summaryrefslogtreecommitdiff
path: root/kernel/sched/core.c
AgeCommit message (Collapse)Author
2017-08-06sched/cputime: Fix prev steal time accouting during CPU hotplugWanpeng Li
commit 3d89e5478bf550a50c99e93adf659369798263b0 upstream. Commit: e9532e69b8d1 ("sched/cputime: Fix steal time accounting vs. CPU hotplug") ... set rq->prev_* to 0 after a CPU hotplug comes back, in order to fix the case where (after CPU hotplug) steal time is smaller than rq->prev_steal_time. However, this should never happen. Steal time was only smaller because of the KVM-specific bug fixed by the previous patch. Worse, the previous patch triggers a bug on CPU hot-unplug/plug operation: because rq->prev_steal_time is cleared, all of the CPU's past steal time will be accounted again on hot-plug. Since the root cause has been fixed, we can just revert commit e9532e69b8d1. Signed-off-by: Wanpeng Li <wanpeng.li@hotmail.com> Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> Acked-by: Paolo Bonzini <pbonzini@redhat.com> Cc: Frederic Weisbecker <fweisbec@gmail.com> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Mike Galbraith <efault@gmx.de> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Radim Krčmář <rkrcmar@redhat.com> Cc: Rik van Riel <riel@redhat.com> Cc: Thomas Gleixner <tglx@linutronix.de> Fixes: 'commit e9532e69b8d1 ("sched/cputime: Fix steal time accounting vs. CPU hotplug")' Link: http://lkml.kernel.org/r/1465813966-3116-3-git-send-email-wanpeng.li@hotmail.com Signed-off-by: Ingo Molnar <mingo@kernel.org> Signed-off-by: Andres Oportus <andresoportus@google.com> Acked-by: Paolo Bonzini <pbonzini@redhat.com> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2017-08-06sched/cgroup: Move sched_online_group() back into css_online() to fix crashKonstantin Khlebnikov
commit 96b777452d8881480fd5be50112f791c17db4b6b upstream. Commit: 2f5177f0fd7e ("sched/cgroup: Fix/cleanup cgroup teardown/init") .. moved sched_online_group() from css_online() to css_alloc(). It exposes half-baked task group into global lists before initializing generic cgroup stuff. LTP testcase (third in cgroup_regression_test) written for testing similar race in kernels 2.6.26-2.6.28 easily triggers this oops: BUG: unable to handle kernel NULL pointer dereference at 0000000000000008 IP: kernfs_path_from_node_locked+0x260/0x320 CPU: 1 PID: 30346 Comm: cat Not tainted 4.10.0-rc5-test #4 Call Trace: ? kernfs_path_from_node+0x4f/0x60 kernfs_path_from_node+0x3e/0x60 print_rt_rq+0x44/0x2b0 print_rt_stats+0x7a/0xd0 print_cpu+0x2fc/0xe80 ? __might_sleep+0x4a/0x80 sched_debug_show+0x17/0x30 seq_read+0xf2/0x3b0 proc_reg_read+0x42/0x70 __vfs_read+0x28/0x130 ? security_file_permission+0x9b/0xc0 ? rw_verify_area+0x4e/0xb0 vfs_read+0xa5/0x170 SyS_read+0x46/0xa0 entry_SYSCALL_64_fastpath+0x1e/0xad Here the task group is already linked into the global RCU-protected 'task_groups' list, but the css->cgroup pointer is still NULL. This patch reverts this chunk and moves online back to css_online(). Signed-off-by: Konstantin Khlebnikov <khlebnikov@yandex-team.ru> Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Tejun Heo <tj@kernel.org> Cc: Thomas Gleixner <tglx@linutronix.de> Fixes: 2f5177f0fd7e ("sched/cgroup: Fix/cleanup cgroup teardown/init") Link: http://lkml.kernel.org/r/148655324740.424917.5302984537258726349.stgit@buzz Signed-off-by: Ingo Molnar <mingo@kernel.org> Signed-off-by: Matt Fleming <matt@codeblueprint.co.uk> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2017-07-21sched/topology: Optimize build_group_mask()Lauro Ramos Venancio
commit f32d782e31bf079f600dcec126ed117b0577e85c upstream. The group mask is always used in intersection with the group CPUs. So, when building the group mask, we don't have to care about CPUs that are not part of the group. Signed-off-by: Lauro Ramos Venancio <lvenanci@redhat.com> Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Mike Galbraith <efault@gmx.de> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: lwang@redhat.com Cc: riel@redhat.com Link: http://lkml.kernel.org/r/1492717903-5195-2-git-send-email-lvenanci@redhat.com Signed-off-by: Ingo Molnar <mingo@kernel.org> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2017-07-21sched/topology: Fix overlapping sched_group_maskPeter Zijlstra
commit 73bb059f9b8a00c5e1bf2f7ca83138c05d05e600 upstream. The point of sched_group_mask is to select those CPUs from sched_group_cpus that can actually arrive at this balance domain. The current code gets it wrong, as can be readily demonstrated with a topology like: node 0 1 2 3 0: 10 20 30 20 1: 20 10 20 30 2: 30 20 10 20 3: 20 30 20 10 Where (for example) domain 1 on CPU1 ends up with a mask that includes CPU0: [] CPU1 attaching sched-domain: [] domain 0: span 0-2 level NUMA [] groups: 1 (mask: 1), 2, 0 [] domain 1: span 0-3 level NUMA [] groups: 0-2 (mask: 0-2) (cpu_capacity: 3072), 0,2-3 (cpu_capacity: 3072) This causes sched_balance_cpu() to compute the wrong CPU and consequently should_we_balance() will terminate early resulting in missed load-balance opportunities. The fixed topology looks like: [] CPU1 attaching sched-domain: [] domain 0: span 0-2 level NUMA [] groups: 1 (mask: 1), 2, 0 [] domain 1: span 0-3 level NUMA [] groups: 0-2 (mask: 1) (cpu_capacity: 3072), 0,2-3 (cpu_capacity: 3072) (note: this relies on OVERLAP domains to always have children, this is true because the regular topology domains are still here -- this is before degenerate trimming) Debugged-by: Lauro Ramos Venancio <lvenanci@redhat.com> Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Mike Galbraith <efault@gmx.de> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: linux-kernel@vger.kernel.org Fixes: e3589f6c81e4 ("sched: Allow for overlapping sched_domain spans") Signed-off-by: Ingo Molnar <mingo@kernel.org> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2016-09-24sched/core: Fix a race between try_to_wake_up() and a woken up taskBalbir Singh
commit 135e8c9250dd5c8c9aae5984fde6f230d0cbfeaf upstream. The origin of the issue I've seen is related to a missing memory barrier between check for task->state and the check for task->on_rq. The task being woken up is already awake from a schedule() and is doing the following: do { schedule() set_current_state(TASK_(UN)INTERRUPTIBLE); } while (!cond); The waker, actually gets stuck doing the following in try_to_wake_up(): while (p->on_cpu) cpu_relax(); Analysis: The instance I've seen involves the following race: CPU1 CPU2 while () { if (cond) break; do { schedule(); set_current_state(TASK_UN..) } while (!cond); wakeup_routine() spin_lock_irqsave(wait_lock) raw_spin_lock_irqsave(wait_lock) wake_up_process() } try_to_wake_up() set_current_state(TASK_RUNNING); .. list_del(&waiter.list); CPU2 wakes up CPU1, but before it can get the wait_lock and set current state to TASK_RUNNING the following occurs: CPU3 wakeup_routine() raw_spin_lock_irqsave(wait_lock) if (!list_empty) wake_up_process() try_to_wake_up() raw_spin_lock_irqsave(p->pi_lock) .. if (p->on_rq && ttwu_wakeup()) .. while (p->on_cpu) cpu_relax() .. CPU3 tries to wake up the task on CPU1 