Age | Commit message (Collapse) | Author |
|
Add the sched_smt_active() function needed for some x86 speculation
mitigations. This was introduced upstream by commits 1b568f0aabf2
"sched/core: Optimize SCHED_SMT", ba2591a5993e "sched/smt: Update
sched_smt_present at runtime", c5511d03ec09 "sched/smt: Make
sched_smt_present track topology", and 321a874a7ef8 "sched/smt: Expose
sched_smt_present static key". The upstream implementation uses the
static_key_{disable,enable}_cpuslocked() functions, which aren't
practical to backport.
Signed-off-by: Ben Hutchings <ben@decadent.org.uk>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Ingo Molnar <mingo@kernel.org>
Cc: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Konrad Rzeszutek Wilk <konrad.wilk@oracle.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
commit a860fa7b96e1a1c974556327aa1aee852d434c21 upstream.
sched_clock_cpu() may not be consistent between CPUs. If a task
migrates to another CPU, then se.exec_start is set to that CPU's
rq_clock_task() by update_stats_curr_start(). Specifically, the new
value might be before the old value due to clock skew.
So then if in numa_get_avg_runtime() the expression:
'now - p->last_task_numa_placement'
ends up as -1, then the divider '*period + 1' in task_numa_placement()
is 0 and things go bang. Similar to update_curr(), check if time goes
backwards to avoid this.
[ peterz: Wrote new changelog. ]
[ mingo: Tweaked the code comment. ]
Signed-off-by: Xie XiuQi <xiexiuqi@huawei.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: cj.chengjian@huawei.com
Cc: <stable@vger.kernel.org>
Link: http://lkml.kernel.org/r/20190425080016.GX11158@hirez.programming.kicks-ass.net
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
[ Upstream commit 2e8e19226398db8265a8e675fcc0118b9e80c9e8 ]
With extremely short cfs_period_us setting on a parent task group with a large
number of children the for loop in sched_cfs_period_timer() can run until the
watchdog fires. There is no guarantee that the call to hrtimer_forward_now()
will ever return 0. The large number of children can make
do_sched_cfs_period_timer() take longer than the period.
NMI watchdog: Watchdog detected hard LOCKUP on cpu 24
RIP: 0010:tg_nop+0x0/0x10
<IRQ>
walk_tg_tree_from+0x29/0xb0
unthrottle_cfs_rq+0xe0/0x1a0
distribute_cfs_runtime+0xd3/0xf0
sched_cfs_period_timer+0xcb/0x160
? sched_cfs_slack_timer+0xd0/0xd0
__hrtimer_run_queues+0xfb/0x270
hrtimer_interrupt+0x122/0x270
smp_apic_timer_interrupt+0x6a/0x140
apic_timer_interrupt+0xf/0x20
</IRQ>
To prevent this we add protection to the loop that detects when the loop has run
too many times and scales the period and quota up, proportionally, so that the timer
can complete before then next period expires. This preserves the relative runtime
quota while preventing the hard lockup.
A warning is issued reporting this state and the new values.
Signed-off-by: Phil Auld <pauld@redhat.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: <stable@vger.kernel.org>
Cc: Anton Blanchard <anton@ozlabs.org>
Cc: Ben Segall <bsegall@google.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Link: https://lkml.kernel.org/r/20190319130005.25492-1-pauld@redhat.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Signed-off-by: Sasha Levin <sashal@kernel.org>
|
|
commit 0e9f02450da07fc7b1346c8c32c771555173e397 upstream.
A NULL pointer dereference bug was reported on a distribution kernel but
the same issue should be present on mainline kernel. It occured on s390
but should not be arch-specific. A partial oops looks like:
Unable to handle kernel pointer dereference in virtual kernel address space
...
Call Trace:
...
try_to_wake_up+0xfc/0x450
vhost_poll_wakeup+0x3a/0x50 [vhost]
__wake_up_common+0xbc/0x178
__wake_up_common_lock+0x9e/0x160
__wake_up_sync_key+0x4e/0x60
sock_def_readable+0x5e/0x98
The bug hits any time between 1 hour to 3 days. The dereference occurs
in update_cfs_rq_h_load when accumulating h_load. The problem is that
cfq_rq->h_load_next is not protected by any locking and can be updated
by parallel calls to task_h_load. Depending on the compiler, code may be
generated that re-reads cfq_rq->h_load_next after the check for NULL and
then oops when reading se->avg.load_avg. The dissassembly showed that it
was possible to reread h_load_next after the check for NULL.
While this does not appear to be an issue for later compilers, it's still
an accident if the correct code is generated. Full locking in this path
would have high overhead so this patch uses READ_ONCE to read h_load_next
only once and check for NULL before dereferencing. It was confirmed that
there were no further oops after 10 days of testing.
As Peter pointed out, it is also necessary to use WRITE_ONCE() to avoid any
potential problems with store tearing.
Signed-off-by: Mel Gorman <mgorman@techsingularity.net>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Reviewed-by: Valentin Schneider <valentin.schneider@arm.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Mike Galbraith <efault@gmx.de>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: <stable@vger.kernel.org>
Fixes: 685207963be9 ("sched: Move h_load calculation to task_h_load()")
Link: https://lkml.kernel.org/r/20190319123610.nsivgf3mjbjjesxb@techsingularity.net
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
commit 896bbb2522587e3b8eb2a0d204d43ccc1042a00d upstream.
When priority inheritance was added back in 2.6.18 to sched_setscheduler(), it
added a path to taking an rt-mutex wait_lock, which is not IRQ safe. As PI
is not a common occurrence, lockdep will likely never trigger if
sched_setscheduler was called from interrupt context. A BUG_ON() was added
to trigger if __sched_setscheduler() was ever called from interrupt context
because there was a possibility to take the wait_lock.
Today the wait_lock is irq safe, but the path to taking it in
sched_setscheduler() is the same as the path to taking it from normal
context. The wait_lock is taken with raw_spin_lock_irq() and released with
raw_spin_unlock_irq() which will indiscriminately enable interrupts,
which would be bad in interrupt context.
The problem is that normalize_rt_tasks, which is called by triggering the
sysrq nice-all-RT-tasks was changed to call __sched_setscheduler(), and this
is done from interrupt context!
Now __sched_setscheduler() takes a "pi" parameter that is used to know if
the priority inheritance should be called or not. As the BUG_ON() only cares
about calling the PI code, it should only bug if called from interrupt
context with the "pi" parameter set to true.
Reported-by: Laurent Dufour <ldufour@linux.vnet.ibm.com>
Tested-by: Laurent Dufour <ldufour@linux.vnet.ibm.com>
Signed-off-by: Steven Rostedt (VMware) <rostedt@goodmis.org>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Andrew Morton <akpm@osdl.org>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Fixes: dbc7f069b93a ("sched: Use replace normalize_task() with __sched_setscheduler()")
Link: http://lkml.kernel.org/r/20170308124654.10e598f2@gandalf.local.home
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
[ Upstream commit 9845c49cc9bbb317a0bc9e9cf78d8e09d54c9af0 ]
The comment and the code around the update_min_vruntime() call in
dequeue_entity() are not in agreement.
>From commit:
b60205c7c558 ("sched/fair: Fix min_vruntime tracking")
I think that we want to update min_vruntime when a task is sleeping/migrating.
So, the check is inverted there - fix it.
Signed-off-by: Song Muchun <smuchun@gmail.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Mike Galbraith <efault@gmx.de>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Fixes: b60205c7c558 ("sched/fair: Fix min_vruntime tracking")
Link: http://lkml.kernel.org/r/20181014112612.2614-1-smuchun@gmail.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Signed-off-by: Sasha Levin <sashal@kernel.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
commit baa9be4ffb55876923dc9716abc0a448e510ba30 upstream.
With a very low cpu.cfs_quota_us setting, such as the minimum of 1000,
distribute_cfs_runtime may not empty the throttled_list before it runs
out of runtime to distribute. In that case, due to the change from
c06f04c7048 to put throttled entries at the head of the list, later entries
on the list will starve. Essentially, the same X processes will get pulled
off the list, given CPU time and then, when expired, get put back on the
head of the list where distribute_cfs_runtime will give runtime to the same
set of processes leaving the rest.
Fix the issue by setting a bit in struct cfs_bandwidth when
distribute_cfs_runtime is running, so that the code in throttle_cfs_rq can
decide to put the throttled entry on the tail or the head of the list. The
bit is set/cleared by the callers of distribute_cfs_runtime while they hold
cfs_bandwidth->lock.
This is easy to reproduce with a handful of CPU consumers. I use 'crash' on
the live system. In some cases you can simply look at the throttled list and
see the later entries are not changing:
crash> list cfs_rq.throttled_list -H 0xffff90b54f6ade40 -s cfs_rq.runtime_remaining | paste - - | awk '{print $1" "$4}' | pr -t -n3
1 ffff90b56cb2d200 -976050
2 ffff90b56cb2cc00 -484925
3 ffff90b56cb2bc00 -658814
4 ffff90b56cb2ba00 -275365
5 ffff90b166a45600 -135138
6 ffff90b56cb2da00 -282505
7 ffff90b56cb2e000 -148065
8 ffff90b56cb2fa00 -872591
9 ffff90b56cb2c000 -84687
10 ffff90b56cb2f000 -87237
11 ffff90b166a40a00 -164582
crash> list cfs_rq.throttled_list -H 0xffff90b54f6ade40 -s cfs_rq.runtime_remaining | paste - - | awk '{print $1" "$4}' | pr -t -n3
1 ffff90b56cb2d200 -994147
2 ffff90b56cb2cc00 -306051
3 ffff90b56cb2bc00 -961321
4 ffff90b56cb2ba00 -24490
5 ffff90b166a45600 -135138
6 ffff90b56cb2da00 -282505
7 ffff90b56cb2e000 -148065
8 ffff90b56cb2fa00 -872591
9 ffff90b56cb2c000 -84687
10 ffff90b56cb2f000 -87237
11 ffff90b166a40a00 -164582
Sometimes it is easier to see by finding a process getting starved and looking
at the sched_info:
crash> task ffff8eb765994500 sched_info
PID: 7800 TASK: ffff8eb765994500 CPU: 16 COMMAND: "cputest"
sched_info = {
pcount = 8,
run_delay = 697094208,
last_arrival = 240260125039,
last_queued = 240260327513
},
crash> task ffff8eb765994500 sched_info
PID: 7800 TASK: ffff8eb765994500 CPU: 16 COMMAND: "cputest"
sched_info = {
pcount = 8,
run_delay = 697094208,
last_arrival = 240260125039,
last_queued = 240260327513
},
Signed-off-by: Phil Auld <pauld@redhat.com>
Reviewed-by: Ben Segall <bsegall@google.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: stable@vger.kernel.org
Fixes: c06f04c70489 ("sched: Fix potential near-infinite distribute_cfs_runtime() loop")
Link: http://lkml.kernel.org/r/20181008143639.GA4019@pauld.bos.csb
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
commit 25e2d8c1b9e327ed260edd13169cc22bc7a78bc6 upstream.
irq_time_read() returns the irqtime minus the ksoftirqd time. This
is necessary because irq_time_read() is used to substract the IRQ time
from the sum_exec_runtime of a task. If we were to include the softirq
time of ksoftirqd, this task would substract its own CPU time everytime
it updates ksoftirqd->sum_exec_runtime which would therefore never
progress.
