summaryrefslogtreecommitdiff
path: root/kernel/sched/deadline.c
AgeCommit message (Collapse)Author
2015-01-16sched/deadline: Avoid double-accounting in case of missed deadlinesLuca Abeni
commit 269ad8015a6b2bb1cf9e684da4921eb6fa0a0c88 upstream. The dl_runtime_exceeded() function is supposed to ckeck if a SCHED_DEADLINE task must be throttled, by checking if its current runtime is <= 0. However, it also checks if the scheduling deadline has been missed (the current time is larger than the current scheduling deadline), further decreasing the runtime if this happens. This "double accounting" is wrong: - In case of partitioned scheduling (or single CPU), this happens if task_tick_dl() has been called later than expected (due to small HZ values). In this case, the current runtime is also negative, and replenish_dl_entity() can take care of the deadline miss by recharging the current runtime to a value smaller than dl_runtime - In case of global scheduling on multiple CPUs, scheduling deadlines can be missed even if the task did not consume more runtime than expected, hence penalizing the task is wrong This patch fix this problem by throttling a SCHED_DEADLINE task only when its runtime becomes negative, and not modifying the runtime Signed-off-by: Luca Abeni <luca.abeni@unitn.it> Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> Acked-by: Juri Lelli <juri.lelli@gmail.com> Cc: Dario Faggioli <raistlin@linux.it> Cc: Linus Torvalds <torvalds@linux-foundation.org> Link: http://lkml.kernel.org/r/1418813432-20797-3-git-send-email-luca.abeni@unitn.it Signed-off-by: Ingo Molnar <mingo@kernel.org> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2015-01-16sched/deadline: Fix migration of SCHED_DEADLINE tasksLuca Abeni
commit 6a503c3be937d275113b702e0421e5b0720abe8a upstream. According to global EDF, tasks should be migrated between runqueues without checking if their scheduling deadlines and runtimes are valid. However, SCHED_DEADLINE currently performs such a check: a migration happens doing: deactivate_task(rq, next_task, 0); set_task_cpu(next_task, later_rq->cpu); activate_task(later_rq, next_task, 0); which ends up calling dequeue_task_dl(), setting the new CPU, and then calling enqueue_task_dl(). enqueue_task_dl() then calls enqueue_dl_entity(), which calls update_dl_entity(), which can modify scheduling deadline and runtime, breaking global EDF scheduling. As a result, some of the properties of global EDF are not respected: for example, a taskset {(30, 80), (40, 80), (120, 170)} scheduled on two cores can have unbounded response times for the third task even if 30/80+40/80+120/170 = 1.5809 < 2 This can be fixed by invoking update_dl_entity() only in case of wakeup, or if this is a new SCHED_DEADLINE task. Signed-off-by: Luca Abeni <luca.abeni@unitn.it> Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> Acked-by: Juri Lelli <juri.lelli@gmail.com> Cc: Dario Faggioli <raistlin@linux.it> Cc: Linus Torvalds <torvalds@linux-foundation.org> Link: http://lkml.kernel.org/r/1418813432-20797-2-git-send-email-luca.abeni@unitn.it Signed-off-by: Ingo Molnar <mingo@kernel.org> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2014-08-07printk: rename printk_sched to printk_deferredJohn Stultz
commit aac74dc495456412c4130a1167ce4beb6c1f0b38 upstream. After learning we'll need some sort of deferred printk functionality in the timekeeping core, Peter suggested we rename the printk_sched function so it can be reused by needed subsystems. This only changes the function name. No logic changes. Signed-off-by: John Stultz <john.stultz@linaro.org> Reviewed-by: Steven Rostedt <rostedt@goodmis.org> Cc: Jan Kara <jack@suse.cz> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Jiri Bohac <jbohac@suse.cz> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: Ingo Molnar <mingo@redhat.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2014-06-11sched/dl: Fix race in dl_task_timer()Kirill Tkhai
