summaryrefslogtreecommitdiff
path: root/kernel/time
AgeCommit message (Collapse)Author
2020-03-09Merge remote-tracking branch 'fslc/4.14-2.3.x-imx' into toradex_4.14-2.3.x-imxMarcel Ziswiler
Conflicts: arch/arm64/boot/dts/freescale/Makefile arch/arm64/boot/dts/freescale/fsl-imx8qm-device.dtsi
2020-03-08Merge tag 'v4.14.170' into 4.14-2.3.x-imxMarcel Ziswiler
This is the 4.14.170 stable release Conflicts: drivers/net/phy/phy_device.c drivers/tty/serial/imx.c include/linux/platform_data/dma-imx-sdma.h net/wireless/util.c
2020-02-12timer: Convert schedule_timeout() to use from_timer()Kees Cook
In preparation for unconditionally passing the struct timer_list pointer to all timer callbacks, switch to using the new from_timer() helper and passing the timer pointer explicitly. Since this special timer is on the stack, it needs to have a wrapper structure to carry state once .data is eliminated. Signed-off-by: Kees Cook <keescook@chromium.org> Signed-off-by: Thomas Gleixner <tglx@linutronix.de> Cc: linux-mips@linux-mips.org Cc: Petr Mladek <pmladek@suse.com> Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org> Cc: Lai Jiangshan <jiangshanlai@gmail.com> Cc: Sebastian Reichel <sre@kernel.org> Cc: Kalle Valo <kvalo@qca.qualcomm.com> Cc: Paul Mackerras <paulus@samba.org> Cc: Pavel Machek <pavel@ucw.cz> Cc: linux1394-devel@lists.sourceforge.net Cc: Chris Metcalf <cmetcalf@mellanox.com> Cc: linux-s390@vger.kernel.org Cc: linux-wireless@vger.kernel.org Cc: "James E.J. Bottomley" <jejb@linux.vnet.ibm.com> Cc: Wim Van Sebroeck <wim@iguana.be> Cc: Michael Ellerman <mpe@ellerman.id.au> Cc: Ursula Braun <ubraun@linux.vnet.ibm.com> Cc: Geert Uytterhoeven <geert@linux-m68k.org> Cc: Viresh Kumar <viresh.kumar@linaro.org> Cc: Harish Patil <harish.patil@cavium.com> Cc: Guenter Roeck <linux@roeck-us.net> Cc: Manish Chopra <manish.chopra@cavium.com> Cc: Len Brown <len.brown@intel.com> Cc: Arnd Bergmann <arnd@arndb.de> Cc: linux-pm@vger.kernel.org Cc: Heiko Carstens <heiko.carstens@de.ibm.com> Cc: Tejun Heo <tj@kernel.org> Cc: Julian Wiedmann <jwi@linux.vnet.ibm.com> Cc: John Stultz <john.stultz@linaro.org> Cc: Mark Gross <mark.gross@intel.com> Cc: "Rafael J. Wysocki" <rjw@rjwysocki.net> Cc: linux-watchdog@vger.kernel.org Cc: linux-scsi@vger.kernel.org Cc: "Martin K. Petersen" <martin.petersen@oracle.com> Cc: Greg Kroah-Hartman <gregkh@linuxfoundation.org> Cc: Stephen Boyd <sboyd@codeaurora.org> Cc: Oleg Nesterov <oleg@redhat.com> Cc: Ralf Baechle <ralf@linux-mips.org> Cc: Stefan Richter <stefanr@s5r6.in-berlin.de> Cc: Michael Reed <mdr@sgi.com> Cc: netdev@vger.kernel.org Cc: Martin Schwidefsky <schwidefsky@de.ibm.com> Cc: Andrew Morton <akpm@linux-foundation.org> Cc: linuxppc-dev@lists.ozlabs.org Cc: Sudip Mukherjee <sudipm.mukherjee@gmail.com> Link: https://lkml.kernel.org/r/1507159627-127660-2-git-send-email-keescook@chromium.org (cherry picked from commit 58e1177b4cd10b0d358faf7d7ebb3779f98bc3ea)
2020-02-07Merge tag 'v4.14.164' into 4.14-2.3.x-imxMarcel Ziswiler
This is the 4.14.164 stable release Conflicts: arch/arm/Kconfig.debug arch/arm/boot/dts/imx7s.dtsi arch/arm/mach-imx/cpuidle-imx6q.c arch/arm/mach-imx/cpuidle-imx6sx.c arch/arm64/kernel/cpu_errata.c arch/arm64/kvm/hyp/tlb.c drivers/crypto/caam/caamalg.c drivers/crypto/mxs-dcp.c drivers/dma/imx-sdma.c drivers/gpio/gpio-vf610.c drivers/gpu/drm/bridge/adv7511/adv7511_drv.c drivers/input/keyboard/imx_keypad.c drivers/input/keyboard/snvs_pwrkey.c drivers/mmc/core/block.c drivers/mmc/core/queue.h drivers/mmc/host/sdhci-esdhc-imx.c drivers/net/can/flexcan.c drivers/net/can/rx-offload.c drivers/net/ethernet/freescale/fec_main.c drivers/net/wireless/ath/ath10k/pci.c drivers/net/wireless/broadcom/brcm80211/brcmfmac/cfg80211.c drivers/pci/dwc/pci-imx6.c drivers/spi/spi-fsl-lpspi.c drivers/usb/dwc3/gadget.c include/net/tcp.h sound/soc/fsl/Kconfig sound/soc/fsl/fsl_esai.c
2020-01-23tick/sched: Annotate lockless access to last_jiffies_updateEric Dumazet
commit de95a991bb72e009f47e0c4bbc90fc5f594588d5 upstream. syzbot (KCSAN) reported a data-race in tick_do_update_jiffies64(): BUG: KCSAN: data-race in tick_do_update_jiffies64 / tick_do_update_jiffies64 write to 0xffffffff8603d008 of 8 bytes by interrupt on cpu 1: tick_do_update_jiffies64+0x100/0x250 kernel/time/tick-sched.c:73 tick_sched_do_timer+0xd4/0xe0 kernel/time/tick-sched.c:138 tick_sched_timer+0x43/0xe0 kernel/time/tick-sched.c:1292 __run_hrtimer kernel/time/hrtimer.c:1514 [inline] __hrtimer_run_queues+0x274/0x5f0 kernel/time/hrtimer.c:1576 hrtimer_interrupt+0x22a/0x480 kernel/time/hrtimer.c:1638 local_apic_timer_interrupt arch/x86/kernel/apic/apic.c:1110 [inline] smp_apic_timer_interrupt+0xdc/0x280 arch/x86/kernel/apic/apic.c:1135 apic_timer_interrupt+0xf/0x20 arch/x86/entry/entry_64.S:830 arch_local_irq_restore arch/x86/include/asm/paravirt.h:756 [inline] kcsan_setup_watchpoint+0x1d4/0x460 kernel/kcsan/core.c:436 check_access kernel/kcsan/core.c:466 [inline] __tsan_read1 kernel/kcsan/core.c:593 [inline] __tsan_read1+0xc2/0x100 kernel/kcsan/core.c:593 kallsyms_expand_symbol.constprop.0+0x70/0x160 kernel/kallsyms.c:79 kallsyms_lookup_name+0x7f/0x120 kernel/kallsyms.c:170 insert_report_filterlist kernel/kcsan/debugfs.c:155 [inline] debugfs_write+0x14b/0x2d0 kernel/kcsan/debugfs.c:256 full_proxy_write+0xbd/0x100 fs/debugfs/file.c:225 __vfs_write+0x67/0xc0 fs/read_write.c:494 vfs_write fs/read_write.c:558 [inline] vfs_write+0x18a/0x390 fs/read_write.c:542 ksys_write+0xd5/0x1b0 fs/read_write.c:611 __do_sys_write fs/read_write.c:623 [inline] __se_sys_write fs/read_write.c:620 [inline] __x64_sys_write+0x4c/0x60 fs/read_write.c:620 do_syscall_64+0xcc/0x370 arch/x86/entry/common.c:290 entry_SYSCALL_64_after_hwframe+0x44/0xa9 read to 0xffffffff8603d008 of 8 bytes by task 0 on cpu 0: tick_do_update_jiffies64+0x2b/0x250 kernel/time/tick-sched.c:62 tick_nohz_update_jiffies kernel/time/tick-sched.c:505 [inline] tick_nohz_irq_enter kernel/time/tick-sched.c:1257 [inline] tick_irq_enter+0x139/0x1c0 kernel/time/tick-sched.c:1274 irq_enter+0x4f/0x60 kernel/softirq.c:354 entering_irq arch/x86/include/asm/apic.h:517 [inline] entering_ack_irq arch/x86/include/asm/apic.h:523 [inline] smp_apic_timer_interrupt+0x55/0x280 arch/x86/kernel/apic/apic.c:1133 apic_timer_interrupt+0xf/0x20 arch/x86/entry/entry_64.S:830 native_safe_halt+0xe/0x10 arch/x86/include/asm/irqflags.h:60 arch_cpu_idle+0xa/0x10 arch/x86/kernel/process.c:571 default_idle_call+0x1e/0x40 kernel/sched/idle.c:94 cpuidle_idle_call kernel/sched/idle.c:154 [inline] do_idle+0x1af/0x280 kernel/sched/idle.c:263 cpu_startup_entry+0x1b/0x20 kernel/sched/idle.c:355 rest_init+0xec/0xf6 init/main.c:452 arch_call_rest_init+0x17/0x37 start_kernel+0x838/0x85e init/main.c:786 x86_64_start_reservations+0x29/0x2b arch/x86/kernel/head64.c:490 x86_64_start_kernel+0x72/0x76 arch/x86/kernel/head64.c:471 secondary_startup_64+0xa4/0xb0 arch/x86/kernel/head_64.S:241 Reported by Kernel Concurrency Sanitizer on: CPU: 0 PID: 0 Comm: swapper/0 Not tainted 5.4.0-rc7+ #0 Hardware name: Google Google Compute Engine/Google Compute Engine, BIOS Google 01/01/2011 Use READ_ONCE() and WRITE_ONCE() to annotate this expected race. Reported-by: syzbot <syzkaller@googlegroups.com> Signed-off-by: Eric Dumazet <edumazet@google.com> Signed-off-by: Thomas Gleixner <tglx@linutronix.de> Link: https://lore.kernel.org/r/20191205045619.204946-1-edumazet@google.com Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2020-01-04ptp: fix the race between the release of ptp_clock and cdevVladis Dronov