But this behaviour got broken by:
a499a5a14db ("sched/cputime: Increment kcpustat directly on irqtime account")
... which now includes ksoftirqd softirq time in the time returned by
irq_time_read().
This has resulted in wrong ksoftirqd cputime reported to userspace
through /proc/stat and thus "top" not showing ksoftirqd when it should
after intense networking load.
ksoftirqd->stime happens to be correct but it gets scaled down by
sum_exec_runtime through task_cputime_adjusted().
To fix this, just account the strict IRQ time in a separate counter and
use it to report the IRQ time.
Reported-and-tested-by: Jesper Dangaard Brouer <brouer@redhat.com>
Signed-off-by: Frederic Weisbecker <fweisbec@gmail.com>
Reviewed-by: Rik van Riel <riel@redhat.com>
Acked-by: Jesper Dangaard Brouer <brouer@redhat.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Stanislaw Gruszka <sgruszka@redhat.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Wanpeng Li <wanpeng.li@hotmail.com>
Link: http://lkml.kernel.org/r/1493129448-5356-1-git-send-email-fweisbec@gmail.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Signed-off-by: Ivan Delalande <colona@arista.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
commit a499a5a14dbd1d0315a96fc62a8798059325e9e6 upstream.
The irqtime is accounted is nsecs and stored in
cpu_irq_time.hardirq_time and cpu_irq_time.softirq_time. Once the
accumulated amount reaches a new jiffy, this one gets accounted to the
kcpustat.
This was necessary when kcpustat was stored in cputime_t, which could at
worst have jiffies granularity. But now kcpustat is stored in nsecs
so this whole discretization game with temporary irqtime storage has
become unnecessary.
We can now directly account the irqtime to the kcpustat.
Signed-off-by: Frederic Weisbecker <fweisbec@gmail.com>
Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org>
Cc: Fenghua Yu <fenghua.yu@intel.com>
Cc: Heiko Carstens <heiko.carstens@de.ibm.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Martin Schwidefsky <schwidefsky@de.ibm.com>
Cc: Michael Ellerman <mpe@ellerman.id.au>
Cc: Paul Mackerras <paulus@samba.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Rik van Riel <riel@redhat.com>
Cc: Stanislaw Gruszka <sgruszka@redhat.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Tony Luck <tony.luck@intel.com>
Cc: Wanpeng Li <wanpeng.li@hotmail.com>
Link: http://lkml.kernel.org/r/1485832191-26889-17-git-send-email-fweisbec@gmail.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Signed-off-by: Ivan Delalande <colona@arista.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
commit 7fb1327ee9b92fca27662f9b9d60c7c3376d6c69 upstream.
Kernel CPU stats are stored in cputime_t which is an architecture
defined type, and hence a bit opaque and requiring accessors and mutators
for any operation.
Converting them to nsecs simplifies the code and is one step toward
the removal of cputime_t in the core code.
Signed-off-by: Frederic Weisbecker <fweisbec@gmail.com>
Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org>
Cc: Paul Mackerras <paulus@samba.org>
Cc: Michael Ellerman <mpe@ellerman.id.au>
Cc: Heiko Carstens <heiko.carstens@de.ibm.com>
Cc: Martin Schwidefsky <schwidefsky@de.ibm.com>
Cc: Tony Luck <tony.luck@intel.com>
Cc: Fenghua Yu <fenghua.yu@intel.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Rik van Riel <riel@redhat.com>
Cc: Stanislaw Gruszka <sgruszka@redhat.com>
Cc: Wanpeng Li <wanpeng.li@hotmail.com>
Link: http://lkml.kernel.org/r/1485832191-26889-4-git-send-email-fweisbec@gmail.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
[colona: minor conflict as 527b0a76f41d ("sched/cpuacct: Avoid %lld seq_printf
warning") is missing from v4.9]
Signed-off-by: Ivan Delalande <colona@arista.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
commit d0cdb3ce8834332d918fc9c8ff74f8a169ec9abe upstream.
When a task which previously ran on a given CPU is remotely queued to
wake up on that same CPU, there is a period where the task's state is
TASK_WAKING and its vruntime is not normalized. This is not accounted
for in vruntime_normalized() which will cause an error in the task's
vruntime if it is switched from the fair class during this time.
For example if it is boosted to RT priority via rt_mutex_setprio(),
rq->min_vruntime will not be subtracted from the task's vruntime but
it will be added again when the task returns to the fair class. The
task's vruntime will have been erroneously doubled and the effective
priority of the task will be reduced.
Note this will also lead to inflation of all vruntimes since the doubled
vruntime value will become the rq's min_vruntime when other tasks leave
the rq. This leads to repeated doubling of the vruntime and priority
penalty.
Fix this by recognizing a WAKING task's vruntime as normalized only if
sched_remote_wakeup is true. This indicates a migration, in which case
the vruntime would have been normalized in migrate_task_rq_fair().
Based on a similar patch from John Dias <joaodias@google.com>.
Suggested-by: Peter Zijlstra <peterz@infradead.org>
Tested-by: Dietmar Eggemann <dietmar.eggemann@arm.com>
Signed-off-by: Steve Muckle <smuckle@google.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Chris Redpath <Chris.Redpath@arm.com>
Cc: John Dias <joaodias@google.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Miguel de Dios <migueldedios@google.com>
Cc: Morten Rasmussen <Morten.Rasmussen@arm.com>
Cc: Patrick Bellasi <Patrick.Bellasi@arm.com>
Cc: Paul Turner <pjt@google.com>
Cc: Quentin Perret <quentin.perret@arm.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Todd Kjos <tkjos@google.com>
Cc: kernel-team@android.com
Fixes: b5179ac70de8 ("sched/fair: Prepare to fix fairness problems on migration")
Link: http://lkml.kernel.org/r/20180831224217.169476-1-smuckle@google.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
commit 35a2897c2a306cca344ca5c0b43416707018f434 upstream.
Steven Rostedt reported a potential race in RCU core because of
swake_up():
CPU0 CPU1
---- ----
__call_rcu_core() {
spin_lock(rnp_root)
need_wake = __rcu_start_gp() {
rcu_start_gp_advanced() {
gp_flags = FLAG_INIT
}
}
rcu_gp_kthread() {
swait_event_interruptible(wq,
gp_flags & FLAG_INIT) {
spin_lock(q->lock)
*fetch wq->task_list here! *
list_add(wq->task_list, q->task_list)
spin_unlock(q->lock);
*fetch old value of gp_flags here *
spin_unlock(rnp_root)
rcu_gp_kthread_wake() {
swake_up(wq) {
swait_active(wq) {
list_empty(wq->task_list)
} * return false *
if (condition) * false *
schedule();
In this case, a wakeup is missed, which could cause the rcu_gp_kthread
waits for a long time.
The reason of this is that we do a lockless swait_active() check in
swake_up(). To fix this, we can either 1) add a smp_mb() in swake_up()
before swait_active() to provide the proper order or 2) simply remove
the swait_active() in swake_up().
The solution 2 not only fixes this problem but also keeps the swait and
wait API as close as possible, as wake_up() doesn't provide a full
barrier and doesn't do a lockless check of the wait queue either.
Moreover, there are users already using swait_active() to do their quick
checks for the wait queues, so it make less sense that swake_up() and
swake_up_all() do this on their own.
This patch then removes the lockless swait_active() check in swake_up()
and swake_up_all().
Reported-by: Steven Rostedt <rostedt@goodmis.org>
Signed-off-by: Boqun Feng <boqun.feng@gmail.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Krister Johansen <kjlx@templeofstupid.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
Cc: Paul Gortmaker <paul.gortmaker@windriver.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Link: http://lkml.kernel.org/r/20170615041828.zk3a3sfyudm5p6nl@tardis
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Cc: David Chen <david.chen@nutanix.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
[ Upstream commit d29a20645d5e929aa7e8616f28e5d8e1c49263ec ]
While running rt-tests' pi_stress program I got the following splat:
rq->clock_update_flags < RQCF_ACT_SKIP
WARNING: CPU: 27 PID: 0 at kernel/sched/sched.h:960 assert_clock_updated.isra.38.part.39+0x13/0x20
[...]
<IRQ>
enqueue_top_rt_rq+0xf4/0x150
? cpufreq_dbs_governor_start+0x170/0x170
sched_rt_rq_enqueue+0x65/0x80
sched_rt_period_timer+0x156/0x360
? sched_rt_rq_enqueue+0x80/0x80
__hrtimer_run_queues+0xfa/0x260
hrtimer_interrupt+0xcb/0x220
smp_apic_timer_interrupt+0x62/0x120
apic_timer_interrupt+0xf/0x20
</IRQ>
[...]
do_idle+0x183/0x1e0
cpu_startup_entry+0x5f/0x70
start_secondary+0x192/0x1d0
secondary_startup_64+0xa5/0xb0
We can get rid of it be the "traditional" means of adding an
update_rq_clock() call after acquiring the rq->lock in
do_sched_rt_period_timer().
