summaryrefslogtreecommitdiff
path: root/kernel/sched.c
AgeCommit message (Collapse)Author
2014-02-15sched: Unthrottle rt runqueues in __disable_runtime()Peter Boonstoppel
commit a4c96ae319b8047f62dedbe1eac79e321c185749 upstream. migrate_tasks() uses _pick_next_task_rt() to get tasks from the real-time runqueues to be migrated. When rt_rq is throttled _pick_next_task_rt() won't return anything, in which case migrate_tasks() can't move all threads over and gets stuck in an infinite loop. Instead unthrottle rt runqueues before migrating tasks. Additionally: move unthrottle_offline_cfs_rqs() to rq_offline_fair() Signed-off-by: Peter Boonstoppel <pboonstoppel@nvidia.com> Signed-off-by: Peter Zijlstra <a.p.zijlstra@chello.nl> Cc: Paul Turner <pjt@google.com> Link: http://lkml.kernel.org/r/5FBF8E85CA34454794F0F7ECBA79798F379D3648B7@HQMAIL04.nvidia.com Signed-off-by: Ingo Molnar <mingo@kernel.org> [ lizf: backported to 3.4: adjust context ] Signed-off-by: Li Zefan <lizefan@huawei.com> [bwh: Backported to 3.2: - Adjust filenames - unthrottle_offline_cfs_rqs() is already static, but defined in sched.c after including sched_fair.c, so add forward declaration - unthrottle_offline_cfs_rqs() also needs to be defined for all CONFIG_SMP configurations now] Signed-off-by: Ben Hutchings <ben@decadent.org.uk>
2013-05-30sched/debug: Fix sd->*_idx limit range avoiding overflowlibin
commit fd9b86d37a600488dbd80fe60cca46b822bff1cd upstream. Commit 201c373e8e ("sched/debug: Limit sd->*_idx range on sysctl") was an incomplete bug fix. This patch fixes sd->*_idx limit range to [0 ~ CPU_LOAD_IDX_MAX-1] avoiding array overflow caused by setting sd->*_idx to CPU_LOAD_IDX_MAX on sysctl. Signed-off-by: Libin <huawei.libin@huawei.com> Cc: <jiang.liu@huawei.com> Cc: <guohanjun@huawei.com> Cc: Peter Zijlstra <peterz@infradead.org> Link: http://lkml.kernel.org/r/51626610.2040607@huawei.com Signed-off-by: Ingo Molnar <mingo@kernel.org> [bwh: Backported to 3.2: adjust filename] Signed-off-by: Ben Hutchings <ben@decadent.org.uk>
2013-05-30sched/debug: Limit sd->*_idx range on sysctlNamhyung Kim
commit 201c373e8e4823700d3160d5c28e1ab18fd1193e upstream. Various sd->*_idx's are used for refering the rq's load average table when selecting a cpu to run. However they can be set to any number with sysctl knobs so that it can crash the kernel if something bad is given. Fix it by limiting them into the actual range. Signed-off-by: Namhyung Kim <namhyung@kernel.org> Signed-off-by: Peter Zijlstra <a.p.zijlstra@chello.nl> Link: http://lkml.kernel.org/r/1345104204-8317-1-git-send-email-namhyung@kernel.org Signed-off-by: Ingo Molnar <mingo@kernel.org> [bwh: Backported to 3.2: - Adjust filename - s/umode_t/mode_t/] Signed-off-by: Ben Hutchings <ben@decadent.org.uk>
2013-04-25sched: Convert BUG_ON()s in try_to_wake_up_local() to WARN_ON_ONCE()sTejun Heo
commit 383efcd00053ec40023010ce5034bd702e7ab373 upstream. try_to_wake_up_local() should only be invoked to wake up another task in the same runqueue and BUG_ON()s are used to enforce the rule. Missing try_to_wake_up_local() can stall workqueue execution but such stalls are likely to be finite either by another work item being queued or the one blocked getting unblocked. There's no reason to trigger BUG while holding rq lock crashing the whole system. Convert BUG_ON()s in try_to_wake_up_local() to WARN_ON_ONCE()s. Signed-off-by: Tejun Heo <tj@kernel.org> Acked-by: Steven Rostedt <rostedt@goodmis.org> Cc: Peter Zijlstra <peterz@infradead.org> Link: http://lkml.kernel.org/r/20130318192234.GD3042@htj.dyndns.org Signed-off-by: Ingo Molnar <mingo@kernel.org> [bwh: Backported to 3.2: adjust filename] Signed-off-by: Ben Hutchings <ben@decadent.org.uk>
2013-02-20wake_up_process() should be never used to wakeup a TASK_STOPPED/TRACED taskOleg Nesterov
commit 9067ac85d533651b98c2ff903182a20cbb361fcb upstream. wake_up_process() should never wakeup a TASK_STOPPED/TRACED task. Change it to use TASK_NORMAL and add the WARN_ON(). TASK_ALL has no other users, probably can be killed. Signed-off-by: Oleg Nesterov <oleg@redhat.com> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> [bwh: Backported to 3.2: adjust filename] Signed-off-by: Ben Hutchings <ben@decadent.org.uk>
2012-10-10CPU hotplug, cpusets, suspend: Don't modify cpusets during suspend/resumeSrivatsa S. Bhat
commit d35be8bab9b0ce44bed4b9453f86ebf64062721e upstream. In the event of CPU hotplug, the kernel modifies the cpusets' cpus_allowed masks as and when necessary to ensure that the tasks belonging to the cpusets have some place (online CPUs) to run on. And regular CPU hotplug is destructive in the sense that the kernel doesn't remember the original cpuset configurations set by the user, across hotplug operations. However, suspend/resume (which uses CPU hotplug) is a special case in which the kernel has the responsibility to restore the system (during resume), to exactly the same state it was in before suspend. In order to achieve that, do the following: 1. Don't modify cpusets during suspend/resume. At all. In particular, don't move the tasks from one cpuset to another, and don't modify any cpuset's cpus_allowed mask. So, simply ignore cpusets during the CPU hotplug operations that are carried out in the suspend/resume path. 2. However, cpusets and sched domains are related. We just want to avoid altering cpusets alone. So, to keep the sched domains updated, build a single sched domain (containing all active cpus) during each of the CPU hotplug operations carried out in s/r path, effectively ignoring the cpusets' cpus_allowed masks. (Since userspace is frozen while doing all this, it will go unnoticed.) 3. During the last CPU online operation during resume, build the sched domains by looking up the (unaltered) cpusets' cpus_allowed masks. That will bring back the system to the same original state as it was in before suspend. Ultimately, this will not only solve the cpuset problem related to suspend resume (ie., restores the cpusets to exactly what it was before suspend, by not touching it at all) but also speeds up suspend/resume because we avoid running cpuset update code for every CPU being offlined/onlined. Signed-off-by: Srivatsa S. Bhat <srivatsa.bhat@linux.vnet.ibm.com> Signed-off-by: Peter Zijlstra <a.p.zijlstra@chello.nl> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Andrew Morton <akpm@linux-foundation.org> Cc: Thomas Gleixner <tglx@linutronix.de> Link: http://lkml.kernel.org/r/20120524141611.3692.20155.stgit@srivatsabhat.in.ibm.com [Preeti U Murthy: Please apply this patch to the stable tree 3.0.y] Signed-off-by: Preeti U Murthy <preeti@linux.vnet.ibm.com> Signed-off-by: Ben Hutchings <ben@decadent.org.uk>
2012-09-12sched: fix divide by zero at {thread_group,task}_timesStanislaw Gruszka