[ Upstream commit a33121e5487b424339636b25c35d3a180eaa5f5e ] In a case when a ptp chardev (like /dev/ptp0) is open but an underlying device is removed, closing this file leads to a race. This reproduces easily in a kvm virtual machine: ts# cat openptp0.c int main() { ... fp = fopen("/dev/ptp0", "r"); ... sleep(10); } ts# uname -r 5.5.0-rc3-46cf053e ts# cat /proc/cmdline ... slub_debug=FZP ts# modprobe ptp_kvm ts# ./openptp0 & [1] 670 opened /dev/ptp0, sleeping 10s... ts# rmmod ptp_kvm ts# ls /dev/ptp* ls: cannot access '/dev/ptp*': No such file or directory ts# ...woken up [ 48.010809] general protection fault: 0000 [#1] SMP [ 48.012502] CPU: 6 PID: 658 Comm: openptp0 Not tainted 5.5.0-rc3-46cf053e #25 [ 48.014624] Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), ... [ 48.016270] RIP: 0010:module_put.part.0+0x7/0x80 [ 48.017939] RSP: 0018:ffffb3850073be00 EFLAGS: 00010202 [ 48.018339] RAX: 000000006b6b6b6b RBX: 6b6b6b6b6b6b6b6b RCX: ffff89a476c00ad0 [ 48.018936] RDX: fffff65a08d3ea08 RSI: 0000000000000247 RDI: 6b6b6b6b6b6b6b6b [ 48.019470] ... ^^^ a slub poison [ 48.023854] Call Trace: [ 48.024050] __fput+0x21f/0x240 [ 48.024288] task_work_run+0x79/0x90 [ 48.024555] do_exit+0x2af/0xab0 [ 48.024799] ? vfs_write+0x16a/0x190 [ 48.025082] do_group_exit+0x35/0x90 [ 48.025387] __x64_sys_exit_group+0xf/0x10 [ 48.025737] do_syscall_64+0x3d/0x130 [ 48.026056] entry_SYSCALL_64_after_hwframe+0x44/0xa9 [ 48.026479] RIP: 0033:0x7f53b12082f6 [ 48.026792] ... [ 48.030945] Modules linked in: ptp i6300esb watchdog [last unloaded: ptp_kvm] [ 48.045001] Fixing recursive fault but reboot is needed! This happens in: static void __fput(struct file *file) { ... if (file->f_op->release) file->f_op->release(inode, file); <<< cdev is kfree'd here if (unlikely(S_ISCHR(inode->i_mode) && inode->i_cdev != NULL && !(mode & FMODE_PATH))) { cdev_put(inode->i_cdev); <<< cdev fields are accessed here Namely: __fput() posix_clock_release() kref_put(&clk->kref, delete_clock) <<< the last reference delete_clock() delete_ptp_clock() kfree(ptp) <<< cdev is embedded in ptp cdev_put module_put(p->owner) <<< *p is kfree'd, bang! Here cdev is embedded in posix_clock which is embedded in ptp_clock. The race happens because ptp_clock's lifetime is controlled by two refcounts: kref and cdev.kobj in posix_clock. This is wrong. Make ptp_clock's sysfs device a parent of cdev with cdev_device_add() created especially for such cases. This way the parent device with its ptp_clock is not released until all references to the cdev are released. This adds a requirement that an initialized but not exposed struct device should be provided to posix_clock_register() by a caller instead of a simple dev_t. This approach was adopted from the commit 72139dfa2464 ("watchdog: Fix the race between the release of watchdog_core_data and cdev"). See details of the implementation in the commit 233ed09d7fda ("chardev: add helper function to register char devs with a struct device"). Link: https://lore.kernel.org/linux-fsdevel/20191125125342.6189-1-vdronov@redhat.com/T/#u Analyzed-by: Stephen Johnston <sjohnsto@redhat.com> Analyzed-by: Vern Lovejoy <vlovejoy@redhat.com> Signed-off-by: Vladis Dronov <vdronov@redhat.com> Acked-by: Richard Cochran <richardcochran@gmail.com> Signed-off-by: David S. Miller <davem@davemloft.net> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2020-01-04hrtimer: Annotate lockless access to timer->stateEric Dumazet
commit 56144737e67329c9aaed15f942d46a6302e2e3d8 upstream. syzbot reported various data-race caused by hrtimer_is_queued() reading timer->state. A READ_ONCE() is required there to silence the warning. Also add the corresponding WRITE_ONCE() when timer->state is set. In remove_hrtimer() the hrtimer_is_queued() helper is open coded to avoid loading timer->state twice. KCSAN reported these cases: BUG: KCSAN: data-race in __remove_hrtimer / tcp_pacing_check write to 0xffff8880b2a7d388 of 1 bytes by interrupt on cpu 0: __remove_hrtimer+0x52/0x130 kernel/time/hrtimer.c:991 __run_hrtimer kernel/time/hrtimer.c:1496 [inline] __hrtimer_run_queues+0x250/0x600 kernel/time/hrtimer.c:1576 hrtimer_run_softirq+0x10e/0x150 kernel/time/hrtimer.c:1593 __do_softirq+0x115/0x33f kernel/softirq.c:292 run_ksoftirqd+0x46/0x60 kernel/softirq.c:603 smpboot_thread_fn+0x37d/0x4a0 kernel/smpboot.c:165 kthread+0x1d4/0x200 drivers/block/aoe/aoecmd.c:1253 ret_from_fork+0x1f/0x30 arch/x86/entry/entry_64.S:352 read to 0xffff8880b2a7d388 of 1 bytes by task 24652 on cpu 1: tcp_pacing_check net/ipv4/tcp_output.c:2235 [inline] tcp_pacing_check+0xba/0x130 net/ipv4/tcp_output.c:2225 tcp_xmit_retransmit_queue+0x32c/0x5a0 net/ipv4/tcp_output.c:3044 tcp_xmit_recovery+0x7c/0x120 net/ipv4/tcp_input.c:3558 tcp_ack+0x17b6/0x3170 net/ipv4/tcp_input.c:3717 tcp_rcv_established+0x37e/0xf50 net/ipv4/tcp_input.c:5696 tcp_v4_do_rcv+0x381/0x4e0 net/ipv4/tcp_ipv4.c:1561 sk_backlog_rcv include/net/sock.h:945 [inline] __release_sock+0x135/0x1e0 net/core/sock.c:2435 release_sock+0x61/0x160 net/core/sock.c:2951 sk_stream_wait_memory+0x3d7/0x7c0 net/core/stream.c:145 tcp_sendmsg_locked+0xb47/0x1f30 net/ipv4/tcp.c:1393 tcp_sendmsg+0x39/0x60 net/ipv4/tcp.c:1434 inet_sendmsg+0x6d/0x90 net/ipv4/af_inet.c:807 sock_sendmsg_nosec net/socket.c:637 [inline] sock_sendmsg+0x9f/0xc0 net/socket.c:657 BUG: KCSAN: data-race in __remove_hrtimer / __tcp_ack_snd_check write to 0xffff8880a3a65588 of 1 bytes by interrupt on cpu 0: __remove_hrtimer+0x52/0x130 kernel/time/hrtimer.c:991 __run_hrtimer kernel/time/hrtimer.c:1496 [inline] __hrtimer_run_queues+0x250/0x600 kernel/time/hrtimer.c:1576 hrtimer_run_softirq+0x10e/0x150 kernel/time/hrtimer.c:1593 __do_softirq+0x115/0x33f kernel/softirq.c:292 invoke_softirq kernel/softirq.c:373 [inline] irq_exit+0xbb/0xe0 kernel/softirq.c:413 exiting_irq arch/x86/include/asm/apic.h:536 [inline] smp_apic_timer_interrupt+0xe6/0x280 arch/x86/kernel/apic/apic.c:1137 apic_timer_interrupt+0xf/0x20 arch/x86/entry/entry_64.S:830 read to 0xffff8880a3a65588 of 1 bytes by task 22891 on cpu 1: __tcp_ack_snd_check+0x415/0x4f0 net/ipv4/tcp_input.c:5265 tcp_ack_snd_check net/ipv4/tcp_input.c:5287 [inline] tcp_rcv_established+0x750/0xf50 net/ipv4/tcp_input.c:5708 tcp_v4_do_rcv+0x381/0x4e0 net/ipv4/tcp_ipv4.c:1561 sk_backlog_rcv include/net/sock.h:945 [inline] __release_sock+0x135/0x1e0 net/core/sock.c:2435 release_sock+0x61/0x160 net/core/sock.c:2951 sk_stream_wait_memory+0x3d7/0x7c0 net/core/stream.c:145 tcp_sendmsg_locked+0xb47/0x1f30 net/ipv4/tcp.c:1393 tcp_sendmsg+0x39/0x60 net/ipv4/tcp.c:1434 inet_sendmsg+0x6d/0x90 net/ipv4/af_inet.c:807 sock_sendmsg_nosec net/socket.c:637 [inline] sock_sendmsg+0x9f/0xc0 net/socket.c:657 __sys_sendto+0x21f/0x320 net/socket.c:1952 __do_sys_sendto net/socket.c:1964 [inline] __se_sys_sendto net/socket.c:1960 [inline] __x64_sys_sendto+0x89/0xb0 net/socket.c:1960 do_syscall_64+0xcc/0x370 arch/x86/entry/common.c:290 Reported by Kernel Concurrency Sanitizer on: CPU: 1 PID: 24652 Comm: syz-executor.3 Not tainted 5.4.0-rc3+ #0 Hardware name: Google Google Compute Engine/Google Compute Engine, BIOS Google 01/01/2011 [ tglx: Added comments ] Reported-by: syzbot <syzkaller@googlegroups.com> Signed-off-by: Eric Dumazet <edumazet@google.com> Signed-off-by: Thomas Gleixner <tglx@linutronix.de> Link: https://lkml.kernel.org/r/20191106174804.74723-1-edumazet@google.com Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2019-10-11tick: broadcast-hrtimer: Fix a race in bc_set_nextBalasubramani Vivekanandan
[ Upstream commit b9023b91dd020ad7e093baa5122b6968c48cc9e0 ] When a cpu requests broadcasting, before starting the tick broadcast hrtimer, bc_set_next() checks if the timer callback (bc_handler) is active using hrtimer_try_to_cancel(). But hrtimer_try_to_cancel() does not provide the required synchronization when the callback is active on other core. The callback could have already executed tick_handle_oneshot_broadcast() and could have also returned. But still there is a small time window where the hrtimer_try_to_cancel() returns -1. In that case bc_set_next() returns without doing anything, but the next_event of the tick broadcast clock device is already set to a timeout value. In the race condition diagram below, CPU #1 is running the timer callback and CPU #2 is entering idle state and so calls bc_set_next(). In the worst case, the next_event will contain an expiry time, but the hrtimer will not be started which happens when the racing callback returns HRTIMER_NORESTART. The hrtimer might never recover if all further requests from the CPUs to subscribe to tick broadcast have timeout greater than the next_event of tick broadcast clock device. This leads to cascading of failures and finally noticed as rcu stall warnings Here is a depiction of the race condition CPU #1 (Running timer callback) CPU #2 (Enter idle and subscribe to tick broadcast) --------------------- --------------------- __run_hrtimer() tick_broadcast_enter() bc_handler() __tick_broadcast_oneshot_control() tick_handle_oneshot_broadcast() raw_spin_lock(&tick_broadcast_lock); dev->next_event = KTIME_MAX; //wait for tick_broadcast_lock //next_event for tick broadcast clock set to KTIME_MAX since no other cores subscribed to tick broadcasting raw_spin_unlock(&tick_broadcast_lock); if (dev->next_event == KTIME_MAX) return HRTIMER_NORESTART // callback function exits without restarting the hrtimer //tick_broadcast_lock acquired raw_spin_lock(&tick_broadcast_lock); tick_broadcast_set_event() clockevents_program_event() dev->next_event = expires; bc_set_next() hrtimer_try_to_cancel() //returns -1 since the timer callback is active. Exits without restarting the timer cpu_base->running = NULL; The comment that hrtimer cannot be armed from within the callback is wrong. It is fine to start the hrtimer from within the callback. Also it is safe to start the hrtimer from the enter/exit idle code while the broadcast handler is active. The enter/exit idle code and the broadcast handler are synchronized using tick_broadcast_lock. So there is no need for the existing try to cancel logic. All this can be removed which will eliminate the race condition as well. Fixes: 5d1638acb9f6 ("tick: Introduce hrtimer based broadcast") Originally-by: Thomas Gleixner <tglx@linutronix.de> Signed-off-by: Balasubramani Vivekanandan <balasubramani_vivekanandan@mentor.com> Signed-off-by: Thomas Gleixner <tglx@linutronix.de> Cc: stable@vger.kernel.org Link: https://lkml.kernel.org/r/20190926135101.12102-2-balasubramani_vivekanandan@mentor.com Signed-off-by: Sasha Levin <sashal@kernel.org>
