altshul@ti.com>
Signed-off-by: Johannes Berg <johannes.berg@intel.com>
Signed-off-by: Amit Pundir <amit.pundir@linaro.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
commit 50ea05efaf3bed7dd34bcc2635a8b3f53bd0ccc1 upstream.
Currently mac80211 does not inform the driver of the session
block ack timeout when starting a rx aggregation session.
Drivers that manage the reorder buffer need to know this
parameter.
Seeing that there are now too many arguments for the
drv_ampdu_action() function, wrap them inside a structure.
Signed-off-by: Sara Sharon <sara.sharon@intel.com>
Signed-off-by: Johannes Berg <johannes.berg@intel.com>
Signed-off-by: Amit Pundir <amit.pundir@linaro.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
commit fad471860c097844432c7cf5d3ae6a0a059c2bdc upstream.
Currently mac80211 does not inform the driver of the window
size when starting an RX aggregation session.
To enable managing the reorder buffer in the driver or hardware
the window size is needed.
Signed-off-by: Sara Sharon <sara.sharon@intel.com>
Signed-off-by: Emmanuel Grumbach <emmanuel.grumbach@intel.com>
Signed-off-by: Johannes Berg <johannes.berg@intel.com>
Signed-off-by: Amit Pundir <amit.pundir@linaro.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
commit d36ad77f702356afb1009d2987b0ab55da4c7d57 upstream.
This patch converts core_tpg_set_initiator_node_queue_depth()
to use struct se_node_acl->acl_sess_list when performing
explicit se_tpg_tfo->shutdown_session() for active sessions,
in order for new se_node_acl->queue_depth to take effect.
This follows how core_tpg_del_initiator_node_acl() currently
works when invoking se_tpg_tfo->shutdown-session(), and ahead
of the next patch to take se_node_acl->acl_kref during lookup,
the extra get_initiator_node_acl() can go away. In order to
achieve this, go ahead and change target_get_session() to use
kref_get_unless_zero() and propigate up the return value
to know when a session is already being released.
This is because se_node_acl->acl_group is already protecting
se_node_acl->acl_group reference via configfs, and shutdown
within core_tpg_del_initiator_node_acl() won't occur until
sys_write() to core_tpg_set_initiator_node_queue_depth()
attribute returns back to user-space.
Also, drop the left-over iscsi-target hack, and obtain
se_portal_group->session_lock in lio_tpg_shutdown_session()
internally. Remove iscsi-target wrapper and unused se_tpg +
force parameters and associated code.
Reported-by: Christoph Hellwig <hch@lst.de>
Cc: Sagi Grimberg <sagig@mellanox.com>
Cc: Hannes Reinecke <hare@suse.de>
Cc: Andy Grover <agrover@redhat.com>
Cc: Mike Christie <michaelc@cs.wisc.edu>
Signed-off-by: Nicholas Bellinger <nab@linux-iscsi.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
commit 19b7ccf8651df09d274671b53039c672a52ad84d upstream.
Commit 25520d55cdb6 ("block: Inline blk_integrity in struct gendisk")
introduced blk_integrity_revalidate(), which seems to assume ownership
of the stable pages flag and unilaterally clears it if no blk_integrity
profile is registered:
if (bi->profile)
disk->queue->backing_dev_info->capabilities |=
BDI_CAP_STABLE_WRITES;
else
disk->queue->backing_dev_info->capabilities &=
~BDI_CAP_STABLE_WRITES;
It's called from revalidate_disk() and rescan_partitions(), making it
impossible to enable stable pages for drivers that support partitions
and don't use blk_integrity: while the call in revalidate_disk() can be
trivially worked around (see zram, which doesn't support partitions and
hence gets away with zram_revalidate_disk()), rescan_partitions() can
be triggered from userspace at any time. This breaks rbd, where the
ceph messenger is responsible for generating/verifying CRCs.
Since blk_integrity_{un,}register() "must" be used for (un)registering
the integrity profile with the block layer, move BDI_CAP_STABLE_WRITES
setting there. This way drivers that call blk_integrity_register() and
use integrity infrastructure won't interfere with drivers that don't
but still want stable pages.
Fixes: 25520d55cdb6 ("block: Inline blk_integrity in struct gendisk")
Cc: "Martin K. Petersen" <martin.petersen@oracle.com>
Cc: Christoph Hellwig <hch@lst.de>
Cc: Mike Snitzer <snitzer@redhat.com>
Tested-by: Dan Williams <dan.j.williams@intel.com>
Signed-off-by: Ilya Dryomov <idryomov@gmail.com>
[idryomov@gmail.com: backport to < 4.11: bdi is embedded in queue]
Signed-off-by: Jens Axboe <axboe@fb.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
commit b9dd46188edc2f0d1f37328637860bb65a771124 upstream.
F2FS uses 4 bytes to represent block address. As a result, supported
size of disk is 16 TB and it equals to 16 * 1024 * 1024 / 2 segments.
Signed-off-by: Jin Qian <jinqian@google.com>
Signed-off-by: Jaegeuk Kim <jaegeuk@kernel.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
[ Upstream commit 242d3a49a2a1a71d8eb9f953db1bcaa9d698ce00 ]
For each netns (except init_net), we initialize its null entry
in 3 places:
1) The template itself, as we use kmemdup()
2) Code around dst_init_metrics() in ip6_route_net_init()
3) ip6_route_dev_notify(), which is supposed to initialize it after
loopback registers
Unfortunately the last one still happens in a wrong order because
we expect to initialize net->ipv6.ip6_null_entry->rt6i_idev to
net->loopback_dev's idev, thus we have to do that after we add
idev to loopback. However, this notifier has priority == 0 same as
ipv6_dev_notf, and ipv6_dev_notf is registered after
ip6_route_dev_notifier so it is called actually after
ip6_route_dev_notifier. This is similar to commit 2f460933f58e
("ipv6: initialize route null entry in addrconf_init()") which
fixes init_net.