commit 0f397f2c90ce68821ee864c2c53baafe78de765d upstream. Throttled task is still on rq, and it may be moved to other cpu if user is playing with sched_setaffinity(). Therefore, unlocked task_rq() access makes the race. Juri Lelli reports he got this race when dl_bandwidth_enabled() was not set. Other thing, pointed by Peter Zijlstra: "Now I suppose the problem can still actually happen when you change the root domain and trigger a effective affinity change that way". To fix that we do the same as made in __task_rq_lock(). We do not use __task_rq_lock() itself, because it has a useful lockdep check, which is not correct in case of dl_task_timer(). We do not need pi_lock locked here. This case is an exception (PeterZ): "The only reason we don't strictly need ->pi_lock now is because we're guaranteed to have p->state == TASK_RUNNING here and are thus free of ttwu races". Signed-off-by: Kirill Tkhai <tkhai@yandex.ru> Signed-off-by: Peter Zijlstra <peterz@infradead.org> Cc: Linus Torvalds <torvalds@linux-foundation.org> Link: http://lkml.kernel.org/r/3056991400578422@web14g.yandex.ru Signed-off-by: Ingo Molnar <mingo@kernel.org> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2014-02-27sched/deadline: Prevent rt_time growth to infinityJuri Lelli
Kirill Tkhai noted: Since deadline tasks share rt bandwidth, we must care about bandwidth timer set. Otherwise rt_time may grow up to infinity in update_curr_dl(), if there are no other available RT tasks on top level bandwidth. RT task were in fact throttled right after they got enqueued, and never executed again (rt_time never again went below rt_runtime). Peter then proposed to accrue DL execution on rt_time only when rt timer is active, and proposed a patch (this patch is a slight modification of that) to implement that behavior. While this solves Kirill problem, it has a drawback. Indeed, Kirill noted again: It looks we may get into a situation, when all CPU time is shared between RT and DL tasks: rt_runtime = n rt_period = 2n | RT working, DL sleeping | DL working, RT sleeping | ----------------------------------------------------------- | (1) duration = n | (2) duration = n | (repeat) |--------------------------|------------------------------| | (rt_bw timer is running) | (rt_bw timer is not running) | No time for fair tasks at all. While this can happen during the first period, if rq is always backlogged, RT tasks won't have the opportunity to execute anymore: rt_time reached rt_runtime during (1), suppose after (2) RT is enqueued back, it gets throttled since rt timer didn't fire, replenishment is from now on eaten up by DL tasks that accrue their execution on rt_time (while rt timer is active - we have an RT task waiting for replenishment). FAIR tasks are not touched after this first period. Ok, this is not ideal, and the situation is even worse! What above (the nice case), practically never happens in reality, where your rt timer is not aligned to tasks periods, tasks are in general not periodic, etc.. Long story short, you always risk to overload your system. This patch is based on Peter's idea, but exploits an additional fact: if you don't have RT tasks enqueued, it makes little sense to continue incrementing rt_time once you reached the upper limit (DL tasks have their own mechanism for throttling). This cures both problems: - no matter how many DL instances in the past, you'll have an rt_time slightly above rt_runtime when an RT task is enqueued, and from that point on (after the first replenishment), the task will normally execute; - you can still eat up all bandwidth during the first period, but not anymore after that, remember that DL execution will increment rt_time till the upper limit is reached. The situation is still not perfect! But, we have a simple solution for now, that limits how much you can jeopardize your system, as we keep working towards the right answer: RT groups scheduled using deadline servers. Reported-by: Kirill Tkhai <tkhai@yandex.ru> Signed-off-by: Juri Lelli <juri.lelli@gmail.com> Signed-off-by: Peter Zijlstra <peterz@infradead.org> Cc: Steven Rostedt <rostedt@goodmis.org> Link: http://lkml.kernel.org/r/20140225151515.617714e2f2cd6c558531ba61@gmail.com Signed-off-by: Ingo Molnar <mingo@kernel.org>
