summaryrefslogtreecommitdiff
path: root/kernel/rcutree.c
AgeCommit message (Collapse)Author
2013-06-10Merge branches 'cbnum.2013.06.10a', 'doc.2013.06.10a', 'fixes.2013.06.10a', ↵Paul E. McKenney
'srcu.2013.06.10a' and 'tiny.2013.06.10a' into HEAD cbnum.2013.06.10a: Apply simplifications stemming from the new callback numbering. doc.2013.06.10a: Documentation updates. fixes.2013.06.10a: Miscellaneous fixes. srcu.2013.06.10a: Updates to SRCU. tiny.2013.06.10a: Eliminate TINY_PREEMPT_RCU.
2013-06-10rcu: Drive quiescent-state-forcing delay from HZPaul E. McKenney
Systems with HZ=100 can have slow bootup times due to the default three-jiffy delays between quiescent-state forcing attempts. This commit therefore auto-tunes the RCU_JIFFIES_TILL_FORCE_QS value based on the value of HZ. However, this would break very large systems that require more time between quiescent-state forcing attempts. This commit therefore also ups the default delay by one jiffy for each 256 CPUs that might be on the system (based off of nr_cpu_ids at runtime, -not- NR_CPUS at build time). Updated to collapse #ifdefs for RCU_JIFFIES_TILL_FORCE_QS into a step-function definition as suggested by Josh Triplett. Reported-by: Paul Mackerras <paulus@au1.ibm.com> Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
2013-06-10rcu: Move redundant call to note_gp_changes() into called functionPaul E. McKenney
The __rcu_process_callbacks() invokes note_gp_changes() immediately before invoking rcu_check_quiescent_state(), which conditionally invokes that same function. This commit therefore eliminates the call to note_gp_changes() in __rcu_process_callbacks() in favor of making unconditional to call from rcu_check_quiescent_state() to note_gp_changes(). Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com> Reviewed-by: Josh Triplett <josh@joshtriplett.org>
2013-06-10rcu: Inline trivial wrapper function rcu_start_gp_per_cpu()Paul E. McKenney
Given the changes that introduce note_gp_change(), rcu_start_gp_per_cpu() is now a trivial wrapper function with only one caller. This commit therefore inlines it into its sole call site. Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com> Reviewed-by: Josh Triplett <josh@joshtriplett.org>
2013-06-10rcu: Eliminate check_for_new_grace_period() wrapper functionPaul E. McKenney
One of the calls to check_for_new_grace_period() is now redundant due to an immediately preceding call to note_gp_changes(). Eliminating this redundant call leaves a single caller, which is simpler if inlined. This commit therefore eliminates the redundant call and inlines the body of check_for_new_grace_period() into the single remaining call site. Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com> Reviewed-by: Josh Triplett <josh@joshtriplett.org>
2013-06-10rcu: Merge __rcu_process_gp_end() into __note_gp_changes()Paul E. McKenney
This commit eliminates some duplicated code by merging __rcu_process_gp_end() into __note_gp_changes(). Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com> Reviewed-by: Josh Triplett <josh@joshtriplett.org>
2013-06-10rcu: Switch callers from rcu_process_gp_end() to note_gp_changes()Paul E. McKenney
Because note_gp_changes() now incorporates rcu_process_gp_end() function, this commit switches to the former and eliminates the latter. In addition, this commit changes external calls from __rcu_process_gp_end() to __note_gp_changes(). Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com> Reviewed-by: Josh Triplett <josh@joshtriplett.org>
2013-06-10rcu: Rename note_new_gpnum() to note_gp_changes()Paul E. McKenney
Because note_new_gpnum() now also checks for the ends of old grace periods, this commit changes its name to note_gp_changes(). Later commits will merge rcu_process_gp_end() into note_gp_changes(). Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com> Reviewed-by: Josh Triplett <josh@joshtriplett.org>
2013-06-10rcu: Make __note_new_gpnum() check for ends of prior grace periodsPaul E. McKenney
The current implementation can detect the beginning of a new grace period before noting the end of a previous grace period. Although the current implementation correctly handles this sort of nonsense, it would be good to reduce RCU's state space by making such nonsense unnecessary, which is now possible thanks to the fact that RCU's callback groups are now numbered. This commit therefore makes __note_new_gpnum() invoke __rcu_process_gp_end() in order to note the ends of prior grace periods before noting the beginnings of new grace periods. Of course, this now means that note_new_gpnum() notes both the beginnings and ends of grace periods, and could therefore be used in place of rcu_process_gp_end(). But that is a job for later commits. Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com> Reviewed-by: Josh Triplett <josh@joshtriplett.org>
2013-06-10rcu: Move code to apply callback-numbering simplificationsPaul E. McKenney
The addition of callback numbering allows combining the detection of the ends of old grace periods and the beginnings of new grace periods. This commit moves code to set the stage for this combining. Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com> Reviewed-by: Josh Triplett <josh@joshtriplett.org>
2013-06-10rcu: Convert rcutree.c printk callsPaul E. McKenney
This commit converts printk() calls to the corresponding pr_*() calls. Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com> Reviewed-by: Josh Triplett <josh@joshtriplett.org>