Fix it by picking a smaller priority for ip6_route_dev_notifier.
Also, we have to release the refcnt accordingly when unregistering
loopback_dev because device exit functions are called before subsys
exit functions.
Acked-by: David Ahern <dsahern@gmail.com>
Tested-by: David Ahern <dsahern@gmail.com>
Signed-off-by: Cong Wang <xiyou.wangcong@gmail.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
[ Upstream commit 2f460933f58eee3393aba64f0f6d14acb08d1724 ]
Andrey reported a crash on init_net.ipv6.ip6_null_entry->rt6i_idev
since it is always NULL.
This is clearly wrong, we have code to initialize it to loopback_dev,
unfortunately the order is still not correct.
loopback_dev is registered very early during boot, we lose a chance
to re-initialize it in notifier. addrconf_init() is called after
ip6_route_init(), which means we have no chance to correct it.
Fix it by moving this initialization explicitly after
ipv6_add_dev(init_net.loopback_dev) in addrconf_init().
Reported-by: Andrey Konovalov <andreyknvl@google.com>
Signed-off-by: Cong Wang <xiyou.wangcong@gmail.com>
Tested-by: Andrey Konovalov <andreyknvl@google.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
commit a89b94b53371bbfa582787c2fa3378000ea4263d upstream.
We're currently emulating the vbus and id interrupts in the OTGSC
read API, but we also need to make sure that if we're handling
the events with extcon that we don't enable the interrupts for
those events in the hardware. Therefore, properly emulate this
register if we're using extcon, but don't enable the interrupts.
This allows me to get my cable connect/disconnect working
properly without getting spurious interrupts on my device that
uses an extcon for these two events.
Acked-by: Peter Chen <peter.chen@nxp.com>
Cc: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Cc: "Ivan T. Ivanov" <iivanov.xz@gmail.com>
Fixes: 3ecb3e09b042 ("usb: chipidea: Use extcon framework for VBUS and ID detect")
Signed-off-by: Stephen Boyd <stephen.boyd@linaro.org>
Signed-off-by: Peter Chen <peter.chen@nxp.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
commit fddcca5107051adf9e4481d2a79ae0616577fd2c upstream.
When map_word gets too large, we use a lot of kernel stack, and for
MTD_MAP_BANK_WIDTH_32, this means we use more than the recommended
1024 bytes in a number of functions:
drivers/mtd/chips/cfi_cmdset_0020.c: In function 'cfi_staa_write_buffers':
drivers/mtd/chips/cfi_cmdset_0020.c:651:1: warning: the frame size of 1336 bytes is larger than 1024 bytes [-Wframe-larger-than=]
drivers/mtd/chips/cfi_cmdset_0020.c: In function 'cfi_staa_erase_varsize':
drivers/mtd/chips/cfi_cmdset_0020.c:972:1: warning: the frame size of 1208 bytes is larger than 1024 bytes [-Wframe-larger-than=]
drivers/mtd/chips/cfi_cmdset_0001.c: In function 'do_write_buffer':
drivers/mtd/chips/cfi_cmdset_0001.c:1835:1: warning: the frame size of 1240 bytes is larger than 1024 bytes [-Wframe-larger-than=]
This can be avoided if all operations on the map word are done
indirectly and the stack gets reused between the calls. We can
mostly achieve this by selecting MTD_COMPLEX_MAPPINGS whenever
MTD_MAP_BANK_WIDTH_32 is set, but for the case that no other
bank width is enabled, we also need to use a non-constant
map_bankwidth() to convince the compiler to use less stack.
Signed-off-by: Arnd Bergmann <arnd@arndb.de>
[Brian: this patch mostly achieves its goal by forcing
MTD_COMPLEX_MAPPINGS (and the accompanying indirection) for 256-bit
mappings; the rest of the change is mostly a wash, though it helps
reduce stack size slightly. If we really care about supporting
256-bit mappings though, we should consider rewriting some of this
code to avoid keeping and assigning so many 256-bit objects on the
stack.]
Signed-off-by: Brian Norris <computersforpeace@gmail.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
[ Upstream commit 557c44be917c322860665be3d28376afa84aa936 ]
Andrey reported a fault in the IPv6 route code:
kasan: GPF could be caused by NULL-ptr deref or user memory access
general protection fault: 0000 [#1] SMP KASAN
Modules linked in:
CPU: 1 PID: 4035 Comm: a.out Not tainted 4.11.0-rc7+ #250
Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS Bochs 01/01/2011
task: ffff880069809600 task.stack: ffff880062dc8000
RIP: 0010:ip6_rt_cache_alloc+0xa6/0x560 net/ipv6/route.c:975
RSP: 0018:ffff880062dced30 EFLAGS: 00010206
RAX: dffffc0000000000 RBX: ffff8800670561c0 RCX: 0000000000000006
RDX: 0000000000000003 RSI: ffff880062dcfb28 RDI: 0000000000000018
RBP: ffff880062dced68 R08: 0000000000000001 R09: 0000000000000000
R10: 0000000000000000 R11: 0000000000000000 R12: 0000000000000000
R13: ffff880062dcfb28 R14: dffffc0000000000 R15: 0000000000000000
FS: 00007feebe37e7c0(0000) GS:ffff88006cb00000(0000) knlGS:0000000000000000
CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033
CR2: 00000000205a0fe4 CR3: 000000006b5c9000 CR4: 00000000000006e0
Call Trace:
ip6_pol_route+0x1512/0x1f20 net/ipv6/route.c:1128
ip6_pol_route_output+0x4c/0x60 net/ipv6/route.c:1212
...