2014-02-27sched/deadline: Cleanup RT leftovers from {inc/dec}_dl_migrationKirill Tkhai
In deadline class we do not have group scheduling. So, let's remove unnecessary X = X; equations. Signed-off-by: Kirill Tkhai <ktkhai@parallels.com> Signed-off-by: Peter Zijlstra <peterz@infradead.org> Cc: Juri Lelli <juri.lelli@gmail.com> Link: http://lkml.kernel.org/r/1393343543.4089.5.camel@tkhai Signed-off-by: Ingo Molnar <mingo@kernel.org>
2014-02-21sched/deadline: Remove useless dl_nr_totalKirill Tkhai
In deadline class we do not have group scheduling like in RT. dl_nr_total is the same as dl_nr_running. So, one of them should be removed. Cc: Ingo Molnar <mingo@redhat.com> Cc: Juri Lelli <juri.lelli@gmail.com> Signed-off-by: Kirill Tkhai <tkhai@yandex.ru> Signed-off-by: Peter Zijlstra <peterz@infradead.org> Link: http://lkml.kernel.org/r/368631392675853@web20h.yandex.ru Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
2014-02-21sched/deadline: Fix bad accounting of nr_runningJuri Lelli
Rostedt writes: My test suite was locking up hard when enabling mmiotracer. This was due to the mmiotracer placing all but one CPU offline. I found this out when I was able to reproduce the bug with just my stress-cpu-hotplug test. This bug baffled me because it would not always trigger, and would only trigger on the first run after boot up. The stress-cpu-hotplug test would crash hard the first run, or never crash at all. But a new reboot may cause it to crash on the first run again. I spent all week bisecting this, as I couldn't find a consistent reproducer. I finally narrowed it down to the sched deadline patches, and even more peculiar, to the commit that added the sched deadline boot up self test to the latency tracer. Then it dawned on me to what the bug was. All it took was to run a task under sched deadline to screw up the CPU hot plugging. This explained why it would lock up only on the first run of the stress-cpu-hotplug test. The bug happened when the boot up self test of the schedule latency tracer would test a deadline task. The deadline task would corrupt something that would cause CPU hotplug to fail. If it didn't corrupt it, the stress test would always work (there's no other sched deadline tasks that would run to cause problems). If it did corrupt on boot up, the first test would lockup hard. I proved this theory by running my deadline test program on another box, and then run the stress-cpu-hotplug test, and it would now consistently lock up. I could run stress-cpu-hotplug over and over with no problem, but once I ran the deadline test, the next run of the stress-cpu-hotplug would lock hard. After adding lots of tracing to the code, I found the cause. The function tracer showed that migrate_tasks() was stuck in an infinite loop, where rq->nr_running never equaled 1 to break out of it. When I added a trace_printk() to see what that number was, it was 335 and never decrementing! Looking at the deadline code I found: static void __dequeue_task_dl(struct rq *rq, struct task_struct *p, int flags) { dequeue_dl_entity(&p->dl); dequeue_pushable_dl_task(rq, p); } static void dequeue_task_dl(struct rq *rq, struct task_struct *p, int flags) { update_curr_dl(rq); __dequeue_task_dl(rq, p, flags); dec_nr_running(rq); } And this: if (dl_runtime_exceeded(rq, dl_se)) { __dequeue_task_dl(rq, curr, 0); if (likely(start_dl_timer(dl_se, curr->dl.dl_boosted))) dl_se->dl_throttled = 1; else enqueue_task_dl(rq, curr, ENQUEUE_REPLENISH); if (!is_leftmost(curr, &rq->dl)) resched_task(curr); } Notice how we call __dequeue_task_dl() and in the else case we call enqueue_task_dl()? Also notice that dequeue_task_dl() has underscores where enqueue_task_dl() does