2019-10-11timer: Read jiffies once when forwarding base clkLi RongQing
commit e430d802d6a3aaf61bd3ed03d9404888a29b9bf9 upstream. The timer delayed for more than 3 seconds warning was triggered during testing. Workqueue: events_unbound sched_tick_remote RIP: 0010:sched_tick_remote+0xee/0x100 ... Call Trace: process_one_work+0x18c/0x3a0 worker_thread+0x30/0x380 kthread+0x113/0x130 ret_from_fork+0x22/0x40 The reason is that the code in collect_expired_timers() uses jiffies unprotected: if (next_event > jiffies) base->clk = jiffies; As the compiler is allowed to reload the value base->clk can advance between the check and the store and in the worst case advance farther than next event. That causes the timer expiry to be delayed until the wheel pointer wraps around. Convert the code to use READ_ONCE() Fixes: 236968383cf5 ("timers: Optimize collect_expired_timers() for NOHZ") Signed-off-by: Li RongQing <lirongqing@baidu.com> Signed-off-by: Liang ZhiCheng <liangzhicheng@baidu.com> Signed-off-by: Thomas Gleixner <tglx@linutronix.de> Cc: stable@vger.kernel.org Link: https://lkml.kernel.org/r/1568894687-14499-1-git-send-email-lirongqing@baidu.com Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2019-10-05alarmtimer: Use EOPNOTSUPP instead of ENOTSUPPThadeu Lima de Souza Cascardo
commit f18ddc13af981ce3c7b7f26925f099e7c6929aba upstream. ENOTSUPP is not supposed to be returned to userspace. This was found on an OpenPower machine, where the RTC does not support set_alarm. On that system, a clock_nanosleep(CLOCK_REALTIME_ALARM, ...) results in "524 Unknown error 524" Replace it with EOPNOTSUPP which results in the expected "95 Operation not supported" error. Fixes: 1c6b39ad3f01 (alarmtimers: Return -ENOTSUPP if no RTC device is present) Signed-off-by: Thadeu Lima de Souza Cascardo <cascardo@canonical.com> Signed-off-by: Thomas Gleixner <tglx@linutronix.de> Cc: stable@vger.kernel.org Link: https://lkml.kernel.org/r/20190903171802.28314-1-cascardo@canonical.com Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2019-07-31timer_list: Guard procfs specific codeNathan Huckleberry
[ Upstream commit a9314773a91a1d3b36270085246a6715a326ff00 ] With CONFIG_PROC_FS=n the following warning is emitted: kernel/time/timer_list.c:361:36: warning: unused variable 'timer_list_sops' [-Wunused-const-variable] static const struct seq_operations timer_list_sops = { Add #ifdef guard around procfs specific code. Signed-off-by: Nathan Huckleberry <nhuck@google.com> Signed-off-by: Thomas Gleixner <tglx@linutronix.de> Reviewed-by: Nick Desaulniers <ndesaulniers@google.com> Cc: john.stultz@linaro.org Cc: sboyd@kernel.org Cc: clang-built-linux@googlegroups.com Link: https://github.com/ClangBuiltLinux/linux/issues/534 Link: https://lkml.kernel.org/r/20190614181604.112297-1-nhuck@google.com Signed-off-by: Sasha Levin <sashal@kernel.org>
2019-07-31ntp: Limit TAI-UTC offsetMiroslav Lichvar
[ Upstream commit d897a4ab11dc8a9fda50d2eccc081a96a6385998 ] Don't allow the TAI-UTC offset of the system clock to be set by adjtimex() to a value larger than 100000 seconds. This prevents an overflow in the conversion to int, prevents the CLOCK_TAI clock from getting too far ahead of the CLOCK_REALTIME clock, and it is still large enough to allow leap seconds to be inserted at the maximum rate currently supported by the kernel (once per day) for the next ~270 years, however unlikely it is that someone can survive a catastrophic event which slowed down the rotation of the Earth so much. Reported-by: Weikang shi <swkhack@gmail.com> Signed-off-by: Miroslav Lichvar <mlichvar@redhat.com> Signed-off-by: Thomas Gleixner <tglx@linutronix.de> Cc: John Stultz <john.stultz@linaro.org> Cc: Prarit Bhargava <prarit@redhat.com> Cc: Richard Cochran <richardcochran@gmail.com> Cc: Stephen Boyd <sboyd@kernel.org> Link: https://lkml.kernel.org/r/20190618154713.20929-1-mlichvar@redhat.com Signed-off-by: Sasha Levin <sashal@kernel.org>
2019-06-15ntp: Allow TAI-UTC offset to be set to zeroMiroslav Lichvar
[ Upstream commit fdc6bae940ee9eb869e493990540098b8c0fd6ab ] The ADJ_TAI adjtimex mode sets the TAI-UTC offset of the system clock. It is typically set by NTP/PTP implementations and it is automatically updated by the kernel on leap seconds. The initial value is zero (which applications may interpret as unknown), but this value cannot be set by adjtimex. This limitation seems to go back to the original "nanokernel" implementation by David Mills. Change the ADJ_TAI check to accept zero as a valid TAI-UTC offset in order to allow setting it back to the initial value. Fixes: 153b5d054ac2 ("ntp: support for TAI") Suggested-by: Ondrej Mosnacek <omosnace@redhat.com> Signed-off-by: Miroslav Lichvar <mlichvar@redhat.com> Signed-off-by: Thomas Gleixner <tglx@linutronix.de> Cc: John Stultz <john.stultz@linaro.org> Cc: Richard Cochran <richardcochran@gmail.com> Cc: Prarit Bhargava <prarit@redhat.com> Link: https://lkml.kernel.org/r/20190417084833.7401-1-mlichvar@redhat.com Signed-off-by: Sasha Levin <sashal@kernel.org>
2019-04-17alarmtimer: Return correct remaining timeAndrei Vagin
commit 07d7e12091f4ab869cc6a4bb276399057e73b0b3 upstream. To calculate a remaining time, it's required to subtract the current time from the expiration time. In alarm_timer_remaining() the arguments of ktime_sub are swapped. Fixes: d653d8457c76 ("alarmtimer: Implement remaining callback") Signed-off-by: Andrei Vagin <avagin@gmail.com> Signed-off-by: Thomas Gleixner <tglx@linutronix.de> Reviewed-by: Mukesh Ojha <mojha@codeaurora.org> Cc: Stephen Boyd <sboyd@kernel.org> Cc: John Stultz <john.stultz@linaro.org> Cc: stable@vger.kernel.org Link: https://lkml.kernel.org/r/20190408041542.26338-1-avagin@gmail.com Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2019-02-12timekeeping: Use proper seqcount initializerBart Van Assche
[ Upstream commit ce10a5b3954f2514af726beb78ed8d7350c5e41c ] tk_core.seq is initialized open coded, but that misses to initialize the lockdep map when lockdep is enabled. Lockdep splats involving tk_core seq consequently lack a name and are hard to read. Use the proper initializer which takes care of the lockdep map initialization. [ tglx: Massaged changelog ] Signed-off-by: Bart Van Assche <bvanassche@acm.org> Signed-off-by: Thomas Gleixner <tglx@linutronix.de> Cc: peterz@infradead.org Cc: tj@kernel.org Cc: johannes.berg@intel.com Link: https://lkml.kernel.org/r/20181128234325.110011-12-bvanassche@acm.org Signed-off-by: Sasha Levin <sashal@kernel.org>
2019-02-12clockevents: Retry programming min delta up to 10 timesJames Hogan
When CONFIG_GENERIC_CLOCKEVENTS_MIN_ADJUST=n, the call path hrtimer_reprogram -> clockevents_program_event -> clockevents_program_min_delta will not retry if the clock event driver returns -ETIME. If the driver could not satisfy the program_min_delta for any reason, the lack of a retry means the CPU may not receive a tick interrupt, potentially until the counter does a full period. This leads to rcu_sched timeout messages as the stalled CPU is detected by other CPUs, and other issues if the CPU is holding locks or other resources at the point at which it stalls. There have been a couple of observed mechanisms through which a clock event driver could not satisfy the requested min_delta and return -ETIME. With the MIPS GIC driver, the shared execution resource within MT cores means inconventient latency due to execution of instructions from other hardware threads in the core, within gic_next_event, can result in an event being set in the past. Additionally under virtualisation it is possible to get unexpected latency during a clockevent device's set_next_event() callback which can make it return -ETIME even for a delta based on min_delta_ns. It isn't appropriate to use MIN_ADJUST in the virtualisation case as occasional hypervisor induced high latency will cause min_delta_ns to quickly increase to the maximum. Instead, borrow the retry pattern from the MIN_ADJUST case, but without making adjustments. Retry up to 10 times, each time increasing the attempted delta by min_delta, before giving up. [ Matt: Reworked the loop and made retry increase the delta. ] Signed-off-by: James Hogan <jhogan@kernel.org> Signed-off-by: Matt Redfearn <matt.redfearn@mips.com> Signed-off-by: Thomas Gleixner <tglx@linutronix.de> Cc: linux-mips@linux-mips.org Cc: Daniel Lezcano <daniel.lezcano@linaro.org> Cc: "Martin Schwidefsky" <schwidefsky@de.ibm.com> Cc: James Hogan <james.hogan@mips.com> Link: https://lkml.kernel.org/r/1508422643-6075-1-git-send-email-matt.redfearn@mips.com