Andrey's syzkaller program passes rtmsg.rtmsg_flags with the RTF_PCPU bit
set. Flags passed to the kernel are blindly copied to the allocated
rt6_info by ip6_route_info_create making a newly inserted route appear
as though it is a per-cpu route. ip6_rt_cache_alloc sees the flag set
and expects rt->dst.from to be set - which it is not since it is not
really a per-cpu copy. The subsequent call to __ip6_dst_alloc then
generates the fault.
Fix by checking for the flag and failing with EINVAL.
Fixes: d52d3997f843f ("ipv6: Create percpu rt6_info")
Reported-by: Andrey Konovalov <andreyknvl@google.com>
Signed-off-by: David Ahern <dsa@cumulusnetworks.com>
Acked-by: Martin KaFai Lau <kafai@fb.com>
Tested-by: Andrey Konovalov <andreyknvl@google.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
commit d29216842a85c7970c536108e093963f02714498 upstream.
CAI Qian <caiqian@redhat.com> pointed out that the semantics
of shared subtrees make it possible to create an exponentially
increasing number of mounts in a mount namespace.
mkdir /tmp/1 /tmp/2
mount --make-rshared /
for i in $(seq 1 20) ; do mount --bind /tmp/1 /tmp/2 ; done
Will create create 2^20 or 1048576 mounts, which is a practical problem
as some people have managed to hit this by accident.
As such CVE-2016-6213 was assigned.
Ian Kent <raven@themaw.net> described the situation for autofs users
as follows:
> The number of mounts for direct mount maps is usually not very large because of
> the way they are implemented, large direct mount maps can have performance
> problems. There can be anywhere from a few (likely case a few hundred) to less
> than 10000, plus mounts that have been triggered and not yet expired.
>
> Indirect mounts have one autofs mount at the root plus the number of mounts that
> have been triggered and not yet expired.
>
> The number of autofs indirect map entries can range from a few to the common
> case of several thousand and in rare cases up to between 30000 and 50000. I've
> not heard of people with maps larger than 50000 entries.
>
> The larger the number of map entries the greater the possibility for a large
> number of active mounts so it's not hard to expect cases of a 1000 or somewhat
> more active mounts.
So I am setting the default number of mounts allowed per mount
namespace at 100,000. This is more than enough for any use case I
know of, but small enough to quickly stop an exponential increase
in mounts. Which should be perfect to catch misconfigurations and
malfunctioning programs.
For anyone who needs a higher limit this can be changed by writing
to the new /proc/sys/fs/mount-max sysctl.
Tested-by: CAI Qian <caiqian@redhat.com>
Signed-off-by: "Eric W. Biederman" <ebiederm@xmission.com>
[bwh: Backported to 4.4: adjust context]
Signed-off-by: Ben Hutchings <ben.hutchings@codethink.co.uk>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
commit ef0579b64e93188710d48667cb5e014926af9f1b upstream.
The ahash API modifies the request's callback function in order
to clean up after itself in some corner cases (unaligned final
and missing finup).
When the request is complete ahash will restore the original
callback and everything is fine. However, when the request gets
an EBUSY on a full queue, an EINPROGRESS callback is made while
the request is still ongoing.
In this case the ahash API will incorrectly call its own callback.
This patch fixes the problem by creating a temporary request
object on the stack which is used to relay EINPROGRESS back to
the original completion function.
This patch also adds code to preserve the original flags value.
Fixes: ab6bf4e5e5e4 ("crypto: hash - Fix the pointer voodoo in...")
Reported-by: Sabrina Dubroca <sd@queasysnail.net>
Tested-by: Sabrina Dubroca <sd@queasysnail.net>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
non-root cgroups
commit 77f88796cee819b9c4562b0b6b44691b3b7755b1 upstream.
Creation of a kthread goes through a couple interlocked stages between
the kthread itself and its creator. Once the new kthread starts
running, it initializes itself and wakes up the creator. The creator
then can further configure the kthread and then let it start doing its
job by waking it up.
In this configuration-by-creator stage, the creator is the only one
that can wake it up but the kthread is visible to userland. When
altering the kthread's attributes from userland is allowed, this is
fine; however, for cases where CPU affinity is critical,
kthread_bind() is used to first disable affinity changes from userland
and then set the affinity. This also prevents the kthread from being
migrated into non-root cgroups as that can affect the CPU affinity and
many other things.
Unfortunately, the cgroup side of protection is racy. While the
PF_NO_SETAFFINITY flag prevents further migrations, userland can win
the race before the creator sets the flag with kthread_bind() and put
the kthread in a non-root cgroup, which can lead to all sorts of
problems including incorrect CPU affinity and starvation.
This bug got triggered by userland which periodically tries to migrate
all processes in the root cpuset cgroup to a non-root one. Per-cpu
workqueue workers got caught while being created and ended up with
incorrected CPU affinity breaking concurrency management and sometimes
stalling workqueue execution.