2013-06-10rcu: Fix deadlock with CPU hotplug, RCU GP init, and timer migrationPaul E. McKenney
In Steven Rostedt's words: > I've been debugging the last couple of days why my tests have been > locking up. One of my tracing tests, runs all available tracers. The > lockup always happened with the mmiotrace, which is used to trace > interactions between priority drivers and the kernel. But to do this > easily, when the tracer gets registered, it disables all but the boot > CPUs. The lockup always happened after it got done disabling the CPUs. > > Then I decided to try this: > > while :; do > for i in 1 2 3; do > echo 0 > /sys/devices/system/cpu/cpu$i/online > done > for i in 1 2 3; do > echo 1 > /sys/devices/system/cpu/cpu$i/online > done > done > > Well, sure enough, that locked up too, with the same users. Doing a > sysrq-w (showing all blocked tasks): > > [ 2991.344562] task PC stack pid father > [ 2991.344562] rcu_preempt D ffff88007986fdf8 0 10 2 0x00000000 > [ 2991.344562] ffff88007986fc98 0000000000000002 ffff88007986fc48 0000000000000908 > [ 2991.344562] ffff88007986c280 ffff88007986ffd8 ffff88007986ffd8 00000000001d3c80 > [ 2991.344562] ffff880079248a40 ffff88007986c280 0000000000000000 00000000fffd4295 > [ 2991.344562] Call Trace: > [ 2991.344562] [<ffffffff815437ba>] schedule+0x64/0x66 > [ 2991.344562] [<ffffffff81541750>] schedule_timeout+0xbc/0xf9 > [ 2991.344562] [<ffffffff8154bec0>] ? ftrace_call+0x5/0x2f > [ 2991.344562] [<ffffffff81049513>] ? cascade+0xa8/0xa8 > [ 2991.344562] [<ffffffff815417ab>] schedule_timeout_uninterruptible+0x1e/0x20 > [ 2991.344562] [<ffffffff810c980c>] rcu_gp_kthread+0x502/0x94b > [ 2991.344562] [<ffffffff81062791>] ? __init_waitqueue_head+0x50/0x50 > [ 2991.344562] [<ffffffff810c930a>] ? rcu_gp_fqs+0x64/0x64 > [ 2991.344562] [<ffffffff81061cdb>] kthread+0xb1/0xb9 > [ 2991.344562] [<ffffffff81091e31>] ? lock_release_holdtime.part.23+0x4e/0x55 > [ 2991.344562] [<ffffffff81061c2a>] ? __init_kthread_worker+0x58/0x58 > [ 2991.344562] [<ffffffff8154c1dc>] ret_from_fork+0x7c/0xb0 > [ 2991.344562] [<ffffffff81061c2a>] ? __init_kthread_worker+0x58/0x58 > [ 2991.344562] kworker/0:1 D ffffffff81a30680 0 47 2 0x00000000 > [ 2991.344562] Workqueue: events cpuset_hotplug_workfn > [ 2991.344562] ffff880078dbbb58 0000000000000002 0000000000000006 00000000000000d8 > [ 2991.344562] ffff880078db8100 ffff880078dbbfd8 ffff880078dbbfd8 00000000001d3c80 > [ 2991.344562] ffff8800779ca5c0 ffff880078db8100 ffffffff81541fcf 0000000000000000 > [ 2991.344562] Call Trace: > [ 2991.344562] [<ffffffff81541fcf>] ? __mutex_lock_common+0x3d4/0x609 > [ 2991.344562] [<ffffffff815437ba>] schedule+0x64/0x66 > [ 2991.344562] [<ffffffff81543a39>] schedule_preempt_disabled+0x18/0x24 > [ 2991.344562] [<ffffffff81541fcf>] __mutex_lock_common+0x3d4/0x609 > [ 2991.344562] [<ffffffff8103d11b>] ? get_online_cpus+0x3c/0x50 > [ 2991.344562] [<ffffffff8103d11b>] ? get_online_cpus+0x3c/0x50 > [ 2991.344562] [<ffffffff815422ff>] mutex_lock_nested+0x3b/0x40 > [ 2991.344562] [<ffffffff8103d11b>] get_online_cpus+0x3c/0x50 > [ 2991.344562] [<ffffffff810af7e6>] rebuild_sched_domains_locked+0x6e/0x3a8 > [ 2991.344562] [<ffffffff810b0ec6>] rebuild_sched_domains+0x1c/0x2a > [ 2991.344562] [<ffffffff810b109b>] cpuset_hotplug_workfn+0x1c7/0x1d3 > [ 2991.344562] [<ffffffff810b0ed9>] ? cpuset_hotplug_workfn+0x5/0x1d3 > [ 2991.344562] [<ffffffff81058e07>] process_one_work+0x2d4/0x4d1 > [ 2991.344562] [<ffffffff81058d3a>] ? process_one_work+0x207/0x4d1 > [ 2991.344562] [<ffffffff8105964c>] worker_thread+0x2e7/0x3b5 > [ 2991.344562] [<ffffffff81059365>] ? rescuer_thread+0x332/0x332 > [ 2991.344562] [<ffffffff81061cdb>] kthread+0xb1/0xb9 > [ 2991.344562] [<ffffffff81061c2a>] ? __init_kthread_worker+0x58/0x58 > [ 2991.344562] [<ffffffff8154c1dc>] ret_from_fork+0x7c/0xb0 > [ 2991.344562] [<ffffffff81061c2a>] ? __init_kthread_worker+0x58/0x58 > [ 2991.344562] bash D ffffffff81a4aa80 0 2618 2612 0x10000000 > [ 2991.344562] ffff8800379abb58 0000000000000002 0000000000000006 0000000000000c2c > [ 2991.344562] ffff880077fea140 ffff8800379abfd8 ffff8800379abfd8 00000000001d3c80 > [ 2991.344562] ffff8800779ca5c0 ffff880077fea140 ffffffff81541fcf 0000000000000000 > [ 2991.344562] Call Trace: > [ 2991.344562] [<ffffffff81541fcf>] ? __mutex_lock_common+0x3d4/0x609 > [ 2991.344562] [<ffffffff815437ba>] schedule+0x64/0x66 > [ 2991.344562] [<ffffffff81543a39>] schedule_preempt_disabled+0x18/0x24 > [ 2991.344562] [<ffffffff81541fcf>] __mutex_lock_common+0x3d4/0x609 > [ 2991.344562] [<ffffffff81530078>] ? rcu_cpu_notify+0x2f5/0x86e > [ 2991.344562] [<ffffffff81530078>] ? rcu_cpu_notify+0x2f5/0x86e > [ 2991.344562] [<ffffffff815422ff>] mutex_lock_nested+0x3b/0x40 > [ 2991.344562] [<ffffffff81530078>] rcu_cpu_notify+0x2f5/0x86e > [ 2991.344562] [<ffffffff81091c99>] ? __lock_is_held+0x32/0x53 > [ 2991.344562] [<ffffffff81548912>] notifier_call_chain+0x6b/0x98 > [ 2991.344562] [<ffffffff810671fd>] __raw_notifier_call_chain+0xe/0x10 > [ 2991.344562] [<ffffffff8103cf64>] __cpu_notify+0x20/0x32 > [ 2991.344562] [<ffffffff8103cf8d>] cpu_notify_nofail+0x17/0x36 > [ 2991.344562] [<ffffffff815225de>] _cpu_down+0x154/0x259 > [ 2991.344562] [<ffffffff81522710>] cpu_down+0x2d/0x3a > [ 2991.344562] [<ffffffff81526351>] store_online+0x4e/0xe7 > [ 2991.344562] [<ffffffff8134d764>] dev_attr_store+0x20/0x22 > [ 2991.344562] [<ffffffff811b3c5f>] sysfs_write_file+0x108/0x144 > [ 2991.344562] [<ffffffff8114c5ef>] vfs_write+0xfd/0x158 > [ 2991.344562] [<ffffffff8114c928>] SyS_write+0x5c/0x83 > [ 2991.344562] [<ffffffff8154c494>] tracesys+0xdd/0xe2 > > As well as held locks: > > [ 3034.728033] Showing all locks held in the system: > [ 3034.728033] 1 lock held by rcu_preempt/10: > [ 3034.728033] #0: (rcu_preempt_state.onoff_mutex){+.