2019-01-31posix-cpu-timers: Unbreak timer rearmingThomas Gleixner
commit 93ad0fc088c5b4631f796c995bdd27a082ef33a6 upstream. The recent commit which prevented a division by 0 issue in the alarm timer code broke posix CPU timers as an unwanted side effect. The reason is that the common rearm code checks for timer->it_interval being 0 now. What went unnoticed is that the posix cpu timer setup does not initialize timer->it_interval as it stores the interval in CPU timer specific storage. The reason for the separate storage is historical as the posix CPU timers always had a 64bit nanoseconds representation internally while timer->it_interval is type ktime_t which used to be a modified timespec representation on 32bit machines. Instead of reverting the offending commit and fixing the alarmtimer issue in the alarmtimer code, store the interval in timer->it_interval at CPU timer setup time so the common code check works. This also repairs the existing inconistency of the posix CPU timer code which kept a single shot timer armed despite of the interval being 0. The separate storage can be removed in mainline, but that needs to be a separate commit as the current one has to be backported to stable kernels. Fixes: 0e334db6bb4b ("posix-timers: Fix division by zero bug") Reported-by: H.J. Lu <hjl.tools@gmail.com> Signed-off-by: Thomas Gleixner <tglx@linutronix.de> Cc: John Stultz <john.stultz@linaro.org> Cc: Peter Zijlstra <peterz@infradead.org> Cc: stable@vger.kernel.org Link: https://lkml.kernel.org/r/20190111133500.840117406@linutronix.de Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2018-12-29posix-timers: Fix division by zero bugThomas Gleixner
commit 0e334db6bb4b1fd1e2d72c1f3d8f004313cd9f94 upstream. The signal delivery path of posix-timers can try to rearm the timer even if the interval is zero. That's handled for the common case (hrtimer) but not for alarm timers. In that case the forwarding function raises a division by zero exception. The handling for hrtimer based posix timers is wrong because it marks the timer as active despite the fact that it is stopped. Move the check from common_hrtimer_rearm() to posixtimer_rearm() to cure both issues. Reported-by: syzbot+9d38bedac9cc77b8ad5e@syzkaller.appspotmail.com Signed-off-by: Thomas Gleixner <tglx@linutronix.de> Cc: John Stultz <john.stultz@linaro.org> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Peter Zijlstra <peterz@infradead.org> Cc: sboyd@kernel.org Cc: stable@vger.kernel.org Cc: syzkaller-bugs@googlegroups.com Link: http://lkml.kernel.org/r/alpine.DEB.2.21.1812171328050.1880@nanos.tec.linutronix.de Signed-off-by: Ingo Molnar <mingo@kernel.org> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2018-12-21timer/debug: Change /proc/timer_list from 0444 to 0400Ingo Molnar
[ Upstream commit 8e7df2b5b7f245c9bd11064712db5cb69044a362 ] While it uses %pK, there's still few reasons to read this file as non-root. Suggested-by: Linus Torvalds <torvalds@linux-foundation.org> Acked-by: Thomas Gleixner <tglx@linutronix.de> Cc: Peter Zijlstra <peterz@infradead.org> Cc: linux-kernel@vger.kernel.org Signed-off-by: Ingo Molnar <mingo@kernel.org> Signed-off-by: Sasha Levin <sashal@kernel.org>
2018-10-03posix-timers: Sanitize overrun handlingThomas Gleixner
[ Upstream commit 78c9c4dfbf8c04883941445a195276bb4bb92c76 ] The posix timer overrun handling is broken because the forwarding functions can return a huge number of overruns which does not fit in an int. As a consequence timer_getoverrun(2) and siginfo::si_overrun can turn into random number generators. The k_clock::timer_forward() callbacks return a 64 bit value now. Make k_itimer::ti_overrun[_last] 64bit as well, so the kernel internal accounting is correct. 3Remove the temporary (int) casts. Add a helper function which clamps the overrun value returned to user space via timer_getoverrun(2) or siginfo::si_overrun limited to a positive value between 0 and INT_MAX. INT_MAX is an indicator for user space that the overrun value has been clamped. Reported-by: Team OWL337 <icytxw@gmail.com> Signed-off-by: Thomas Gleixner <tglx@linutronix.de> Acked-by: John Stultz <john.stultz@linaro.org> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Michael Kerrisk <mtk.manpages@gmail.com> Link: https://lkml.kernel.org/r/20180626132705.018623573@linutronix.de Signed-off-by: Sasha Levin <alexander.levin@microsoft.com> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2018-10-03posix-timers: Make forward callback return s64Thomas Gleixner
[ Upstream commit 6fec64e1c92d5c715c6d0f50786daa7708266bde ] The posix timer ti_overrun handling is broken because the forwarding functions can return a huge number of overruns which does not fit in an int. As a consequence timer_getoverrun(2) and siginfo::si_overrun can turn into random number generators. As a first step to address that let the timer_forward() callbacks return the full 64 bit value. Cast it to (int) temporarily until k_itimer::ti_overrun is converted to 64bit and the conversion to user space visible values is sanitized. Reported-by: Team OWL337 <icytxw@gmail.com> Signed-off-by: Thomas Gleixner <tglx@linutronix.de> Acked-by: John Stultz <john.stultz@linaro.org> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Michael Kerrisk <mtk.manpages@gmail.com> Link: https://lkml.kernel.org/r/20180626132704.922098090@linutronix.de Signed-off-by: Sasha Levin <alexander.levin@microsoft.com> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2018-10-03alarmtimer: Prevent overflow for relative nanosleepThomas Gleixner
[ Upstream commit 5f936e19cc0ef97dbe3a56e9498922ad5ba1edef ] Air Icy reported: UBSAN: Undefined behaviour in kernel/time/alarmtimer.c:811:7 signed integer overflow: 1529859276030040771 + 9223372036854775807 cannot be represented in type 'long long int' Call Trace: alarm_timer_nsleep+0x44c/0x510 kernel/time/alarmtimer.c:811 __do_sys_clock_nanosleep kernel/time/posix-timers.c:1235 [inline] __se_sys_clock_nanosleep kernel/time/posix-timers.c:1213 [inline] __x64_sys_clock_nanosleep+0x326/0x4e0 kernel/time/posix-timers.c:1213 do_syscall_64+0xb8/0x3a0 arch/x86/entry/common.c:290 alarm_timer_nsleep() uses ktime_add() to add the current time and the relative expiry value. ktime_add() has no sanity checks so the addition can overflow when the relative timeout is large enough. Use ktime_add_safe() which has the necessary sanity checks in place and limits the result to the valid range. Fixes: 9a7adcf5c6de ("timers: Posix interface for alarm-timers") Reported-by: Team OWL337 <icytxw@gmail.com> Signed-off-by: Thomas Gleixner <tglx@linutronix.de> Cc: John Stultz <john.stultz@linaro.org> Link: https://lkml.kernel.org/r/alpine.DEB.2.21.1807020926360.1595@nanos.tec.linutronix.de Signed-off-by: Sasha Levin <alexander.levin@microsoft.com> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2018-09-29tick/nohz: Prevent bogus softirq pending warningThomas Gleixner
Commit 0a0e0829f990 ("nohz: Fix missing tick reprogram when interrupting an inline softirq") got backported to stable trees and now causes the NOHZ softirq pending warning to trigger. It's not an upstream issue as the NOHZ update logic has been changed there. The problem is when a softirq disabled section gets interrupted and on return from interrupt the tick/nohz state is evaluated, which then can observe pending soft interrupts. These soft interrupts are legitimately pending because they cannot be processed as long as soft interrupts are disabled and the interrupted code will correctly process them when soft interrupts are reenabled. Add a check for softirqs disabled to the pending check to prevent the warning. Reported-by: Grygorii Strashko <grygorii.strashko@ti.com> Reported-by: John Crispin <john@phrozen.org> Signed-off-by: Thomas Gleixner <tglx@linutronix.de> Tested-by: Grygorii Strashko <grygorii.strashko@ti.com> Tested-by: John Crispin <john@phrozen.org> Cc: Frederic Weisbecker <frederic@kernel.org> Cc: Ingo Molnar <mingo@kernel.org> Cc: Anna-Maria Gleixner <anna-maria@linutronix.de> Cc: stable@vger.kernel.org Fixes: 2d898915ccf4838c ("nohz: Fix missing tick reprogram when interrupting an inline softirq") Acked-by: Frederic Weisbecker <frederic@kernel.org> Tested-by: Geert Uytterhoeven <geert+renesas@glider.be>
2018-09-19timers: Clear timer_base::must_forward_clk with timer_base::lock heldGaurav Kohli