This patch adds task->no_cgroup_migration which disallows the task to
be migrated by userland. kthreadd starts with the flag set making
every child kthread start in the root cgroup with migration
disallowed. The flag is cleared after the kthread finishes
initialization by which time PF_NO_SETAFFINITY is set if the kthread
should stay in the root cgroup.
It'd be better to wait for the initialization instead of failing but I
couldn't think of a way of implementing that without adding either a
new PF flag, or sleeping and retrying from waiting side. Even if
userland depends on changing cgroup membership of a kthread, it either
has to be synchronized with kthread_create() or periodically repeat,
so it's unlikely that this would break anything.
v2: Switch to a simpler implementation using a new task_struct bit
field suggested by Oleg.
Signed-off-by: Tejun Heo <tj@kernel.org>
Suggested-by: Oleg Nesterov <oleg@redhat.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Andrew Morton <akpm@linux-foundation.org>
Cc: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Reported-and-debugged-by: Chris Mason <clm@fb.com>
Signed-off-by: Tejun Heo <tj@kernel.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
commit fe25deb7737ce6c0879ccf79c99fa1221d428bf2 upstream.
Previously, when a surface was opened using a legacy (non prime) handle,
it was verified to have been created by a client in the same master realm.
Relax this so that opening is also allowed recursively if the client
already has the surface open.
This works around a regression in svga mesa where opening of a shared
surface is used recursively to obtain surface information.
Signed-off-by: Thomas Hellstrom <thellstrom@vmware.com>
Reviewed-by: Sinclair Yeh <syeh@vmware.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
commit 90db10434b163e46da413d34db8d0e77404cc645 upstream.
No caller currently checks the return value of
kvm_io_bus_unregister_dev(). This is evil, as all callers silently go on
freeing their device. A stale reference will remain in the io_bus,
getting at least used again, when the iobus gets teared down on
kvm_destroy_vm() - leading to use after free errors.
There is nothing the callers could do, except retrying over and over
again.
So let's simply remove the bus altogether, print an error and make
sure no one can access this broken bus again (returning -ENOMEM on any
attempt to access it).
Fixes: e93f8a0f821e ("KVM: convert io_bus to SRCU")
Reported-by: Dmitry Vyukov <dvyukov@google.com>
Reviewed-by: Cornelia Huck <cornelia.huck@de.ibm.com>
Signed-off-by: David Hildenbrand <david@redhat.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
commit 3243367b209faed5c320a4e5f9a565ee2a2ba958 upstream.
Some USB 2.0 devices erroneously report millisecond values in
bInterval. The generic config code manages to catch most of them,
but in some cases it's not completely enough.
The case at stake here is a USB 2.0 braille device, which wants to
announce 10ms and thus sets bInterval to 10, but with the USB 2.0
computation that yields to 64ms. It happens that one can type fast
enough to reach this interval and get the device buffers overflown,
leading to problematic latencies. The generic config code does not
catch this case because the 64ms is considered a sane enough value.
This change thus adds a USB_QUIRK_LINEAR_FRAME_INTR_BINTERVAL quirk
to mark devices which actually report milliseconds in bInterval,
and marks Vario Ultra devices as needing it.
Signed-off-by: Samuel Thibault <samuel.thibault@ens-lyon.org>
Acked-by: Alan Stern <stern@rowland.harvard.edu>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
commit 6f8830f5bbab16e54f261de187f3df4644a5b977 upstream.
There's a rather long standing regression from the commit "libiscsi:
Reduce locking contention in fast path"
Depending on iSCSI target behavior, it's possible to hit the case in
iscsi_complete_task where the task is still on a pending list
(!list_empty(&task->running)). When that happens the task is removed
from the list while holding the session back_lock, but other task list
modification occur under the frwd_lock. That leads to linked list
corruption and eventually a panicked system.
Rather than back out the session lock split entirely, in order to try
and keep some of the performance gains this patch adds another lock to
maintain the task lists integrity.
Major enterprise supported kernels have been backing out the lock split
for while now, thanks to the efforts at IBM where a lab setup has the
most reliable reproducer I've seen on this issue. This patch has been
tested there successfully.
Signed-off-by: Chris Leech <cleech@redhat.com>
Fixes: 659743b02c41 ("[SCSI] libiscsi: Reduce locking contention in fast path")
Reported-by: Prashantha Subbarao <psubbara@us.ibm.com>
Reviewed-by: Guilherme G. Piccoli <gpiccoli@linux.vnet.ibm.com>
Signed-off-by: Martin K. Petersen <martin.petersen@oracle.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
commit 474c90156c8dcc2fa815e6716cc9394d7930cb9c upstream.
gcc-7 has an "optimization" pass that completely screws up, and
generates the code expansion for the (impossible) case of calling
ilog2() with a zero constant, even when the code gcc compiles does not
actually have a zero constant.
And we try to generate a compile-time error for anybody doing ilog2() on
a constant where that doesn't make sense (be it zero or negative). So
now gcc7 will fail the build due to our sanity checking, because it
created that constant-zero case that didn't actually exist in the source
code.
There's a whole long discussion on the kernel mailing about how to work
around this gcc bug. The gcc people themselevs have discussed their
"feature" in
https://gcc.gnu.org/bugzilla/show_bug.cgi?id=72785
but it's all water under the bridge, because while it looked at one
point like it would be solved by the time gcc7 was released, that was
not to be.
So now we have to deal with this compiler braindamage.