commit bea6832cc8c4a0a9a65dd17da6aaa657fe27bc3e upstream. On architectures where cputime_t is 64 bit type, is possible to trigger divide by zero on do_div(temp, (__force u32) total) line, if total is a non zero number but has lower 32 bit's zeroed. Removing casting is not a good solution since some do_div() implementations do cast to u32 internally. This problem can be triggered in practice on very long lived processes: PID: 2331 TASK: ffff880472814b00 CPU: 2 COMMAND: "oraagent.bin" #0 [ffff880472a51b70] machine_kexec at ffffffff8103214b #1 [ffff880472a51bd0] crash_kexec at ffffffff810b91c2 #2 [ffff880472a51ca0] oops_end at ffffffff814f0b00 #3 [ffff880472a51cd0] die at ffffffff8100f26b #4 [ffff880472a51d00] do_trap at ffffffff814f03f4 #5 [ffff880472a51d60] do_divide_error at ffffffff8100cfff #6 [ffff880472a51e00] divide_error at ffffffff8100be7b [exception RIP: thread_group_times+0x56] RIP: ffffffff81056a16 RSP: ffff880472a51eb8 RFLAGS: 00010046 RAX: bc3572c9fe12d194 RBX: ffff880874150800 RCX: 0000000110266fad RDX: 0000000000000000 RSI: ffff880472a51eb8 RDI: 001038ae7d9633dc RBP: ffff880472a51ef8 R8: 00000000b10a3a64 R9: ffff880874150800 R10: 00007fcba27ab680 R11: 0000000000000202 R12: ffff880472a51f08 R13: ffff880472a51f10 R14: 0000000000000000 R15: 0000000000000007 ORIG_RAX: ffffffffffffffff CS: 0010 SS: 0018 #7 [ffff880472a51f00] do_sys_times at ffffffff8108845d #8 [ffff880472a51f40] sys_times at ffffffff81088524 #9 [ffff880472a51f80] system_call_fastpath at ffffffff8100b0f2 RIP: 0000003808caac3a RSP: 00007fcba27ab6d8 RFLAGS: 00000202 RAX: 0000000000000064 RBX: ffffffff8100b0f2 RCX: 0000000000000000 RDX: 00007fcba27ab6e0 RSI: 000000000076d58e RDI: 00007fcba27ab6e0 RBP: 00007fcba27ab700 R8: 0000000000000020 R9: 000000000000091b R10: 00007fcba27ab680 R11: 0000000000000202 R12: 00007fff9ca41940 R13: 0000000000000000 R14: 00007fcba27ac9c0 R15: 00007fff9ca41940 ORIG_RAX: 0000000000000064 CS: 0033 SS: 002b Signed-off-by: Stanislaw Gruszka <sgruszka@redhat.com> Signed-off-by: Peter Zijlstra <a.p.zijlstra@chello.nl> Link: http://lkml.kernel.org/r/20120808092714.GA3580@redhat.com Signed-off-by: Thomas Gleixner <tglx@linutronix.de> [bwh: Backported to 3.2: - Adjust filename - Most conversions in the original code are implicit] Signed-off-by: Ben Hutchings <ben@decadent.org.uk>
2012-08-10sched: Fix race in task_group()Peter Zijlstra
commit 8323f26ce3425460769605a6aece7a174edaa7d1 upstream Stefan reported a crash on a kernel before a3e5d1091c1 ("sched: Don't call task_group() too many times in set_task_rq()"), he found the reason to be that the multiple task_group() invocations in set_task_rq() returned different values. Looking at all that I found a lack of serialization and plain wrong comments. The below tries to fix it using an extra pointer which is updated under the appropriate scheduler locks. Its not pretty, but I can't really see another way given how all the cgroup stuff works. Reported-and-tested-by: Stefan Bader <stefan.bader@canonical.com> Signed-off-by: Peter Zijlstra <a.p.zijlstra@chello.nl> Link: http://lkml.kernel.org/r/1340364965.18025.71.camel@twins Signed-off-by: Ingo Molnar <mingo@kernel.org> (backported to previous file names and layout) Signed-off-by: Stefan Bader <stefan.bader@canonical.com> Signed-off-by: Ben Hutchings <ben@decadent.org.uk>
2012-08-02sched/nohz: Fix rq->cpu_load calculations some morePeter Zijlstra
commit 5aaa0b7a2ed5b12692c9ffb5222182bd558d3146 upstream. Follow up on commit 556061b00 ("sched/nohz: Fix rq->cpu_load[] calculations") since while that fixed the busy case it regressed the mostly idle case. Add a callback from the nohz exit to also age the rq->cpu_load[] array. This closes the hole where either there was no nohz load balance pass during the nohz, or there was a 'significant' amount of idle time between the last nohz balance and the nohz exit. So we'll update unconditionally from the tick to not insert any accidental 0 load periods while busy, and we try and catch up from nohz idle balance and nohz exit. Both these are still prone to missing a jiffy, but that has always been the case. Signed-off-by: Peter Zijlstra <a.p.zijlstra@chello.nl> Cc: pjt@google.com Cc: Venkatesh Pallipadi <venki@google.com> Link: http://lkml.kernel.org/n/tip-kt0trz0apodbf84ucjfdbr1a@git.kernel.org Signed-off-by: Ingo Molnar <mingo@kernel.org> [bwh: Backported to 3.2: adjust filenames and context] Signed-off-by: Ben Hutchings <ben@decadent.org.uk>
2012-08-02sched/nohz: Fix rq->cpu_load[] calculationsPeter Zijlstra
commit 556061b00c9f2fd6a5524b6bde823ef12f299ecf upstream. While investigating why the load-balancer did funny I found that the rq->cpu_load[] tables were completely screwy.. a bit more digging revealed that the updates that got through were missing ticks followed by a catchup of 2 ticks. The catchup assumes the cpu was idle during that time (since only nohz can cause missed ticks and the machine is idle etc..) this means that esp. the higher indices were significantly lower than they ought to be. The reason for this is that its not correct to compare against jiffies on every jiffy on any other cpu than the cpu that updates jiffies. This patch cludges around it by only doing the catch-up stuff from nohz_idle_balance() and doing the regular stuff unconditionally from the tick. Signed-off-by: Peter Zijlstra <a.p.zijlstra@chello.nl> Cc: pjt@google.com Cc: Venkatesh Pallipadi <venki@google.com> Link: http://lkml.kernel.org/n/tip-tp4kj18xdd5aj4vvj0qg55s2@git.kernel.org Signed-off-by: Ingo Molnar <mingo@kernel.org> [bwh: Backported to 3.2: adjust filenames and context; keep functions static] Signed-off-by: Ben Hutchings <ben@decadent.org.uk>
2012-07-25sched/nohz: Rewrite and fix load-avg computation -- againPeter Zijlstra
commit 5167e8d5417bf5c322a703d2927daec727ea40dd upstream. Thanks to Charles Wang for spotting the defects in the current code: - If we go idle during the sample window -- after sampling, we get a negative bias because we can negate our own sample. - If we wake up during the sample window we get a positive bias because we push the sample to a known active period. So rewrite the entire nohz load-avg muck once again, now adding copious documentation to the code. Reported-and-tested-by: Doug Smythies <dsmythies@telus.net> Reported-and-tested-by: Charles Wang <muming.wq@gmail.com> Signed-off-by: Peter Zijlstra <a.p.zijlstra@chello.nl> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Andrew Morton <akpm@linux-foundation.org> Link: http://lkml.kernel.org/r/1340373782.18025.74.camel@twins [ minor edits ] Signed-off-by: Ingo Molnar <mingo@kernel.org> [bwh: Backported to 3.2: adjust filenames, context] Signed-off-by: Ben Hutchings <ben@decadent.org.uk>
2012-06-19sched: Fix the relax_domain_level boot parameterDimitri Sivanich