+...}, at: [<ffffffff810c9471>] rcu_gp_kthread+0x167/0x94b > [ 3034.728033] 4 locks held by kworker/0:1/47: > [ 3034.728033] #0: (events){.+.+.+}, at: [<ffffffff81058d3a>] process_one_work+0x207/0x4d1 > [ 3034.728033] #1: (cpuset_hotplug_work){+.+.+.}, at: [<ffffffff81058d3a>] process_one_work+0x207/0x4d1 > [ 3034.728033] #2: (cpuset_mutex){+.+.+.}, at: [<ffffffff810b0ec1>] rebuild_sched_domains+0x17/0x2a > [ 3034.728033] #3: (cpu_hotplug.lock){+.+.+.}, at: [<ffffffff8103d11b>] get_online_cpus+0x3c/0x50 > [ 3034.728033] 1 lock held by mingetty/2563: > [ 3034.728033] #0: (&ldata->atomic_read_lock){+.+...}, at: [<ffffffff8131e28a>] n_tty_read+0x252/0x7e8 > [ 3034.728033] 1 lock held by mingetty/2565: > [ 3034.728033] #0: (&ldata->atomic_read_lock){+.+...}, at: [<ffffffff8131e28a>] n_tty_read+0x252/0x7e8 > [ 3034.728033] 1 lock held by mingetty/2569: > [ 3034.728033] #0: (&ldata->atomic_read_lock){+.+...}, at: [<ffffffff8131e28a>] n_tty_read+0x252/0x7e8 > [ 3034.728033] 1 lock held by mingetty/2572: > [ 3034.728033] #0: (&ldata->atomic_read_lock){+.+...}, at: [<ffffffff8131e28a>] n_tty_read+0x252/0x7e8 > [ 3034.728033] 1 lock held by mingetty/2575: > [ 3034.728033] #0: (&ldata->atomic_read_lock){+.+...}, at: [<ffffffff8131e28a>] n_tty_read+0x252/0x7e8 > [ 3034.728033] 7 locks held by bash/2618: > [ 3034.728033] #0: (sb_writers#5){.+.+.+}, at: [<ffffffff8114bc3f>] file_start_write+0x2a/0x2c > [ 3034.728033] #1: (&buffer->mutex#2){+.+.+.}, at: [<ffffffff811b3b93>] sysfs_write_file+0x3c/0x144 > [ 3034.728033] #2: (s_active#54){.+.+.+}, at: [<ffffffff811b3c3e>] sysfs_write_file+0xe7/0x144 > [ 3034.728033] #3: (x86_cpu_hotplug_driver_mutex){+.+.+.}, at: [<ffffffff810217c2>] cpu_hotplug_driver_lock+0x17/0x19 > [ 3034.728033] #4: (cpu_add_remove_lock){+.+.+.}, at: [<ffffffff8103d196>] cpu_maps_update_begin+0x17/0x19 > [ 3034.728033] #5: (cpu_hotplug.lock){+.+.+.}, at: [<ffffffff8103cfd8>] cpu_hotplug_begin+0x2c/0x6d > [ 3034.728033] #6: (rcu_preempt_state.onoff_mutex){+.+...}, at: [<ffffffff81530078>] rcu_cpu_notify+0x2f5/0x86e > [ 3034.728033] 1 lock held by bash/2980: > [ 3034.728033] #0: (&ldata->atomic_read_lock){+.+...}, at: [<ffffffff8131e28a>] n_tty_read+0x252/0x7e8 > > Things looked a little weird. Also, this is a deadlock that lockdep did > not catch. But what we have here does not look like a circular lock > issue: > > Bash is blocked in rcu_cpu_notify(): > > 1961 /* Exclude any attempts to start a new grace period. */ > 1962 mutex_lock(&rsp->onoff_mutex); > > > kworker is blocked in get_online_cpus(), which makes sense as we are > currently taking down a CPU. > > But rcu_preempt is not blocked on anything. It is simply sleeping in > rcu_gp_kthread (really rcu_gp_init) here: > > 1453 #ifdef CONFIG_PROVE_RCU_DELAY > 1454 if ((prandom_u32() % (rcu_num_nodes * 8)) == 0 && > 1455 system_state == SYSTEM_RUNNING) > 1456 schedule_timeout_uninterruptible(2); > 1457 #endif /* #ifdef CONFIG_PROVE_RCU_DELAY */ > > And it does this while holding the onoff_mutex that bash is waiting for. > > Doing a function trace, it showed me where it happened: > > [ 125.940066] rcu_pree-10 3.... 28384115273: schedule_timeout_uninterruptible <-rcu_gp_kthread > [...] > [ 125.940066] rcu_pree-10 3d..3 28384202439: sched_switch: prev_comm=rcu_preempt prev_pid=10 prev_prio=120 prev_state=D ==> next_comm=watchdog/3 next_pid=38 next_prio=120 > > The watchdog ran, and then: > > [ 125.940066] watchdog-38 3d..3 28384692863: sched_switch: prev_comm=watchdog/3 prev_pid=38 prev_prio=120 prev_state=P ==> next_comm=modprobe next_pid=2848 next_prio=118 > > Not sure what modprobe was doing, but shortly after that: > > [ 125.940066] modprobe-2848 3d..3 28385041749: sched_switch: prev_comm=modprobe prev_pid=2848 prev_prio=118 prev_state=R+ ==> next_comm=migration/3 next_pid=40 next_prio=0 > > Where the migration thread took down the CPU: > > [ 125.940066] migratio-40 3d..3 28389148276: sched_switch: prev_comm=migration/3 prev_pid=40 prev_prio=0 prev_state=P ==> next_comm=swapper/3 next_pid=0 next_prio=120 > > which finally did: > > [ 125.940066] <idle>-0 3...1 28389282142: arch_cpu_idle_dead <-cpu_startup_entry > [ 125.940066] <idle>-0 3...1 28389282548: native_play_dead <-arch_cpu_idle_dead > [ 125.940066] <idle>-0 3...1 28389282924: play_dead_common <-native_play_dead > [ 125.940066] <idle>-0 3...1 28389283468: idle_task_exit <-play_dead_common > [ 125.940066] <idle>-0 3...1 28389284644: amd_e400_remove_cpu <-play_dead_common > > > CPU 3 is now offline, the rcu_preempt thread that ran on CPU 3 is still > doing a schedule_timeout_uninterruptible() and it registered it's > timeout to the timer base for CPU 3. You would think that it would get > migrated right? The issue here is that the timer migration happens at > the CPU notifier for CPU_DEAD. The problem is that the rcu notifier for > CPU_DOWN is blocked waiting for the onoff_mutex to be released, which is > held by the thread that just put itself into a uninterruptible sleep, > that wont wake up until the CPU_DEAD notifier of the timer > infrastructure is called, which wont happen until the rcu notifier > finishes. Here's our deadlock! This commit breaks this deadlock cycle by substituting a shorter udelay() for the previous schedule_timeout_uninterruptible(), while at the same time increasing the probability of the delay. This maintains the intensity of the testing. Reported-by: Steven Rostedt <rostedt@goodmis.org> Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com> Tested-by: Steven Rostedt <rostedt@goodmis.org>