[ Upstream commit 363e934d8811d799c88faffc5bfca782fd728334 ] timer_base::must_forward_clock is indicating that the base clock might be stale due to a long idle sleep. The forwarding of the base clock takes place in the timer softirq or when a timer is enqueued to a base which is idle. If the enqueue of timer to an idle base happens from a remote CPU, then the following race can happen: CPU0 CPU1 run_timer_softirq mod_timer base = lock_timer_base(timer); base->must_forward_clk = false if (base->must_forward_clk) forward(base); -> skipped enqueue_timer(base, timer, idx); -> idx is calculated high due to stale base unlock_timer_base(timer); base = lock_timer_base(timer); forward(base); The root cause is that timer_base::must_forward_clk is cleared outside the timer_base::lock held region, so the remote queuing CPU observes it as cleared, but the base clock is still stale. This can cause large granularity values for timers, i.e. the accuracy of the expiry time suffers. Prevent this by clearing the flag with timer_base::lock held, so that the forwarding takes place before the cleared flag is observable by a remote CPU. Signed-off-by: Gaurav Kohli <gkohli@codeaurora.org> Signed-off-by: Thomas Gleixner <tglx@linutronix.de> Cc: john.stultz@linaro.org Cc: sboyd@kernel.org Cc: linux-arm-msm@vger.kernel.org Link: https://lkml.kernel.org/r/1533199863-22748-1-git-send-email-gkohli@codeaurora.org Signed-off-by: Sasha Levin <alexander.levin@microsoft.com> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2018-08-09nohz: Fix local_timer_softirq_pending()Anna-Maria Gleixner
commit 80d20d35af1edd632a5e7a3b9c0ab7ceff92769e upstream. local_timer_softirq_pending() checks whether the timer softirq is pending with: local_softirq_pending() & TIMER_SOFTIRQ. This is wrong because TIMER_SOFTIRQ is the softirq number and not a bitmask. So the test checks for the wrong bit. Use BIT(TIMER_SOFTIRQ) instead. Fixes: 5d62c183f9e9 ("nohz: Prevent a timer interrupt storm in tick_nohz_stop_sched_tick()") Signed-off-by: Anna-Maria Gleixner <anna-maria@linutronix.de> Signed-off-by: Thomas Gleixner <tglx@linutronix.de> Reviewed-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com> Reviewed-by: Daniel Bristot de Oliveira <bristot@redhat.com> Acked-by: Frederic Weisbecker <frederic@kernel.org> Cc: bigeasy@linutronix.de Cc: peterz@infradead.org Cc: stable@vger.kernel.org Link: https://lkml.kernel.org/r/20180731161358.29472-1-anna-maria@linutronix.de Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2018-07-22clocksource: Initialize cs->wd_listPeter Zijlstra
commit 5b9e886a4af97574ca3ce1147f35545da0e7afc7 upstream. A number of places relies on list_empty(&cs->wd_list), however the list_head does not get initialized. Do so upon registration, such that thereafter it is possible to rely on list_empty() correctly reflecting the list membership status. Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> Signed-off-by: Thomas Gleixner <tglx@linutronix.de> Tested-by: Diego Viola <diego.viola@gmail.com> Reviewed-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com> Cc: stable@vger.kernel.org Cc: len.brown@intel.com Cc: rjw@rjwysocki.net Cc: rui.zhang@intel.com Link: https://lkml.kernel.org/r/20180430100344.472662715@infradead.org Signed-off-by: Sudip Mukherjee <sudipm.mukherjee@gmail.com> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2018-07-03time: Make sure jiffies_to_msecs() preserves non-zero time periodsGeert Uytterhoeven
commit abcbcb80cd09cd40f2089d912764e315459b71f7 upstream. For the common cases where 1000 is a multiple of HZ, or HZ is a multiple of 1000, jiffies_to_msecs() never returns zero when passed a non-zero time period. However, if HZ > 1000 and not an integer multiple of 1000 (e.g. 1024 or 1200, as used on alpha and DECstation), jiffies_to_msecs() may return zero for small non-zero time periods. This may break code that relies on receiving back a non-zero value. jiffies_to_usecs() does not need such a fix: one jiffy can only be less than one µs if HZ > 1000000, and such large values of HZ are already rejected at build time, twice: - include/linux/jiffies.h does #error if HZ >= 12288, - kernel/time/time.c has BUILD_BUG_ON(HZ > USEC_PER_SEC). Broken since forever. Signed-off-by: Geert Uytterhoeven <geert@linux-m68k.org> Signed-off-by: Thomas Gleixner <tglx@linutronix.de> Reviewed-by: Arnd Bergmann <arnd@arndb.de> Cc: John Stultz <john.stultz@linaro.org> Cc: Stephen Boyd <sboyd@kernel.org> Cc: linux-alpha@vger.kernel.org Cc: linux-mips@linux-mips.org Cc: stable@vger.kernel.org Link: https://lkml.kernel.org/r/20180622143357.7495-1-geert@linux-m68k.org Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2018-05-22tick/broadcast: Use for_each_cpu() specially on UP kernelsDexuan Cui
commit 5596fe34495cf0f645f417eb928ef224df3e3cb4 upstream. for_each_cpu() unintuitively reports CPU0 as set independent of the actual cpumask content on UP kernels. This causes an unexpected PIT interrupt storm on a UP kernel running in an SMP virtual machine on Hyper-V, and as a result, the virtual machine can suffer from a strange random delay of 1~20 minutes during boot-up, and sometimes it can hang forever. Protect if by checking whether the cpumask is empty before entering the for_each_cpu() loop. [ tglx: Use !IS_ENABLED(CONFIG_SMP) instead of #ifdeffery ] Signed-off-by: Dexuan Cui <decui@microsoft.com> Signed-off-by: Thomas Gleixner <tglx@linutronix.de> Cc: Josh Poulson <jopoulso@microsoft.com> Cc: "Michael Kelley (EOSG)" <Michael.H.Kelley@microsoft.com> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Frederic Weisbecker <fweisbec@gmail.com> Cc: stable@vger.kernel.org Cc: Rakib Mullick <rakib.mullick@gmail.com> Cc: Jork Loeser <Jork.Loeser@microsoft.com> Cc: Greg Kroah-Hartman <gregkh@linuxfoundation.org> Cc: Andrew Morton <akpm@linux-foundation.org> Cc: KY Srinivasan <kys@microsoft.com> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Alexey Dobriyan <adobriyan@gmail.com> Cc: Dmitry Vyukov <dvyukov@google.com> Link: https://lkml.kernel.org/r/KL1P15301MB000678289FE55BA365B3279ABF990@KL1P15301MB0006.APCP153.PROD.OUTLOOK.COM Link: https://lkml.kernel.org/r/KL1P15301MB0006FA63BC22BEB64902EAA0BF930@KL1P15301MB0006.APCP153.PROD.OUTLOOK.COM Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2018-05-01tick/sched: Do not mess with an enqueued hrtimerThomas Gleixner
commit 1f71addd34f4c442bec7d7c749acc1beb58126f2 upstream. Kaike reported that in tests rdma hrtimers occasionaly stopped working. He did great debugging, which provided enough context to decode the problem. CPU 3 CPU 2 idle start sched_timer expires = 712171000000 queue->next = sched_timer start rdmavt timer. expires = 712172915662 lock(baseof(CPU3)) tick_nohz_stop_tick() tick = 716767000000 timerqueue_add(tmr) hrtimer_set_expires(sched_timer, tick); sched_timer->expires = 716767000000 <---- FAIL if (tmr->expires < queue->next->expires) hrtimer_start(sched_timer) queue->next = tmr; lock(baseof(CPU3)) unlock(baseof(CPU3)) timerqueue_remove() timerqueue_add() ts->sched_timer is queued and queue->next is pointing to it, but then ts->sched_timer.expires is modified. This not only corrupts the ordering of the timerqueue RB tree, it also makes CPU2 see the new expiry time of timerqueue->next->expires when checking whether timerqueue->next needs to be updated. So CPU2 sees that the rdma timer is earlier than timerqueue->next and sets the rdma timer as new next. Depending on whether it had also seen the new time at RB tree enqueue, it might have queued the rdma timer at the wrong place and then after removing the sched_timer the RB tree is completely hosed. The problem was introduced with a commit which tried to solve inconsistency between the hrtimer in the tick_sched data and the underlying hardware clockevent. It split out hrtimer_set_expires() to store the new tick time in both the NOHZ and the NOHZ + HIGHRES case, but missed the fact that in the NOHZ + HIGHRES case the hrtimer might still be queued. Use hrtimer_start(timer, tick...) for the NOHZ + HIGHRES case which sets timer->expires after canceling the timer and move the hrtimer_set_expires() invocation into the NOHZ only code path which is not affected as it merily uses the hrtimer as next event storage so code pathes can be shared with the NOHZ + HIGHRES case. Fixes: d4af6d933ccf ("nohz: Fix spurious warning when hrtimer and clockevent get out of sync") Reported-by: "Wan Kaike" <kaike.wan@intel.com> Signed-off-by: Thomas Gleixner <tglx@linutronix.de> Acked-by: Frederic Weisbecker <frederic@kernel.org> Cc: "Marciniszyn Mike" <mike.marciniszyn@intel.com> Cc: Anna-Maria Gleixner <anna-maria@linutronix.de> Cc: linux-rdma@vger.kernel.org Cc: "Dalessandro Dennis" <dennis.dalessandro@intel.com> Cc: "Fleck John" <john.fleck@intel.com> Cc: stable@vger.kernel.org Cc: Peter Zijlstra <peterz@infradead.org> Cc: Frederic Weisbecker <fweisbec@gmail.com> Cc: "Weiny Ira" <ira.weiny@intel.com> Cc: "linux-rdma@vger.kernel.org" Link: https://lkml.kernel.org/r/alpine.DEB.2.21.1804241637390.1679@nanos.tec.linutronix.de Link: https://lkml.kernel.org/r/alpine.DEB.2.21.1804242119210.1597@nanos.tec.linutronix.de Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2018-04-26alarmtimer: Init nanosleep alarm timer on stackThomas Gleixner