And the only simple approach seems to be to just delete the code that
tries to warn about bad uses of ilog2().
So now "ilog2()" will just return 0 not just for the value 1, but for
any non-positive value too.
It's not like I can recall anybody having ever actually tried to use
this function on any invalid value, but maybe the sanity check just
meant that such code never made it out in public.
Reported-by: Laura Abbott <labbott@redhat.com>
Cc: John Stultz <john.stultz@linaro.org>,
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Ard Biesheuvel <ard.biesheuvel@linaro.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Jiri Slaby <jslaby@suse.cz>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
commit feb26ac31a2a5cb88d86680d9a94916a6343e9e6 upstream.
The XHCI controller presents two USB buses to the system - one for USB2
and one for USB3. The hub init code (hub_port_init) is reentrant but
only locks one bus per thread, leading to a race condition failure when
two threads attempt to simultaneously initialise a USB2 and USB3 device:
[ 8.034843] xhci_hcd 0000:00:14.0: Timeout while waiting for setup device command
[ 13.183701] usb 3-3: device descriptor read/all, error -110
On a test system this failure occurred on 6% of all boots.
The call traces at the point of failure are:
Call Trace:
[<ffffffff81b9bab7>] schedule+0x37/0x90
[<ffffffff817da7cd>] usb_kill_urb+0x8d/0xd0
[<ffffffff8111e5e0>] ? wake_up_atomic_t+0x30/0x30
[<ffffffff817dafbe>] usb_start_wait_urb+0xbe/0x150
[<ffffffff817db10c>] usb_control_msg+0xbc/0xf0
[<ffffffff817d07de>] hub_port_init+0x51e/0xb70
[<ffffffff817d4697>] hub_event+0x817/0x1570
[<ffffffff810f3e6f>] process_one_work+0x1ff/0x620
[<ffffffff810f3dcf>] ? process_one_work+0x15f/0x620
[<ffffffff810f4684>] worker_thread+0x64/0x4b0
[<ffffffff810f4620>] ? rescuer_thread+0x390/0x390
[<ffffffff810fa7f5>] kthread+0x105/0x120
[<ffffffff810fa6f0>] ? kthread_create_on_node+0x200/0x200
[<ffffffff81ba183f>] ret_from_fork+0x3f/0x70
[<ffffffff810fa6f0>] ? kthread_create_on_node+0x200/0x200
Call Trace:
[<ffffffff817fd36d>] xhci_setup_device+0x53d/0xa40
[<ffffffff817fd87e>] xhci_address_device+0xe/0x10
[<ffffffff817d047f>] hub_port_init+0x1bf/0xb70
[<ffffffff811247ed>] ? trace_hardirqs_on+0xd/0x10
[<ffffffff817d4697>] hub_event+0x817/0x1570
[<ffffffff810f3e6f>] process_one_work+0x1ff/0x620
[<ffffffff810f3dcf>] ? process_one_work+0x15f/0x620
[<ffffffff810f4684>] worker_thread+0x64/0x4b0
[<ffffffff810f4620>] ? rescuer_thread+0x390/0x390
[<ffffffff810fa7f5>] kthread+0x105/0x120
[<ffffffff810fa6f0>] ? kthread_create_on_node+0x200/0x200
[<ffffffff81ba183f>] ret_from_fork+0x3f/0x70
[<ffffffff810fa6f0>] ? kthread_create_on_node+0x200/0x200
Which results from the two call chains:
hub_port_init
usb_get_device_descriptor
usb_get_descriptor
usb_control_msg
usb_internal_control_msg
usb_start_wait_urb
usb_submit_urb / wait_for_completion_timeout / usb_kill_urb
hub_port_init
hub_set_address
xhci_address_device
xhci_setup_device
Mathias Nyman explains the current behaviour violates the XHCI spec:
hub_port_reset() will end up moving the corresponding xhci device slot
to default state.
As hub_port_reset() is called several times in hub_port_init() it
sounds reasonable that we could end up with two threads having their
xhci device slots in default state at the same time, which according to
xhci 4.5.3 specs still is a big no no:
"Note: Software shall not transition more than one Device Slot to the
Default State at a time"
So both threads fail at their next task after this.
One fails to read the descriptor, and the other fails addressing the
device.
Fix this in hub_port_init by locking the USB controller (instead of an
individual bus) to prevent simultaneous initialisation of both buses.
Fixes: 638139eb95d2 ("usb: hub: allow to process more usb hub events in parallel")
Link: https://lkml.org/lkml/2016/2/8/312
Link: https://lkml.org/lkml/2016/2/4/748
Signed-off-by: Chris Bainbridge <chris.bainbridge@gmail.com>
Cc: stable <stable@vger.kernel.org>
Acked-by: Mathias Nyman <mathias.nyman@linux.intel.com>
Signed-off-by: Sumit Semwal <sumit.semwal@linaro.org>
[sumits: minor merge conflict resolution for linux-4.4.y]
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
[ Upstream commit 745cb7f8a5de0805cade3de3991b7a95317c7c73 ]
Replace MAX_ADDR_LEN with its numeric value to fix the following
linux/packet_diag.h userspace compilation error:
/usr/include/linux/packet_diag.h:67:17: error: 'MAX_ADDR_LEN' undeclared here (not in a function)
__u8 pdmc_addr[MAX_ADDR_LEN];
This is not the first case in the UAPI where the numeric value
of MAX_ADDR_LEN is used instead of symbolic one, uapi/linux/if_link.h
already does the same:
$ grep MAX_ADDR_LEN include/uapi/linux/if_link.h
__u8 mac[32]; /* MAX_ADDR_LEN */
There are no UAPI headers besides these two that use MAX_ADDR_LEN.