The case for the RT task throttling (which this workload also hits)
can be ignored in that the skip_update call is actually bogus and
quite the contrary (the request bits are removed/reverted).
By setting RQCF_UPDATED we really don't care if the skip is happening
or not and will therefore make the assert_clock_updated() check happy.
Signed-off-by: Davidlohr Bueso <dbueso@suse.de>
Reviewed-by: Matt Fleming <matt@codeblueprint.co.uk>
Acked-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Mike Galbraith <efault@gmx.de>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: dave@stgolabs.net
Cc: linux-kernel@vger.kernel.org
Cc: rostedt@goodmis.org
Link: http://lkml.kernel.org/r/20180402164954.16255-1-dave@stgolabs.net
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Signed-off-by: Sasha Levin <alexander.levin@microsoft.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
[ Upstream commit 3effcb4247e74a51f5d8b775a1ee4abf87cc089a ]
We have been facing some problems with self-suspending constrained
deadline tasks. The main reason is that the original CBS was not
designed for such sort of tasks.
One problem reported by Xunlei Pang takes place when a task
suspends, and then is awakened before the deadline, but so close
to the deadline that its remaining runtime can cause the task
to have an absolute density higher than allowed. In such situation,
the original CBS assumes that the task is facing an early activation,
and so it replenishes the task and set another deadline, one deadline
in the future. This rule works fine for implicit deadline tasks.
Moreover, it allows the system to adapt the period of a task in which
the external event source suffered from a clock drift.
However, this opens the window for bandwidth leakage for constrained
deadline tasks. For instance, a task with the following parameters:
runtime = 5 ms
deadline = 7 ms
[density] = 5 / 7 = 0.71
period = 1000 ms
If the task runs for 1 ms, and then suspends for another 1ms,
it will be awakened with the following parameters:
remaining runtime = 4
laxity = 5
presenting a absolute density of 4 / 5 = 0.80.
In this case, the original CBS would assume the task had an early
wakeup. Then, CBS will reset the runtime, and the absolute deadline will
be postponed by one relative deadline, allowing the task to run.
The problem is that, if the task runs this pattern forever, it will keep
receiving bandwidth, being able to run 1ms every 2ms. Following this
behavior, the task would be able to run 500 ms in 1 sec. Thus running
more than the 5 ms / 1 sec the admission control allowed it to run.
Trying to address the self-suspending case, Luca Abeni, Giuseppe
Lipari, and Juri Lelli [1] revisited the CBS in order to deal with
self-suspending tasks. In the new approach, rather than
replenishing/postponing the absolute deadline, the revised wakeup rule
adjusts the remaining runtime, reducing it to fit into the allowed
density.
A revised version of the idea is:
At a given time t, the maximum absolute density of a task cannot be
higher than its relative density, that is:
runtime / (deadline - t) <= dl_runtime / dl_deadline
Knowing the laxity of a task (deadline - t), it is possible to move
it to the other side of the equality, thus enabling to define max
remaining runtime a task can use within the absolute deadline, without
over-running the allowed density:
runtime = (dl_runtime / dl_deadline) * (deadline - t)
For instance, in our previous example, the task could still run:
runtime = ( 5 / 7 ) * 5
runtime = 3.57 ms
Without causing damage for other deadline tasks. It is note worthy
that the laxity cannot be negative because that would cause a negative
runtime. Thus, this patch depends on the patch:
df8eac8cafce ("sched/deadline: Throttle a constrained deadline task activated after the deadline")
Which throttles a constrained deadline task activated after the
deadline.
Finally, it is also possible to use the revised wakeup rule for
all other tasks, but that would require some more discussions
about pros and cons.
Reported-by: Xunlei Pang <xpang@redhat.com>
Signed-off-by: Daniel Bristot de Oliveira <bristot@redhat.com>
[peterz: replaced dl_is_constrained with dl_is_implicit]
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Juri Lelli <juri.lelli@arm.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Luca Abeni <luca.abeni@santannapisa.it>
Cc: Mike Galbraith <efault@gmx.de>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Romulo Silva de Oliveira <romulo.deoliveira@ufsc.br>
Cc: Steven Rostedt <rostedt@goodmis.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Tommaso Cucinotta <tommaso.cucinotta@sssup.it>
Link: http://lkml.kernel.org/r/5c800ab3a74a168a84ee5f3f84d12a02e11383be.1495803804.git.bristot@redhat.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Signed-off-by: Sasha Levin <alexander.levin@microsoft.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
[ Upstream commit 8655d5497735b288f8a9b458bd22e7d1bf95bb61 ]
A customer has reported a soft-lockup when running an intensive
memory stress test, where the trace on multiple CPU's looks like this:
RIP: 0010:[<ffffffff810c53fe>]
[<ffffffff810c53fe>] native_queued_spin_lock_slowpath+0x10e/0x190
...
Call Trace:
[<ffffffff81182d07>] queued_spin_lock_slowpath+0x7/0xa
[<ffffffff811bc331>] change_protection_range+0x3b1/0x930
[<ffffffff811d4be8>] change_prot_numa+0x18/0x30
[<ffffffff810adefe>] task_numa_work+0x1fe/0x310
[<ffffffff81098322>] task_work_run+0x72/0x90
Further investigation showed that the lock contention here is pmd_lock().
The task_numa_work() function makes sure that only one thread is let to perform
the work in a single scan period (via cmpxchg), but if there's a thread with
mmap_sem locked for writing for several periods, multiple threads in
task_numa_work() can build up a convoy waiting for mmap_sem for read and then
all get unblocked at once.
This patch changes the down_read() to the trylock version, which prevents the
build up. For a workload experiencing mmap_sem contention, it's probably better
to postpone the NUMA balancing work anyway. This seems to have fixed the soft
lockups involving pmd_lock(), which is in line with the convoy theory.
Signed-off-by: Vlastimil Babka <vbabka@suse.cz>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Acked-by: Rik van Riel <riel@redhat.com>
Acked-by: Mel Gorman <mgorman@techsingularity.net>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Link: http://lkml.kernel.org/r/20170515131316.21909-1-vbabka@suse.cz
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Signed-off-by: Sasha Levin <alexander.levin@microsoft.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
[ Upstream commit a0982dfa03efca6c239c52cabebcea4afb93ea6b ]
The rcutorture test suite occasionally provokes a splat due to invoking
resched_cpu() on an offline CPU:
WARNING: CPU: 2 PID: 8 at /home/paulmck/public_git/linux-rcu/arch/x86/kernel/smp.c:128 native_smp_send_reschedule+0x37/0x40
Modules linked in:
CPU: 2 PID: 8 Comm: rcu_preempt Not tainted 4.14.0-rc4+ #1
Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS Ubuntu-1.8.2-1ubuntu1 04/01/2014
task: ffff902ede9daf00 task.stack: ffff96c50010c000
RIP: 0010:native_smp_send_reschedule+0x37/0x40
RSP: 0018:ffff96c50010fdb8 EFLAGS: 00010096
RAX: 000000000000002e RBX: ffff902edaab4680 RCX: 0000000000000003
RDX: 0000000080000003 RSI: 0000000000000000 RDI: 00000000ffffffff
RBP: ffff96c50010fdb8 R08: 0000000000000000 R09: 0000000000000001
R10: 0000000000000000 R11: 00000000299f36ae R12: 0000000000000001
R13: ffffffff9de64240 R14: 0000000000000001 R15: ffffffff9de64240
FS: 0000000000000000(0000) GS:ffff902edfc80000(0000) knlGS:0000000000000000
CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033
CR2: 00000000f7d4c642 CR3: 000000001e0e2000 CR4: 00000000000006e0
Call Trace:
resched_curr+0x8f/0x1c0
resched_cpu+0x2c/0x40
rcu_implicit_dynticks_qs+0x152/0x220
force_qs_rnp+0x147/0x1d0
? sync_rcu_exp_select_cpus+0x450/0x450
rcu_gp_kthread+0x5a9/0x950
kthread+0x142/0x180
? force_qs_rnp+0x1d0/0x1d0
? kthread_create_on_node+0x40/0x40
ret_from_fork+0x27/0x40
Code: 14 01 0f 92 c0 84 c0 74 14 48 8b 05 14 4f f4 00 be fd 00 00 00 ff 90 a0 00 00 00 5d c3 89 fe 48 c7 c7 38 89 ca 9d e8 e5 56 08 00 <0f> ff 5d c3 0f 1f 44 00 00 8b 05 52 9e 37 02 85 c0 75 38 55 48
---[ end trace 26df9e5df4bba4ac ]---
This splat cannot be generated by expedited grace periods because they
always invoke resched_cpu() on the current CPU, which is good because
expedited grace periods require that resched_cpu() unconditionally
succeed. However, other parts of RCU can tolerate resched_cpu() acting
as a no-op, at least as long as it doesn't happen too often.
This commit therefore makes resched_cpu() invoke resched_curr() only if
the CPU is either online or is the current CPU.
Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Signed-off-by: Sasha Levin <alexander.levin@microsoft.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
[ Upstream commit 2fe2582649aa2355f79acddb86bd4d6c5363eb63 ]
The rcutorture test suite occasionally provokes a splat due to invoking
rt_mutex_lock() which needs to boost the priority of a task currently
sitting on a runqueue that belongs to an offline CPU:
WARNING: CPU: 0 PID: 12 at /home/paulmck/public_git/linux-rcu/arch/x86/kernel/smp.c:128 native_smp_send_reschedule+0x37/0x40
Modules linked in:
CPU: 0 PID: 12 Comm: rcub/7 Not tainted 4.14.0-rc4+ #1
Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS Ubuntu-1.8.2-1ubuntu1 04/01/2014
task: ffff9ed3de5f8cc0 task.stack: ffffbbf80012c000
RIP: 0010:native_smp_send_reschedule+0x37/0x40
RSP: 0018:ffffbbf80012fd10 EFLAGS: 00010082
RAX: 000000000000002f RBX: ffff9ed3dd9cb300 RCX: 0000000000000004
RDX: 0000000080000004 RSI: 0000000000000086 RDI: 00000000ffffffff
RBP: ffffbbf80012fd10 R08: 000000000009da7a R09: 0000000000007b9d
R10: 0000000000000001 R11: ffffffffbb57c2cd R12: 000000000000000d
R13: ffff9ed3de5f8cc0 R14: 0000000000000061 R15: ffff9ed3ded59200
FS: 0000000000000000(0000) GS:ffff9ed3dea00000(0000) knlGS:0000000000000000
CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033
CR2: 00000000080686f0 CR3: 000000001b9e0000 CR4: 00000000000006f0
Call Trace:
resched_curr+0x61/0xd0
switched_to_rt+0x8f/0xa0
rt_mutex_setprio+0x25c/0x410
task_blocks_on_rt_mutex+0x1b3/0x1f0
rt_mutex_slowlock+0xa9/0x1e0
rt_mutex_lock+0x29/0x30
rcu_boost_kthread+0x127/0x3c0
kthread+0x104/0x140
? rcu_report_unblock_qs_rnp+0x90/0x90
? kthread_create_on_node+0x40/0x40
ret_from_fork+0x22/0x30
Code: f0 00 0f 92 c0 84 c0 74 14 48 8b 05 34 74 c5 00 be fd 00 00 00 ff 90 a0 00 00 00 5d c3 89 fe 48 c7 c7 a0 c6 fc b9 e8 d5 b5 06 00 <0f> ff 5d c3 0f 1f 44 00 00 8b 05 a2 d1 13 02 85 c0 75 38 55 48
But the target task's priority has already been adjusted, so the only
purpose of switched_to_rt() invoking resched_curr() is to wake up the
CPU running some task that needs to be preempted by the boosted task.
But the CPU is offline, which presumably means that the task must be
migrated to some other CPU, and that this other CPU will undertake any
needed preemption at the time of migration. Because the runqueue lock
is held when resched_curr() is invoked, we know that the boosted task
cannot go anywhere, so it is not necessary to invoke resched_curr()
in this particular case.
This commit therefore makes switched_to_rt() refrain from invoking
resched_curr() when the target CPU is offline.
Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Signed-off-by: Sasha Levin <alexander.levin@microsoft.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
commit 364f56653708ba8bcdefd4f0da2a42904baa8eeb upstream.
When issuing an IPI RT push, where an IPI is sent to each CPU that has more
than one RT task scheduled on it, it references the root domain's rto_mask,
that contains all the CPUs within the root domain that has more than one RT
task in the runable state. The problem is, after the IPIs are initiated, the
rq->lock is released. This means that the root domain that is associated to
the run queue could be freed while the IPIs are going around.
Add a sched_get_rd() and a sched_put_rd() that will increment and decrement
the root domain's ref count respectively. This way when initiating the IPIs,
the scheduler will up the root domain's ref count before releasing the
rq->lock, ensuring that the root domain does not go away until the IPI round
is complete.
Reported-by: Pavan Kondeti <pkondeti@codeaurora.org>
Signed-off-by: Steven Rostedt (VMware) <rostedt@goodmis.org>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Andrew Morton <akpm@linux-foundation.org>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Mike Galbraith <efault@gmx.de>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Fixes: 4bdced5c9a292 ("sched/rt: Simplify the IPI based RT balancing logic")
Link: http://lkml.kernel.org/r/CAEU1=PkiHO35Dzna8EQqNSKW1fr1y1zRQ5y66X117MG06sQtNA@mail.gmail.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
commit ad0f1d9d65938aec72a698116cd73a980916895e upstream.
When the rto_push_irq_work_func() is called, it looks at the RT overloaded
bitmask in the root domain via the runqueue (rq->rd). The problem is that
during CPU up and down, nothing here stops rq->rd from changing between
taking the rq->rd->rto_lock and releasing it. That means the lock that is
released is not the same lock that was taken.
Instead of using this_rq()->rd to get the root domain, as the irq work is
part of the root domain, we can simply get the root domain from the irq work
that is passed to the routine:
container_of(work, struct root_domain, rto_push_work)
This keeps the root domain consistent.
Reported-by: Pavan Kondeti <pkondeti@codeaurora.org>
Signed-off-by: Steven Rostedt (VMware) <rostedt@goodmis.org>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Andrew Morton <akpm@linux-foundation.org>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Mike Galbraith <efault@gmx.de>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Fixes: 4bdced5c9a292 ("sched/rt: Simplify the IPI based RT balancing logic")
Link: http://lkml.kernel.org/r/CAEU1=PkiHO35Dzna8EQqNSKW1fr1y1zRQ5y66X117MG06sQtNA@mail.gmail.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
commit ae83b56a56f8d9643dedbee86b457fa1c5d42f59 upstream.
When a contrained task is throttled by dl_check_constrained_dl(),
it may carry the remaining positive runtime, as a result when
dl_task_timer() fires and calls replenish_dl_entity(), it will
not be replenished correctly due to the positive dl_se->runtime.
This patch assigns its runtime to 0 if positive after throttling.
Signed-off-by: Xunlei Pang <xlpang@redhat.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Acked-by: Daniel Bristot de Oliveira <bristot@redhat.com>
Cc: Juri Lelli <juri.lelli@arm.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Luca Abeni <luca.abeni@santannapisa.it>
Cc: Mike Galbraith <efault@gmx.de>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Steven Rostedt <rostedt@goodmis.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Fixes: df8eac8cafce ("sched/deadline: Throttle a constrained deadline task activated after the deadline)
Link: http://lkml.kernel.org/r/1494421417-27550-1-git-send-email-xlpang@redhat.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Cc: Ben Hutchings <ben.hutchings@codethink.co.uk>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
[ Upstream commit 2317d5f1c34913bac5971d93d69fb6c31bb74670 ]
I was testing Daniel's changes with his test case, and tweaked it a
little. Instead of having the runtime equal to the deadline, I
increased the deadline ten fold.
Daniel's test case had:
attr.sched_runtime = 2 * 1000 * 1000; /* 2 ms */
attr.sched_deadline = 2 * 1000 * 1000; /* 2 ms */
attr.sched_period = 2 * 1000 * 1000 * 1000; /* 2 s */
To make it more interesting, I changed it to:
attr.sched_runtime = 2 * 1000 * 1000; /* 2 ms */
attr.sched_deadline = 20 * 1000 * 1000; /* 20 ms */
attr.sched_period = 2 * 1000 * 1000 * 1000; /* 2 s */
The results were rather surprising. The behavior that Daniel's patch
was fixing came back. The task started using much more than .1% of the
CPU. More like 20%.
Looking into this I found that it was due to the dl_entity_overflow()
constantly returning true. That's because it uses the relative period
against relative runtime vs the absolute deadline against absolute
runtime.
runtime / (deadline - t) > dl_runtime / dl_period
There's even a comment mentioning this, and saying that when relative
deadline equals relative period, that the equation is the same as using
deadline instead of period. That comment is backwards! What we really
want is:
runtime / (deadline - t) > dl_runtime / dl_deadline
We care about if the runtime can make its deadline, not its period. And
then we can say "when the deadline equals the period, the equation is
the same as using dl_period instead of dl_deadline".
After correcting this, now when the task gets enqueued, it can throttle
correctly, and Daniel's fix to the throttling of sleeping deadline
tasks works even when the runtime and deadline are not the same.
Signed-off-by: Steven Rostedt (VMware) <rostedt@goodmis.org>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Reviewed-by: Daniel Bristot de Oliveira <bristot@redhat.com>
Cc: Juri Lelli <juri.lelli@arm.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Luca Abeni <luca.abeni@santannapisa.it>
Cc: Mike Galbraith <efault@gmx.de>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Romulo Silva de Oliveira <romulo.deoliveira@ufsc.br>
Cc: Steven Rostedt <rostedt@goodmis.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Tommaso Cucinotta <tommaso.cucinotta@sssup.it>
Link: http://lkml.kernel.org/r/02135a27f1ae3fe5fd032568a5a2f370e190e8d7.1488392936.git.bristot@redhat.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Signed-off-by: Sasha Levin <alexander.levin@verizon.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
deadline
[ Upstream commit df8eac8cafce7d086be3bd5cf5a838fa37594dfb ]
During the activation, CBS checks if it can reuse the current task's
runtime and period. If the deadline of the task is in the past, CBS
cannot use the runtime, and so it replenishes the task. This rule
works fine for implicit deadline tasks (deadline == period), and the
CBS was designed for implicit deadline tasks. However, a task with
constrained deadline (deadine < period) might be awakened after the
deadline, but before the next period. In this case, replenishing the
task would allow it to run for runtime / deadline. As in this case
deadline < period, CBS enables a task to run for more than the
runtime / period. In a very loaded system, this can cause a domino
effect, making other tasks miss their deadlines.
To avoid this problem, in the activation of a constrained deadline
task after the deadline but before the next period, throttle the
task and set the replenishing timer to the begin of the next period,
unless it is boosted.
Reproducer:
--------------- %< ---------------
int main (int argc, char **argv)
{
int ret;
int flags = 0;
unsigned long l = 0;
struct timespec ts;
struct sched_attr attr;
memset(&attr, 0, sizeof(attr));
attr.size = sizeof(attr);
attr.sched_policy = SCHED_DEADLINE;
attr.sched_runtime = 2 * 1000 * 1000; /* 2 ms */
attr.sched_deadline = 2 * 1000 * 1000; /* 2 ms */
attr.sched_period = 2 * 1000 * 1000 * 1000; /* 2 s */
ts.tv_sec = 0;
ts.tv_nsec = 2000 * 1000; /* 2 ms */
ret = sched_setattr(0, &attr, flags);
if (ret < 0) {
perror("sched_setattr");
exit(-1);
}
for(;;) {
/* XXX: you may need to adjust the loop */
for (l = 0; l < 150000; l++);
/*
* The ideia is to go to sleep right before the deadline
* and then wake up before the next period to receive
* a new replenishment.