again since it finds it on the wait_queue, CPU1 is spinning on wait_lock, but immediately after CPU2, CPU3 got it. CPU3 checks the state of p on CPU1, it is TASK_UNINTERRUPTIBLE and the task is spinning on the wait_lock. Interestingly since p->on_rq is checked under pi_lock, I've noticed that try_to_wake_up() finds p->on_rq to be 0. This was the most confusing bit of the analysis, but p->on_rq is changed under runqueue lock, rq_lock, the p->on_rq check is not reliable without this fix IMHO. The race is visible (based on the analysis) only when ttwu_queue() does a remote wakeup via ttwu_queue_remote. In which case the p->on_rq change is not done uder the pi_lock. The result is that after a while the entire system locks up on the raw_spin_irqlock_save(wait_lock) and the holder spins infintely Reproduction of the issue: The issue can be reproduced after a long run on my system with 80 threads and having to tweak available memory to very low and running memory stress-ng mmapfork test. It usually takes a long time to reproduce. I am trying to work on a test case that can reproduce the issue faster, but thats work in progress. I am still testing the changes on my still in a loop and the tests seem OK thus far. Big thanks to Benjamin and Nick for helping debug this as well. Ben helped catch the missing barrier, Nick caught every missing bit in my theory. Signed-off-by: Balbir Singh <bsingharora@gmail.com> [ Updated comment to clarify matching barriers. Many architectures do not have a full barrier in switch_to() so that cannot be relied upon. ] Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> Acked-by: Benjamin Herrenschmidt <benh@kernel.crashing.org> Cc: Alexey Kardashevskiy <aik@ozlabs.ru> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Nicholas Piggin <nicholas.piggin@gmail.com> Cc: Nicholas Piggin <npiggin@gmail.com> Cc: Oleg Nesterov <oleg@redhat.com> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Thomas Gleixner <tglx@linutronix.de> Link: http://lkml.kernel.org/r/e02cce7b-d9ca-1ad0-7a61-ea97c7582b37@gmail.com Signed-off-by: Ingo Molnar <mingo@kernel.org> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2016-09-07sched/nohz: Fix affine unpinned timers messWanpeng Li
commit 444969223c81c7d0a95136b7b4cfdcfbc96ac5bd upstream. The following commit: 9642d18eee2c ("nohz: Affine unpinned timers to housekeepers")' intended to affine unpinned timers to housekeepers: unpinned timers(full dynaticks, idle) => nearest busy housekeepers(otherwise, fallback to any housekeepers) unpinned timers(full dynaticks, busy) => nearest busy housekeepers(otherwise, fallback to any housekeepers) unpinned timers(houserkeepers, idle) => nearest busy housekeepers(otherwise, fallback to itself) However, the !idle_cpu(i) && is_housekeeping_cpu(cpu) check modified the intention to: unpinned timers(full dynaticks, idle) => any housekeepers(no mattter cpu topology) unpinned timers(full dynaticks, busy) => any housekeepers(no mattter cpu topology) unpinned timers(housekeepers, idle) => any busy cpus(otherwise, fallback to any housekeepers) This patch fixes it by checking if there are busy housekeepers nearby, otherwise falls to any housekeepers/itself. After the patch: unpinned timers(full dynaticks, idle) => nearest busy housekeepers(otherwise, fallback to any housekeepers) unpinned timers(full dynaticks, busy) => nearest busy housekeepers(otherwise, fallback to any housekeepers) unpinned timers(housekeepers, idle) => nearest busy housekeepers(otherwise, fallback to itself) Signed-off-by: Wanpeng Li <wanpeng.li@hotmail.com> Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> [ Fixed the changelog. ] Cc: Frederic Weisbecker <fweisbec@gmail.com> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Mike Galbraith <efault@gmx.de> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: linux-kernel@vger.kernel.org Fixes: 'commit 9642d18eee2c ("nohz: Affine unpinned timers to housekeepers")' Link: http://lkml.kernel.org/r/1462344334-8303-1-git-send-email-wanpeng.li@hotmail.com Signed-off-by: Ingo Molnar <mingo@kernel.org> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2016-08-10kernel/sysrq, watchdog, sched/core: Reset watchdog on all CPUs while ↵Andrey Ryabinin
processing sysrq-w commit 57675cb976eff977aefb428e68e4e0236d48a9ff upstream. Lengthy output of sysrq-w may take a lot of time on slow serial console. Currently we reset NMI-watchdog on the current CPU to avoid spurious lockup messages. Sometimes this doesn't work since softlockup watchdog might trigger on another CPU which is waiting for an IPI to proceed. We reset softlockup watchdogs on all CPUs, but we do this only after listing all tasks, and this may be too late on a busy system. So, reset watchdogs CPUs earlier, in for_each_process_thread() loop. Signed-off-by: Andrey Ryabinin <aryabinin@virtuozzo.com> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Thomas Gleixner <tglx@linutronix.de> Link: http://lkml.kernel.org/r/1465474805-14641-1-git-send-email-aryabinin@virtuozzo.com Signed-off-by: Ingo Molnar <mingo@kernel.org> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2016-06-24sched: panic on corrupted stack endJann Horn
commit 29d6455178a09e1dc340380c582b13356227e8df upstream. Until now, hitting this BUG_ON caused a recursive oops (because oops handling involves do_exit(), which calls into the scheduler, which in turn raises an oops), which caused stuff below the stack to be overwritten until a panic happened (e.g. via an oops in interrupt context, caused by the overwritten CPU index in the thread_info). Just panic directly. Signed-off-by: Jann Horn <jannh@google.com> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2016-05-04sched/cgroup: Fix/cleanup cgroup teardown/initPeter Zijlstra
commit 2f5177f0fd7e531b26d54633be62d1d4cb94621c upstream. The CPU controller hasn't kept up with the various changes in the whole cgroup initialization / destruction sequence, and commit: 2e91fa7f6d45 ("cgroup: keep zombies associated with their original cgroups") caused it to explode. The reason for this is that zombies do not inhibit css_offline() from being called, but do stall css_released(). Now we tear down the cfs_rq structures on css_offline() but zombies can run after that, leading to use-after-free issues. The solution is to move the tear-down to css_released(), which guarantees nobody (including no zombies) is still using our cgroup. Furthermore, a few simple cleanups are possible too. There doesn't appear to be any point to us using css_online() (anymore?) so fold that in css_alloc(). And since cgroup code guarantees an RCU grace period between css_released() and css_free() we can forgo using call_rcu() and free the stuff immediately. Suggested-by: Tejun Heo <tj@kernel.org> Reported-by: Kazuki Yamaguchi <k@rhe.jp> Reported-by: Niklas Cassel <niklas.cassel@axis.com> Tested-by: Niklas Cassel <niklas.cassel@axis.com> Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> Acked-by: Tejun Heo <tj@kernel.org> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Thomas Gleixner <tglx@linutronix.de> Fixes: 2e91fa7f6d45 ("cgroup: keep zombies associated with their original cgroups") Link: http://lkml.kernel.org/r/20160316152245.GY6344@twins.programming.kicks-ass.net Signed-off-by: Ingo Molnar <mingo@kernel.org> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2016-04-12sched/cputime: Fix steal time accounting vs. CPU hotplugThomas Gleixner