Signed-off-by: Dmitry V. Levin <ldv@altlinux.org>
Acked-by: Pavel Emelyanov <xemul@virtuozzo.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
[ Upstream commit 62f8f4d9066c1c6f2474845d1ca7e2891f2ae3fd ]
Dmitry reported crashes in DCCP stack [1]
Problem here is that when I got rid of listener spinlock, I missed the
fact that DCCP stores a complex state in struct dccp_request_sock,
while TCP does not.
Since multiple cpus could access it at the same time, we need to add
protection.
[1]
BUG: KASAN: use-after-free in dccp_feat_activate_values+0x967/0xab0
net/dccp/feat.c:1541 at addr ffff88003713be68
Read of size 8 by task syz-executor2/8457
CPU: 2 PID: 8457 Comm: syz-executor2 Not tainted 4.10.0-rc7+ #127
Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS Bochs 01/01/2011
Call Trace:
<IRQ>
__dump_stack lib/dump_stack.c:15 [inline]
dump_stack+0x292/0x398 lib/dump_stack.c:51
kasan_object_err+0x1c/0x70 mm/kasan/report.c:162
print_address_description mm/kasan/report.c:200 [inline]
kasan_report_error mm/kasan/report.c:289 [inline]
kasan_report.part.1+0x20e/0x4e0 mm/kasan/report.c:311
kasan_report mm/kasan/report.c:332 [inline]
__asan_report_load8_noabort+0x29/0x30 mm/kasan/report.c:332
dccp_feat_activate_values+0x967/0xab0 net/dccp/feat.c:1541
dccp_create_openreq_child+0x464/0x610 net/dccp/minisocks.c:121
dccp_v6_request_recv_sock+0x1f6/0x1960 net/dccp/ipv6.c:457
dccp_check_req+0x335/0x5a0 net/dccp/minisocks.c:186
dccp_v6_rcv+0x69e/0x1d00 net/dccp/ipv6.c:711
ip6_input_finish+0x46d/0x17a0 net/ipv6/ip6_input.c:279
NF_HOOK include/linux/netfilter.h:257 [inline]
ip6_input+0xdb/0x590 net/ipv6/ip6_input.c:322
dst_input include/net/dst.h:507 [inline]
ip6_rcv_finish+0x289/0x890 net/ipv6/ip6_input.c:69
NF_HOOK include/linux/netfilter.h:257 [inline]
ipv6_rcv+0x12ec/0x23d0 net/ipv6/ip6_input.c:203
__netif_receive_skb_core+0x1ae5/0x3400 net/core/dev.c:4190
__netif_receive_skb+0x2a/0x170 net/core/dev.c:4228
process_backlog+0xe5/0x6c0 net/core/dev.c:4839
napi_poll net/core/dev.c:5202 [inline]
net_rx_action+0xe70/0x1900 net/core/dev.c:5267
__do_softirq+0x2fb/0xb7d kernel/softirq.c:284
do_softirq_own_stack+0x1c/0x30 arch/x86/entry/entry_64.S:902
</IRQ>
do_softirq.part.17+0x1e8/0x230 kernel/softirq.c:328
do_softirq kernel/softirq.c:176 [inline]
__local_bh_enable_ip+0x1f2/0x200 kernel/softirq.c:181
local_bh_enable include/linux/bottom_half.h:31 [inline]
rcu_read_unlock_bh include/linux/rcupdate.h:971 [inline]
ip6_finish_output2+0xbb0/0x23d0 net/ipv6/ip6_output.c:123
ip6_finish_output+0x302/0x960 net/ipv6/ip6_output.c:148
NF_HOOK_COND include/linux/netfilter.h:246 [inline]
ip6_output+0x1cb/0x8d0 net/ipv6/ip6_output.c:162
ip6_xmit+0xcdf/0x20d0 include/net/dst.h:501
inet6_csk_xmit+0x320/0x5f0 net/ipv6/inet6_connection_sock.c:179
dccp_transmit_skb+0xb09/0x1120 net/dccp/output.c:141
dccp_xmit_packet+0x215/0x760 net/dccp/output.c:280
dccp_write_xmit+0x168/0x1d0 net/dccp/output.c:362
dccp_sendmsg+0x79c/0xb10 net/dccp/proto.c:796
inet_sendmsg+0x164/0x5b0 net/ipv4/af_inet.c:744
sock_sendmsg_nosec net/socket.c:635 [inline]
sock_sendmsg+0xca/0x110 net/socket.c:645
SYSC_sendto+0x660/0x810 net/socket.c:1687
SyS_sendto+0x40/0x50 net/socket.c:1655
entry_SYSCALL_64_fastpath+0x1f/0xc2
RIP: 0033:0x4458b9
RSP: 002b:00007f8ceb77bb58 EFLAGS: 00000282 ORIG_RAX: 000000000000002c
RAX: ffffffffffffffda RBX: 0000000000000017 RCX: 00000000004458b9
RDX: 0000000000000023 RSI: 0000000020e60000 RDI: 0000000000000017
RBP: 00000000006e1b90 R08: 00000000200f9fe1 R09: 0000000000000020
R10: 0000000000008010 R11: 0000000000000282 R12: 00000000007080a8
R13: 0000000000000000 R14: 00007f8ceb77c9c0 R15: 00007f8ceb77c700
Object at ffff88003713be50, in cache kmalloc-64 size: 64
Allocated:
PID = 8446
save_stack_trace+0x16/0x20 arch/x86/kernel/stacktrace.c:57
save_stack+0x43/0xd0 mm/kasan/kasan.c:502