not. The enqueue_task_dl() calls inc_nr_running(rq), but __dequeue_task_dl() does not. This is where we get nr_running out of sync. [snip] Another point where nr_running can get out of sync is when the dl_timer fires: dl_se->dl_throttled = 0; if (p->on_rq) { enqueue_task_dl(rq, p, ENQUEUE_REPLENISH); if (task_has_dl_policy(rq->curr)) check_preempt_curr_dl(rq, p, 0); else resched_task(rq->curr); This patch does two things: - correctly accounts for throttled tasks (that are now considered !running); - fixes the bug, updating nr_running from {inc,dec}_dl_tasks(), since we risk to update it twice in some situations (e.g., a task is dequeued while it has exceeded its budget). Cc: mingo@redhat.com Cc: torvalds@linux-foundation.org Cc: akpm@linux-foundation.org Reported-by: Steven Rostedt <rostedt@goodmis.org> Reviewed-by: Steven Rostedt <rostedt@goodmis.org> Tested-by: Steven Rostedt <rostedt@goodmis.org> Signed-off-by: Juri Lelli <juri.lelli@gmail.com> Signed-off-by: Peter Zijlstra <peterz@infradead.org> Link: http://lkml.kernel.org/r/1392884379-13744-1-git-send-email-juri.lelli@gmail.com Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
2014-01-28sched/deadline: Add sched_dl documentationDario Faggioli
Add in Documentation/scheduler/ some hints about the design choices, the usage and the future possible developments of the sched_dl scheduling class and of the SCHED_DEADLINE policy. Reviewed-by: Henrik Austad <henrik@austad.us> Signed-off-by: Dario Faggioli <raistlin@linux.it> Signed-off-by: Juri Lelli <juri.lelli@gmail.com> [ Re-wrote sections 2 and 3. ] Signed-off-by: Luca Abeni <luca.abeni@unitn.it> Signed-off-by: Peter Zijlstra <peterz@infradead.org> Link: http://lkml.kernel.org/r/1390821615-23247-1-git-send-email-juri.lelli@gmail.com Signed-off-by: Ingo Molnar <mingo@kernel.org>
2014-01-16sched/deadline: No need to check p if dl_se is validJuri Lelli
Dan Carpenter reported new 'Smatch' warnings: > tree: git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip.git sched/core > head: 130816ce4d5f69167324f7272e70aa3d641677c6 > commit: 1baca4ce16b8cc7d4f50be1f7914799af30a2861 [17/50] sched/deadline: Add SCHED_DEADLINE SMP-related data structures & logic > > kernel/sched/deadline.c:937 pick_next_task_dl() warn: variable dereferenced before check 'p' (see line 934) BUG_ON() already fires if pick_next_dl_entity() doesn't return a valid dl_se. No need to check if p is valid afterward. Reported-by: Dan Carpenter <dan.carpenter@oracle.com> Signed-off-by: Juri Lelli <juri.lelli@gmail.com> Signed-off-by: Peter Zijlstra <peterz@infradead.org> Fixes: 1baca4ce16b8 ("sched/deadline: Add SCHED_DEADLINE SMP-related data structures & logic") Link: http://lkml.kernel.org/r/52D54E25.6060100@gmail.com Signed-off-by: Ingo Molnar <mingo@kernel.org>
2014-01-13sched/deadline: Remove the sysctl_sched_dl knobsPeter Zijlstra
Remove the deadline specific sysctls for now. The problem with them is that the interaction with the exisiting rt knobs is nearly impossible to get right. The current (as per before this patch) situation is that the rt and dl bandwidth is completely separate and we enforce rt+dl < 100%. This is undesirable because this means that the rt default of 95% leaves us hardly any room, even though dl tasks are saver than rt tasks. Another proposed solution was (a discarted patch) to have the dl bandwidth be a fraction of the rt bandwidth. This is highly confusing imo. Furthermore neither proposal is consistent with the situation we actually want; which is rt tasks ran from a dl server. In which case the rt bandwidth is a direct subset of dl. So whichever way we go, the introduction of dl controls at this point is painful. Therefore remove them and instead share the rt budget. This means that for now the rt knobs are used for dl admission control and the dl runtime is accounted against the rt runtime. I realise that this isn't entirely desirable either; but whatever we do we appear to need to change the interface later, so better have a small interface for now. Signed-off-by: Peter Zijlstra <peterz@infradead.org> Link: http://lkml.kernel.org/n/tip-zpyqbqds1r0vyxtxza1e7rdc@git.kernel.org Signed-off-by: Ingo Molnar <mingo@kernel.org>