*/
nanosleep(&ts, NULL);
}
exit(0);
}
--------------- >% ---------------
On my box, this reproducer uses almost 50% of the CPU time, which is
obviously wrong for a task with 2/2000 reservation.
Signed-off-by: Daniel Bristot de Oliveira <bristot@redhat.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Juri Lelli <juri.lelli@arm.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Luca Abeni <luca.abeni@santannapisa.it>
Cc: Mike Galbraith <efault@gmx.de>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Romulo Silva de Oliveira <romulo.deoliveira@ufsc.br>
Cc: Steven Rostedt <rostedt@goodmis.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Tommaso Cucinotta <tommaso.cucinotta@sssup.it>
Link: http://lkml.kernel.org/r/edf58354e01db46bf42df8d2dd32418833f68c89.1488392936.git.bristot@redhat.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Signed-off-by: Sasha Levin <alexander.levin@verizon.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
[ Upstream commit 5ac69d37784b237707a7b15d199cdb6c6fdb6780 ]
Currently, the replenishment timer is set to fire at the deadline
of a task. Although that works for implicit deadline tasks because the
deadline is equals to the begin of the next period, that is not correct
for constrained deadline tasks (deadline < period).
For instance:
f.c:
--------------- %< ---------------
int main (void)
{
for(;;);
}
--------------- >% ---------------
# gcc -o f f.c
# trace-cmd record -e sched:sched_switch \
-e syscalls:sys_exit_sched_setattr \
chrt -d --sched-runtime 490000000 \
--sched-deadline 500000000 \
--sched-period 1000000000 0 ./f
# trace-cmd report | grep "{pid of ./f}"
After setting parameters, the task is replenished and continue running
until being throttled:
f-11295 [003] 13322.113776: sys_exit_sched_setattr: 0x0
The task is throttled after running 492318 ms, as expected:
f-11295 [003] 13322.606094: sched_switch: f:11295 [-1] R ==> watchdog/3:32 [0]
But then, the task is replenished 500719 ms after the first
replenishment:
<idle>-0 [003] 13322.614495: sched_switch: swapper/3:0 [120] R ==> f:11295 [-1]
Running for 490277 ms:
f-11295 [003] 13323.104772: sched_switch: f:11295 [-1] R ==> swapper/3:0 [120]
Hence, in the first period, the task runs 2 * runtime, and that is a bug.
During the first replenishment, the next deadline is set one period away.
So the runtime / period starts to be respected. However, as the second
replenishment took place in the wrong instant, the next replenishment
will also be held in a wrong instant of time. Rather than occurring in
the nth period away from the first activation, it is taking place
in the (nth period - relative deadline).
Signed-off-by: Daniel Bristot de Oliveira <bristot@redhat.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Reviewed-by: Luca Abeni <luca.abeni@santannapisa.it>
Reviewed-by: Steven Rostedt (VMware) <rostedt@goodmis.org>
Reviewed-by: Juri Lelli <juri.lelli@arm.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Mike Galbraith <efault@gmx.de>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Romulo Silva de Oliveira <romulo.deoliveira@ufsc.br>
Cc: Steven Rostedt <rostedt@goodmis.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Tommaso Cucinotta <tommaso.cucinotta@sssup.it>
Link: http://lkml.kernel.org/r/ac50d89887c25285b47465638354b63362f8adff.1488392936.git.bristot@redhat.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Signed-off-by: Sasha Levin <alexander.levin@verizon.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
[ Upstream commit dcc3b5ffe1b32771c9a22e2c916fb94c4fcf5b79 ]
The following warning can be triggered by hot-unplugging the CPU
on which an active SCHED_DEADLINE task is running on:
------------[ cut here ]------------
WARNING: CPU: 7 PID: 0 at kernel/sched/sched.h:833 replenish_dl_entity+0x71e/0xc40
rq->clock_update_flags < RQCF_ACT_SKIP
CPU: 7 PID: 0 Comm: swapper/7 Tainted: G B 4.11.0-rc1+ #24
Hardware name: LENOVO ThinkCentre M8500t-N000/SHARKBAY, BIOS FBKTC1AUS 02/16/2016
Call Trace:
<IRQ>
dump_stack+0x85/0xc4
__warn+0x172/0x1b0
warn_slowpath_fmt+0xb4/0xf0
? __warn+0x1b0/0x1b0
? debug_check_no_locks_freed+0x2c0/0x2c0
? cpudl_set+0x3d/0x2b0
replenish_dl_entity+0x71e/0xc40
enqueue_task_dl+0x2ea/0x12e0
? dl_task_timer+0x777/0x990
? __hrtimer_run_queues+0x270/0xa50
dl_task_timer+0x316/0x990
? enqueue_task_dl+0x12e0/0x12e0
? enqueue_task_dl+0x12e0/0x12e0
__hrtimer_run_queues+0x270/0xa50
? hrtimer_cancel+0x20/0x20
? hrtimer_interrupt+0x119/0x600
hrtimer_interrupt+0x19c/0x600
? trace_hardirqs_off+0xd/0x10
local_apic_timer_interrupt+0x74/0xe0
smp_apic_timer_interrupt+0x76/0xa0
apic_timer_interrupt+0x93/0xa0
The DL task will be migrated to a suitable later deadline rq once the DL
timer fires and currnet rq is offline. The rq clock of the new rq should
be updated. This patch fixes it by updating the rq clock after holding
the new rq's rq lock.
Signed-off-by: Wanpeng Li <wanpeng.li@hotmail.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Reviewed-by: Matt Fleming <matt@codeblueprint.co.uk>
Cc: Juri Lelli <juri.lelli@arm.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Mike Galbraith <efault@gmx.de>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Link: http://lkml.kernel.org/r/1488865888-15894-1-git-send-email-wanpeng.li@hotmail.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Signed-off-by: Sasha Levin <alexander.levin@verizon.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
commit f73c52a5bcd1710994e53fbccc378c42b97a06b6 upstream.
Daniel Wagner reported a crash on the BeagleBone Black SoC.
This is a single CPU architecture, and does not have a functional
arch_send_call_function_single_ipi() implementation which can crash
the kernel if that is called.
As it only has one CPU, it shouldn't be called, but if the kernel is
compiled for SMP, the push/pull RT scheduling logic now calls it for
irq_work if the one CPU is overloaded, it can use that function to call
itself and crash the kernel.
Ideally, we should disable the SCHED_FEAT(RT_PUSH_IPI) if the system
only has a single CPU. But SCHED_FEAT is a constant if sched debugging
is turned off. Another fix can also be used, and this should also help
with normal SMP machines. That is, do not initiate the pull code if
there's only one RT overloaded CPU, and that CPU happens to be the
current CPU that is scheduling in a lower priority task.
Even on a system with many CPUs, if there's many RT tasks waiting to
run on a single CPU, and that CPU schedules in another RT task of lower
priority, it will initiate the PULL logic in case there's a higher
priority RT task on another CPU that is waiting to run. But if there is
no other CPU with waiting RT tasks, it will initiate the RT pull logic
on itself (as it still has RT tasks waiting to run). This is a wasted
effort.
Not only does this help with SMP code where the current CPU is the only
one with RT overloaded tasks, it should also solve the issue that
Daniel encountered, because it will prevent the PULL logic from
executing, as there's only one CPU on the system, and the check added
here will cause it to exit the RT pull code.
Reported-by: Daniel Wagner <wagi@monom.org>
Signed-off-by: Steven Rostedt (VMware) <rostedt@goodmis.org>
Acked-by: Peter Zijlstra <peterz@infradead.org>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Sebastian Andrzej Siewior <bigeasy@linutronix.de>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: linux-rt-users <linux-rt-users@vger.kernel.org>
Fixes: 4bdced5c9 ("sched/rt: Simplify the IPI based RT balancing logic")
Link: http://lkml.kernel.org/r/20171202130454.4cbbfe8d@vmware.local.home
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
[ Upstream commit 4c77b18cf8b7ab37c7d5737b4609010d2ceec5f0 ]
Kitsunyan reported desktop latency issues on his Celeron 887 because
of commit:
1b568f0aabf2 ("sched/core: Optimize SCHED_SMT")
... even though his CPU doesn't do SMT.
The effect of running the SMT code on a !SMT part is basically a more
aggressive select_idle_cpu(). Removing the avg condition fixed things
for him.
I also know FB likes this test gone, even though other workloads like
having it.
For now, take it out by default, until we get a better idea.
Reported-by: kitsunyan <kitsunyan@inbox.ru>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Chris Mason <clm@fb.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Mike Galbraith <efault@gmx.de>
Cc: Mike Galbraith <umgwanakikbuti@gmail.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: linux-kernel@vger.kernel.org
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Signed-off-by: Sasha Levin <alexander.levin@verizon.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
commit 4bdced5c9a2922521e325896a7bbbf0132c94e56 upstream.
When a CPU lowers its priority (schedules out a high priority task for a
lower priority one), a check is made to see if any other CPU has overloaded
RT tasks (more than one). It checks the rto_mask to determine this and if so
it will request to pull one of those tasks to itself if the non running RT
task is of higher priority than the new priority of the next task to run on
the current CPU.
When we deal with large number of CPUs, the original pull logic suffered
from large lock contention on a single CPU run queue, which caused a huge
latency across all CPUs. This was caused by only having one CPU having
overloaded RT tasks and a bunch of other CPUs lowering their priority. To
solve this issue, commit:
b6366f048e0c ("sched/rt: Use IPI to trigger RT task push migration instead of pulling")
changed the way to request a pull. Instead of grabbing the lock of the
overloaded CPU's runqueue, it simply sent an IPI to that CPU to do the work.
Although the IPI logic worked very well in removing the large latency build
up, it still could suffer from a large number of IPIs being sent to a single
CPU. On a 80 CPU box, I measured over 200us of processing IPIs. Worse yet,
when I tested this on a 120 CPU box, with a stress test that had lots of
RT tasks scheduling on all CPUs, it actually triggered the hard lockup
detector! One CPU had so many IPIs sent to it, and due to the restart
mechanism that is triggered when the source run queue has a priority status
change, the CPU spent minutes! processing the IPIs.