commit bd03143007eb9b03a7f2316c677780561b68ba2a upstream. syszbot reported the following debugobjects splat: ODEBUG: object is on stack, but not annotated WARNING: CPU: 0 PID: 4185 at lib/debugobjects.c:328 RIP: 0010:debug_object_is_on_stack lib/debugobjects.c:327 [inline] debug_object_init+0x17/0x20 lib/debugobjects.c:391 debug_hrtimer_init kernel/time/hrtimer.c:410 [inline] debug_init kernel/time/hrtimer.c:458 [inline] hrtimer_init+0x8c/0x410 kernel/time/hrtimer.c:1259 alarm_init kernel/time/alarmtimer.c:339 [inline] alarm_timer_nsleep+0x164/0x4d0 kernel/time/alarmtimer.c:787 SYSC_clock_nanosleep kernel/time/posix-timers.c:1226 [inline] SyS_clock_nanosleep+0x235/0x330 kernel/time/posix-timers.c:1204 do_syscall_64+0x281/0x940 arch/x86/entry/common.c:287 entry_SYSCALL_64_after_hwframe+0x42/0xb7 This happens because the hrtimer for the alarm nanosleep is on stack, but the code does not use the proper debug objects initialization. Split out the code for the allocated use cases and invoke hrtimer_init_on_stack() for the nanosleep related functions. Reported-by: syzbot+a3e0726462b2e346a31d@syzkaller.appspotmail.com Signed-off-by: Thomas Gleixner <tglx@linutronix.de> Cc: John Stultz <john.stultz@linaro.org> Cc: syzkaller-bugs@googlegroups.com Link: https://lkml.kernel.org/r/alpine.DEB.2.21.1803261528270.1585@nanos.tec.linutronix.de Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2018-03-28posix-timers: Protect posix clock array access against speculationThomas Gleixner
commit 19b558db12f9f4e45a22012bae7b4783e62224da upstream. The clockid argument of clockid_to_kclock() comes straight from user space via various syscalls and is used as index into the posix_clocks array. Protect it against spectre v1 array out of bounds speculation. Remove the redundant check for !posix_clock[id] as this is another source for speculation and does not provide any advantage over the return posix_clock[id] path which returns NULL in that case anyway. Signed-off-by: Thomas Gleixner <tglx@linutronix.de> Acked-by: Peter Zijlstra (Intel) <peterz@infradead.org> Acked-by: Dan Williams <dan.j.williams@intel.com> Cc: Rasmus Villemoes <rasmus.villemoes@prevas.dk> Cc: Greg KH <gregkh@linuxfoundation.org> Cc: stable@vger.kernel.org Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: David Woodhouse <dwmw@amazon.co.uk> Link: https://lkml.kernel.org/r/alpine.DEB.2.21.1802151718320.1296@nanos.tec.linutronix.de Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2018-03-08timers: Forward timer base before migrating timersLingutla Chandrasekhar
commit c52232a49e203a65a6e1a670cd5262f59e9364a0 upstream. On CPU hotunplug the enqueued timers of the unplugged CPU are migrated to a live CPU. This happens from the control thread which initiated the unplug. If the CPU on which the control thread runs came out from a longer idle period then the base clock of that CPU might be stale because the control thread runs prior to any event which forwards the clock. In such a case the timers from the unplugged CPU are queued on the live CPU based on the stale clock which can cause large delays due to increased granularity of the outer timer wheels which are far away from base:;clock. But there is a worse problem than that. The following sequence of events illustrates it: - CPU0 timer1 is queued expires = 59969 and base->clk = 59131. The timer is queued at wheel level 2, with resulting expiry time = 60032 (due to level granularity). - CPU1 enters idle @60007, with next timer expiry @60020. - CPU0 is hotplugged at @60009 - CPU1 exits idle and runs the control thread which migrates the timers from CPU0 timer1 is now queued in level 0 for immediate handling in the next softirq because the requested expiry time 59969 is before CPU1 base->clk 60007 - CPU1 runs code which forwards the base clock which succeeds because the next expiring timer. which was collected at idle entry time is still set to 60020. So it forwards beyond 60007 and therefore misses to expire the migrated timer1. That timer gets expired when the wheel wraps around again, which takes between 63 and 630ms depending on the HZ setting. Address both problems by invoking forward_timer_base() for the control CPUs timer base. All other places, which might run into a similar problem (mod_timer()/add_timer_on()) already invoke forward_timer_base() to avoid that. [ tglx: Massaged comment and changelog ] Fixes: a683f390b93f ("timers: Forward the wheel clock whenever possible") Co-developed-by: Neeraj Upadhyay <neeraju@codeaurora.org> Signed-off-by: Neeraj Upadhyay <neeraju@codeaurora.org> Signed-off-by: Lingutla Chandrasekhar <clingutla@codeaurora.org> Signed-off-by: Thomas Gleixner <tglx@linutronix.de> Cc: Anna-Maria Gleixner <anna-maria@linutronix.de> Cc: linux-arm-msm@vger.kernel.org Cc: stable@vger.kernel.org Link: https://lkml.kernel.org/r/20180118115022.6368-1-clingutla@codeaurora.org Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2018-03-03hrtimer: Ensure POSIX compliance (relative CLOCK_REALTIME hrtimers)Anna-Maria Gleixner
commit 48d0c9becc7f3c66874c100c126459a9da0fdced upstream. The POSIX specification defines that relative CLOCK_REALTIME timers are not affected by clock modifications. Those timers have to use CLOCK_MONOTONIC to ensure POSIX compliance. The introduction of the additional HRTIMER_MODE_PINNED mode broke this requirement for pinned timers. There is no user space visible impact because user space timers are not using pinned mode, but for consistency reasons this needs to be fixed. Check whether the mode has the HRTIMER_MODE_REL bit set instead of comparing with HRTIMER_MODE_ABS. Signed-off-by: Anna-Maria Gleixner <anna-maria@linutronix.de> Cc: Christoph Hellwig <hch@lst.de> Cc: John Stultz <john.stultz@linaro.org> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: keescook@chromium.org Fixes: 597d0275736d ("timers: Framework for identifying pinned timers") Link: http://lkml.kernel.org/r/20171221104205.7269-7-anna-maria@linutronix.de Signed-off-by: Ingo Molnar <mingo@kernel.org> Cc: Mike Galbraith <efault@gmx.de> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2018-01-31hrtimer: Reset hrtimer cpu base proper on CPU hotplugThomas Gleixner
commit d5421ea43d30701e03cadc56a38854c36a8b4433 upstream. The hrtimer interrupt code contains a hang detection and mitigation mechanism, which prevents that a long delayed hrtimer interrupt causes a continous retriggering of interrupts which prevent the system from making progress. If a hang is detected then the timer hardware is programmed with a certain delay into the future and a flag is set in the hrtimer cpu base which prevents newly enqueued timers from reprogramming the timer hardware prior to the chosen delay. The subsequent hrtimer interrupt after the delay clears the flag and resumes normal operation. If such a hang happens in the last hrtimer interrupt before a CPU is unplugged then the hang_detected flag is set and stays that way when the CPU is plugged in again. At that point the timer hardware is not armed and it cannot be armed because the hang_detected flag is still active, so nothing clears that flag. As a consequence the CPU does not receive hrtimer interrupts and no timers expire on that CPU which results in RCU stalls and other malfunctions. Clear the flag along with some other less critical members of the hrtimer cpu base to ensure starting from a clean state when a CPU is plugged in. Thanks to Paul, Sebastian and Anna-Maria for their help to get down to the root cause of that hard to reproduce heisenbug. Once understood it's trivial and certainly justifies a brown paperbag. Fixes: 41d2e4949377 ("hrtimer: Tune hrtimer_interrupt hang logic") Reported-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com> Signed-off-by: Thomas Gleixner <tglx@linutronix.de> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Sebastian Sewior <bigeasy@linutronix.de> Cc: Anna-Maria Gleixner <anna-maria@linutronix.de> Link: https://lkml.kernel.org/r/alpine.DEB.2.20.1801261447590.2067@nanos Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2018-01-23timers: Unconditionally check deferrable baseThomas Gleixner