2014-01-13sched/deadline: speed up SCHED_DEADLINE pushes with a push-heapJuri Lelli
Data from tests confirmed that the original active load balancing logic didn't scale neither in the number of CPU nor in the number of tasks (as sched_rt does). Here we provide a global data structure to keep track of deadlines of the running tasks in the system. The structure is composed by a bitmask showing the free CPUs and a max-heap, needed when the system is heavily loaded. The implementation and concurrent access scheme are kept simple by design. However, our measurements show that we can compete with sched_rt on large multi-CPUs machines [1]. Only the push path is addressed, the extension to use this structure also for pull decisions is straightforward. However, we are currently evaluating different (in order to decrease/avoid contention) data structures to solve possibly both problems. We are also going to re-run tests considering recent changes inside cpupri [2]. [1] http://retis.sssup.it/~jlelli/papers/Ospert11Lelli.pdf [2] http://www.spinics.net/lists/linux-rt-users/msg06778.html Signed-off-by: Juri Lelli <juri.lelli@gmail.com> Signed-off-by: Peter Zijlstra <peterz@infradead.org> Link: http://lkml.kernel.org/r/1383831828-15501-14-git-send-email-juri.lelli@gmail.com Signed-off-by: Ingo Molnar <mingo@kernel.org>
2014-01-13sched/deadline: Add bandwidth management for SCHED_DEADLINE tasksDario Faggioli
In order of deadline scheduling to be effective and useful, it is important that some method of having the allocation of the available CPU bandwidth to tasks and task groups under control. This is usually called "admission control" and if it is not performed at all, no guarantee can be given on the actual scheduling of the -deadline tasks. Since when RT-throttling has been introduced each task group have a bandwidth associated to itself, calculated as a certain amount of runtime over a period. Moreover, to make it possible to manipulate such bandwidth, readable/writable controls have been added to both procfs (for system wide settings) and cgroupfs (for per-group settings). Therefore, the same interface is being used for controlling the bandwidth distrubution to -deadline tasks and task groups, i.e., new controls but with similar names, equivalent meaning and with the same usage paradigm are added. However, more discussion is needed in order to figure out how we want to manage SCHED_DEADLINE bandwidth at the task group level. Therefore, this patch adds a less sophisticated, but actually very sensible, mechanism to ensure that a certain utilization cap is not overcome per each root_domain (the single rq for !SMP configurations). Another main difference between deadline bandwidth management and RT-throttling is that -deadline tasks have bandwidth on their own (while -rt ones doesn't!), and thus we don't need an higher level throttling mechanism to enforce the desired bandwidth. This patch, therefore: - adds system wide deadline bandwidth management by means of: * /proc/sys/kernel/sched_dl_runtime_us, * /proc/sys/kernel/sched_dl_period_us, that determine (i.e., runtime / period) the total bandwidth available on each CPU of each root_domain for -deadline tasks; - couples the RT and deadline bandwidth management, i.e., enforces that the sum of how much bandwidth is being devoted to -rt -deadline tasks to stay below 100%. This means that, for a root_domain comprising M CPUs, -deadline tasks can be created until the sum of their bandwidths stay below: M * (sched_dl_runtime_us / sched_dl_period_us) It is also possible to disable this bandwidth management logic, and be thus free of oversubscribing the system up to any arbitrary level. Signed-off-by: Dario Faggioli <raistlin@linux.it> Signed-off-by: Juri Lelli <juri.lelli@gmail.com> Signed-off-by: Peter Zijlstra <peterz@infradead.org> Link: http://lkml.kernel.org/r/1383831828-15501-12-git-send-email-juri.lelli@gmail.com Signed-off-by: Ingo Molnar <mingo@kernel.org>