2013-06-10rcu: Don't call wakeup() with rcu_node structure ->lock heldSteven Rostedt
This commit fixes a lockdep-detected deadlock by moving a wake_up() call out from a rnp->lock critical section. Please see below for the long version of this story. On Tue, 2013-05-28 at 16:13 -0400, Dave Jones wrote: > [12572.705832] ====================================================== > [12572.750317] [ INFO: possible circular locking dependency detected ] > [12572.796978] 3.10.0-rc3+ #39 Not tainted > [12572.833381] ------------------------------------------------------- > [12572.862233] trinity-child17/31341 is trying to acquire lock: > [12572.870390] (rcu_node_0){..-.-.}, at: [<ffffffff811054ff>] rcu_read_unlock_special+0x9f/0x4c0 > [12572.878859] > but task is already holding lock: > [12572.894894] (&ctx->lock){-.-...}, at: [<ffffffff811390ed>] perf_lock_task_context+0x7d/0x2d0 > [12572.903381] > which lock already depends on the new lock. > > [12572.927541] > the existing dependency chain (in reverse order) is: > [12572.943736] > -> #4 (&ctx->lock){-.-...}: > [12572.960032] [<ffffffff810b9851>] lock_acquire+0x91/0x1f0 > [12572.968337] [<ffffffff816ebc90>] _raw_spin_lock+0x40/0x80 > [12572.976633] [<ffffffff8113c987>] __perf_event_task_sched_out+0x2e7/0x5e0 > [12572.984969] [<ffffffff81088953>] perf_event_task_sched_out+0x93/0xa0 > [12572.993326] [<ffffffff816ea0bf>] __schedule+0x2cf/0x9c0 > [12573.001652] [<ffffffff816eacfe>] schedule_user+0x2e/0x70 > [12573.009998] [<ffffffff816ecd64>] retint_careful+0x12/0x2e > [12573.018321] > -> #3 (&rq->lock){-.-.-.}: > [12573.034628] [<ffffffff810b9851>] lock_acquire+0x91/0x1f0 > [12573.042930] [<ffffffff816ebc90>] _raw_spin_lock+0x40/0x80 > [12573.051248] [<ffffffff8108e6a7>] wake_up_new_task+0xb7/0x260 > [12573.059579] [<ffffffff810492f5>] do_fork+0x105/0x470 > [12573.067880] [<ffffffff81049686>] kernel_thread+0x26/0x30 > [12573.076202] [<ffffffff816cee63>] rest_init+0x23/0x140 > [12573.084508] [<ffffffff81ed8e1f>] start_kernel+0x3f1/0x3fe > [12573.092852] [<ffffffff81ed856f>] x86_64_start_reservations+0x2a/0x2c > [12573.101233] [<ffffffff81ed863d>] x86_64_start_kernel+0xcc/0xcf > [12573.109528] > -> #2 (&p->pi_lock){-.-.-.}: > [12573.125675] [<ffffffff810b9851>] lock_acquire+0x91/0x1f0 > [12573.133829] [<ffffffff816ebe9b>] _raw_spin_lock_irqsave+0x4b/0x90 > [12573.141964] [<ffffffff8108e881>] try_to_wake_up+0x31/0x320 > [12573.150065] [<ffffffff8108ebe2>] default_wake_function+0x12/0x20 > [12573.158151] [<ffffffff8107bbf8>] autoremove_wake_function+0x18/0x40 > [12573.166195] [<ffffffff81085398>] __wake_up_common+0x58/0x90 > [12573.174215] [<ffffffff81086909>] __wake_up+0x39/0x50 > [12573.182146] [<ffffffff810fc3da>] rcu_start_gp_advanced.isra.11+0x4a/0x50 > [12573.190119] [<ffffffff810fdb09>] rcu_start_future_gp+0x1c9/0x1f0 > [12573.198023] [<ffffffff810fe2c4>] rcu_nocb_kthread+0x114/0x930 > [12573.205860] [<ffffffff8107a91d>] kthread+0xed/0x100 > [12573.213656] [<ffffffff816f4b1c>] ret_from_fork+0x7c/0xb0 > [12573.221379] > -> #1 (&rsp->gp_wq){..-.-.}: > [12573.236329] [<ffffffff810b9851>] lock_acquire+0x91/0x1f0 > [12573.243783] [<ffffffff816ebe9b>] _raw_spin_lock_irqsave+0x4b/0x90 > [12573.251178] [<ffffffff810868f3>] __wake_up+0x23/0x50 > [12573.258505] [<ffffffff810fc3da>] rcu_start_gp_advanced.isra.11+0x4a/0x50 > [12573.265891] [<ffffffff810fdb09>] rcu_start_future_gp+0x1c9/0x1f0 > [12573.273248] [<ffffffff810fe2c4>] rcu_nocb_kthread+0x114/0x930 > [12573.280564] [<ffffffff8107a91d>] kthread+0xed/0x100 > [12573.287807] [<ffffffff816f4b1c>] ret_from_fork+0x7c/0xb0 Notice the above call chain. rcu_start_future_gp() is called with the rnp->lock held. Then it calls rcu_start_gp_advance, which does a wakeup. You can't do wakeups while holding the rnp->lock, as that would mean that you could not do a rcu_read_unlock() while holding the rq lock, or any lock that was taken while holding the rq lock. This is because... (See below). > [12573.295067] > -> #0 (rcu_node_0){..-.-.}: > [12573.309293] [<ffffffff810b8d36>] __lock_acquire+0x1786/0x1af0 > [12573.316568] [<ffffffff810b9851>] lock_acquire+0x91/0x1f0 > [12573.323825] [<ffffffff816ebc90>] _raw_spin_lock+0x40/0x80 > [12573.331081] [<ffffffff811054ff>] rcu_read_unlock_special+0x9f/0x4c0 > [12573.338377] [<ffffffff810760a6>] __rcu_read_unlock+0x96/0xa0 > [12573.345648] [<ffffffff811391b3>] perf_lock_task_context+0x143/0x2d0 > [12573.352942] [<ffffffff8113938e>] find_get_context+0x4e/0x1f0 > [12573.360211] [<ffffffff811403f4>] SYSC_perf_event_open+0x514/0xbd0 > [12573.367514] [<ffffffff81140e49>] SyS_perf_event_open+0x9/0x10 > [12573.374816] [<ffffffff816f4dd4>] tracesys+0xdd/0xe2 Notice the above trace. perf took its own ctx->lock, which can be taken while holding the rq lock. While holding this lock, it did a rcu_read_unlock(). The perf_lock_task_context() basically looks like: rcu_read_lock(); raw_spin_lock(ctx->lock); rcu_read_unlock(); Now, what looks to have happened, is that we scheduled after taking that first rcu_read_lock() but before taking the spin lock. When we scheduled back in and took the ctx->lock, the following rcu_read_unlock() triggered the "special" code. The rcu_read_unlock_special() takes the rnp->lock, which gives us a possible deadlock scenario. CPU0 CPU1 CPU2 ---- ---- ---- rcu_nocb_kthread() lock(rq->lock); lock(ctx->lock); lock(rnp->lock); wake_up(); lock(rq->lock); rcu_read_unlock(); rcu_read_unlock_special(); lock(rnp->lock); lock(ctx->lock); **** DEADLOCK **** > [12573.382068] > other info that might help us debug this: > > [12573.403229] Chain exists of: > rcu_node_0 --> &rq->lock --> &ctx->lock > > [12573.424471] Possible unsafe locking scenario: > > [12573.438499] CPU0 CPU1 > [12573.445599] ---- ---- > [12573.452691] lock(&ctx->lock); > [12573.459799] lock(&rq->lock); > [12573.467010] lock(&ctx->lock); > [12573.474192] lock(rcu_node_0); > [12573.481262] > *** DEADLOCK *** > > [12573.501931] 1 lock held by trinity-child17/31341: > [12573.508990] #0: (&ctx->lock){-.-...}, at: [<ffffffff811390ed>] perf_lock_task_context+0x7d/0x2d0 > [12573.516475] > stack backtrace: > [12573.530395] CPU: 1 PID: 31341 Comm: trinity-child17 Not tainted 3.10.0-rc3+ #39 > [12573.545357] ffffffff825b4f90 ffff880219f1dbc0 ffffffff816e375b ffff880219f1dc00 > [12573.552868] ffffffff816dfa5d ffff880219f1dc50 ffff88023ce4d1f8 ffff88023ce4ca40 > [12573.560353] 0000000000000001 0000000000000001 ffff88023ce4d1f8 ffff880219f1dcc0 > [12573.567856] Call Trace: > [12573.575011] [<ffffffff816e375b>] dump_stack+0x19/0x1b > [12573.582284] [<ffffffff816dfa5d>] print_circular_bug+0x200/0x20f > [12573.589637] [<ffffffff810b8d36>] __lock_acquire+0x1786/0x1af0 > [12573.596982] [<ffffffff810918f5>] ? sched_clock_cpu+0xb5/0x100 > [12573.604344] [<ffffffff810b9851>] lock_acquire+0x91/0x1f0 > [12573.611652] [<ffffffff811054ff>] ? rcu_read_unlock_special+0x9f/0x4c0 > [12573.619030] [<ffffffff816ebc90>] _raw_spin_lock+0x40/0x80 > [12573.626331] [<ffffffff811054ff>] ? rcu_read_unlock_special+0x9f/0x4c0 > [12573.633671] [<ffffffff811054ff>] rcu_read_unlock_special+0x9f/0x4c0 > [12573.640992] [<ffffffff811390ed>] ? perf_lock_task_context+0x7d/0x2d0 > [12573.648330] [<ffffffff810b429e>] ? put_lock_stats.isra.29+0xe/0x40 > [12573.655662] [<ffffffff813095a0>] ? delay_tsc+0x90/0xe0 > [12573.662964] [<ffffffff810760a6>] __rcu_read_unlock+0x96/0xa0 > [12573.670276] [<ffffffff811391b3>] perf_lock_task_context+0x143/0x2d0 > [12573.677622] [<ffffffff81139070>] ? __perf_event_enable+0x370/0x370 > [12573.684981] [<ffffffff8113938e>] find_get_context+0x4e/0x1f0 > [12573.692358] [<ffffffff811403f4>] SYSC_perf_event_open+0x514/0xbd0 > [12573.699753] [<ffffffff8108cd9d>] ? get_parent_ip+0xd/0x50 > [12573.707135] [<ffffffff810b71fd>] ? trace_hardirqs_on_caller+0xfd/0x1c0 > [12573.714599] [<ffffffff81140e49>] SyS_perf_event_open+0x9/0x10 > [12573.721996] [<ffffffff816f4dd4>] tracesys+0xdd/0xe2 This commit delays the wakeup via irq_work(), which is what perf and ftrace use to perform wakeups in critical sections. Reported-by: Dave Jones <davej@redhat.com> Signed-off-by: Steven Rostedt <rostedt@goodmis.org> Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
2013-05-02Merge commit '8700c95adb03' into timers/nohzFrederic Weisbecker
The full dynticks tree needs the latest RCU and sched upstream updates in order to fix some dependencies. Merge a common upstream merge point that has these updates. Conflicts: include/linux/perf_event.h kernel/rcutree.h kernel/rcutree_plugin.h Signed-off-by: Frederic Weisbecker <fweisbec@gmail.com>
2013-04-30Merge branch 'core-rcu-for-linus' of ↵Linus Torvalds
git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip Pull RCU updates from Ingo Molnar: "The main changes in this cycle are mostly related to preparatory work for the full-dynticks work: - Remove restrictions on no-CBs CPUs, make RCU_FAST_NO_HZ take advantage of numbered callbacks, do callback accelerations based on numbered callbacks. Posted to LKML at https://lkml.org/lkml/2013/3/18/960 - RCU documentation updates. Posted to LKML at https://lkml.org/lkml/2013/3/18/570 - Miscellaneous fixes. Posted to LKML at https://lkml.org/lkml/2013/3/18/594" * 'core-rcu-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip: (24 commits) rcu: Make rcu_accelerate_cbs() note need for future grace periods rcu: Abstract rcu_start_future_gp() from rcu_nocb_wait_gp() rcu: Rename n_nocb_gp_requests to need_future_gp rcu: Push lock release to rcu_start_gp()'s callers rcu: Repurpose no-CBs event tracing to future-GP events rcu: Rearrange locking in rcu_start_gp() rcu: Make RCU_FAST_NO_HZ take advantage of numbered callbacks rcu: Accelerate RCU callbacks at grace-period end rcu: Export RCU_FAST_NO_HZ parameters to sysfs rcu: Distinguish "rcuo" kthreads by RCU flavor rcu: Add event tracing for no-CBs CPUs' grace periods rcu: Add event tracing for no-CBs CPUs' callback registration rcu: Introduce proper blocking to no-CBs kthreads GP waits rcu: Provide compile-time control for no-CBs CPUs rcu: Tone down debugging during boot-up and shutdown. rcu: Add softirq-stall indications to stall-warning messages rcu: Documentation update rcu: Make bugginess of code sample more evident rcu: Fix hlist_bl_set_first_rcu() annotation rcu: Delete unused rcu_node "wakemask" field ...