commit ed4bbf7910b28ce3c691aef28d245585eaabda06 upstream. When the timer base is checked for expired timers then the deferrable base must be checked as well. This was missed when making the deferrable base independent of base::nohz_active. Fixes: ced6d5c11d3e ("timers: Use deferrable base independent of base::nohz_active") Signed-off-by: Thomas Gleixner <tglx@linutronix.de> Cc: Anna-Maria Gleixner <anna-maria@linutronix.de> Cc: Frederic Weisbecker <fweisbec@gmail.com> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Sebastian Siewior <bigeasy@linutronix.de> Cc: Paul McKenney <paulmck@linux.vnet.ibm.com> Cc: rt@linutronix.de Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2018-01-02nohz: Prevent a timer interrupt storm in tick_nohz_stop_sched_tick()Thomas Gleixner
commit 5d62c183f9e9df1deeea0906d099a94e8a43047a upstream. The conditions in irq_exit() to invoke tick_nohz_irq_exit() which subsequently invokes tick_nohz_stop_sched_tick() are: if ((idle_cpu(cpu) && !need_resched()) || tick_nohz_full_cpu(cpu)) If need_resched() is not set, but a timer softirq is pending then this is an indication that the softirq code punted and delegated the execution to softirqd. need_resched() is not true because the current interrupted task takes precedence over softirqd. Invoking tick_nohz_irq_exit() in this case can cause an endless loop of timer interrupts because the timer wheel contains an expired timer, but softirqs are not yet executed. So it returns an immediate expiry request, which causes the timer to fire immediately again. Lather, rinse and repeat.... Prevent that by adding a check for a pending timer soft interrupt to the conditions in tick_nohz_stop_sched_tick() which avoid calling get_next_timer_interrupt(). That keeps the tick sched timer on the tick and prevents a repetitive programming of an already expired timer. Reported-by: Sebastian Siewior <bigeasy@linutronix.d> Signed-off-by: Thomas Gleixner <tglx@linutronix.de> Acked-by: Frederic Weisbecker <fweisbec@gmail.com> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Paul McKenney <paulmck@linux.vnet.ibm.com> Cc: Anna-Maria Gleixner <anna-maria@linutronix.de> Cc: Sebastian Siewior <bigeasy@linutronix.de> Link: https://lkml.kernel.org/r/alpine.DEB.2.20.1712272156050.2431@nanos Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2018-01-02timers: Reinitialize per cpu bases on hotplugThomas Gleixner
commit 26456f87aca7157c057de65c9414b37f1ab881d1 upstream. The timer wheel bases are not (re)initialized on CPU hotplug. That leaves them with a potentially stale clk and next_expiry valuem, which can cause trouble then the CPU is plugged. Add a prepare callback which forwards the clock, sets next_expiry to far in the future and reset the control flags to a known state. Set base->must_forward_clk so the first timer which is queued will try to forward the clock to current jiffies. Fixes: 500462a9de65 ("timers: Switch to a non-cascading wheel") Reported-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com> Signed-off-by: Thomas Gleixner <tglx@linutronix.de> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Frederic Weisbecker <fweisbec@gmail.com> Cc: Sebastian Siewior <bigeasy@linutronix.de> Cc: Anna-Maria Gleixner <anna-maria@linutronix.de> Link: https://lkml.kernel.org/r/alpine.DEB.2.20.1712272152200.2431@nanos Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2018-01-02timers: Invoke timer_start_debug() where it makes senseThomas Gleixner
commit fd45bb77ad682be728d1002431d77b8c73342836 upstream. The timer start debug function is called before the proper timer base is set. As a consequence the trace data contains the stale CPU and flags values. Call the debug function after setting the new base and flags. Fixes: 500462a9de65 ("timers: Switch to a non-cascading wheel") Signed-off-by: Thomas Gleixner <tglx@linutronix.de> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Frederic Weisbecker <fweisbec@gmail.com> Cc: Sebastian Siewior <bigeasy@linutronix.de> Cc: rt@linutronix.de Cc: Paul McKenney <paulmck@linux.vnet.ibm.com> Cc: Anna-Maria Gleixner <anna-maria@linutronix.de> Link: https://lkml.kernel.org/r/20171222145337.792907137@linutronix.de Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2018-01-02timers: Use deferrable base independent of base::nohz_activeAnna-Maria Gleixner
commit ced6d5c11d3e7b342f1a80f908e6756ebd4b8ddd upstream. During boot and before base::nohz_active is set in the timer bases, deferrable timers are enqueued into the standard timer base. This works correctly as long as base::nohz_active is false. Once it base::nohz_active is set and a timer which was enqueued before that is accessed the lock selector code choses the lock of the deferred base. This causes unlocked access to the standard base and in case the timer is removed it does not clear the pending flag in the standard base bitmap which causes get_next_timer_interrupt() to return bogus values. To prevent that, the deferrable timers must be enqueued in the deferrable base, even when base::nohz_active is not set. Those deferrable timers also need to be expired unconditional. Fixes: 500462a9de65 ("timers: Switch to a non-cascading wheel") Signed-off-by: Anna-Maria Gleixner <anna-maria@linutronix.de> Signed-off-by: Thomas Gleixner <tglx@linutronix.de> Reviewed-by: Frederic Weisbecker <fweisbec@gmail.com> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Sebastian Siewior <bigeasy@linutronix.de> Cc: rt@linutronix.de Cc: Paul McKenney <paulmck@linux.vnet.ibm.com> Link: https://lkml.kernel.org/r/20171222145337.633328378@linutronix.de Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2018-01-02cpufreq: schedutil: Use idle_calls counter of the remote CPUJoel Fernandes
commit 466a2b42d67644447a1765276259a3ea5531ddff upstream. Since the recent remote cpufreq callback work, its possible that a cpufreq update is triggered from a remote CPU. For single policies however, the current code uses the local CPU when trying to determine if the remote sg_cpu entered idle or is busy. This is incorrect. To remedy this, compare with the nohz tick idle_calls counter of the remote CPU. Fixes: 674e75411fc2 (sched: cpufreq: Allow remote cpufreq callbacks) Acked-by: Viresh Kumar <viresh.kumar@linaro.org> Acked-by: Peter Zijlstra (Intel) <peterz@infradead.org> Signed-off-by: Joel Fernandes <joelaf@google.com> Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2017-12-20posix-timer: Properly check sigevent->sigev_notifyThomas Gleixner
commit cef31d9af908243421258f1df35a4a644604efbe upstream. timer_create() specifies via sigevent->sigev_notify the signal delivery for the new timer. The valid modes are SIGEV_NONE, SIGEV_SIGNAL, SIGEV_THREAD and (SIGEV_SIGNAL | SIGEV_THREAD_ID). The sanity check in good_sigevent() is only checking the valid combination for the SIGEV_THREAD_ID bit, i.e. SIGEV_SIGNAL, but if SIGEV_THREAD_ID is not set it accepts any random value. This has no real effects on the posix timer and signal delivery code, but it affects show_timer() which handles the output of /proc/$PID/timers. That function uses a string array to pretty print sigev_notify. The access to that array has no bound checks, so random sigev_notify cause access beyond the array bounds. Add proper checks for the valid notify modes and remove the SIGEV_THREAD_ID masking from various code pathes as SIGEV_NONE can never be set in combination with SIGEV_THREAD_ID. Reported-by: Eric Biggers <ebiggers3@gmail.com> Reported-by: Dmitry Vyukov <dvyukov@google.com> Reported-by: Alexey Dobriyan <adobriyan@gmail.com> Signed-off-by: Thomas Gleixner <tglx@linutronix.de> Cc: John Stultz <john.stultz@linaro.org> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2017-11-02License cleanup: add SPDX GPL-2.0 license identifier to files with no licenseGreg Kroah-Hartman