2014-01-13sched/deadline: Add SCHED_DEADLINE inheritance logicDario Faggioli
Some method to deal with rt-mutexes and make sched_dl interact with the current PI-coded is needed, raising all but trivial issues, that needs (according to us) to be solved with some restructuring of the pi-code (i.e., going toward a proxy execution-ish implementation). This is under development, in the meanwhile, as a temporary solution, what this commits does is: - ensure a pi-lock owner with waiters is never throttled down. Instead, when it runs out of runtime, it immediately gets replenished and it's deadline is postponed; - the scheduling parameters (relative deadline and default runtime) used for that replenishments --during the whole period it holds the pi-lock-- are the ones of the waiting task with earliest deadline. Acting this way, we provide some kind of boosting to the lock-owner, still by using the existing (actually, slightly modified by the previous commit) pi-architecture. We would stress the fact that this is only a surely needed, all but clean solution to the problem. In the end it's only a way to re-start discussion within the community. So, as always, comments, ideas, rants, etc.. are welcome! :-) Signed-off-by: Dario Faggioli <raistlin@linux.it> Signed-off-by: Juri Lelli <juri.lelli@gmail.com> [ Added !RT_MUTEXES build fix. ] Signed-off-by: Peter Zijlstra <peterz@infradead.org> Link: http://lkml.kernel.org/r/1383831828-15501-11-git-send-email-juri.lelli@gmail.com Signed-off-by: Ingo Molnar <mingo@kernel.org>
2014-01-13sched/deadline: Add period support for SCHED_DEADLINE tasksHarald Gustafsson
Make it possible to specify a period (different or equal than deadline) for -deadline tasks. Relative deadlines (D_i) are used on task arrivals to generate new scheduling (absolute) deadlines as "d = t + D_i", and periods (P_i) to postpone the scheduling deadlines as "d = d + P_i" when the budget is zero. This is in general useful to model (and schedule) tasks that have slow activation rates (long periods), but have to be scheduled soon once activated (short deadlines). Signed-off-by: Harald Gustafsson <harald.gustafsson@ericsson.com> Signed-off-by: Dario Faggioli <raistlin@linux.it> Signed-off-by: Juri Lelli <juri.lelli@gmail.com> Signed-off-by: Peter Zijlstra <peterz@infradead.org> Link: http://lkml.kernel.org/r/1383831828-15501-7-git-send-email-juri.lelli@gmail.com Signed-off-by: Ingo Molnar <mingo@kernel.org>
2014-01-13sched/deadline: Add SCHED_DEADLINE avg_update accountingDario Faggioli
Make the core scheduler and load balancer aware of the load produced by -deadline tasks, by updating the moving average like for sched_rt. Signed-off-by: Dario Faggioli <raistlin@linux.it> Signed-off-by: Juri Lelli <juri.lelli@gmail.com> Signed-off-by: Peter Zijlstra <peterz@infradead.org> Link: http://lkml.kernel.org/r/1383831828-15501-6-git-send-email-juri.lelli@gmail.com Signed-off-by: Ingo Molnar <mingo@kernel.org>
2014-01-13sched/deadline: Add SCHED_DEADLINE SMP-related data structures & logicJuri Lelli
Introduces data structures relevant for implementing dynamic migration of -deadline tasks and the logic for checking if runqueues are overloaded with -deadline tasks and for choosing where a task should migrate, when it is the case. Adds also dynamic migrations to SCHED_DEADLINE, so that tasks can be moved among CPUs when necessary. It is also possible to bind a task to a (set of) CPU(s), thus restricting its capability of migrating, or forbidding migrations at all. The very same approach used in sched_rt is utilised: - -deadline tasks are kept into CPU-specific runqueues, - -deadline tasks are migrated among runqueues to achieve the following: * on an M-CPU