commit e9532e69b8d1d1284e8ecf8d2586de34aec61244 upstream. On CPU hotplug the steal time accounting can keep a stale rq->prev_steal_time value over CPU down and up. So after the CPU comes up again the delta calculation in steal_account_process_tick() wreckages itself due to the unsigned math: u64 steal = paravirt_steal_clock(smp_processor_id()); steal -= this_rq()->prev_steal_time; So if steal is smaller than rq->prev_steal_time we end up with an insane large value which then gets added to rq->prev_steal_time, resulting in a permanent wreckage of the accounting. As a consequence the per CPU stats in /proc/stat become stale. Nice trick to tell the world how idle the system is (100%) while the CPU is 100% busy running tasks. Though we prefer realistic numbers. None of the accounting values which use a previous value to account for fractions is reset at CPU hotplug time. update_rq_clock_task() has a sanity check for prev_irq_time and prev_steal_time_rq, but that sanity check solely deals with clock warps and limits the /proc/stat visible wreckage. The prev_time values are still wrong. Solution is simple: Reset rq->prev_*_time when the CPU is plugged in again. Signed-off-by: Thomas Gleixner <tglx@linutronix.de> Acked-by: Rik van Riel <riel@redhat.com> Cc: Frederic Weisbecker <fweisbec@gmail.com> Cc: Glauber Costa <glommer@parallels.com> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Peter Zijlstra <peterz@infradead.org> Fixes: commit 095c0aa83e52 "sched: adjust scheduler cpu power for stolen time" Fixes: commit aa483808516c "sched: Remove irq time from available CPU power" Fixes: commit e6e6685accfa "KVM guest: Steal time accounting" Link: http://lkml.kernel.org/r/alpine.DEB.2.11.1603041539490.3686@nanos Signed-off-by: Ingo Molnar <mingo@kernel.org> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2016-02-17sched: Fix crash in sched_init_numa()Raghavendra K T
commit 9c03ee147193645be4c186d3688232fa438c57c7 upstream. The following PowerPC commit: c118baf80256 ("arch/powerpc/mm/numa.c: do not allocate bootmem memory for non existing nodes") avoids allocating bootmem memory for non existent nodes. But when DEBUG_PER_CPU_MAPS=y is enabled, my powerNV system failed to boot because in sched_init_numa(), cpumask_or() operation was done on unallocated nodes. Fix that by making cpumask_or() operation only on existing nodes. [ Tested with and w/o DEBUG_PER_CPU_MAPS=y on x86 and PowerPC. ] Reported-by: Jan Stancek <jstancek@redhat.com> Tested-by: Jan Stancek <jstancek@redhat.com> Signed-off-by: Raghavendra K T <raghavendra.kt@linux.vnet.ibm.com> Cc: <gkurz@linux.vnet.ibm.com> Cc: <grant.likely@linaro.org> Cc: <nikunj@linux.vnet.ibm.com> Cc: <vdavydov@parallels.com> Cc: <linuxppc-dev@lists.ozlabs.org> Cc: <linux-mm@kvack.org> Cc: <peterz@infradead.org> Cc: <benh@kernel.crashing.org> Cc: <paulus@samba.org> Cc: <mpe@ellerman.id.au> Cc: <anton@samba.org> Link: http://lkml.kernel.org/r/1452884483-11676-1-git-send-email-raghavendra.kt@linux.vnet.ibm.com Signed-off-by: Ingo Molnar <mingo@kernel.org> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2015-12-07Merge branch 'master' into for-4.4-fixesTejun Heo
The following commit which went into mainline through networking tree 3b13758f51de ("cgroups: Allow dynamically changing net_classid") conflicts in net/core/netclassid_cgroup.c with the following pending fix in cgroup/for-4.4-fixes. 1f7dd3e5a6e4 ("cgroup: fix handling of multi-destination migration from subtree_control enabling") The former separates out update_classid() from cgrp_attach() and updates it to walk all fds of all tasks in the target css so that it can be used from both migration and config change paths. The latter drops @css from cgrp_attach(). Resolve the conflict by making cgrp_attach() call update_classid() with the css from the first task. We can revive @tset walking in cgrp_attach() but given that net_cls is v1 only where there always is only one target css during migration, this is fine. Signed-off-by: Tejun Heo <tj@kernel.org> Reported-by: Stephen Rothwell <sfr@canb.auug.org.au> Cc: Nina Schiff <ninasc@fb.com>
2015-12-04sched/core: Fix an SMP ordering race in try_to_wake_up() vs. schedule()Peter Zijlstra
Oleg noticed that its possible to falsely observe p->on_cpu == 0 such that we'll prematurely continue with the wakeup and effectively run p on two CPUs at the same time. Even though the overlap is very limited; the task is in the middle of being scheduled out; it could still result in corruption of the scheduler data structures. CPU0 CPU1 set_current_state(...) <preempt_schedule> context_switch(X, Y) prepare_lock_switch(Y) Y->on_cpu = 1; finish_lock_switch(X) store_release(X->on_cpu, 0); try_to_wake_up(X) LOCK(p->pi_lock); t = X->on_cpu; // 0 context_switch(Y, X) prepare_lock_switch(X) X->on_cpu = 1; finish_lock_switch(Y) store_release(Y->on_cpu, 0); </preempt_schedule> schedule(); deactivate_task(X); X->on_rq = 0; if (X->on_rq) // false if (t) while (X->on_cpu) cpu_relax(); context_switch(X, ..) finish_lock_switch(X) store_release(X->on_cpu, 0); Avoid the load of X->on_cpu being hoisted over the X->on_rq load. Reported-by: Oleg Nesterov <oleg@redhat.com> Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Mike Galbraith <efault@gmx.de> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Thomas Gleixner <tglx@linutronix.de> Signed-off-by: Ingo Molnar <mingo@kernel.org>
2015-12-04sched/core: Better document the try_to_wake_up() barriersPeter Zijlstra
Explain how the control dependency and smp_rmb() end up providing ACQUIRE semantics and pair with smp_store_release() in finish_lock_switch(). Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Mike Galbraith <efault@gmx.de> Cc: Oleg Nesterov <oleg@redhat.com> Cc: Paul E. McKenney <paulmck@linux.vnet.ibm.com> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Thomas Gleixner <tglx@linutronix.de> Signed-off-by: Ingo Molnar <mingo@kernel.org>
2015-12-04sched/core: Clear the root_domain cpumasks in init_rootdomain()Xunlei Pang
root_domain::rto_mask allocated through alloc_cpumask_var() contains garbage data, this may cause problems. For instance, When doing pull_rt_task(), it may do useless iterations if rto_mask retains some extra garbage bits. Worse still, this violates the isolated domain rule for clustered scheduling using cpuset, because the tasks(with all the cpus allowed) belongs to one root domain can be pulled away into another root domain. The patch cleans the garbage by using zalloc_cpumask_var() instead of alloc_cpumask_var() for root_domain::rto_mask allocation, thereby addressing the issues. Do the same thing for root_domain's other cpumask memembers: dlo_mask, span, and online. Signed-off-by: Xunlei Pang <xlpang@redhat.com> Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> Cc: <stable@vger.kernel.org> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Mike Galbraith <efault@gmx.de> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Steven Rostedt <rostedt@goodmis.org> Cc: Thomas Gleixner <tglx@linutronix.de> Link: http://lkml.kernel.org/r/1449057179-29321-1-git-send-email-xlpang@redhat.com Signed-off-by: Ingo Molnar <mingo@kernel.org>