2013-04-29kernel/: rename random32() to prandom_u32()Akinobu Mita
Use preferable function name which implies using a pseudo-random number generator. Signed-off-by: Akinobu Mita <akinobu.mita@gmail.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2013-04-19nohz: Ensure full dynticks CPUs are RCU nocbsFrederic Weisbecker
We need full dynticks CPU to also be RCU nocb so that we don't have to keep the tick to handle RCU callbacks. Make sure the range passed to nohz_full= boot parameter is a subset of rcu_nocbs= The CPUs that fail to meet this requirement will be excluded from the nohz_full range. This is checked early in boot time, before any CPU has the opportunity to stop its tick. Suggested-by: Steven Rostedt <rostedt@goodmis.org> Reviewed-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com> Signed-off-by: Frederic Weisbecker <fweisbec@gmail.com> Cc: Andrew Morton <akpm@linux-foundation.org> Cc: Chris Metcalf <cmetcalf@tilera.com> Cc: Christoph Lameter <cl@linux.com> Cc: Geoff Levand <geoff@infradead.org> Cc: Gilad Ben Yossef <gilad@benyossef.com> Cc: Hakan Akkan <hakanakkan@gmail.com> Cc: Ingo Molnar <mingo@kernel.org> Cc: Kevin Hilman <khilman@linaro.org> Cc: Li Zhong <zhong@linux.vnet.ibm.com> Cc: Paul E. McKenney <paulmck@linux.vnet.ibm.com> Cc: Paul Gortmaker <paul.gortmaker@windriver.com> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Steven Rostedt <rostedt@goodmis.org> Cc: Thomas Gleixner <tglx@linutronix.de>
2013-04-15rcu: Kick adaptive-ticks CPUs that are holding up RCU grace periodsPaul E. McKenney
Adaptive-ticks CPUs inform RCU when they enter kernel mode, but they do not necessarily turn the scheduler-clock tick back on. This state of affairs could result in RCU waiting on an adaptive-ticks CPU running for an extended period in kernel mode. Such a CPU will never run the RCU state machine, and could therefore indefinitely extend the RCU state machine, sooner or later resulting in an OOM condition. This patch, inspired by an earlier patch by Frederic Weisbecker, therefore causes RCU's force-quiescent-state processing to check for this condition and to send an IPI to CPUs that remain in that state for too long. "Too long" currently means about three jiffies by default, which is quite some time for a CPU to remain in the kernel without blocking. The rcu_tree.jiffies_till_first_fqs and rcutree.jiffies_till_next_fqs sysfs variables may be used to tune "too long" if needed. Reported-by: Frederic Weisbecker <fweisbec@gmail.com> Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com> Reviewed-by: Josh Triplett <josh@joshtriplett.org> Signed-off-by: Frederic Weisbecker <fweisbec@gmail.com> Cc: Chris Metcalf <cmetcalf@tilera.com> Cc: Christoph Lameter <cl@linux.com> Cc: Geoff Levand <geoff@infradead.org> Cc: Gilad Ben Yossef <gilad@benyossef.com> Cc: Hakan Akkan <hakanakkan@gmail.com> Cc: Ingo Molnar <mingo@kernel.org> Cc: Kevin Hilman <khilman@linaro.org> Cc: Li Zhong <zhong@linux.vnet.ibm.com> Cc: Paul E. McKenney <paulmck@linux.vnet.ibm.com> Cc: Paul Gortmaker <paul.gortmaker@windriver.com> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Steven Rostedt <rostedt@goodmis.org> Cc: Thomas Gleixner <tglx@linutronix.de>
2013-03-26Merge branches 'doc.2013.03.12a', 'fixes.2013.03.13a' and ↵Paul E. McKenney
'idlenocb.2013.03.26b' into HEAD doc.2013.03.12a: Documentation changes. fixes.2013.03.13a: Miscellaneous fixes. idlenocb.2013.03.26b: Remove restrictions on no-CBs CPUs, make RCU_FAST_NO_HZ take advantage of numbered callbacks, add callback acceleration based on numbered callbacks.
2013-03-26rcu: Make rcu_accelerate_cbs() note need for future grace periodsPaul E. McKenney
Now that rcu_start_future_gp() has been abstracted from rcu_nocb_wait_gp(), rcu_accelerate_cbs() can invoke rcu_start_future_gp() so as to register the need for any future grace periods needed by a CPU about to enter dyntick-idle mode. This commit makes this change. Note that some refactoring of rcu_start_gp() is carried out to avoid recursion and subsequent self-deadlocks. Signed-off-by: Paul E. McKenney <paul.mckenney@linaro.org> Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
2013-03-26rcu: Abstract rcu_start_future_gp() from rcu_nocb_wait_gp()Paul E. McKenney
CPUs going idle will need to record the need for a future grace period, but won't actually need to block waiting on it. This commit therefore splits rcu_start_future_gp(), which does the recording, from rcu_nocb_wait_gp(), which now invokes rcu_start_future_gp() to do the recording, after which rcu_nocb_wait_gp() does the waiting. Signed-off-by: Paul E. McKenney <paul.mckenney@linaro.org> Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
2013-03-26rcu: Push lock release to rcu_start_gp()'s callersPaul E. McKenney
If CPUs are to give prior notice of needed grace periods, it will be necessary to invoke rcu_start_gp() without dropping the root rcu_node structure's ->lock. This commit takes a second step in this direction by moving the release of this lock to rcu_start_gp()'s callers. Signed-off-by: Paul E. McKenney <paul.mckenney@linaro.org> Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
2013-03-26rcu: Rearrange locking in rcu_start_gp()Paul E. McKenney
If CPUs are to give prior notice of needed grace periods, it will be necessary to invoke rcu_start_gp() without dropping the root rcu_node structure's ->lock. This commit takes a first step in this direction by moving the release of this lock to the end of rcu_start_gp(). Signed-off-by: Paul E. McKenney <paul.mckenney@linaro.org> Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
2013-03-26rcu: Make RCU_FAST_NO_HZ take advantage of numbered callbacksPaul E. McKenney
Because RCU callbacks are now associated with the number of the grace period that they must wait for, CPUs can now take advance callbacks corresponding to grace periods that ended while a given CPU was in dyntick-idle mode. This eliminates the need to try forcing the RCU state machine while entering idle, thus reducing the CPU intensiveness of RCU_FAST_NO_HZ, which should increase its energy efficiency. Signed-off-by: Paul E. McKenney <paul.mckenney@linaro.org> Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
2013-03-26rcu: Accelerate RCU callbacks at grace-period endPaul E. McKenney
Now that callback acceleration is idempotent, it is safe to accelerate callbacks during grace-period cleanup on any CPUs that the kthread happens to be running on. This commit therefore propagates the completion of the grace period to the per-CPU data structures, and also adds an rcu_advance_cbs() just before the cpu_needs_another_gp() check in order to reduce false-positive grace periods. Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
2013-03-26rcu: Distinguish "rcuo" kthreads by RCU flavorPaul E. McKenney
Currently, the per-no-CBs-CPU kthreads are named "rcuo" followed by the CPU number, for example, "rcuo". This is problematic given that there are either two or three RCU flavors, each of which gets a per-CPU kthread with exactly the same name. This commit therefore introduces a one-letter abbreviation for each RCU flavor, namely 'b' for RCU-bh, 'p' for RCU-preempt, and 's' for RCU-sched. This abbreviation is used to distinguish the "rcuo" kthreads, for example, for CPU 0 we would have "rcuob/0", "rcuop/0", and "rcuos/0". Signed-off-by: Paul E. McKenney <paul.mckenney@linaro.org> Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com> Tested-by: Dietmar Eggemann <dietmar.eggemann@arm.com>
2013-03-26rcu: Introduce proper blocking to no-CBs kthreads GP waitsPaul E. McKenney