commit a841f8cef4bb124f0f5563314d0beaf2e1249d72 upstream. It does not get processed because sched_domain_level_max is 0 at the time that setup_relax_domain_level() is run. Simply accept the value as it is, as we don't know the value of sched_domain_level_max until sched domain construction is completed. Fix sched_relax_domain_level in cpuset. The build_sched_domain() routine calls the set_domain_attribute() routine prior to setting the sd->level, however, the set_domain_attribute() routine relies on the sd->level to decide whether idle load balancing will be off/on. Signed-off-by: Dimitri Sivanich <sivanich@sgi.com> Signed-off-by: Peter Zijlstra <a.p.zijlstra@chello.nl> Link: http://lkml.kernel.org/r/20120605184436.GA15668@sgi.com Signed-off-by: Ingo Molnar <mingo@kernel.org> [bwh: Backported to 3.2: adjust the filename] Signed-off-by: Ben Hutchings <ben@decadent.org.uk>
2012-05-11sched: Fix nohz load accounting -- again!Peter Zijlstra
commit c308b56b5398779cd3da0f62ab26b0453494c3d4 upstream. Various people reported nohz load tracking still being wrecked, but Doug spotted the actual problem. We fold the nohz remainder in too soon, causing us to loose samples and under-account. So instead of playing catch-up up-front, always do a single load-fold with whatever state we encounter and only then fold the nohz remainder and play catch-up. Reported-by: Doug Smythies <dsmythies@telus.net> Reported-by: LesÅ=82aw Kope=C4=87 <leslaw.kopec@nasza-klasa.pl> Reported-by: Aman Gupta <aman@tmm1.net> Signed-off-by: Peter Zijlstra <a.p.zijlstra@chello.nl> Link: http://lkml.kernel.org/n/tip-4v31etnhgg9kwd6ocgx3rxl8@git.kernel.org Signed-off-by: Ingo Molnar <mingo@elte.hu> [bwh: Backported to 3.2: change filename] Signed-off-by: Ben Hutchings <ben@decadent.org.uk>
2012-05-11sched: Fix OOPS when build_sched_domains() percpu allocation failshe, bo
commit fb2cf2c660971bea0ad86a9a5c19ad39eab61344 upstream. Under extreme memory used up situations, percpu allocation might fail. We hit it when system goes to suspend-to-ram, causing a kworker panic: EIP: [<c124411a>] build_sched_domains+0x23a/0xad0 Kernel panic - not syncing: Fatal exception Pid: 3026, comm: kworker/u:3 3.0.8-137473-gf42fbef #1 Call Trace: [<c18cc4f2>] panic+0x66/0x16c [...] [<c1244c37>] partition_sched_domains+0x287/0x4b0 [<c12a77be>] cpuset_update_active_cpus+0x1fe/0x210 [<c123712d>] cpuset_cpu_inactive+0x1d/0x30 [...] With this fix applied build_sched_domains() will return -ENOMEM and the suspend attempt fails. Signed-off-by: he, bo <bo.he@intel.com> Reviewed-by: Zhang, Yanmin <yanmin.zhang@intel.com> Reviewed-by: Srivatsa S. Bhat <srivatsa.bhat@linux.vnet.ibm.com> Signed-off-by: Peter Zijlstra <a.p.zijlstra@chello.nl> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Andrew Morton <akpm@linux-foundation.org> Link: http://lkml.kernel.org/r/1335355161.5892.17.camel@hebo [ So, we fail to deallocate a CPU because we cannot allocate RAM :-/ I don't like that kind of sad behavior but nevertheless it should not crash under high memory load. ] Signed-off-by: Ingo Molnar <mingo@kernel.org> [bwh: Backported to 3.2: change filename] Signed-off-by: Ben Hutchings <ben@decadent.org.uk>
2011-11-14sched: Set the command name of the idle tasks in SMP kernelsCarsten Emde
In UP systems, the idle task is initialized using the init_task structure from which the command name is taken (currently "swapper"). In SMP systems, one idle task per CPU is forked by the worker thread from which the task structure is copied. The command name is, therefore, "kworker/0:0" or "kworker/0:1", if not updated. Since such update was lacking, all idle tasks in SMP systems were incorrectly named. This longtime bug was not discovered immediately, because there is no /proc/0 entry - the bug only becomes apparent when tracing is enabled. This patch sets the command name of the idle tasks in SMP systems to the name that is used in the INIT_TASK structure suffixed by a slash and the number of the CPU. Signed-off-by: Carsten Emde <C.Emde@osadl.org> Signed-off-by: Peter Zijlstra <a.p.zijlstra@chello.nl> Link: http://lkml.kernel.org/r/20111026211708.768925506@osadl.org Signed-off-by: Ingo Molnar <mingo@elte.hu>
2011-11-14sched: Document wait_for_completion_*() return valuesJ. Bruce Fields
The return-value convention for these functions varies depending on whether they're interruptible or can timeout. It can be a little confusing--document it. Signed-off-by: J. Bruce Fields <bfields@redhat.com> Signed-off-by: Peter Zijlstra <a.p.zijlstra@chello.nl> Link: http://lkml.kernel.org/r/20111006192246.GB28026@fieldses.org Signed-off-by: Ingo Molnar <mingo@elte.hu>
2011-11-06Merge branch 'next' of ↵Linus Torvalds
git://git.kernel.org/pub/scm/linux/kernel/git/benh/powerpc * 'next' of git://git.kernel.org/pub/scm/linux/kernel/git/benh/powerpc: (106 commits) powerpc/p3060qds: Add support for P3060QDS board powerpc/83xx: Add shutdown request support to MCU handling on MPC8349 MITX powerpc/85xx: Make kexec to interate over online cpus powerpc/fsl_booke: Fix comment in head_fsl_booke.S powerpc/85xx: issue 15 EOI after core reset for FSL CoreNet devices powerpc/8xxx: Fix interrupt handling in MPC8xxx GPIO driver powerpc/85xx: Add 'fsl,pq3-gpio' compatiable for GPIO driver powerpc/86xx: Correct Gianfar support for GE boards powerpc/cpm: Clear muram before it is in use. drivers/virt: add ioctl for 32-bit compat on 64-bit to fsl-hv-manager powerpc/fsl_msi: add support for "msi-address-64" property powerpc/85xx: Setup secondary cores PIR with hard SMP id powerpc/fsl-booke: Fix settlbcam for 64-bit powerpc/85xx: Adding DCSR node to dtsi device trees powerpc/85xx: clean up FPGA device tree nodes for Freecsale QorIQ boards powerpc/85xx: fix PHYS_64BIT selection for P1022DS powerpc/fsl-booke: Fix setup_initial_memory_limit to not blindly map powerpc: respect mem= setting for early memory limit setup powerpc: Update corenet64_smp_defconfig powerpc: Update mpc85xx/corenet 32-bit defconfigs ... Fix up trivial conflicts in: - arch/powerpc/configs/40x/hcu4_defconfig removed stale file, edited elsewhere - arch/powerpc/include/asm/udbg.h, arch/powerpc/kernel/udbg.c: added opal and gelic drivers vs added ePAPR driver - drivers/tty/serial/8250.c moved UPIO_TSI to powerpc vs removed UPIO_DWAPB support
2011-10-26Merge branch 'sched-core-for-linus' of ↵Linus Torvalds
git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip * 'sched-core-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip: (46 commits) llist: Add back llist_add_batch() and llist_del_first() prototypes sched: Don't use tasklist_lock for debug prints sched: Warn on rt throttling sched: Unify the ->cpus_allowed mask copy sched: Wrap scheduler p->cpus_allowed access sched: Request for idle balance during nohz idle load balance sched: Use resched IPI to kick off the nohz idle balance sched: Fix idle_cpu() llist: Remove cpu_relax() usage in cmpxchg loops sched: Convert to struct llist llist: Add llist_next() irq_work: Use llist in the struct irq_work logic llist: Return whether list is empty before adding in llist_add() llist: Move cpu_relax() to after the cmpxchg() llist: Remove the platform-dependent NMI checks llist: Make some llist functions inline sched, tracing: Show PREEMPT_ACTIVE state in trace_sched_switch sched: Remove redundant test in check_preempt_tick() sched: Add documentation for bandwidth control sched: Return unused runtime on group dequeue ...