2015-12-04sched/core: Remove false-positive warning from wake_up_process()Sasha Levin
Because wakeups can (fundamentally) be late, a task might not be in the expected state. Therefore testing against a task's state is racy, and can yield false positives. Signed-off-by: Sasha Levin <sasha.levin@oracle.com> Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> Acked-by: Linus Torvalds <torvalds@linux-foundation.org> Cc: Mike Galbraith <efault@gmx.de> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: oleg@redhat.com Fixes: 9067ac85d533 ("wake_up_process() should be never used to wakeup a TASK_STOPPED/TRACED task") Link: http://lkml.kernel.org/r/1448933660-23082-1-git-send-email-sasha.levin@oracle.com Signed-off-by: Ingo Molnar <mingo@kernel.org>
2015-12-03cgroup: fix handling of multi-destination migration from subtree_control ↵Tejun Heo
enabling Consider the following v2 hierarchy. P0 (+memory) --- P1 (-memory) --- A \- B P0 has memory enabled in its subtree_control while P1 doesn't. If both A and B contain processes, they would belong to the memory css of P1. Now if memory is enabled on P1's subtree_control, memory csses should be created on both A and B and A's processes should be moved to the former and B's processes the latter. IOW, enabling controllers can cause atomic migrations into different csses. The core cgroup migration logic has been updated accordingly but the controller migration methods haven't and still assume that all tasks migrate to a single target css; furthermore, the methods were fed the css in which subtree_control was updated which is the parent of the target csses. pids controller depends on the migration methods to move charges and this made the controller attribute charges to the wrong csses often triggering the following warning by driving a counter negative. WARNING: CPU: 1 PID: 1 at kernel/cgroup_pids.c:97 pids_cancel.constprop.6+0x31/0x40() Modules linked in: CPU: 1 PID: 1 Comm: systemd Not tainted 4.4.0-rc1+ #29 ... ffffffff81f65382 ffff88007c043b90 ffffffff81551ffc 0000000000000000 ffff88007c043bc8 ffffffff810de202 ffff88007a752000 ffff88007a29ab00 ffff88007c043c80 ffff88007a1d8400 0000000000000001 ffff88007c043bd8 Call Trace: [<ffffffff81551ffc>] dump_stack+0x4e/0x82 [<ffffffff810de202>] warn_slowpath_common+0x82/0xc0 [<ffffffff810de2fa>] warn_slowpath_null+0x1a/0x20 [<ffffffff8118e031>] pids_cancel.constprop.6+0x31/0x40 [<ffffffff8118e0fd>] pids_can_attach+0x6d/0xf0 [<ffffffff81188a4c>] cgroup_taskset_migrate+0x6c/0x330 [<ffffffff81188e05>] cgroup_migrate+0xf5/0x190 [<ffffffff81189016>] cgroup_attach_task+0x176/0x200 [<ffffffff8118949d>] __cgroup_procs_write+0x2ad/0x460 [<ffffffff81189684>] cgroup_procs_write+0x14/0x20 [<ffffffff811854e5>] cgroup_file_write+0x35/0x1c0 [<ffffffff812e26f1>] kernfs_fop_write+0x141/0x190 [<ffffffff81265f88>] __vfs_write+0x28/0xe0 [<ffffffff812666fc>] vfs_write+0xac/0x1a0 [<ffffffff81267019>] SyS_write+0x49/0xb0 [<ffffffff81bcef32>] entry_SYSCALL_64_fastpath+0x12/0x76 This patch fixes the bug by removing @css parameter from the three migration methods, ->can_attach, ->cancel_attach() and ->attach() and updating cgroup_taskset iteration helpers also return the destination css in addition to the task being migrated. All controllers are updated accordingly. * Controllers which don't care whether there are one or multiple target csses can be converted trivially. cpu, io, freezer, perf, netclassid and netprio fall in this category. * cpuset's current implementation assumes that there's single source and destination and thus doesn't support v2 hierarchy already. The only change made by this patchset is how that single destination css is obtained. * memory migration path already doesn't do anything on v2. How the single destination css is obtained is updated and the prep stage of mem_cgroup_can_attach() is reordered to accomodate the change. * pids is the only controller which was affected by this bug. It now correctly handles multi-destination migrations and no longer causes counter underflow from incorrect accounting. Signed-off-by: Tejun Heo <tj@kernel.org> Reported-and-tested-by: Daniel Wagner <daniel.wagner@bmw-carit.de> Cc: Aleksa Sarai <cyphar@cyphar.com>
2015-11-05Merge branch 'for-4.4' of ↵Linus Torvalds
git://git.kernel.org/pub/scm/linux/kernel/git/tj/cgroup Pull cgroup updates from Tejun Heo: "The cgroup core saw several significant updates this cycle: - percpu_rwsem for threadgroup locking is reinstated. This was temporarily dropped due to down_write latency issues. Oleg's rework of percpu_rwsem which is scheduled to be merged in this merge window resolves the issue. - On the v2 hierarchy, when controllers are enabled and disabled, all operations are atomic and can fail and revert cleanly. This allows ->can_attach() failure which is necessary for cpu RT slices. - Tasks now stay associated with the original cgroups after exit until released. This allows tracking resources held by zombies (e.g. pids) and makes it easy to find out where zombies came from on the v2 hierarchy. The pids controller was broken before these changes as zombies escaped the limits; unfortunately, updating this behavior required too many invasive changes and I don't think it's a good idea to backport them, so the pids controller on 4.3, the first version which included the pids controller, will stay broken at least until I'm sure about the cgroup core changes. - Optimization of a couple common tests using static_key" * 'for-4.4' of git://git.kernel.org/pub/scm/linux/kernel/git/tj/cgroup: (38 commits) cgroup: fix race condition around termination check in css_task_iter_next() blkcg: don't create "io.stat" on the root cgroup cgroup: drop cgroup__DEVEL__legacy_files_on_dfl cgroup: replace error handling in cgroup_init() with WARN_ON()s cgroup: add cgroup_subsys->free() method and use it to fix pids controller cgroup: keep zombies associated with their original cgroups cgroup: make css_set_rwsem a spinlock and rename it to css_set_lock cgroup: don't hold css_set_rwsem across css task iteration cgroup: reorganize css_task_iter functions cgroup: factor out css_set_move_task() cgroup: keep css_set and task lists in chronological order cgroup: make cgroup_destroy_locked() test cgroup_is_populated() cgroup: make css_sets pin the associated cgroups cgroup: relocate cgroup_[try]get/put() cgroup: move check_for_release() invocation cgroup: replace cgroup_has_tasks() with cgroup_is_populated() cgroup: make cgroup->nr_populated count the number of populated css_sets cgroup: remove an unused parameter from cgroup_task_migrate() cgroup: fix too early usage of static_branch_disable() cgroup: make cgroup_update_dfl_csses() migrate all target processes atomically ...