system the M earliest deadline ready tasks are always running; * affinity/cpusets settings of all the -deadline tasks is always respected. Therefore, this very special form of "load balancing" is done with an active method, i.e., the scheduler pushes or pulls tasks between runqueues when they are woken up and/or (de)scheduled. IOW, every time a preemption occurs, the descheduled task might be sent to some other CPU (depending on its deadline) to continue executing (push). On the other hand, every time a CPU becomes idle, it might pull the second earliest deadline ready task from some other CPU. To enforce this, a pull operation is always attempted before taking any scheduling decision (pre_schedule()), as well as a push one after each scheduling decision (post_schedule()). In addition, when a task arrives or wakes up, the best CPU where to resume it is selected taking into account its affinity mask, the system topology, but also its deadline. E.g., from the scheduling point of view, the best CPU where to wake up (and also where to push) a task is the one which is running the task with the latest deadline among the M executing ones. In order to facilitate these decisions, per-runqueue "caching" of the deadlines of the currently running and of the first ready task is used. Queued but not running tasks are also parked in another rb-tree to speed-up pushes. Signed-off-by: Juri Lelli <juri.lelli@gmail.com> Signed-off-by: Dario Faggioli <raistlin@linux.it> Signed-off-by: Peter Zijlstra <peterz@infradead.org> Link: http://lkml.kernel.org/r/1383831828-15501-5-git-send-email-juri.lelli@gmail.com Signed-off-by: Ingo Molnar <mingo@kernel.org>
2014-01-13sched/deadline: Add SCHED_DEADLINE structures & implementationDario Faggioli
Introduces the data structures, constants and symbols needed for SCHED_DEADLINE implementation. Core data structure of SCHED_DEADLINE are defined, along with their initializers. Hooks for checking if a task belong to the new policy are also added where they are needed. Adds a scheduling class, in sched/dl.c and a new policy called SCHED_DEADLINE. It is an implementation of the Earliest Deadline First (EDF) scheduling algorithm, augmented with a mechanism (called Constant Bandwidth Server, CBS) that makes it possible to isolate the behaviour of tasks between each other. The typical -deadline task will be made up of a computation phase (instance) which is activated on a periodic or sporadic fashion. The expected (maximum) duration of such computation is called the task's runtime; the time interval by which each instance need to be completed is called the task's relative deadline. The task's absolute deadline is dynamically calculated as the time instant a task (better, an instance) activates plus the relative deadline. The EDF algorithms selects the task with the smallest absolute deadline as the one to be executed first, while the CBS ensures each task to run for at most its runtime every (relative) deadline length time interval, avoiding any interference between different tasks (bandwidth isolation). Thanks to this feature, also tasks that do not strictly comply with the computational model sketched above can effectively use the new policy. To summarize, this patch: - introduces the data structures, constants and symbols needed; - implements the core logic of the scheduling algorithm in the new scheduling class file; - provides all the glue code between the new scheduling class and the core scheduler and refines the interactions between sched/dl and the other existing scheduling classes. Signed-off-by: Dario Faggioli <raistlin@linux.it> Signed-off-by: Michael Trimarchi <michael@amarulasolutions.com> Signed-off-by: Fabio Checconi <fchecconi@gmail.com> Signed-off-by: Juri Lelli <juri.lelli@gmail.com> Signed-off-by: Peter Zijlstra <peterz@infradead.org> Link: http://lkml.kernel.org/r/1383831828-15501-4-git-send-email-juri.lelli@gmail.com Signed-off-by: Ingo Molnar <mingo@kernel.org>