2011-10-26Merge branch 'core-rcu-for-linus' of ↵Linus Torvalds
git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip * 'core-rcu-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip: (45 commits) rcu: Move propagation of ->completed from rcu_start_gp() to rcu_report_qs_rsp() rcu: Remove rcu_needs_cpu_flush() to avoid false quiescent states rcu: Wire up RCU_BOOST_PRIO for rcutree rcu: Make rcu_torture_boost() exit loops at end of test rcu: Make rcu_torture_fqs() exit loops at end of test rcu: Permit rt_mutex_unlock() with irqs disabled rcu: Avoid having just-onlined CPU resched itself when RCU is idle rcu: Suppress NMI backtraces when stall ends before dump rcu: Prohibit grace periods during early boot rcu: Simplify unboosting checks rcu: Prevent early boot set_need_resched() from __rcu_pending() rcu: Dump local stack if cannot dump all CPUs' stacks rcu: Move __rcu_read_unlock()'s barrier() within if-statement rcu: Improve rcu_assign_pointer() and RCU_INIT_POINTER() documentation rcu: Make rcu_assign_pointer() unconditionally insert a memory barrier rcu: Make rcu_implicit_dynticks_qs() locals be correct size rcu: Eliminate in_irq() checks in rcu_enter_nohz() nohz: Remove nohz_cpu_mask rcu: Document interpretation of RCU-lockdep splats rcu: Allow rcutorture's stat_interval parameter to be changed at runtime ...
2011-10-25Merge branch 'for-linus' of ↵Linus Torvalds
git://git.kernel.org/pub/scm/linux/kernel/git/jikos/trivial * 'for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/jikos/trivial: (59 commits) MAINTAINERS: linux-m32r is moderated for non-subscribers linux@lists.openrisc.net is moderated for non-subscribers Drop default from "DM365 codec select" choice parisc: Kconfig: cleanup Kernel page size default Kconfig: remove redundant CONFIG_ prefix on two symbols cris: remove arch/cris/arch-v32/lib/nand_init.S microblaze: add missing CONFIG_ prefixes h8300: drop puzzling Kconfig dependencies MAINTAINERS: microblaze-uclinux@itee.uq.edu.au is moderated for non-subscribers tty: drop superfluous dependency in Kconfig ARM: mxc: fix Kconfig typo 'i.MX51' Fix file references in Kconfig files aic7xxx: fix Kconfig references to READMEs Fix file references in drivers/ide/ thinkpad_acpi: Fix printk typo 'bluestooth' bcmring: drop commented out line in Kconfig btmrvl_sdio: fix typo 'btmrvl_sdio_sd6888' doc: raw1394: Trivial typo fix CIFS: Don't free volume_info->UNC until we are entirely done with it. treewide: Correct spelling of successfully in comments ...
2011-10-06sched: Don't use tasklist_lock for debug printsThomas Gleixner
Avoid taking locks from debug prints, this avoids latencies on -rt, and improves reliability of the debug code. Signed-off-by: Thomas Gleixner <tglx@linutronix.de> Signed-off-by: Peter Zijlstra <a.p.zijlstra@chello.nl> Signed-off-by: Ingo Molnar <mingo@elte.hu>
2011-10-06sched: Unify the ->cpus_allowed mask copyPeter Zijlstra
Currently every sched_class::set_cpus_allowed() implementation has to copy the cpumask into task_struct::cpus_allowed, this is pointless, put this copy in the generic code. Signed-off-by: Peter Zijlstra <a.p.zijlstra@chello.nl> Acked-by: Thomas Gleixner <tglx@linutronix.de> Link: http://lkml.kernel.org/n/tip-jhl5s9fckd9ptw1fzbqqlrd3@git.kernel.org Signed-off-by: Ingo Molnar <mingo@elte.hu>
2011-10-06sched: Wrap scheduler p->cpus_allowed accessPeter Zijlstra
This task is preparatory for the migrate_disable() implementation, but stands on its own and provides a cleanup. It currently only converts those sites required for task-placement. Kosaki-san once mentioned replacing cpus_allowed with a proper cpumask_t instead of the NR_CPUS sized array it currently is, that would also require something like this. Signed-off-by: Peter Zijlstra <a.p.zijlstra@chello.nl> Acked-by: Thomas Gleixner <tglx@linutronix.de> Cc: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com> Link: http://lkml.kernel.org/n/tip-e42skvaddos99psip0vce41o@git.kernel.org Signed-off-by: Ingo Molnar <mingo@elte.hu>
2011-10-06sched: Request for idle balance during nohz idle load balanceSuresh Siddha
rq's idle_at_tick is set to idle/busy during the timer tick depending on the cpu was idle or not. This will be used later in the load balance that will be done in the softirq context (which is a process context in -RT kernels). For nohz kernels, for the cpu doing nohz idle load balance on behalf of all the idle cpu's, its rq->idle_at_tick might have a stale value (which is recorded when it got the timer tick presumably when it is busy). As the nohz idle load balancing is also being done at the same place as the regular load balancing, nohz idle load balancing was bailing out when it sees rq's idle_at_tick not set. Thus leading to poor system utilization. Rename rq's idle_at_tick to idle_balance and set it when someone requests for nohz idle balance on an idle cpu. Reported-by: Srivatsa Vaddagiri <vatsa@linux.vnet.ibm.com> Signed-off-by: Suresh Siddha <suresh.b.siddha@intel.com> Signed-off-by: Peter Zijlstra <a.p.zijlstra@chello.nl> Link: http://lkml.kernel.org/r/20111003220934.892350549@sbsiddha-desk.sc.intel.com Signed-off-by: Ingo Molnar <mingo@elte.hu>
2011-10-06sched: Use resched IPI to kick off the nohz idle balanceSuresh Siddha
Current use of smp call function to kick the nohz idle balance can deadlock in this scenario. 1. cpu-A did a generic_exec_single() to cpu-B and after queuing its call single data (csd) to the call single queue, cpu-A took a timer interrupt. Actual IPI to cpu-B to process the call single queue is not yet sent. 2. As part of the timer interrupt handler, cpu-A decided to kick cpu-B for the idle load balancing (sets cpu-B's rq->nohz_balance_kick to 1) and __smp_call_function_single() with nowait will queue the csd to the cpu-B's queue. But the generic_exec_single() won't send an IPI to cpu-B as the call single queue was not empty. 3. cpu-A is busy with lot of interrupts 4. Meanwhile cpu-B is entering and exiting idle and noticed that it has it's rq->nohz_balance_kick set to '1'. So it will go ahead and do the idle load balancer and clear its rq->nohz_balance_kick. 5. At this point, csd queued as part of the step-2 above is still locked and waiting to be serviced on cpu-B. 6. cpu-A is still busy with interrupt load and now it got another timer interrupt and as part of it decided to kick cpu-B for another idle load balancing (as it finds cpu-B's rq->nohz_balance_kick cleared in step-4 above) and does __smp_call_function_single() with the same csd that is still locked. 