Currently, the no-CBs kthreads do repeated timed waits for grace periods to elapse. This is crude and energy inefficient, so this commit allows no-CBs kthreads to specify exactly which grace period they are waiting for and also allows them to block for the entire duration until the desired grace period completes. Signed-off-by: Paul E. McKenney <paul.mckenney@linaro.org> Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
2013-03-13rcu: Tone down debugging during boot-up and shutdown.Paul E. McKenney
In some situations, randomly delaying RCU grace-period initialization can cause more trouble than help. This commit therefore restricts this type of RCU self-torture to runtime, giving it a rest during boot and shutdown. Reported-by: Sasha Levin <sasha.levin@oracle.com> Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
2013-03-12rcu: Remove comment referring to __stop_machine()Srivatsa S. Bhat
Although it used to be that CPU_DYING notifiers executed on the outgoing CPU with interrupts disabled and with all other CPUs spinning, this is no longer the case. This commit therefore removes this obsolete comment. Signed-off-by: Srivatsa S. Bhat <srivatsa.bhat@linux.vnet.ibm.com> Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
2013-03-12rcu: Avoid invoking RCU core on offline CPUsPaul E. McKenney
Offline CPUs transition through the scheduler to the idle loop one last time before being shut down. This can result in RCU raising softirq on this CPU, which is at best useless given that the CPU's callbacks will be offloaded at CPU_DEAD time. This commit therefore avoids raising softirq on offline CPUs. Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
2013-03-12rcu: Fix spacing problemJiang Fang
Signed-off-by: Jiang Fang <jiang.xx.fang@gmail.com> Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
2013-03-12rcu: Remove restrictions on no-CBs CPUsPaul E. McKenney
Currently, CPU 0 is constrained to not be a no-CBs CPU, and furthermore at least one no-CBs CPU must remain online at any given time. These restrictions are problematic in some situations, such as cases where all CPUs must run a real-time workload that needs to be insulated from OS jitter and latencies due to RCU callback invocation. This commit therefore provides no-CBs CPUs a (very crude and energy-inefficient) way to start and to wait for grace periods independently of the normal RCU callback mechanisms. This approach allows any or all of the CPUs to be designated as no-CBs CPUs, and allows any proper subset of the CPUs (whether no-CBs CPUs or not) to be offlined. This commit also provides a fix for a locking bug spotted by Xie ChanglongX <changlongx.xie@intel.com>. Signed-off-by: Paul E. McKenney <paul.mckenney@linaro.org> Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
2013-01-28Merge branches 'doctorture.2013.01.29a', 'fixes.2013.01.26a', ↵Paul E. McKenney
'tagcb.2013.01.24a' and 'tiny.2013.01.29b' into HEAD doctorture.2013.01.11a: Changes to rcutorture and to RCU documentation. fixes.2013.01.26a: Miscellaneous fixes. tagcb.2013.01.24a: Tag RCU callbacks with grace-period number to simplify callback advancement. tiny.2013.01.29b: Enhancements to uniprocessor handling in tiny RCU.
2013-01-28rcu: Provide RCU CPU stall warnings for tiny RCUPaul E. McKenney
Tiny RCU has historically omitted RCU CPU stall warnings in order to reduce memory requirements, however, lack of these warnings caused Thomas Gleixner some debugging pain recently. Therefore, this commit adds RCU CPU stall warnings to tiny RCU if RCU_TRACE=y. This keeps the memory footprint small, while still enabling CPU stall warnings in kernels built to enable them. Updated to include Josh Triplett's suggested use of RCU_STALL_COMMON config variable to simplify #if expressions. Reported-by: Thomas Gleixner <tglx@linutronix.de> Signed-off-by: Paul E. McKenney <paul.mckenney@linaro.org> Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com> Reviewed-by: Josh Triplett <josh@joshtriplett.org>
2013-01-26rcu: Remove unused code originally used for context trackingLi Zhong
As context tracking subsystem evolved, it stopped using ignore_user_qs and in_user defined in the rcu_dynticks structure. This commit therefore removes them. Signed-off-by: Li Zhong <zhong@linux.vnet.ibm.com> Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com> Acked-by: Frederic Weisbecker <fweisbec@gmail.com>
2013-01-26rcu: Correct 'optimized' to 'optimize' in header commentCody P Schafer
Small grammar fix in rcutree comment regarding 'rcu_scheduler_active' var. Signed-off-by: Cody P Schafer <cody@linux.vnet.ibm.com> Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com> Reviewed-by: Josh Triplett <josh@joshtriplett.org>
2013-01-08rcu: Trace callback accelerationPaul E. McKenney
This commit adds event tracing for callback acceleration to allow better tracking of callbacks through the system. Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
2013-01-08rcu: Tag callback lists with corresponding grace-period numberPaul E. McKenney
Currently, callbacks are advanced each time the corresponding CPU notices a change in its leaf rcu_node structure's ->completed value (this value counts grace-period completions). This approach has worked quite well, but with the advent of RCU_FAST_NO_HZ, we cannot count on a given CPU seeing all the grace-period completions. When a CPU misses a grace-period completion that occurs while it is in dyntick-idle mode, this will delay invocation of its callbacks. In addition, acceleration of callbacks (when RCU realizes that a given callback need only wait until the end of the next grace period, rather than having to wait for a partial grace period followed by a full grace period) must be carried out extremely carefully. Insufficient acceleration will result in unnecessarily long grace-period latencies, while excessive acceleration will result in premature callback invocation. Changes that involve this tradeoff are therefore among the most nerve-wracking changes to RCU. This commit therefore explicitly tags groups of callbacks with the number of the grace period that they are waiting for. This means that callback-advancement and callback-acceleration functions are idempotent, so that excessive acceleration will merely waste a few CPU cycles. This also allows a CPU to take full advantage of any grace periods that have elapsed while it has been in dyntick-idle mode. It should also enable simulataneous simplifications to and optimizations of RCU_FAST_NO_HZ. Signed-off-by: Paul E. McKenney <paul.mckenney@linaro.org> Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
2013-01-08rcu: Silence compiler array out-of-bounds false positivePaul E. McKenney
It turns out that gcc 4.8 warns on array indexes being out of bounds unless it can prove otherwise. It gives this warning on some RCU initialization code. Because this is far from any fastpath, add an explicit check for array bounds and panic if so. This gives the compiler enough information to figure out that the array index is never out of bounds. However, if a similar false positive occurs on a fastpath, it will probably be necessary to tell the compiler to keep its array-index anxieties to itself. ;-) Markus Trippelsdorf <markus@trippelsdorf.de> Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com> Reviewed-by: Josh Triplett <josh@joshtriplett.org>
2013-01-08rcu: Use new nesting value for rcu_dyntick trace in rcu_eqs_enter_commonLi Zhong
This patch uses the real new value of dynticks_nesting instead of 0 in rcu_eqs_enter_common(). Signed-off-by: Li Zhong <zhong@linux.vnet.ibm.com> Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com> Reviewed-by: Josh Triplett <josh@joshtriplett.org>
2013-01-08rcu: Make rcu_is_cpu_rrupt_from_idle helper functions staticJosh Triplett