2015-11-03Merge branch 'sched-core-for-linus' of ↵Linus Torvalds
git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip Pull scheduler changes from Ingo Molnar: "The main changes in this cycle were: - sched/fair load tracking fixes and cleanups (Byungchul Park) - Make load tracking frequency scale invariant (Dietmar Eggemann) - sched/deadline updates (Juri Lelli) - stop machine fixes, cleanups and enhancements for bugs triggered by CPU hotplug stress testing (Oleg Nesterov) - scheduler preemption code rework: remove PREEMPT_ACTIVE and related cleanups (Peter Zijlstra) - Rework the sched_info::run_delay code to fix races (Peter Zijlstra) - Optimize per entity utilization tracking (Peter Zijlstra) - ... misc other fixes, cleanups and smaller updates" * 'sched-core-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip: (57 commits) sched: Don't scan all-offline ->cpus_allowed twice if !CONFIG_CPUSETS sched: Move cpu_active() tests from stop_two_cpus() into migrate_swap_stop() sched: Start stopper early stop_machine: Kill cpu_stop_threads->setup() and cpu_stop_unpark() stop_machine: Kill smp_hotplug_thread->pre_unpark, introduce stop_machine_unpark() stop_machine: Change cpu_stop_queue_two_works() to rely on stopper->enabled stop_machine: Introduce __cpu_stop_queue_work() and cpu_stop_queue_two_works() stop_machine: Ensure that a queued callback will be called before cpu_stop_park() sched/x86: Fix typo in __switch_to() comments sched/core: Remove a parameter in the migrate_task_rq() function sched/core: Drop unlikely behind BUG_ON() sched/core: Fix task and run queue sched_info::run_delay inconsistencies sched/numa: Fix task_tick_fair() from disabling numa_balancing sched/core: Add preempt_count invariant check sched/core: More notrace annotations sched/core: Kill PREEMPT_ACTIVE sched/core, sched/x86: Kill thread_info::saved_preempt_count sched/core: Simplify preempt_count tests sched/core: Robustify preemption leak checks sched/core: Stop setting PREEMPT_ACTIVE ...
2015-10-28Merge branch 'linus' into core/rcu, to fix up a semantic conflictIngo Molnar
Signed-off-by: Ingo Molnar <mingo@kernel.org>
2015-10-23sched/core: Add missing lockdep_unpin() annotationsPeter Zijlstra
Luca and Wanpeng reported two missing annotations that led to false lockdep complaints. Add the missing annotations. Reported-by: Luca Abeni <luca.abeni@unitn.it> Reported-by: Wanpeng Li <wanpeng.li@hotmail.com> Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> Cc: Juri Lelli <juri.lelli@arm.com> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Mike Galbraith <efault@gmx.de> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Thomas Gleixner <tglx@linutronix.de> Fixes: cbce1a686700 ("sched,lockdep: Employ lock pinning") Link: http://lkml.kernel.org/r/20151023095008.GY17308@twins.programming.kicks-ass.net Signed-off-by: Ingo Molnar <mingo@kernel.org>
2015-10-20sched: Don't scan all-offline ->cpus_allowed twice if !CONFIG_CPUSETSOleg Nesterov
If CONFIG_CPUSETS=n then "case cpuset" changes the state and runs the already failed for_each_cpu() loop again for no reason. Signed-off-by: Oleg Nesterov <oleg@redhat.com> Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> Cc: Andrew Morton <akpm@linux-foundation.org> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Mike Galbraith <efault@gmx.de> Cc: Paul E. McKenney <paulmck@linux.vnet.ibm.com> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Rik van Riel <riel@redhat.com> Cc: Tejun Heo <tj@kernel.org> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: Vitaly Kuznetsov <vkuznets@redhat.com> Cc: heiko.carstens@de.ibm.com Link: http://lkml.kernel.org/r/20151010185315.GA24100@redhat.com Signed-off-by: Ingo Molnar <mingo@kernel.org>
2015-10-20sched: Move cpu_active() tests from stop_two_cpus() into migrate_swap_stop()Peter Zijlstra
The cpu_active() tests are not fundamentally part of stop_two_cpus(), move then into the scheduler where they belong. Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> Cc: Andrew Morton <akpm@linux-foundation.org> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Mike Galbraith <efault@gmx.de> Cc: Paul E. McKenney <paulmck@linux.vnet.ibm.com> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Thomas Gleixner <tglx@linutronix.de> Signed-off-by: Ingo Molnar <mingo@kernel.org>
2015-10-20sched: Start stopper earlyPeter Zijlstra
Ensure the stopper thread is active 'early', because the load balancer pretty much assumes that its available. And when 'online && active' the load-balancer is fully available. Not only the numa balancing stop_two_cpus() caller relies on it, but also the self migration stuff does, and at CPU_ONLINE time the cpu really is 'free' to run anything. Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> Signed-off-by: Oleg Nesterov <oleg@redhat.com> Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> Cc: Andrew Morton <akpm@linux-foundation.org> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Mike Galbraith <efault@gmx.de> Cc: Paul E. McKenney <paulmck@linux.vnet.ibm.com> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Rik van Riel <riel@redhat.com> Cc: Tejun Heo <tj@kernel.org> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: heiko.carstens@de.ibm.com Link: http://lkml.kernel.org/r/20151009160054.GA10176@redhat.com Signed-off-by: Ingo Molnar <mingo@kernel.org>
2015-10-20Merge branch 'sched/urgent' into sched/core, to pick up fixes and resolve ↵Ingo Molnar
conflicts Conflicts: kernel/sched/fair.c Signed-off-by: Ingo Molnar <mingo@kernel.org>
2015-10-20nohz: Revert "nohz: Set isolcpus when nohz_full is set"Frederic Weisbecker
This reverts: 8cb9764fc88b ("nohz: Set isolcpus when nohz_full is set") We assumed that full-nohz users always want scheduler isolation on full dynticks CPUs, therefore we included full-nohz CPUs on cpu_isolated_map. This means that tasks run by default on CPUs outside the nohz_full range unless their affinity is explicity overwritten. This suits pure isolation workloads but when the machine is needed to run common workloads, the available sets of CPUs to run common tasks becomes reduced. We reach an extreme case when CONFIG_NO_HZ_FULL_ALL is enabled as it leaves only CPU 0 for non-isolation tasks, which makes people think that their supercomputer regressed to 90's UP - which is true in a sense. Some full-nohz users appear to be interested in running normal workloads either before or after an isolation workload. Full-nohz isn't optimized toward normal workloads but it's still better than UP performance. We are reaching a limitation in kernel presets here. Lets revert this cpu_isolated_map inclusion and let userspace do its own scheduler isolation using cpusets or explicit affinity settings. Reported-by: Ingo Molnar <mingo@kernel.org> Reported-by: Mike Galbraith <umgwanakikbuti@gmail.com> Signed-off-by: Frederic Weisbecker <fweisbec@gmail.com> Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> Acked-by: Thomas Gleixner <tglx@linutronix.de> Cc: Alexey Dobriyan <adobriyan@gmail.com> Cc: Andrew Morton <akpm@linux-foundation.org> Cc: Chris Metcalf <cmetcalf@ezchip.com> Cc: Christoph Lameter <cl@linux.com> Cc: Dave Jones <davej@redhat.com> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Mike Galbraith <efault@gmx.de> Cc: Oleg Nesterov <oleg@redhat.com> Cc: Paul E . McKenney <paulmck@linux.vnet.ibm.com> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Rik van Riel <riel@redhat.com> Link: http://lkml.kernel.org/r/1444663283-30068-1-git-send-email-fweisbec@gmail.com Signed-off-by: Ingo Molnar <mingo@kernel.org>
2015-10-19Merge branch 'for-mingo' of ↵Ingo Molnar