7. And we get a deadlock waiting for the csd_lock() in the __smp_call_function_single(). Main issue here is that cpu-B can service the idle load balancer kick request from cpu-A even with out receiving the IPI and this lead to doing multiple __smp_call_function_single() on the same csd leading to deadlock. To kick a cpu, scheduler already has the reschedule vector reserved. Use that mechanism (kick_process()) instead of using the generic smp call function mechanism to kick off the nohz idle load balancing and avoid the deadlock. [ This issue is present from 2.6.35+ kernels, but marking it -stable only from v3.0+ as the proposed fix depends on the scheduler_ipi() that is introduced recently. ] Reported-by: Prarit Bhargava <prarit@redhat.com> Signed-off-by: Suresh Siddha <suresh.b.siddha@intel.com> Cc: stable@kernel.org # v3.0+ Signed-off-by: Peter Zijlstra <a.p.zijlstra@chello.nl> Link: http://lkml.kernel.org/r/20111003220934.834943260@sbsiddha-desk.sc.intel.com Signed-off-by: Ingo Molnar <mingo@elte.hu>
2011-10-04sched: Fix idle_cpu()Thomas Gleixner
On -rt we observed hackbench waking all 400 tasks to a single cpu. This is because of select_idle_sibling()'s interaction with the new ipi based wakeup scheme. The existing idle_cpu() test only checks to see if the current task on that cpu is the idle task, it does not take already queued tasks into account, nor does it take queued to be woken tasks into account. If the remote wakeup IPIs come hard enough, there won't be time to schedule away from the idle task, and would thus keep thinking the cpu was in fact idle, regardless of the fact that there were already several hundred tasks runnable. We couldn't reproduce on mainline, but there's no reason it couldn't happen. Signed-off-by: Thomas Gleixner <tglx@linutronix.de> Signed-off-by: Peter Zijlstra <a.p.zijlstra@chello.nl> Link: http://lkml.kernel.org/n/tip-3o30p18b2paswpc9ohy2gltp@git.kernel.org Signed-off-by: Ingo Molnar <mingo@elte.hu>
2011-10-04sched: Convert to struct llistPeter Zijlstra
Use the generic llist primitives. We had a private lockless list implementation in the scheduler in the wake-list code, now that we have a generic llist implementation that provides all required operations, switch to it. This patch is not expected to change any behavior. Signed-off-by: Peter Zijlstra <a.p.zijlstra@chello.nl> Cc: Huang Ying <ying.huang@intel.com> Cc: Andrew Morton <akpm@linux-foundation.org> Link: http://lkml.kernel.org/r/1315836353.26517.42.camel@twins Signed-off-by: Ingo Molnar <mingo@elte.hu>
2011-10-04Merge branch 'linus' into sched/coreIngo Molnar
Merge reason: pick up the latest fixes. Signed-off-by: Ingo Molnar <mingo@elte.hu>
2011-09-30posix-cpu-timers: Cure SMP wobblesPeter Zijlstra
David reported: Attached below is a watered-down version of rt/tst-cpuclock2.c from GLIBC. Just build it with "gcc -o test test.c -lpthread -lrt" or similar. Run it several times, and you will see cases where the main thread will measure a process clock difference before and after the nanosleep which is smaller than the cpu-burner thread's individual thread clock difference. This doesn't make any sense since the cpu-burner thread is part of the top-level process's thread group. I've reproduced this on both x86-64 and sparc64 (using both 32-bit and 64-bit binaries). For example: [davem@boricha build-x86_64-linux]$ ./test process: before(0.001221967) after(0.498624371) diff(497402404) thread: before(0.000081692) after(0.498316431) diff(498234739) self: before(0.001223521) after(0.001240219) diff(16698) [davem@boricha build-x86_64-linux]$ The diff of 'process' should always be >= the diff of 'thread'. I make sure to wrap the 'thread' clock measurements the most tightly around the nanosleep() call, and that the 'process' clock measurements are the outer-most ones. --- #include <unistd.h> #include <stdio.h> #include <stdlib.h> #include <time.h> #include <fcntl.h> #include <string.h> #include <errno.h> #include <pthread.h> static pthread_barrier_t barrier; static void *chew_cpu(void *arg) { pthread_barrier_wait(&barrier); while (1) __asm__ __volatile__("" : : : "memory"); return NULL; } int main(void) { clockid_t process_clock, my_thread_clock, th_clock; struct timespec process_before, process_after; struct timespec me_before, me_after; struct timespec th_before, th_after; struct timespec sleeptime; unsigned long diff; pthread_t th; int err; err = clock_getcpuclockid(0, &process_clock); if (err) return 1; err = pthread_getcpuclockid(pthread_self(), &my_thread_clock); if (err) return 1; pthread_barrier_init(&barrier, NULL, 2); err = pthread_create(&th, NULL, chew_cpu, NULL); if (err) return 1; err = pthread_getcpuclockid(th, &th_clock); if (err) return 1; pthread_barrier_wait(&barrier); err = clock_gettime(process_clock, &process_before); if (err) return 1; err = clock_gettime(my_thread_clock, &me_before); if (err) return 1; err = clock_gettime(th_clock, &th_before); if (err) return 1; sleeptime.tv_sec = 0; sleeptime.tv_nsec = 500000000; nanosleep(&sleeptime, NULL); err = clock_gettime(th_clock, &th_after); if (err) return 1; err = clock_gettime(my_thread_clock, &me_after); if (err) return 1; err = clock_gettime(process_clock, &process_after); if (err) return 1; diff = process_after.tv_nsec - process_before.tv_nsec; printf("process: before(%lu.%.9lu) after(%lu.%.9lu) diff(%lu)\n", process_before.tv_sec, process_before.tv_nsec, process_after.tv_sec, process_after.tv_nsec, diff); diff = th_after.tv_nsec - th_before.tv_nsec; printf("thread: before(%lu.%.9lu) after(%lu.%.9lu) diff(%lu)\n", th_before.tv_sec, th_before.tv_nsec, th_after.tv_sec, th_after.tv_nsec, diff); diff = me_after.tv_nsec - me_before.tv_nsec; printf("self: before(%lu.%.9lu) after(%lu.%.9lu) diff(%lu)\n", me_before.tv_sec, me_before.tv_nsec, me_after.tv_sec, me_after.tv_nsec, diff); return 0; } This is due to us using p->se.sum_exec_runtime in thread_group_cputime() where we iterate the thread group and sum all data. This does not take time since the last schedule operation (tick or otherwise) into account. We can cure this by using task_sched_runtime() at the cost of having to take locks. This also means we can (and must) do away with thread_group_sched_runtime() since the modified thread_group_cputime() is now more accurate and would deadlock when called from thread_group_sched_runtime(). Aside of that it makes the function safe on 32 bit systems. The old code added t->se.sum_exec_runtime unprotected. sum_exec_runtime is a 64bit value and could be changed on another cpu at the same time. Reported-by: David Miller <davem@davemloft.net> Signed-off-by: Peter Zijlstra <a.p.zijlstra@chello.nl> Cc: stable@kernel.org Link: http://lkml.kernel.org/r/1314874459.7945.22.camel@twins Tested-by: David Miller <davem@davemloft.net> Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