Thinking about this further, I realized there's no reason for each run queue
to send its own IPI. As all CPUs with overloaded tasks must be scanned
regardless if there's one or many CPUs lowering their priority, because
there's no current way to find the CPU with the highest priority task that
can schedule to one of these CPUs, there really only needs to be one IPI
being sent around at a time.
This greatly simplifies the code!
The new approach is to have each root domain have its own irq work, as the
rto_mask is per root domain. The root domain has the following fields
attached to it:
rto_push_work - the irq work to process each CPU set in rto_mask
rto_lock - the lock to protect some of the other rto fields
rto_loop_start - an atomic that keeps contention down on rto_lock
the first CPU scheduling in a lower priority task
is the one to kick off the process.
rto_loop_next - an atomic that gets incremented for each CPU that
schedules in a lower priority task.
rto_loop - a variable protected by rto_lock that is used to
compare against rto_loop_next
rto_cpu - The cpu to send the next IPI to, also protected by
the rto_lock.
When a CPU schedules in a lower priority task and wants to make sure
overloaded CPUs know about it. It increments the rto_loop_next. Then it
atomically sets rto_loop_start with a cmpxchg. If the old value is not "0",
then it is done, as another CPU is kicking off the IPI loop. If the old
value is "0", then it will take the rto_lock to synchronize with a possible
IPI being sent around to the overloaded CPUs.
If rto_cpu is greater than or equal to nr_cpu_ids, then there's either no
IPI being sent around, or one is about to finish. Then rto_cpu is set to the
first CPU in rto_mask and an IPI is sent to that CPU. If there's no CPUs set
in rto_mask, then there's nothing to be done.
When the CPU receives the IPI, it will first try to push any RT tasks that is
queued on the CPU but can't run because a higher priority RT task is
currently running on that CPU.
Then it takes the rto_lock and looks for the next CPU in the rto_mask. If it
finds one, it simply sends an IPI to that CPU and the process continues.
If there's no more CPUs in the rto_mask, then rto_loop is compared with
rto_loop_next. If they match, everything is done and the process is over. If
they do not match, then a CPU scheduled in a lower priority task as the IPI
was being passed around, and the process needs to start again. The first CPU
in rto_mask is sent the IPI.
This change removes this duplication of work in the IPI logic, and greatly
lowers the latency caused by the IPIs. This removed the lockup happening on
the 120 CPU machine. It also simplifies the code tremendously. What else
could anyone ask for?
Thanks to Peter Zijlstra for simplifying the rto_loop_start atomic logic and
supplying me with the rto_start_trylock() and rto_start_unlock() helper
functions.
Signed-off-by: Steven Rostedt (VMware) <rostedt@goodmis.org>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Clark Williams <williams@redhat.com>
Cc: Daniel Bristot de Oliveira <bristot@redhat.com>
Cc: John Kacur <jkacur@redhat.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Mike Galbraith <efault@gmx.de>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Scott Wood <swood@redhat.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Link: http://lkml.kernel.org/r/20170424114732.1aac6dc4@gandalf.local.home
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
commit 7c2102e56a3f7d85b5d8f33efbd7aecc1f36fdd8 upstream.
The current implementation of synchronize_sched_expedited() incorrectly
assumes that resched_cpu() is unconditional, which it is not. This means
that synchronize_sched_expedited() can hang when resched_cpu()'s trylock
fails as follows (analysis by Neeraj Upadhyay):
o CPU1 is waiting for expedited wait to complete:
sync_rcu_exp_select_cpus
rdp->exp_dynticks_snap & 0x1 // returns 1 for CPU5
IPI sent to CPU5
synchronize_sched_expedited_wait
ret = swait_event_timeout(rsp->expedited_wq,
sync_rcu_preempt_exp_done(rnp_root),
jiffies_stall);
expmask = 0x20, CPU 5 in idle path (in cpuidle_enter())
o CPU5 handles IPI and fails to acquire rq lock.
Handles IPI
sync_sched_exp_handler
resched_cpu
returns while failing to try lock acquire rq->lock
need_resched is not set
o CPU5 calls rcu_idle_enter() and as need_resched is not set, goes to
idle (schedule() is not called).
o CPU 1 reports RCU stall.
Given that resched_cpu() is now used only by RCU, this commit fixes the
assumption by making resched_cpu() unconditional.
Reported-by: Neeraj Upadhyay <neeraju@codeaurora.org>
Suggested-by: Neeraj Upadhyay <neeraju@codeaurora.org>
Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
Acked-by: Steven Rostedt (VMware) <rostedt@goodmis.org>
Acked-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
[ Upstream commit 1b1d62254df0fe42a711eb71948f915918987790 ]
Bug was noticed via this warning:
WARNING: CPU: 6 PID: 1 at kernel/sched/sched.h:804 detach_task_cfs_rq+0x8e8/0xb80
rq->clock_update_flags < RQCF_ACT_SKIP
Modules linked in:
CPU: 6 PID: 1 Comm: systemd Not tainted 4.10.0-rc5-00140-g0874170baf55-dirty #1
Hardware name: Supermicro SYS-4048B-TRFT/X10QBi, BIOS 1.0 04/11/2014
Call Trace:
dump_stack+0x4d/0x65
__warn+0xcb/0xf0
warn_slowpath_fmt+0x5f/0x80
detach_task_cfs_rq+0x8e8/0xb80
? allocate_cgrp_cset_links+0x59/0x80
task_change_group_fair+0x27/0x150
sched_change_group+0x48/0xf0
sched_move_task+0x53/0x150
cpu_cgroup_attach+0x36/0x70
cgroup_taskset_migrate+0x175/0x300
cgroup_migrate+0xab/0xd0
cgroup_attach_task+0xf0/0x190
__cgroup_procs_write+0x1ed/0x2f0
cgroup_procs_write+0x14/0x20
cgroup_file_write+0x3f/0x100
kernfs_fop_write+0x104/0x180
__vfs_write+0x37/0x140
vfs_write+0xb8/0x1b0
SyS_write+0x55/0xc0
do_syscall_64+0x61/0x170
entry_SYSCALL64_slow_path+0x25/0x25
Reported-by: Ingo Molnar <mingo@kernel.org>
Reported-by: Borislav Petkov <bp@alien8.de>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Mike Galbraith <efault@gmx.de>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Signed-off-by: Sasha Levin <alexander.levin@verizon.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
[ Upstream commit a499c3ead88ccf147fc50689e85a530ad923ce36 ]
This is triggered during boot when CONFIG_SCHED_DEBUG is enabled:
------------[ cut here ]------------
WARNING: CPU: 6 PID: 81 at kernel/sched/sched.h:812 set_next_entity+0x11d/0x380
rq->clock_update_flags < RQCF_ACT_SKIP
CPU: 6 PID: 81 Comm: torture_shuffle Not tainted 4.10.0+ #1
Hardware name: LENOVO ThinkCentre M8500t-N000/SHARKBAY, BIOS FBKTC1AUS 02/16/2016
Call Trace:
dump_stack+0x85/0xc2
__warn+0xcb/0xf0
warn_slowpath_fmt+0x5f/0x80
set_next_entity+0x11d/0x380
set_curr_task_fair+0x2b/0x60
do_set_cpus_allowed+0x139/0x180
__set_cpus_allowed_ptr+0x113/0x260
set_cpus_allowed_ptr+0x10/0x20
torture_shuffle+0xfd/0x180
kthread+0x10f/0x150
? torture_shutdown_init+0x60/0x60
? kthread_create_on_node+0x60/0x60
ret_from_fork+0x31/0x40
---[ end trace dd94d92344cea9c6 ]---
The task is running && !queued, so there is no rq clock update before calling
set_curr_task().
This patch fixes it by updating rq clock after holding rq->lock/pi_lock
just as what other dequeue + put_prev + enqueue + set_curr story does.
Signed-off-by: Wanpeng Li <wanpeng.li@hotmail.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Reviewed-by: Matt Fleming <matt@codeblueprint.co.uk>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Mike Galbraith <efault@gmx.de>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Link: http://lkml.kernel.org/r/1487749975-5994-1-git-send-email-wanpeng.li@hotmail.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Signed-off-by: Sasha Levin <alexander.levin@verizon.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
commit 50e76632339d4655859523a39249dd95ee5e93e7 upstream.
Cpusets vs. suspend-resume is _completely_ broken. And it got noticed
because it now resulted in non-cpuset usage breaking too.
On suspend cpuset_cpu_inactive() doesn't call into
cpuset_update_active_cpus() because it doesn't want to move tasks about,
there is no need, all tasks are frozen and won't run again until after
we've resumed everything.
But this means that when we finally do call into
cpuset_update_active_cpus() after resuming the last frozen cpu in
cpuset_cpu_active(), the top_cpuset will not have any difference with
the cpu_active_mask and this it will not in fact do _anything_.
So the cpuset configuration will not be restored. This was largely
hidden because we would unconditionally create identity domains and
mobile users would not in fact use cpusets much. And servers what do use
cpusets tend to not suspend-resume much.
An addition problem is that we'd not in fact wait for the cpuset work to
finish before resuming the tasks, allowing spurious migrations outside
of the specified domains.
Fix the rebuild by introducing cpuset_force_rebuild() and fix the
ordering with cpuset_wait_for_hotplug().
Reported-by: Andy Lutomirski <luto@kernel.org>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: <stable@vger.kernel.org>
Cc: Andy Lutomirski <luto@amacapital.net>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Mike Galbraith <efault@gmx.de>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Rafael J. Wysocki <rjw@rjwysocki.net>
Cc: Tejun Heo <tj@kernel.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Fixes: deb7aa308ea2 ("cpuset: reorganize CPU / memory hotplug handling")
Link: http://lkml.kernel.org/r/20170907091338.orwxrqkbfkki3c24@hirez.programming.kicks-ass.net
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Signed-off-by: Mike Galbraith <efault@gmx.de>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
commit 96b777452d8881480fd5be50112f791c17db4b6b upstream.