git://git.kernel.org/pub/scm/linux/kernel/git/paulmck/linux-rcu into core/rcu Pull RCU updates from Paul E. McKenney: - Miscellaneous fixes. (Paul E. McKenney, Boqun Feng, Oleg Nesterov, Patrick Marlier) - Improvements to expedited grace periods. (Paul E. McKenney) - Performance improvements to and locktorture tests for percpu-rwsem. (Oleg Nesterov, Paul E. McKenney) - Torture-test changes. (Paul E. McKenney, Davidlohr Bueso) - Documentation updates. (Paul E. McKenney) Signed-off-by: Ingo Molnar <mingo@kernel.org>
2015-10-15cgroup: keep zombies associated with their original cgroupsTejun Heo
cgroup_exit() is called when a task exits and disassociates the exiting task from its cgroups and half-attach it to the root cgroup. This is unnecessary and undesirable. No controller actually needs an exiting task to be disassociated with non-root cgroups. Both cpu and perf_event controllers update the association to the root cgroup from their exit callbacks just to keep consistent with the cgroup core behavior. Also, this disassociation makes it difficult to track resources held by zombies or determine where the zombies came from. Currently, pids controller is completely broken as it uncharges on exit and zombies always escape the resource restriction. With cgroup association being reset on exit, fixing it is pretty painful. There's no reason to reset cgroup membership on exit. The zombie can be removed from its css_set so that it doesn't show up on "cgroup.procs" and thus can't be migrated or interfere with cgroup removal. It can still pin and point to the css_set so that its cgroup membership is maintained. This patch makes cgroup core keep zombies associated with their cgroups at the time of exit. * Previous patches decoupled populated_cnt tracking from css_set lifetime, so a dying task can be simply unlinked from its css_set while pinning and pointing to the css_set. This keeps css_set association from task side alive while hiding it from "cgroup.procs" and populated_cnt tracking. The css_set reference is dropped when the task_struct is freed. * ->exit() callback no longer needs the css arguments as the associated css never changes once PF_EXITING is set. Removed. * cpu and perf_events controllers no longer need ->exit() callbacks. There's no reason to explicitly switch away on exit. The final schedule out is enough. The callbacks are removed. * On traditional hierarchies, nothing changes. "/proc/PID/cgroup" still reports "/" for all zombies. On the default hierarchy, "/proc/PID/cgroup" keeps reporting the cgroup that the task belonged to at the time of exit. If the cgroup gets removed before the task is reaped, " (deleted)" is appended. v2: Build brekage due to missing dummy cgroup_free() when !CONFIG_CGROUP fixed. Signed-off-by: Tejun Heo <tj@kernel.org> Cc: Ingo Molnar <mingo@redhat.com> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Arnaldo Carvalho de Melo <acme@kernel.org>
2015-10-06sched: Export sched_setscheduler_nocheckDavidlohr Bueso
The new locktorture rtmutex_lock tests exercise priority boosting, which means that they need to set some tasks to real-time priority. To do this, they use sched_setscheduler_nocheck(). However, this is not exported to modules, which results in the following error when building locktorture as a module: ERROR: "sched_setscheduler_nocheck" [kernel/locking/locktorture.ko] undefined! This commit therefore adds an EXPORT_SYMBOL_GPL() to allow this function to be invoked from locktorture when built as a module. Reported-by: Stephen Rothwell <sfr@canb.auug.org.au> Signed-off-by: Davidlohr Bueso <dave@stgolabs.net> Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com> Acked-by: Ingo Molnar <mingo@kernel.org> Reviewed-by: Josh Triplett <josh@joshtriplett.org>
2015-10-06sched/core: Remove a parameter in the migrate_task_rq() functionxiaofeng.yan
The parameter "int next_cpu" in the following function is unused: migrate_task_rq(struct task_struct *p, int next_cpu) Remove it. Signed-off-by: xiaofeng.yan <yanxiaofeng@inspur.com> Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Mike Galbraith <efault@gmx.de> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: linux-kernel@vger.kernel.org Link: http://lkml.kernel.org/r/1442991360-31945-1-git-send-email-yanxiaofeng@inspur.com Signed-off-by: Ingo Molnar <mingo@kernel.org>
2015-10-06sched/core: Drop unlikely behind BUG_ON()Geliang Tang
(1) For !CONFIG_BUG cases, the bug call is a no-op, so we couldn't care less and the change is ok. (2) PPC and MIPS, which HAVE_ARCH_BUG_ON, do not rely on branch predictions as it seems to be pointless [1] and thus callers should not be trying to push an optimization in the first place. (3) For CONFIG_BUG and !HAVE_ARCH_BUG_ON cases, BUG_ON() contains an unlikely compiler flag already. Hence, we can drop unlikely behind BUG_ON(). [1] http://lkml.iu.edu/hypermail/linux/kernel/1101.3/02289.html Signed-off-by: Geliang Tang <geliangtang@163.com> Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Mike Galbraith <efault@gmx.de> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: linux-kernel@vger.kernel.org Link: http://lkml.kernel.org/r/6fa7125979f98bbeac26e268271769b6ca935c8d.1444051018.git.geliangtang@163.com Signed-off-by: Ingo Molnar <mingo@kernel.org>
2015-10-06sched/core: Fix task and run queue sched_info::run_delay inconsistenciesPeter Zijlstra
Mike Meyer reported the following bug: > During evaluation of some performance data, it was discovered thread > and run queue run_delay accounting data was inconsistent with the other > accounting data that was collected. Further investigation found under > certain circumstances execution time was leaking into the task and > run queue accounting of run_delay. > > Consider the following sequence: > > a. thread is running. > b. thread moves beween cgroups, changes scheduling class or priority. > c. thread sleeps OR > d. thread involuntarily gives up cpu. > > a. implies: > > thread->sched_info.last_queued = 0 > > a. and b. results in the following: > > 1. dequeue_task(rq, thread) > > sched_info_dequeued(rq, thread) > delta = 0 > > sched_info_reset_dequeued(thread) > thread->sched_info.last_queued = 0 > > thread->sched_info.run_delay += delta > > 2. enqueue_task(rq, thread) > > sched_info_queued(rq, thread) > > /* thread is still on cpu at this point. */ > thread->sched_info.last_queued = task_rq(thread)->clock; > > c. results in: > > dequeue_task(rq, thread) > > sched_info_dequeued(rq, thread) > > /* delta is execution time not run_delay. */ > delta = task_rq(thread)->clock - thread->sched_info.last_queued > > sched_info_reset_dequeued(thread) > thread->sched_info.last_queued = 0 > > thread->sched_info.run_delay += delta > > Since thread was running between enqueue_task(rq, thread) and > dequeue_task(rq, thread), the delta above is really execution > time and not run_delay. > > d. results in: > > __sched_info_switch(thread, next_thread) > > sched_info_depart(rq, thread) > > sched_info_queued(rq, thread) > > /* last_queued not updated due to being non-zero */ > return > > Since thread was running between enqueue_task(rq, thread) and > __sched_info_switch(thread, next_thread), the execution time > between enqueue_task(rq, thread) and > __sched_info_switch(thread, next_thread) now will become > associated with run_delay due to when last_queued was last updated. > This alternative patch solves the problem by not calling sched_info_{de,}queued() in {de,en}queue_task(). Therefore the sched_info state is preserved and things work as expected. By inlining the {de,en}queue_task() functions the new condition becomes (mostly) a compile-time constant and we'll not emit any new branch instructions. It even shrinks the code (due to inlining {en,de}queue_task()): $ size defconfig-build/kernel/sched/core.o defconfig-build/kernel/sched/core.o.orig text data bss dec hex filename 64019 23378 2344 89741 15e8d defconfig-build/kernel/sched/core.o 64149 23378 2344 89871 15f0f defconfig-build/kernel/sched/core.o.orig Reported-by: Mike Meyer <Mike.Meyer@Teradata.com> Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Mike Galbraith <efault@gmx.de> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: linux-kernel@vger.kernel.org Link: http://lkml.kernel.org/r/20150930154413.GO3604@twins.programming.kicks-ass.net Signed-off-by: Ingo Molnar <mingo@kernel.org>