2011-09-28nohz: Remove nohz_cpu_maskShi, Alex
RCU no longer uses this global variable, nor does anyone else. This commit therefore removes this variable. This reduces memory footprint and also removes some atomic instructions and memory barriers from the dyntick-idle path. Signed-off-by: Alex Shi <alex.shi@intel.com> Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
2011-09-28rcu: Restore checks for blocking in RCU read-side critical sectionsPaul E. McKenney
Long ago, using TREE_RCU with PREEMPT would result in "scheduling while atomic" diagnostics if you blocked in an RCU read-side critical section. However, PREEMPT now implies TREE_PREEMPT_RCU, which defeats this diagnostic. This commit therefore adds a replacement diagnostic based on PROVE_RCU. Because rcu_lockdep_assert() and lockdep_rcu_dereference() are now being used for things that have nothing to do with rcu_dereference(), rename lockdep_rcu_dereference() to lockdep_rcu_suspicious() and add a third argument that is a string indicating what is suspicious. This third argument is passed in from a new third argument to rcu_lockdep_assert(). Update all calls to rcu_lockdep_assert() to add an informative third argument. Also, add a pair of rcu_lockdep_assert() calls from within rcu_note_context_switch(), one complaining if a context switch occurs in an RCU-bh read-side critical section and another complaining if a context switch occurs in an RCU-sched read-side critical section. These are present only if the PROVE_RCU kernel parameter is enabled. Finally, fix some checkpatch whitespace complaints in lockdep.c. Again, you must enable PROVE_RCU to see these new diagnostics. But you are enabling PROVE_RCU to check out new RCU uses in any case, aren't you? Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
2011-09-27treewide: Correct spelling of successfully in commentsJoe Perches
Signed-off-by: Joe Perches <joe@perches.com> Signed-off-by: Jiri Kosina <jkosina@suse.cz>
2011-09-26sched: Fix up wchan borkageSimon Kirby
Commit c259e01a1ec ("sched: Separate the scheduler entry for preemption") contained a boo-boo wrecking wchan output. It forgot to put the new schedule() function in the __sched section and thereby doesn't get properly ignored for things like wchan. Tested-by: Simon Kirby <sim@hostway.ca> Cc: stable@kernel.org # 2.6.39+ Signed-off-by: Peter Zijlstra <a.p.zijlstra@chello.nl> Link: http://lkml.kernel.org/r/20110923000346.GA25425@hostway.ca Signed-off-by: Ingo Molnar <mingo@elte.hu>
2011-09-20sched: Allow SD_NODES_PER_DOMAIN to be overriddenAnton Blanchard
We want to override the default value of SD_NODES_PER_DOMAIN on ppc64, so move it into linux/topology.h. Signed-off-by: Anton Blanchard <anton@samba.org> Acked-by: Peter Zijlstra <a.p.zijlstra@chello.nl> Signed-off-by: Benjamin Herrenschmidt <benh@kernel.crashing.org>
2011-09-18Merge branch 'linus' into sched/coreIngo Molnar
Merge reason: We are queueing up a dependent patch. Signed-off-by: Ingo Molnar <mingo@elte.hu>
2011-09-07Merge branch 'sched-fixes-for-linus' of git://tesla.tglx.de/git/linux-2.6-tipLinus Torvalds
* 'sched-fixes-for-linus' of git://tesla.tglx.de/git/linux-2.6-tip: sched: Fix a memory leak in __sdt_free() sched: Move blk_schedule_flush_plug() out of __schedule() sched: Separate the scheduler entry for preemption
2011-08-29perf events: Fix slow and broken cgroup context switch codeStephane Eranian
The current cgroup context switch code was incorrect leading to bogus counts. Furthermore, as soon as there was an active cgroup event on a CPU, the context switch cost on that CPU would increase by a significant amount as demonstrated by a simple ping/pong example: $ ./pong Both processes pinned to CPU1, running for 10s 10684.51 ctxsw/s Now start a cgroup perf stat: $ perf stat -e cycles,cycles -A -a -G test -C 1 -- sleep 100 $ ./pong Both processes pinned to CPU1, running for 10s 6674.61 ctxsw/s That's a 37% penalty. Note that pong is not even in the monitored cgroup. The results shown by perf stat are bogus: $ perf stat -e cycles,cycles -A -a -G test -C 1 -- sleep 100 Performance counter stats for 'sleep 100': CPU1 <not counted> cycles test CPU1 16,984,189,138 cycles # 0.000 GHz The second 'cycles' event should report a count @ CPU clock (here 2.4GHz) as it is counting across all cgroups. The patch below fixes the bogus accounting and bypasses any cgroup switches in case the outgoing and incoming tasks are in the same cgroup. With this patch the same test now yields: $ ./pong Both processes pinned to CPU1, running for 10s 10775.30 ctxsw/s Start perf stat with cgroup: $ perf stat -e cycles,cycles -A -a -G test -C 1 -- sleep 10 Run pong outside the cgroup: $ /pong Both processes pinned to CPU1, running for 10s 10687.80 ctxsw/s The penalty is now less than 2%. And the results for perf stat are correct: $ perf stat -e cycles,cycles -A -a -G test -C 1 -- sleep 10 Performance counter stats for 'sleep 10': CPU1 <not counted> cycles test # 0.000 GHz CPU1 23,933,981,448 cycles # 0.000 GHz Now perf stat reports the correct counts for for the non cgroup event. If we run pong inside the cgroup, then we also get the correct counts: $ perf stat -e cycles,cycles -A -a -G test -C 1 -- sleep 10 Performance counter stats for 'sleep 10': CPU1 22,297,726,205 cycles test # 0.000 GHz CPU1 23,933,981,448 cycles # 0.000 GHz 10.001457237 seconds time elapsed Signed-off-by: Stephane Eranian <eranian@google.com> Signed-off-by: Peter Zijlstra <a.p.zijlstra@chello.nl> Link: http://lkml.kernel.org/r/20110825135803.GA4697@quad Signed-off-by: Ingo Molnar <mingo@elte.hu>
2011-08-29sched: Fix a memory leak in __sdt_free()WANG Cong