Commit:
2f5177f0fd7e ("sched/cgroup: Fix/cleanup cgroup teardown/init")
.. moved sched_online_group() from css_online() to css_alloc().
It exposes half-baked task group into global lists before initializing
generic cgroup stuff.
LTP testcase (third in cgroup_regression_test) written for testing
similar race in kernels 2.6.26-2.6.28 easily triggers this oops:
BUG: unable to handle kernel NULL pointer dereference at 0000000000000008
IP: kernfs_path_from_node_locked+0x260/0x320
CPU: 1 PID: 30346 Comm: cat Not tainted 4.10.0-rc5-test #4
Call Trace:
? kernfs_path_from_node+0x4f/0x60
kernfs_path_from_node+0x3e/0x60
print_rt_rq+0x44/0x2b0
print_rt_stats+0x7a/0xd0
print_cpu+0x2fc/0xe80
? __might_sleep+0x4a/0x80
sched_debug_show+0x17/0x30
seq_read+0xf2/0x3b0
proc_reg_read+0x42/0x70
__vfs_read+0x28/0x130
? security_file_permission+0x9b/0xc0
? rw_verify_area+0x4e/0xb0
vfs_read+0xa5/0x170
SyS_read+0x46/0xa0
entry_SYSCALL_64_fastpath+0x1e/0xad
Here the task group is already linked into the global RCU-protected 'task_groups'
list, but the css->cgroup pointer is still NULL.
This patch reverts this chunk and moves online back to css_online().
Signed-off-by: Konstantin Khlebnikov <khlebnikov@yandex-team.ru>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Tejun Heo <tj@kernel.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Fixes: 2f5177f0fd7e ("sched/cgroup: Fix/cleanup cgroup teardown/init")
Link: http://lkml.kernel.org/r/148655324740.424917.5302984537258726349.stgit@buzz
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Signed-off-by: Matt Fleming <matt@codeblueprint.co.uk>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
commit 73bb059f9b8a00c5e1bf2f7ca83138c05d05e600 upstream.
The point of sched_group_mask is to select those CPUs from
sched_group_cpus that can actually arrive at this balance domain.
The current code gets it wrong, as can be readily demonstrated with a
topology like:
node 0 1 2 3
0: 10 20 30 20
1: 20 10 20 30
2: 30 20 10 20
3: 20 30 20 10
Where (for example) domain 1 on CPU1 ends up with a mask that includes
CPU0:
[] CPU1 attaching sched-domain:
[] domain 0: span 0-2 level NUMA
[] groups: 1 (mask: 1), 2, 0
[] domain 1: span 0-3 level NUMA
[] groups: 0-2 (mask: 0-2) (cpu_capacity: 3072), 0,2-3 (cpu_capacity: 3072)
This causes sched_balance_cpu() to compute the wrong CPU and
consequently should_we_balance() will terminate early resulting in
missed load-balance opportunities.
The fixed topology looks like:
[] CPU1 attaching sched-domain:
[] domain 0: span 0-2 level NUMA
[] groups: 1 (mask: 1), 2, 0
[] domain 1: span 0-3 level NUMA
[] groups: 0-2 (mask: 1) (cpu_capacity: 3072), 0,2-3 (cpu_capacity: 3072)
(note: this relies on OVERLAP domains to always have children, this is
true because the regular topology domains are still here -- this is
before degenerate trimming)
Debugged-by: Lauro Ramos Venancio <lvenanci@redhat.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Mike Galbraith <efault@gmx.de>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: linux-kernel@vger.kernel.org
Fixes: e3589f6c81e4 ("sched: Allow for overlapping sched_domain spans")
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
commit f32d782e31bf079f600dcec126ed117b0577e85c upstream.
The group mask is always used in intersection with the group CPUs. So,
when building the group mask, we don't have to care about CPUs that are
not part of the group.
Signed-off-by: Lauro Ramos Venancio <lvenanci@redhat.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Mike Galbraith <efault@gmx.de>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: lwang@redhat.com
Cc: riel@redhat.com
Link: http://lkml.kernel.org/r/1492717903-5195-2-git-send-email-lvenanci@redhat.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
commit 0372dd2736e02672ac6e189c31f7d8c02ad543cd upstream.
When building the overlapping groups, we very obviously should start
with the previous domain of _this_ @cpu, not CPU-0.
This can be readily demonstrated with a topology like:
node 0 1 2 3
0: 10 20 30 20
1: 20 10 20 30
2: 30 20 10 20
3: 20 30 20 10
Where (for example) CPU1 ends up generating the following nonsensical groups:
[] CPU1 attaching sched-domain:
[] domain 0: span 0-2 level NUMA
[] groups: 1 2 0
[] domain 1: span 0-3 level NUMA
[] groups: 1-3 (cpu_capacity = 3072) 0-1,3 (cpu_capacity = 3072)
Where the fact that domain 1 doesn't include a group with span 0-2 is
the obvious fail.
With patch this looks like:
[] CPU1 attaching sched-domain:
[] domain 0: span 0-2 level NUMA
[] groups: 1 0 2
[] domain 1: span 0-3 level NUMA
[] groups: 0-2 (cpu_capacity = 3072) 0,2-3 (cpu_capacity = 3072)
Debugged-by: Lauro Ramos Venancio <lvenanci@redhat.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Mike Galbraith <efault@gmx.de>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: linux-kernel@vger.kernel.org
Fixes: e3589f6c81e4 ("sched: Allow for overlapping sched_domain spans")
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
commit c6508a39640b9a27fc2bc10cb708152672c82045 upstream.
commit c743f0a5c50f2fcbc628526279cfa24f3dabe182 upstream.
More users for for_each_cpu_wrap() have appeared. Promote the construct
to generic cpumask interface.
The implementation is slightly modified to reduce arguments.
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Lauro Ramos Venancio <lvenanci@redhat.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Mike Galbraith <efault@gmx.de>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Rik van Riel <riel@redhat.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: lwang@redhat.com
Link: http://lkml.kernel.org/r/20170414122005.o35me2h5nowqkxbv@hirez.programming.kicks-ass.net
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Signed-off-by: Mel Gorman <mgorman@techsingularity.net>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
This reverts commit 1b568f0aabf280555125bc7cefc08321ff0ebaba.
For the 4.9 kernel tree, this patch causes scheduler regressions. It is
fixed in newer kernels with a large number of individual patches, the
sum of which is too big for the stable kernel tree.
Ingo recommended just reverting the single patch for this tree, as it's
much simpler.
Reported-by: Ben Guthro <ben@guthro.net>
Cc: Ingo Molnar <mingo@kernel.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Mike Galbraith <efault@gmx.de>
Cc: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
commit 6e5f32f7a43f45ee55c401c0b9585eb01f9629a8 upstream.
If we crossed a sample window while in NO_HZ we will add LOAD_FREQ to
the pending sample window time on exit, setting the next update not
one window into the future, but two.
This situation on exiting NO_HZ is described by:
this_rq->calc_load_update < jiffies < calc_load_update
In this scenario, what we should be doing is:
this_rq->calc_load_update = calc_load_update [ next window ]
But what we actually do is:
this_rq->calc_load_update = calc_load_update + LOAD_FREQ [ next+1 window ]
This has the effect of delaying load average updates for potentially
up to ~9seconds.
This can result in huge spikes in the load average values due to
per-cpu uninterruptible task counts being out of sync when accumulated
across all CPUs.
It's safe to update the per-cpu active count if we wake between sample
windows because any load that we left in 'calc_load_idle' will have
been zero'd when the idle load was folded in calc_global_load().
This issue is easy to reproduce before,
commit 9d89c257dfb9 ("sched/fair: Rewrite runnable load and utilization average tracking")
just by forking short-lived process pipelines built from ps(1) and
grep(1) in a loop. I'm unable to reproduce the spikes after that
commit, but the bug still seems to be present from code review.
Signed-off-by: Matt Fleming <matt@codeblueprint.co.uk>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Frederic Weisbecker <fweisbec@gmail.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Mike Galbraith <efault@gmx.de>
Cc: Mike Galbraith <umgwanakikbuti@gmail.com>
Cc: Morten Rasmussen <morten.rasmussen@arm.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Vincent Guittot <vincent.guittot@linaro.org>
Fixes: commit 5167e8d ("sched/nohz: Rewrite and fix load-avg computation -- again")
Link: http://lkml.kernel.org/r/20170217120731.11868-2-matt@codeblueprint.co.uk
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
commit 252d2a4117bc181b287eeddf848863788da733ae upstream.
idle_task_exit() can be called with IRQs on x86 on and therefore
should use switch_mm(), not switch_mm_irqs_off().
This doesn't seem to cause any problems right now, but it will
confuse my upcoming TLB flush changes. Nonetheless, I think it
should be backported because it's trivial. There won't be any
meaningful performance impact because idle_task_exit() is only
used when offlining a CPU.
Signed-off-by: Andy Lutomirski <luto@kernel.org>
Cc: Borislav Petkov <bp@suse.de>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Fixes: f98db6013c55 ("sched/core: Add switch_mm_irqs_off() and use it in the scheduler")
Link: http://lkml.kernel.org/r/ca3d1a9fa93a0b49f5a8ff729eda3640fb6abdf9.1497034141.git.luto@kernel.org
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
commit 4296f23ed49a15d36949458adcc66ff993dee2a8 upstream.
sugov_start() only initializes struct sugov_cpu per-CPU structures
for shared policies, but it should do that for single-CPU policies too.
That in particular makes the IO-wait boost mechanism work in the
cases when cpufreq policies correspond to individual CPUs.
Fixes: 21ca6d2c52f8 (cpufreq: schedutil: Add iowait boosting)
Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
Acked-by: Viresh Kumar <viresh.kumar@linaro.org>
Signed-off-by: Amit Pundir <amit.pundir@linaro.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
commit 6c4f0fa643cb9e775dcc976e3db00d649468ff1d upstream.
cached_raw_freq applies to the entire cpufreq policy and not individual
CPUs. Apart from wasting per-cpu memory, it is actually wrong to keep it
in struct sugov_cpu as we may end up comparing next_freq with a stale
cached_raw_freq of a random CPU.