Both rcutiny and rcutree define a helper function named rcu_is_cpu_rrupt_from_idle(), each used exactly once, later in the same file. This commit therefore declares these helper functions static. Signed-off-by: Josh Triplett <josh@joshtriplett.org> Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
2012-11-30context_tracking: New context tracking susbsystemFrederic Weisbecker
Create a new subsystem that probes on kernel boundaries to keep track of the transitions between level contexts with two basic initial contexts: user or kernel. This is an abstraction of some RCU code that use such tracking to implement its userspace extended quiescent state. We need to pull this up from RCU into this new level of indirection because this tracking is also going to be used to implement an "on demand" generic virtual cputime accounting. A necessary step to shutdown the tick while still accounting the cputime. Signed-off-by: Frederic Weisbecker <fweisbec@gmail.com> Cc: Andrew Morton <akpm@linux-foundation.org> Cc: H. Peter Anvin <hpa@zytor.com> Cc: Ingo Molnar <mingo@kernel.org> Cc: Paul E. McKenney <paulmck@linux.vnet.ibm.com> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Steven Rostedt <rostedt@goodmis.org> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: Li Zhong <zhong@linux.vnet.ibm.com> Cc: Gilad Ben-Yossef <gilad@benyossef.com> Reviewed-by: Steven Rostedt <rostedt@goodmis.org> [ paulmck: fix whitespace error and email address. ] Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
2012-11-16rcu: Add callback-free CPUsPaul E. McKenney
RCU callback execution can add significant OS jitter and also can degrade both scheduling latency and, in asymmetric multiprocessors, energy efficiency. This commit therefore adds the ability for selected CPUs ("rcu_nocbs=" boot parameter) to have their callbacks offloaded to kthreads. If the "rcu_nocb_poll" boot parameter is also specified, these kthreads will do polling, removing the need for the offloaded CPUs to do wakeups. At least one CPU must be doing normal callback processing: currently CPU 0 cannot be selected as a no-CBs CPU. In addition, attempts to offline the last normal-CBs CPU will fail. This feature was inspired by Jim Houston's and Joe Korty's JRCU, and this commit includes fixes to problems located by Fengguang Wu's kbuild test robot. [ paulmck: Added gfp.h include file as suggested by Fengguang Wu. ] Signed-off-by: Paul E. McKenney <paul.mckenney@linaro.org> Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
2012-11-16Merge branches 'urgent.2012.10.27a', 'doc.2012.11.16a', 'fixes.2012.11.13a', ↵Paul E. McKenney
'srcu.2012.10.27a', 'stall.2012.11.13a', 'tracing.2012.11.08a' and 'idle.2012.10.24a' into HEAD urgent.2012.10.27a: Fix for RCU user-mode transition (already in -tip). doc.2012.11.08a: Documentation updates, most notably codifying the memory-barrier guarantees inherent to grace periods. fixes.2012.11.13a: Miscellaneous fixes. srcu.2012.10.27a: Allow statically allocated and initialized srcu_struct structures (courtesy of Lai Jiangshan). stall.2012.11.13a: Add more diagnostic information to RCU CPU stall warnings, also decrease from 60 seconds to 21 seconds. hotplug.2012.11.08a: Minor updates to CPU hotplug handling. tracing.2012.11.08a: Improved debugfs tracing, courtesy of Michael Wang. idle.2012.10.24a: Updates to RCU idle/adaptive-idle handling, including a boot parameter that maps normal grace periods to expedited. Resolved conflict in kernel/rcutree.c due to side-by-side change.
2012-11-13rcu: Clarify memory-ordering properties of grace-period primitivesPaul E. McKenney
This commit explicitly states the memory-ordering properties of the RCU grace-period primitives. Although these properties were in some sense implied by the fundmental property of RCU ("a grace period must wait for all pre-existing RCU read-side critical sections to complete"), stating it explicitly will be a great labor-saving device. Reported-by: Oleg Nesterov <oleg@redhat.com> Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com> Reviewed-by: Oleg Nesterov <oleg@redhat.com>
2012-11-13rcu: Fix batch-limit size problemEric Dumazet
Commit 29c00b4a1d9e27 (rcu: Add event-tracing for RCU callback invocation) added a regression in rcu_do_batch() Under stress, RCU is supposed to allow to process all items in queue, instead of a batch of 10 items (blimit), but an integer overflow makes the effective limit being 1. So, unless there is frequent idle periods (during which RCU ignores batch limits), RCU can be forced into a state where it cannot keep up with the callback-generation rate, eventually resulting in OOM. This commit therefore converts a few variables in rcu_do_batch() from int to long to fix this problem, along with the module parameters controlling the batch limits. Signed-off-by: Eric Dumazet <edumazet@google.com> Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com> Cc: <stable@vger.kernel.org> # 3.2 +
2012-11-08rcu: Fix tracing formattingPaul E. McKenney
The rcu_state structure's ->completed field is unsigned long, so this commit adjusts show_one_rcugp()'s printf() format to suit. Also add the required ACCESS_ONCE() directives while we are in this function. Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
2012-11-08rcu: Instrument synchronize_rcu_expedited() for debugfs tracingPaul E. McKenney
This commit adds the counters to rcu_state and updates them in synchronize_rcu_expedited() to provide the data needed for debugfs tracing. Signed-off-by: Paul E. McKenney <paul.mckenney@linaro.org> Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
2012-11-08rcu: Move synchronize_sched_expedited() state to rcu_statePaul E. McKenney
Tracing (debugfs) of expedited RCU primitives is required, which in turn requires that the relevant data be located where the tracing code can find it, not in its current static global variables in kernel/rcutree.c. This commit therefore moves sync_sched_expedited_started and sync_sched_expedited_done to the rcu_state structure, as fields ->expedited_start and ->expedited_done, respectively. Signed-off-by: Paul E. McKenney <paul.mckenney@linaro.org> Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
2012-11-08rcu: Avoid counter wrap in synchronize_sched_expedited()Paul E. McKenney
There is a counter scheme similar to ticket locking that synchronize_sched_expedited() uses to service multiple concurrent callers with the same expedited grace period. Upon entry, a sync_sched_expedited_started variable is atomically incremented, and upon completion of a expedited grace period a separate sync_sched_expedited_done variable is atomically incremented. However, if a synchronize_sched_expedited() is delayed while in try_stop_cpus(), concurrent invocations will increment the sync_sched_expedited_started counter, which will eventually overflow. If the original synchronize_sched_expedited() resumes execution just as the counter overflows, a concurrent invocation could incorrectly conclude that an expedited grace period elapsed in zero time, which would be bad. One could rely on counter size to prevent this from happening in practice, but the goal is to formally validate this code, so it needs to be fixed anyway. This commit therefore checks the gap between the two counters before incrementing sync_sched_expedited_started, and if the gap is too large, does a normal grace period instead. Overflow is thus only possible if there are more than about 3.5 billion threads on 32-bit systems, which can be excluded until such time as task_struct fits into a single byte and 4G/4G patches are accepted into mainline. It is also easy to encode this limitation into mechanical theorem provers. Signed-off-by: Paul E. McKenney <paul.mckenney@linaro.org> Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com>