This patch fixes the following memory leak: unreferenced object 0xffff880107266800 (size 512): comm "sched-powersave", pid 3718, jiffies 4323097853 (age 27495.450s) hex dump (first 32 bytes): 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 ................ 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 ................ backtrace: [<ffffffff81133940>] create_object+0x187/0x28b [<ffffffff814ac103>] kmemleak_alloc+0x73/0x98 [<ffffffff811232ba>] __kmalloc_node+0x104/0x159 [<ffffffff81044b98>] kzalloc_node.clone.97+0x15/0x17 [<ffffffff8104cb90>] build_sched_domains+0xb7/0x7f3 [<ffffffff8104d4df>] partition_sched_domains+0x1db/0x24a [<ffffffff8109ee4a>] do_rebuild_sched_domains+0x3b/0x47 [<ffffffff810a00c7>] rebuild_sched_domains+0x10/0x12 [<ffffffff8104d5ba>] sched_power_savings_store+0x6c/0x7b [<ffffffff8104d5df>] sched_mc_power_savings_store+0x16/0x18 [<ffffffff8131322c>] sysdev_class_store+0x20/0x22 [<ffffffff81193876>] sysfs_write_file+0x108/0x144 [<ffffffff81135b10>] vfs_write+0xaf/0x102 [<ffffffff81135d23>] sys_write+0x4d/0x74 [<ffffffff814c8a42>] system_call_fastpath+0x16/0x1b [<ffffffffffffffff>] 0xffffffffffffffff Signed-off-by: WANG Cong <amwang@redhat.com> Signed-off-by: Peter Zijlstra <a.p.zijlstra@chello.nl> Cc: stable@kernel.org # 3.0 Link: http://lkml.kernel.org/r/1313671017-4112-1-git-send-email-amwang@redhat.com Signed-off-by: Ingo Molnar <mingo@elte.hu>
2011-08-29sched: Move blk_schedule_flush_plug() out of __schedule()Thomas Gleixner
There is no real reason to run blk_schedule_flush_plug() with interrupts and preemption disabled. Move it into schedule() and call it when the task is going voluntarily to sleep. There might be false positives when the task is woken between that call and actually scheduling, but that's not really different from being woken immediately after switching away. This fixes a deadlock in the scheduler where the blk_schedule_flush_plug() callchain enables interrupts and thereby allows a wakeup to happen of the task that's going to sleep. Signed-off-by: Thomas Gleixner <tglx@linutronix.de> Signed-off-by: Peter Zijlstra <a.p.zijlstra@chello.nl> Cc: Tejun Heo <tj@kernel.org> Cc: Jens Axboe <axboe@kernel.dk> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: stable@kernel.org # 2.6.39+ Link: http://lkml.kernel.org/n/tip-dwfxtra7yg1b5r65m32ywtct@git.kernel.org Signed-off-by: Ingo Molnar <mingo@elte.hu>
2011-08-29sched: Separate the scheduler entry for preemptionThomas Gleixner
Block-IO and workqueues call into notifier functions from the scheduler core code with interrupts and preemption disabled. These calls should be made before entering the scheduler core. To simplify this, separate the scheduler core code into __schedule(). __schedule() is directly called from the places which set PREEMPT_ACTIVE and from schedule(). This allows us to add the work checks into schedule(), so they are only called when a task voluntary goes to sleep. Signed-off-by: Thomas Gleixner <tglx@linutronix.de> Signed-off-by: Peter Zijlstra <a.p.zijlstra@chello.nl> Cc: Tejun Heo <tj@kernel.org> Cc: Jens Axboe <axboe@kernel.dk> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: stable@kernel.org # 2.6.39+ Link: http://lkml.kernel.org/r/20110622174918.813258321@linutronix.de Signed-off-by: Ingo Molnar <mingo@elte.hu>
2011-08-14sched: Return unused runtime on group dequeuePaul Turner
When a local cfs_rq blocks we return the majority of its remaining quota to the global bandwidth pool for use by other runqueues. We do this only when the quota is current and there is more than min_cfs_rq_quota [1ms by default] of runtime remaining on the rq. In the case where there are throttled runqueues and we have sufficient bandwidth to meter out a slice, a second timer is kicked off to handle this delivery, unthrottling where appropriate. Using a 'worst case' antagonist which executes on each cpu for 1ms before moving onto the next on a fairly large machine: no quota generations: 197.47 ms /cgroup/a/cpuacct.usage 199.46 ms /cgroup/a/cpuacct.usage 205.46 ms /cgroup/a/cpuacct.usage 198.46 ms /cgroup/a/cpuacct.usage 208.39 ms /cgroup/a/cpuacct.usage Since we are allowed to use "stale" quota our usage is effectively bounded by the rate of input into the global pool and performance is relatively stable. with quota generations [1s increments]: 119.58 ms /cgroup/a/cpuacct.usage 119.65 ms /cgroup/a/cpuacct.usage 119.64 ms /cgroup/a/cpuacct.usage 119.63 ms /cgroup/a/cpuacct.usage 119.60 ms /cgroup/a/cpuacct.usage The large deficit here is due to quota generations (/intentionally/) preventing us from now using previously stranded slack quota. The cost is that this quota becomes unavailable. with quota generations and quota return: 200.09 ms /cgroup/a/cpuacct.usage 200.09 ms /cgroup/a/cpuacct.usage 198.09 ms /cgroup/a/cpuacct.usage 200.09 ms /cgroup/a/cpuacct.usage 200.06 ms /cgroup/a/cpuacct.usage By returning unused quota we're able to both stably consume our desired quota and prevent unintentional overages due to the abuse of slack quota from previous quota periods (especially on a large machine). Signed-off-by: Paul Turner <pjt@google.com> Signed-off-by: Peter Zijlstra <a.p.zijlstra@chello.nl> Link: http://lkml.kernel.org/r/20110721184758.306848658@google.com Signed-off-by: Ingo Molnar <mingo@elte.hu>
2011-08-14sched: Add exports tracking cfs bandwidth control statisticsNikhil Rao
This change introduces statistics exports for the cpu sub-system, these are added through the use of a stat file similar to that exported by other subsystems. The following exports are included: nr_periods: number of periods in which execution occurred nr_throttled: the number of periods above in which execution was throttle throttled_time: cumulative wall-time that any cpus have been throttled for this group Signed-off-by: Paul Turner <pjt@google.com> Signed-off-by: Nikhil Rao <ncrao@google.com> Signed-off-by: Bharata B Rao <bharata@linux.vnet.ibm.com> Reviewed-by: Hidetoshi Seto <seto.hidetoshi@jp.fujitsu.com> Signed-off-by: Peter Zijlstra <a.p.zijlstra@chello.nl> Link: http://lkml.kernel.org/r/20110721184758.198901931@google.com Signed-off-by: Ingo Molnar <mingo@elte.hu>
2011-08-14sched: Migrate throttled tasks on HOTPLUGPaul Turner
Throttled tasks are invisisble to cpu-offline since they are not eligible for selection by pick_next_task(). The regular 'escape' path for a thread that is blocked at offline is via ttwu->select_task_rq, however this will not handle a throttled group since there are no individual thread wakeups on an unthrottle. Resolve this by unthrottling offline cpus so that threads can be migrated. Signed-off-by: Paul Turner <pjt@google.com> Reviewed-by: Hidetoshi Seto <seto.hidetoshi@jp.fujitsu.com> Signed-off-by: Peter Zijlstra <a.p.zijlstra@chello.nl> Link: http://lkml.kernel.org/r/20110721184757.989000590@google.com Signed-off-by: Ingo Molnar <mingo@elte.hu>