Move cached_raw_freq to struct sugov_policy.
Fixes: 5cbea46984d6 (cpufreq: schedutil: map raw required frequency to driver frequency)
Signed-off-by: Viresh Kumar <viresh.kumar@linaro.org>
Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
Signed-off-by: Amit Pundir <amit.pundir@linaro.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
commit 619bd4a71874a8fd78eb6ccf9f272c5e98bcc7b7 upstream.
Since the change in commit:
fd7a4bed1835 ("sched, rt: Convert switched_{from, to}_rt() / prio_changed_rt() to balance callbacks")
... we don't reschedule a task under certain circumstances:
Lets say task-A, SCHED_OTHER, is running on CPU0 (and it may run only on
CPU0) and holds a PI lock. This task is removed from the CPU because it
used up its time slice and another SCHED_OTHER task is running. Task-B on
CPU1 runs at RT priority and asks for the lock owned by task-A. This
results in a priority boost for task-A. Task-B goes to sleep until the
lock has been made available. Task-A is already runnable (but not active),
so it receives no wake up.
The reality now is that task-A gets on the CPU once the scheduler decides
to remove the current task despite the fact that a high priority task is
enqueued and waiting. This may take a long time.
The desired behaviour is that CPU0 immediately reschedules after the
priority boost which made task-A the task with the lowest priority.
Suggested-by: Peter Zijlstra <peterz@infradead.org>
Signed-off-by: Sebastian Andrzej Siewior <bigeasy@linutronix.de>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Mike Galbraith <efault@gmx.de>
Cc: Thomas Gleixner <tglx@linutronix.de>
Fixes: fd7a4bed1835 ("sched, rt: Convert switched_{from, to}_rt() prio_changed_rt() to balance callbacks")
Link: http://lkml.kernel.org/r/20170124144006.29821-1-bigeasy@linutronix.de
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
Michael Kerrisk reported:
> Regarding the previous paragraph... My tests indicate
> that writing *any* value to the autogroup [nice priority level]
> file causes the task group to get a lower priority.
Because autogroup didn't call the then meaningless scale_load()...
Autogroup nice level adjustment has been broken ever since load
resolution was increased for 64-bit kernels. Use scale_load() to
scale group weight.
Michael Kerrisk tested this patch to fix the problem:
> Applied and tested against 4.9-rc6 on an Intel u7 (4 cores).
> Test setup:
>
> Terminal window 1: running 40 CPU burner jobs
> Terminal window 2: running 40 CPU burner jobs
> Terminal window 1: running 1 CPU burner job
>
> Demonstrated that:
> * Writing "0" to the autogroup file for TW1 now causes no change
> to the rate at which the process on the terminal consume CPU.
> * Writing -20 to the autogroup file for TW1 caused those processes
> to get the lion's share of CPU while TW2 TW3 get a tiny amount.
> * Writing -20 to the autogroup files for TW1 and TW3 allowed the
> process on TW3 to get as much CPU as it was getting as when
> the autogroup nice values for both terminals were 0.
Reported-by: Michael Kerrisk <mtk.manpages@gmail.com>
Tested-by: Michael Kerrisk <mtk.manpages@gmail.com>
Signed-off-by: Mike Galbraith <umgwanakikbuti@gmail.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <a.p.zijlstra@chello.nl>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: linux-man <linux-man@vger.kernel.org>
Cc: stable@vger.kernel.org
Link: http://lkml.kernel.org/r/1479897217.4306.6.camel@gmx.de
Signed-off-by: Ingo Molnar <mingo@kernel.org>
|
|
Exactly because for_each_thread() in autogroup_move_group() can't see it
and update its ->sched_task_group before _put() and possibly free().
So the exiting task needs another sched_move_task() before exit_notify()
and we need to re-introduce the PF_EXITING (or similar) check removed by
the previous change for another reason.
Signed-off-by: Oleg Nesterov <oleg@redhat.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Mike Galbraith <efault@gmx.de>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: hartsjc@redhat.com
Cc: vbendel@redhat.com
Cc: vlovejoy@redhat.com
Link: http://lkml.kernel.org/r/20161114184612.GA15968@redhat.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
|
|
The PF_EXITING check in task_wants_autogroup() is no longer needed. Remove
it, but see the next patch.
However the comment is correct in that autogroup_move_group() must always
change task_group() for every thread so the sysctl_ check is very wrong;
we can race with cgroups and even sys_setsid() is not safe because a task
running with task_group() == ag->tg must participate in refcounting:
int main(void)
{
int sctl = open("/proc/sys/kernel/sched_autogroup_enabled", O_WRONLY);
assert(sctl > 0);
if (fork()) {
wait(NULL); // destroy the child's ag/tg
pause();
}
assert(pwrite(sctl, "1\n", 2, 0) == 2);
assert(setsid() > 0);
if (fork())
pause();
kill(getppid(), SIGKILL);
sleep(1);
// The child has gone, the grandchild runs with kref == 1
assert(pwrite(sctl, "0\n", 2, 0) == 2);
assert(setsid() > 0);
// runs with the freed ag/tg
for (;;)
sleep(1);
return 0;
}
crashes the kernel. It doesn't really need sleep(1), it doesn't matter if
autogroup_move_group() actually frees the task_group or this happens later.
Reported-by: Vern Lovejoy <vlovejoy@redhat.com>
Signed-off-by: Oleg Nesterov <oleg@redhat.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Mike Galbraith <efault@gmx.de>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: hartsjc@redhat.com
Cc: vbendel@redhat.com
Link: http://lkml.kernel.org/r/20161114184609.GA15965@redhat.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
|
|
In sched_show_task() we print out a useless hex number, not even a
symbol, and there's a big question mark whether this even makes sense
anyway, I suspect we should just remove it all.
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Acked-by: Andy Lutomirski <luto@kernel.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Tetsuo Handa <penguin-kernel@I-love.SAKURA.ne.jp>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: bp@alien8.de
Cc: brgerst@gmail.com
Cc: jann@thejh.net
Cc: keescook@chromium.org
Cc: linux-api@vger.kernel.org
Cc: tycho.andersen@canonical.com
Link: http://lkml.kernel.org/r/CA+55aFzphURPFzAvU4z6Moy7ZmimcwPuUdYU8bj9z0J+S8X1rw@mail.gmail.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
|
|
When CONFIG_THREAD_INFO_IN_TASK=y, it is possible that an exited thread
remains in the task list after its stack pointer was already set to NULL.
Therefore, thread_saved_pc() and stack_not_used() in sched_show_task()
will trigger NULL pointer dereference if an attempt to dump such thread's
traces (e.g. SysRq-t, khungtaskd) is made.
Since show_stack() in sched_show_task() calls try_get_task_stack() and
sched_show_task() is called from interrupt context, calling
try_get_task_stack() from sched_show_task() will be safe as well.
Signed-off-by: Tetsuo Handa <penguin-kernel@I-love.SAKURA.ne.jp>
Acked-by: Andy Lutomirski <luto@kernel.org>
Acked-by: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: bp@alien8.de
Cc: brgerst@gmail.com
Cc: jann@thejh.net
Cc: keescook@chromium.org
Cc: linux-api@vger.kernel.org
Cc: tycho.andersen@canonical.com
Link: http://lkml.kernel.org/r/201611021950.FEJ34368.HFFJOOMLtQOVSF@I-love.SAKURA.ne.jp
Signed-off-by: Ingo Molnar <mingo@kernel.org>
|
|
'sched-urgent-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip
Pull objtool, irq and scheduler fixes from Ingo Molnar:
"One more objtool fixlet for GCC6 code generation patterns, an irq
DocBook fix and an unused variable warning fix in the scheduler"
* 'core-urgent-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip:
objtool: Fix rare switch jump table pattern detection
* 'irq-urgent-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip:
doc: Add missing parameter for msi_setup
* 'sched-urgent-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip:
sched/fair: Remove unused but set variable 'rq'
|
|
The per-zone waitqueues exist because of a scalability issue with the
page waitqueues on some NUMA machines, but it turns out that they hurt
normal loads, and now with the vmalloced stacks they also end up
breaking gfs2 that uses a bit_wait on a stack object:
wait_on_bit(&gh->gh_iflags, HIF_WAIT, TASK_UNINTERRUPTIBLE)
where 'gh' can be a reference to the local variable 'mount_gh' on the
stack of fill_super().
The reason the per-zone hash table breaks for this case is that there is
no "zone" for virtual allocations, and trying to look up the physical
page to get at it will fail (with a BUG_ON()).
It turns out that I actually complained to the mm people about the
per-zone hash table for another reason just a month ago: the zone lookup
also hurts the regular use of "unlock_page()" a lot, because the zone
lookup ends up forcing several unnecessary cache misses and generates
horrible code.
As part of that earlier discussion, we had a much better solution for
the NUMA scalability issue - by just making the page lock have a
separate contention bit, the waitqueue doesn't even have to be looked at
for the normal case.
Peter Zijlstra already has a patch for that, but let's see if anybody
even notices. In the meantime, let's fix the actual gfs2 breakage by
simplifying the bitlock waitqueues and removing the per-zone issue.
Reported-by: Andreas Gruenbacher <agruenba@redhat.com>
Tested-by: Bob Peterson <rpeterso@redhat.com>
Acked-by: Mel Gorman <mgorman@techsingularity.net>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Andy Lutomirski <luto@kernel.org>
Cc: Steven Whitehouse <swhiteho@redhat.com>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
Since commit:
8663e24d56dc ("sched/fair: Reorder cgroup creation code")
... the variable 'rq' in alloc_fair_sched_group() is set but no longer used.
Remove it to fix the following GCC warning when building with 'W=1':
kernel/sched/fair.c:8842:13: warning: variable ‘rq’ set but not used [-Wunused-but-set-variable]
Signed-off-by: Tobias Klauser <tklauser@distanz.ch>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Link: http://lkml.kernel.org/r/20161026113704.8981-1-tklauser@distanz.ch
Signed-off-by: Ingo Molnar <mingo@kernel.org>
|