set_track mm/kasan/kasan.c:514 [inline]
kasan_kmalloc+0xad/0xe0 mm/kasan/kasan.c:605
kmem_cache_alloc_trace+0x82/0x270 mm/slub.c:2738
kmalloc include/linux/slab.h:490 [inline]
dccp_feat_entry_new+0x214/0x410 net/dccp/feat.c:467
dccp_feat_push_change+0x38/0x220 net/dccp/feat.c:487
__feat_register_sp+0x223/0x2f0 net/dccp/feat.c:741
dccp_feat_propagate_ccid+0x22b/0x2b0 net/dccp/feat.c:949
dccp_feat_server_ccid_dependencies+0x1b3/0x250 net/dccp/feat.c:1012
dccp_make_response+0x1f1/0xc90 net/dccp/output.c:423
dccp_v6_send_response+0x4ec/0xc20 net/dccp/ipv6.c:217
dccp_v6_conn_request+0xaba/0x11b0 net/dccp/ipv6.c:377
dccp_rcv_state_process+0x51e/0x1650 net/dccp/input.c:606
dccp_v6_do_rcv+0x213/0x350 net/dccp/ipv6.c:632
sk_backlog_rcv include/net/sock.h:893 [inline]
__sk_receive_skb+0x36f/0xcc0 net/core/sock.c:479
dccp_v6_rcv+0xba5/0x1d00 net/dccp/ipv6.c:742
ip6_input_finish+0x46d/0x17a0 net/ipv6/ip6_input.c:279
NF_HOOK include/linux/netfilter.h:257 [inline]
ip6_input+0xdb/0x590 net/ipv6/ip6_input.c:322
dst_input include/net/dst.h:507 [inline]
ip6_rcv_finish+0x289/0x890 net/ipv6/ip6_input.c:69
NF_HOOK include/linux/netfilter.h:257 [inline]
ipv6_rcv+0x12ec/0x23d0 net/ipv6/ip6_input.c:203
__netif_receive_skb_core+0x1ae5/0x3400 net/core/dev.c:4190
__netif_receive_skb+0x2a/0x170 net/core/dev.c:4228
process_backlog+0xe5/0x6c0 net/core/dev.c:4839
napi_poll net/core/dev.c:5202 [inline]
net_rx_action+0xe70/0x1900 net/core/dev.c:5267
__do_softirq+0x2fb/0xb7d kernel/softirq.c:284
Freed:
PID = 15
save_stack_trace+0x16/0x20 arch/x86/kernel/stacktrace.c:57
save_stack+0x43/0xd0 mm/kasan/kasan.c:502
set_track mm/kasan/kasan.c:514 [inline]
kasan_slab_free+0x73/0xc0 mm/kasan/kasan.c:578
slab_free_hook mm/slub.c:1355 [inline]
slab_free_freelist_hook mm/slub.c:1377 [inline]
slab_free mm/slub.c:2954 [inline]
kfree+0xe8/0x2b0 mm/slub.c:3874
dccp_feat_entry_destructor.part.4+0x48/0x60 net/dccp/feat.c:418
dccp_feat_entry_destructor net/dccp/feat.c:416 [inline]
dccp_feat_list_pop net/dccp/feat.c:541 [inline]
dccp_feat_activate_values+0x57f/0xab0 net/dccp/feat.c:1543
dccp_create_openreq_child+0x464/0x610 net/dccp/minisocks.c:121
dccp_v6_request_recv_sock+0x1f6/0x1960 net/dccp/ipv6.c:457
dccp_check_req+0x335/0x5a0 net/dccp/minisocks.c:186
dccp_v6_rcv+0x69e/0x1d00 net/dccp/ipv6.c:711
ip6_input_finish+0x46d/0x17a0 net/ipv6/ip6_input.c:279
NF_HOOK include/linux/netfilter.h:257 [inline]
ip6_input+0xdb/0x590 net/ipv6/ip6_input.c:322
dst_input include/net/dst.h:507 [inline]
ip6_rcv_finish+0x289/0x890 net/ipv6/ip6_input.c:69
NF_HOOK include/linux/netfilter.h:257 [inline]
ipv6_rcv+0x12ec/0x23d0 net/ipv6/ip6_input.c:203
__netif_receive_skb_core+0x1ae5/0x3400 net/core/dev.c:4190
__netif_receive_skb+0x2a/0x170 net/core/dev.c:4228
process_backlog+0xe5/0x6c0 net/core/dev.c:4839
napi_poll net/core/dev.c:5202 [inline]
net_rx_action+0xe70/0x1900 net/core/dev.c:5267
__do_softirq+0x2fb/0xb7d kernel/softirq.c:284
Memory state around the buggy address:
ffff88003713bd00: fc fc fc fc fc fc fc fc fc fc fc fc fc fc fc fc
ffff88003713bd80: fc fc fc fc fc fc fc fc fc fc fc fc fc fc fc fc
>ffff88003713be00: fc fc fc fc fc fc fc fc fc fc fb fb fb fb fb fb
^
Fixes: 079096f103fa ("tcp/dccp: install syn_recv requests into ehash table")
Signed-off-by: Eric Dumazet <edumazet@google.com>
Reported-by: Dmitry Vyukov <dvyukov@google.com>
Tested-by: Dmitry Vyukov <dvyukov@google.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
commit d1b4c689d4130bcfd3532680b64db562300716b6 upstream.
mmapped netlink has a number of unresolved issues:
- TX zerocopy support had to be disabled more than a year ago via
commit 4682a0358639b29cf ("netlink: Always copy on mmap TX.")
because the content of the mmapped area can change after netlink
attribute validation but before message processing.