2011-08-14sched: Prevent interactions with throttled entitiesPaul Turner
From the perspective of load-balance and shares distribution, throttled entities should be invisible. However, both of these operations work on 'active' lists and are not inherently aware of what group hierarchies may be present. In some cases this may be side-stepped (e.g. we could sideload via tg_load_down in load balance) while in others (e.g. update_shares()) it is more difficult to compute without incurring some O(n^2) costs. Instead, track hierarchicaal throttled state at time of transition. This allows us to easily identify whether an entity belongs to a throttled hierarchy and avoid incorrect interactions with it. Also, when an entity leaves a throttled hierarchy we need to advance its time averaging for shares averaging so that the elapsed throttled time is not considered as part of the cfs_rq's operation. We also use this information to prevent buddy interactions in the wakeup and yield_to() paths. Signed-off-by: Paul Turner <pjt@google.com> Reviewed-by: Hidetoshi Seto <seto.hidetoshi@jp.fujitsu.com> Signed-off-by: Peter Zijlstra <a.p.zijlstra@chello.nl> Link: http://lkml.kernel.org/r/20110721184757.777916795@google.com Signed-off-by: Ingo Molnar <mingo@elte.hu>
2011-08-14sched: Allow for positional tg_tree walksPaul Turner
Extend walk_tg_tree to accept a positional argument static int walk_tg_tree_from(struct task_group *from, tg_visitor down, tg_visitor up, void *data) Existing semantics are preserved, caller must hold rcu_lock() or sufficient analogue. Signed-off-by: Paul Turner <pjt@google.com> Reviewed-by: Hidetoshi Seto <seto.hidetoshi@jp.fujitsu.com> Signed-off-by: Peter Zijlstra <a.p.zijlstra@chello.nl> Link: http://lkml.kernel.org/r/20110721184757.677889157@google.com Signed-off-by: Ingo Molnar <mingo@elte.hu>
2011-08-14sched: Add support for unthrottling group entitiesPaul Turner
At the start of each period we refresh the global bandwidth pool. At this time we must also unthrottle any cfs_rq entities who are now within bandwidth once more (as quota permits). Unthrottled entities have their corresponding cfs_rq->throttled flag cleared and their entities re-enqueued. Signed-off-by: Paul Turner <pjt@google.com> Reviewed-by: Hidetoshi Seto <seto.hidetoshi@jp.fujitsu.com> Signed-off-by: Peter Zijlstra <a.p.zijlstra@chello.nl> Link: http://lkml.kernel.org/r/20110721184757.574628950@google.com Signed-off-by: Ingo Molnar <mingo@elte.hu>
2011-08-14sched: Add support for throttling group entitiesPaul Turner
Now that consumption is tracked (via update_curr()) we add support to throttle group entities (and their corresponding cfs_rqs) in the case where this is no run-time remaining. Throttled entities are dequeued to prevent scheduling, additionally we mark them as throttled (using cfs_rq->throttled) to prevent them from becoming re-enqueued until they are unthrottled. A list of a task_group's throttled entities are maintained on the cfs_bandwidth structure. Note: While the machinery for throttling is added in this patch the act of throttling an entity exceeding its bandwidth is deferred until later within the series. Signed-off-by: Paul Turner <pjt@google.com> Signed-off-by: Peter Zijlstra <a.p.zijlstra@chello.nl> Link: http://lkml.kernel.org/r/20110721184757.480608533@google.com Signed-off-by: Ingo Molnar <mingo@elte.hu>
2011-08-14sched: Expire invalid runtimePaul Turner
Since quota is managed using a global state but consumed on a per-cpu basis we need to ensure that our per-cpu state is appropriately synchronized. Most importantly, runtime that is state (from a previous period) should not be locally consumable. We take advantage of existing sched_clock synchronization about the jiffy to efficiently detect whether we have (globally) crossed a quota boundary above. One catch is that the direction of spread on sched_clock is undefined, specifically, we don't know whether our local clock is behind or ahead of the one responsible for the current expiration time. Fortunately we can differentiate these by considering whether the global deadline has advanced. If it has not, then we assume our clock to be "fast" and advance our local expiration; otherwise, we know the deadline has truly passed and we expire our local runtime. Signed-off-by: Paul Turner <pjt@google.com> Reviewed-by: Hidetoshi Seto <seto.hidetoshi@jp.fujitsu.com> Signed-off-by: Peter Zijlstra <a.p.zijlstra@chello.nl> Link: http://lkml.kernel.org/r/20110721184757.379275352@google.com Signed-off-by: Ingo Molnar <mingo@elte.hu>
2011-08-14sched: Add a timer to handle CFS bandwidth refreshPaul Turner
This patch adds a per-task_group timer which handles the refresh of the global CFS bandwidth pool. Since the RT pool is using a similar timer there's some small refactoring to share this support. Signed-off-by: Paul Turner <pjt@google.com> Reviewed-by: Hidetoshi Seto <seto.hidetoshi@jp.fujitsu.com> Signed-off-by: Peter Zijlstra <a.p.zijlstra@chello.nl> Link: http://lkml.kernel.org/r/20110721184757.277271273@google.com Signed-off-by: Ingo Molnar <mingo@elte.hu>
2011-08-14sched: Accumulate per-cfs_rq cpu usage and charge against bandwidthPaul Turner
Account bandwidth usage on the cfs_rq level versus the task_groups to which they belong. Whether we are tracking bandwidth on a given cfs_rq is maintained under cfs_rq->runtime_enabled. cfs_rq's which belong to a bandwidth constrained task_group have their runtime accounted via the update_curr() path, which withdraws bandwidth from the global pool as desired. Updates involving the global pool are currently protected under cfs_bandwidth->lock, local runtime is protected by rq->lock. This patch only assigns and tracks quota, no action is taken in the case that cfs_rq->runtime_used exceeds cfs_rq->runtime_assigned. Signed-off-by: Paul Turner <pjt@google.com> Signed-off-by: Nikhil Rao <ncrao@google.com> Signed-off-by: Bharata B Rao <bharata@linux.vnet.ibm.com> Reviewed-by: Hidetoshi Seto <seto.hidetoshi@jp.fujitsu.com> Signed-off-by: Peter Zijlstra <a.p.zijlstra@chello.nl> Link: http://lkml.kernel.org/r/20110721184757.179386821@google.com Signed-off-by: Ingo Molnar <mingo@elte.hu>