2015-10-06sched/core: Add preempt_count invariant checkPeter Zijlstra
Ingo requested I keep my debug check for the preempt_count invariant. Requested-by: Ingo Molnar <mingo@kernel.org> Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Mike Galbraith <efault@gmx.de> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: linux-kernel@vger.kernel.org Signed-off-by: Ingo Molnar <mingo@kernel.org>
2015-10-06sched/core: More notrace annotationsPeter Zijlstra
preempt_schedule_common() is marked notrace, but it does not use _notrace() preempt_count functions and __schedule() is also not marked notrace, which means that its perfectly possible to end up in the tracer from preempt_schedule_common(). Steve says: | Yep, there's some history to this. This was originally the issue that | caused function tracing to go into infinite recursion. But now we have | preempt_schedule_notrace(), which is used by the function tracer, and | that function must not be traced till preemption is disabled. | | Now if function tracing is running and we take an interrupt when | NEED_RESCHED is set, it calls | | preempt_schedule_common() (not traced) | | But then that calls preempt_disable() (traced) | | function tracer calls preempt_disable_notrace() followed by | preempt_enable_notrace() which will see NEED_RESCHED set, and it will | call preempt_schedule_notrace(), which stops the recursion, but | still calls __schedule() here, and that means when we return, we call | the __schedule() from preempt_schedule_common(). | | That said, I prefer this patch. Preemption is disabled before calling | __schedule(), and we get rid of a one round recursion with the | scheduler. Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> Reviewed-by: Thomas Gleixner <tglx@linutronix.de> Acked-by: Steven Rostedt <rostedt@goodmis.org> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Mike Galbraith <efault@gmx.de> Cc: Peter Zijlstra <peterz@infradead.org> Cc: linux-kernel@vger.kernel.org Signed-off-by: Ingo Molnar <mingo@kernel.org>
2015-10-06sched/core: Simplify preempt_count testsPeter Zijlstra
Since we stopped setting PREEMPT_ACTIVE, there is no need to mask it out of preempt_count() tests. Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> Reviewed-by: Thomas Gleixner <tglx@linutronix.de> Reviewed-by: Steven Rostedt <rostedt@goodmis.org> Reviewed-by: Frederic Weisbecker <fweisbec@gmail.com> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Mike Galbraith <efault@gmx.de> Cc: Peter Zijlstra <peterz@infradead.org> Cc: linux-kernel@vger.kernel.org Signed-off-by: Ingo Molnar <mingo@kernel.org>
2015-10-06sched/core: Robustify preemption leak checksPeter Zijlstra
When we warn about a preempt_count leak; reset the preempt_count to the known good value such that the problem does not ripple forward. This is most important on x86 which has a per cpu preempt_count that is not saved/restored (after this series). So if you schedule with an invalid (!2*PREEMPT_DISABLE_OFFSET) preempt_count the next task is messed up too. Enforcing this invariant limits the borkage to just the one task. Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> Reviewed-by: Frederic Weisbecker <fweisbec@gmail.com> Reviewed-by: Thomas Gleixner <tglx@linutronix.de> Reviewed-by: Steven Rostedt <rostedt@goodmis.org> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Mike Galbraith <efault@gmx.de> Cc: Peter Zijlstra <peterz@infradead.org> Cc: linux-kernel@vger.kernel.org Signed-off-by: Ingo Molnar <mingo@kernel.org>
2015-10-06sched/core: Stop setting PREEMPT_ACTIVEPeter Zijlstra
Now that nothing tests for PREEMPT_ACTIVE anymore, stop setting it. Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> Reviewed-by: Thomas Gleixner <tglx@linutronix.de> Reviewed-by: Steven Rostedt <rostedt@goodmis.org> Reviewed-by: Frederic Weisbecker <fweisbec@gmail.com> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Mike Galbraith <efault@gmx.de> Cc: Peter Zijlstra <peterz@infradead.org> Cc: linux-kernel@vger.kernel.org Signed-off-by: Ingo Molnar <mingo@kernel.org>
2015-10-06sched/core: Fix trace_sched_switch()Peter Zijlstra
__trace_sched_switch_state() is the last remaining PREEMPT_ACTIVE user, move trace_sched_switch() from prepare_task_switch() to __schedule() and propagate the @preempt argument. Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> Reviewed-by: Thomas Gleixner <tglx@linutronix.de> Reviewed-by: Steven Rostedt <rostedt@goodmis.org> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Mike Galbraith <efault@gmx.de> Cc: Peter Zijlstra <peterz@infradead.org> Cc: linux-kernel@vger.kernel.org Signed-off-by: Ingo Molnar <mingo@kernel.org>
2015-10-06sched/core: Add preempt argument to __schedule()Peter Zijlstra
There is only a single PREEMPT_ACTIVE use in the regular __schedule() path and that is to circumvent the task->state check. Since the code setting PREEMPT_ACTIVE is the immediate caller of __schedule() we can replace this with a function argument. Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> Reviewed-by: Thomas Gleixner <tglx@linutronix.de> Reviewed-by: Frederic Weisbecker <fweisbec@gmail.com> Reviewed-by: Steven Rostedt <rostedt@goodmis.org> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Mike Galbraith <efault@gmx.de> Cc: Peter Zijlstra <peterz@infradead.org> Cc: linux-kernel@vger.kernel.org Signed-off-by: Ingo Molnar <mingo@kernel.org>
2015-10-06sched/core: Create preempt_count invariantPeter Zijlstra
Assuming units of PREEMPT_DISABLE_OFFSET for preempt_count() numbers. Now that TASK_DEAD no longer results in preempt_count() == 3 during scheduling, we will always call context_switch() with preempt_count() == 2. However, we don't always end up with preempt_count() == 2 in finish_task_switch() because new tasks get created with preempt_count() == 1. Create FORK_PREEMPT_COUNT and set it to 2 and use that in the right places. Note that we cannot use INIT_PREEMPT_COUNT as that serves another purpose (boot). After this, preempt_count() is invariant across the context switch, with exception of PREEMPT_ACTIVE. Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Mike Galbraith <efault@gmx.de> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: linux-kernel@vger.kernel.org Signed-off-by: Ingo Molnar <mingo@kernel.org>
2015-10-06sched/core: Rework TASK_DEAD preemption exceptionPeter Zijlstra
TASK_DEAD is special in that the final schedule call from do_exit() must be done with preemption disabled. This means we end up scheduling with a preempt_count() higher than usual (3 instead of the 'expected' 2). Since future patches will want to rely on an invariant preempt_count() value during schedule, fix this up. Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> Reviewed-by: Thomas Gleixner <tglx@linutronix.de> Reviewed-by: Frederic Weisbecker <fweisbec@gmail.com> Reviewed-by: Steven Rostedt <rostedt@goodmis.org> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Mike Galbraith <efault@gmx.de> Cc: Peter Zijlstra <peterz@infradead.org> Cc: linux-kernel@vger.kernel.org Signed-off-by: Ingo Molnar <mingo@kernel.org>