- RX support was implemented mainly to speed up nfqueue dumping packet
payload to userspace. However, since commit ae08ce0021087a5d812d2
("netfilter: nfnetlink_queue: zero copy support") we avoid one copy
with the socket-based interface too (via the skb_zerocopy helper).
The other problem is that skbs attached to mmaped netlink socket
behave different from normal skbs:
- they don't have a shinfo area, so all functions that use skb_shinfo()
(e.g. skb_clone) cannot be used.
- reserving headroom prevents userspace from seeing the content as
it expects message to start at skb->head.
See for instance
commit aa3a022094fa ("netlink: not trim skb for mmaped socket when dump").
- skbs handed e.g. to netlink_ack must have non-NULL skb->sk, else we
crash because it needs the sk to check if a tx ring is attached.
Also not obvious, leads to non-intuitive bug fixes such as 7c7bdf359
("netfilter: nfnetlink: use original skbuff when acking batches").
mmaped netlink also didn't play nicely with the skb_zerocopy helper
used by nfqueue and openvswitch. Daniel Borkmann fixed this via
commit 6bb0fef489f6 ("netlink, mmap: fix edge-case leakages in nf queue
zero-copy")' but at the cost of also needing to provide remaining
length to the allocation function.
nfqueue also has problems when used with mmaped rx netlink:
- mmaped netlink doesn't allow use of nfqueue batch verdict messages.
Problem is that in the mmap case, the allocation time also determines
the ordering in which the frame will be seen by userspace (A
allocating before B means that A is located in earlier ring slot,
but this also means that B might get a lower sequence number then A
since seqno is decided later. To fix this we would need to extend the
spinlocked region to also cover the allocation and message setup which
isn't desirable.
- nfqueue can now be configured to queue large (GSO) skbs to userspace.
Queing GSO packets is faster than having to force a software segmentation
in the kernel, so this is a desirable option. However, with a mmap based
ring one has to use 64kb per ring slot element, else mmap has to fall back
to the socket path (NL_MMAP_STATUS_COPY) for all large packets.
To use the mmap interface, userspace not only has to probe for mmap netlink
support, it also has to implement a recv/socket receive path in order to
handle messages that exceed the size of an rx ring element.
Cc: Daniel Borkmann <daniel@iogearbox.net>
Cc: Ken-ichirou MATSUZAWA <chamaken@gmail.com>
Cc: Pablo Neira Ayuso <pablo@netfilter.org>
Cc: Patrick McHardy <kaber@trash.net>
Cc: Thomas Graf <tgraf@suug.ch>
Signed-off-by: Florian Westphal <fw@strlen.de>
Signed-off-by: David S. Miller <davem@davemloft.net>
Cc: Shi Yuejie <shiyuejie@outlook.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
commit 86ef58a4e35e8fa66afb5898cf6dec6a3bb29f67 upstream.
The interleave-set cookie is a sum that sanity checks the composition of
an interleave set has not changed from when the namespace was initially
created. The checksum is calculated by sorting the DIMMs by their
location in the interleave-set. The comparison for the sort must be
64-bit wide, not byte-by-byte as performed by memcmp() in the broken
case.
Fix the implementation to accept correct cookie values in addition to
the Linux "memcmp" order cookies, but only allow correct cookies to be
generated going forward. It does mean that namespaces created by
third-party-tooling, or created by newer kernels with this fix, will not
validate on older kernels. However, there are a couple mitigating
conditions:
1/ platforms with namespace-label capable NVDIMMs are not widely
available.
2/ interleave-sets with a single-dimm are by definition not affected
(nothing to sort). This covers the QEMU-KVM NVDIMM emulation case.
The cookie stored in the namespace label will be fixed by any write the
namespace label, the most straightforward way to achieve this is to
write to the "alt_name" attribute of a namespace in sysfs.
Fixes: eaf961536e16 ("libnvdimm, nfit: add interleave-set state-tracking infrastructure")
Reported-by: Nicholas Moulin <nicholas.w.moulin@linux.intel.com>
Tested-by: Nicholas Moulin <nicholas.w.moulin@linux.intel.com>
Signed-off-by: Dan Williams <dan.j.williams@intel.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
commit bf7165cfa23695c51998231c4efa080fe1d3548d upstream.
There are several trace include files that define TRACE_INCLUDE_FILE.
Include several of them in the same .c file (as I currently have in
some code I am working on), and the compile will blow up with a
"warning: "TRACE_INCLUDE_FILE" redefined #define TRACE_INCLUDE_FILE syscalls"
Every other include file in include/trace/events/ avoids that issue
by having a #undef TRACE_INCLUDE_FILE before the #define; syscalls.h
should have one, too.
Link: http://lkml.kernel.org/r/20160928225554.13bd7ac6@annuminas.surriel.com
Fixes: b8007ef74222 ("tracing: Separate raw syscall from syscall tracer")
Signed-off-by: Rik van Riel <riel@redhat.com>
Signed-off-by: Steven Rostedt (VMware) <rostedt@goodmis.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|