2015-10-06Merge branch 'sched/urgent' into sched/core, to pick up fixes before ↵Ingo Molnar
applying new changes Signed-off-by: Ingo Molnar <mingo@kernel.org>
2015-10-06sched/core: Fix TASK_DEAD race in finish_task_switch()Peter Zijlstra
So the problem this patch is trying to address is as follows: CPU0 CPU1 context_switch(A, B) ttwu(A) LOCK A->pi_lock A->on_cpu == 0 finish_task_switch(A) prev_state = A->state <-. WMB | A->on_cpu = 0; | UNLOCK rq0->lock | | context_switch(C, A) `-- A->state = TASK_DEAD prev_state == TASK_DEAD put_task_struct(A) context_switch(A, C) finish_task_switch(A) A->state == TASK_DEAD put_task_struct(A) The argument being that the WMB will allow the load of A->state on CPU0 to cross over and observe CPU1's store of A->state, which will then result in a double-drop and use-after-free. Now the comment states (and this was true once upon a long time ago) that we need to observe A->state while holding rq->lock because that will order us against the wakeup; however the wakeup will not in fact acquire (that) rq->lock; it takes A->pi_lock these days. We can obviously fix this by upgrading the WMB to an MB, but that is expensive, so we'd rather avoid that. The alternative this patch takes is: smp_store_release(&A->on_cpu, 0), which avoids the MB on some archs, but not important ones like ARM. Reported-by: Oleg Nesterov <oleg@redhat.com> Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> Acked-by: Linus Torvalds <torvalds@linux-foundation.org> Cc: <stable@vger.kernel.org> # v3.1+ Cc: Peter Zijlstra <peterz@infradead.org> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: linux-kernel@vger.kernel.org Cc: manfred@colorfullife.com Cc: will.deacon@arm.com Fixes: e4a52bcb9a18 ("sched: Remove rq->lock from the first half of ttwu()") Link: http://lkml.kernel.org/r/20150929124509.GG3816@twins.programming.kicks-ass.net Signed-off-by: Ingo Molnar <mingo@kernel.org>
2015-09-27Merge branch 'sched-urgent-for-linus' of ↵Linus Torvalds
git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip Pull scheduler fix from Thomas Gleixner: "A single bug fix for the scheduler to prevent dequeueing of the idle task when setting the cpus allowed mask" * 'sched-urgent-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip: sched: Fix crash trying to dequeue/enqueue the idle thread
2015-09-23sched/core: Make 'sched_domain_topology' declaration staticJuergen Gross
The 'sched_domain_topology' variable is only used within kernel/sched/core.c. Make it static. Signed-off-by: Juergen Gross <jgross@suse.com> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Mike Galbraith <efault@gmx.de> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Thomas Gleixner <tglx@linutronix.de> Link: http://lkml.kernel.org/r/1442918939-9907-1-git-send-email-jgross@suse.com Signed-off-by: Ingo Molnar <mingo@kernel.org>
2015-09-18Merge tag 'for-linus' of git://git.kernel.org/pub/scm/virt/kvm/kvmLinus Torvalds
Pull KVM fixes from Paolo Bonzini: "Mostly stable material, a lot of ARM fixes" * tag 'for-linus' of git://git.kernel.org/pub/scm/virt/kvm/kvm: (22 commits) sched: access local runqueue directly in single_task_running arm/arm64: KVM: Remove 'config KVM_ARM_MAX_VCPUS' arm64: KVM: Remove all traces of the ThumbEE registers arm: KVM: Disable virtual timer even if the guest is not using it arm64: KVM: Disable virtual timer even if the guest is not using it arm/arm64: KVM: vgic: Check for !irqchip_in_kernel() when mapping resources KVM: s390: Replace incorrect atomic_or with atomic_andnot arm: KVM: Fix incorrect device to IPA mapping arm64: KVM: Fix user access for debug registers KVM: vmx: fix VPID is 0000H in non-root operation KVM: add halt_attempted_poll to VCPU stats kvm: fix zero length mmio searching kvm: fix double free for fast mmio eventfd kvm: factor out core eventfd assign/deassign logic kvm: don't try to register to KVM_FAST_MMIO_BUS for non mmio eventfd KVM: make the declaration of functions within 80 characters KVM: arm64: add workaround for Cortex-A57 erratum #852523 KVM: fix polling for guest halt continued even if disable it arm/arm64: KVM: Fix PSCI affinity info return value for non valid cores arm64: KVM: set {v,}TCR_EL2 RES1 bits ...
2015-09-18sched: access local runqueue directly in single_task_runningDominik Dingel
Commit 2ee507c47293 ("sched: Add function single_task_running to let a task check if it is the only task running on a cpu") referenced the current runqueue with the smp_processor_id. When CONFIG_DEBUG_PREEMPT is enabled, that is only allowed if preemption is disabled or the currrent task is bound to the local cpu (e.g. kernel worker). With commit f78195129963 ("kvm: add halt_poll_ns module parameter") KVM calls single_task_running. If CONFIG_DEBUG_PREEMPT is enabled that generates a lot of kernel messages. To avoid adding preemption in that cases, as it would limit the usefulness, we change single_task_running to access directly the cpu local runqueue. Cc: Tim Chen <tim.c.chen@linux.intel.com> Suggested-by: Peter Zijlstra <peterz@infradead.org> Acked-by: Peter Zijlstra (Intel) <peterz@infradead.org> Cc: <stable@vger.kernel.org> Fixes: 2ee507c472939db4b146d545352b8a7c79ef47f8 Signed-off-by: Dominik Dingel <dingel@linux.vnet.ibm.com> Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2015-09-18sched/core: Make policy-testing consistentHenrik Austad
Most of the policy-tests are done via the <class>_policy() helpers with the notable exception of idle. A new wrapper for valid_policy() has also been added to improve readability in set_load_weight(). This commit does not change the logical behavior of the scheduler core. Signed-off-by: Henrik Austad <henrik@austad.us> Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: linux-kernel@vger.kernel.org Link: http://lkml.kernel.org/r/1441810841-4756-1-git-send-email-henrik@austad.us Signed-off-by: Ingo Molnar <mingo@kernel.org>
2015-09-18sched: Fix crash trying to dequeue/enqueue the idle threadPeter Zijlstra
Sasha reports that his virtual machine tries to schedule the idle thread since commit 6c37067e2786 ("sched: Change the sched_class::set_cpus_allowed() calling context"). Hit trace shows this happening from idle_thread_get()->init_idle(), which is the _second_ init_idle() invocation on that task_struct, the first being done through idle_init()->fork_idle(). (this code is insane...) Because we call init_idle() twice in a row, its ->sched_class == &idle_sched_class and ->on_rq = TASK_ON_RQ_QUEUED. This means do_set_cpus_allowed() think we're queued and will call dequeue_task(), which is implemented with BUG() for the idle class, seeing how dequeueing the idle task is a daft thing. Aside of the whole insanity of calling init_idle() _twice_, change the code to call set_cpus_allowed_common() instead as this is 'obviously' before the idle task gets ran etc.. Reported-by: Sasha Levin <sasha.levin@oracle.com> Tested-by: Sasha Levin <sasha.levin@oracle.com> Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Thomas Gleixner <tglx@linutronix.de> Fixes: 6c37067e2786 ("sched: Change the sched_class::set_cpus_allowed() calling context") Signed-off-by: Ingo Molnar <mingo@kernel.org>
2015-09-17Merge branch 'sched-urgent-for-linus' of ↵Linus Torvalds
git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip Pull scheduler fixes from Ingo Molnar: "A migrate_tasks() locking fix, and a late-coming nohz change plus a nohz debug check" * 'sched-urgent-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip: sched: 'Annotate' migrate_tasks() nohz: Assert existing housekeepers when nohz full enabled nohz: Affine unpinned timers to housekeepers