Many source files in the tree are missing licensing information, which makes it harder for compliance tools to determine the correct license. By default all files without license information are under the default license of the kernel, which is GPL version 2. Update the files which contain no license information with the 'GPL-2.0' SPDX license identifier. The SPDX identifier is a legally binding shorthand, which can be used instead of the full boiler plate text. This patch is based on work done by Thomas Gleixner and Kate Stewart and Philippe Ombredanne. How this work was done: Patches were generated and checked against linux-4.14-rc6 for a subset of the use cases: - file had no licensing information it it. - file was a */uapi/* one with no licensing information in it, - file was a */uapi/* one with existing licensing information, Further patches will be generated in subsequent months to fix up cases where non-standard license headers were used, and references to license had to be inferred by heuristics based on keywords. The analysis to determine which SPDX License Identifier to be applied to a file was done in a spreadsheet of side by side results from of the output of two independent scanners (ScanCode & Windriver) producing SPDX tag:value files created by Philippe Ombredanne. Philippe prepared the base worksheet, and did an initial spot review of a few 1000 files. The 4.13 kernel was the starting point of the analysis with 60,537 files assessed. Kate Stewart did a file by file comparison of the scanner results in the spreadsheet to determine which SPDX license identifier(s) to be applied to the file. She confirmed any determination that was not immediately clear with lawyers working with the Linux Foundation. Criteria used to select files for SPDX license identifier tagging was: - Files considered eligible had to be source code files. - Make and config files were included as candidates if they contained >5 lines of source - File already had some variant of a license header in it (even if <5 lines). All documentation files were explicitly excluded. The following heuristics were used to determine which SPDX license identifiers to apply. - when both scanners couldn't find any license traces, file was considered to have no license information in it, and the top level COPYING file license applied. For non */uapi/* files that summary was: SPDX license identifier # files ---------------------------------------------------|------- GPL-2.0 11139 and resulted in the first patch in this series. If that file was a */uapi/* path one, it was "GPL-2.0 WITH Linux-syscall-note" otherwise it was "GPL-2.0". Results of that was: SPDX license identifier # files ---------------------------------------------------|------- GPL-2.0 WITH Linux-syscall-note 930 and resulted in the second patch in this series. - if a file had some form of licensing information in it, and was one of the */uapi/* ones, it was denoted with the Linux-syscall-note if any GPL family license was found in the file or had no licensing in it (per prior point). Results summary: SPDX license identifier # files ---------------------------------------------------|------ GPL-2.0 WITH Linux-syscall-note 270 GPL-2.0+ WITH Linux-syscall-note 169 ((GPL-2.0 WITH Linux-syscall-note) OR BSD-2-Clause) 21 ((GPL-2.0 WITH Linux-syscall-note) OR BSD-3-Clause) 17 LGPL-2.1+ WITH Linux-syscall-note 15 GPL-1.0+ WITH Linux-syscall-note 14 ((GPL-2.0+ WITH Linux-syscall-note) OR BSD-3-Clause) 5 LGPL-2.0+ WITH Linux-syscall-note 4 LGPL-2.1 WITH Linux-syscall-note 3 ((GPL-2.0 WITH Linux-syscall-note) OR MIT) 3 ((GPL-2.0 WITH Linux-syscall-note) AND MIT) 1 and that resulted in the third patch in this series. - when the two scanners agreed on the detected license(s), that became the concluded license(s). - when there was disagreement between the two scanners (one detected a license but the other didn't, or they both detected different licenses) a manual inspection of the file occurred. - In most cases a manual inspection of the information in the file resulted in a clear resolution of the license that should apply (and which scanner probably needed to revisit its heuristics). - When it was not immediately clear, the license identifier was confirmed with lawyers working with the Linux Foundation. - If there was any question as to the appropriate license identifier, the file was flagged for further research and to be revisited later in time. In total, over 70 hours of logged manual review was done on the spreadsheet to determine the SPDX license identifiers to apply to the source files by Kate, Philippe, Thomas and, in some cases, confirmation by lawyers working with the Linux Foundation. Kate also obtained a third independent scan of the 4.13 code base from FOSSology, and compared selected files where the other two scanners disagreed against that SPDX file, to see if there was new insights. The Windriver scanner is based on an older version of FOSSology in part, so they are related. Thomas did random spot checks in about 500 files from the spreadsheets for the uapi headers and agreed with SPDX license identifier in the files he inspected. For the non-uapi files Thomas did random spot checks in about 15000 files. In initial set of patches against 4.14-rc6, 3 files were found to have copy/paste license identifier errors, and have been fixed to reflect the correct identifier. Additionally Philippe spent 10 hours this week doing a detailed manual inspection and review of the 12,461 patched files from the initial patch version early this week with: - a full scancode scan run, collecting the matched texts, detected license ids and scores - reviewing anything where there was a license detected (about 500+ files) to ensure that the applied SPDX license was correct - reviewing anything where there was no detection but the patch license was not GPL-2.0 WITH Linux-syscall-note to ensure that the applied SPDX license was correct This produced a worksheet with 20 files needing minor correction. This worksheet was then exported into 3 different .csv files for the different types of files to be modified. These .csv files were then reviewed by Greg. Thomas wrote a script to parse the csv files and add the proper SPDX tag to the file, in the format that the file expected. This script was further refined by Greg based on the output to detect more types of files automatically and to distinguish between header and source .c files (which need different comment types.) Finally Greg ran the script using the .csv files to generate the patches. Reviewed-by: Kate Stewart <kstewart@linuxfoundation.org> Reviewed-by: Philippe Ombredanne <pombredanne@nexb.com> Reviewed-by: Thomas Gleixner <tglx@linutronix.de> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2017-09-08drivers/pps: aesthetic tweaks to PPS-related contentRobert P. J. Day
Collection of aesthetic adjustments to various PPS-related files, directories and Documentation, some quite minor just for the sake of consistency, including: * Updated example of pps device tree node (courtesy Rodolfo G.) * "PPS-API" -> "PPS API" * "pps_source_info_s" -> "pps_source_info" * "ktimer driver" -> "pps-ktimer driver" * "ppstest /dev/pps0" -> "ppstest /dev/pps1" to match example * Add missing PPS-related entries to MAINTAINERS file * Other trivialities Link: http://lkml.kernel.org/r/alpine.LFD.2.20.1708261048220.8106@localhost.localdomain Signed-off-by: Robert P. J. Day <rpjday@crashcourse.ca> Acked-by: Rodolfo Giometti <giometti@enneenne.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2017-09-05Merge tag 'pm-4.14-rc1' of ↵Linus Torvalds
git://git.kernel.org/pub/scm/linux/kernel/git/rafael/linux-pm Pull power management updates from Rafael Wysocki: "This time (again) cpufreq gets the majority of changes which mostly are driver updates (including a major consolidation of intel_pstate), some schedutil governor modifications and core cleanups. There also are some changes in the system suspend area, mostly related to diagnostics and debug messages plus some renames of things related to suspend-to-idle. One major change here is that suspend-to-idle is now going to be preferred over S3 on systems where the ACPI tables indicate to do so and provide requsite support (the Low Power Idle S0 _DSM in particular). The system sleep documentation and the tools related to it are updated too. The rest is a few cpuidle changes (nothing major), devfreq updates, generic power domains (genpd) framework updates and a few assorted modifications elsewhere. Specifics: - Drop the P-state selection algorithm based on a PID controller from intel_pstate and make it use the same P-state selection method (based on the CPU load) for all types of systems in the active mode (Rafael Wysocki, Srinivas Pandruvada). - Rework the cpufreq core and governors to make it possible to take cross-CPU utilization updates into account and modify the schedutil governor to actually do so (Viresh Kumar). - Clean up the handling of transition latency information in the cpufreq core and untangle it from the information on which drivers cannot do dynamic frequency switching (Viresh Kumar). - Add support for new SoCs (MT2701/MT7623 and MT7622) to the mediatek cpufreq driver and update its DT bindings (Sean Wang). - Modify the cpufreq dt-platdev driver to autimatically create cpufreq devices for the new (v2) Operating Performance Points (OPP) DT bindings and update its whitelist of supported systems (Viresh Kumar, Shubhrajyoti Datta, Marc Gonzalez, Khiem Nguyen, Finley Xiao). - Add support for Ux500 to the cpufreq-dt driver and drop the obsolete dbx500 cpufreq driver (Linus Walleij, Arnd Bergmann). - Add new SoC (R8A7795) support to the cpufreq rcar driver (Khiem Nguyen). - Fix and clean up assorted issues in the cpufreq drivers and core (Arvind Yadav, Christophe Jaillet, Colin Ian King, Gustavo Silva, Julia Lawall, Leonard Crestez, Rob Herring, Sudeep Holla). - Update the IO-wait boost handling in the schedutil governor to make it less aggressive (Joel Fernandes). - Rework system suspend diagnostics to make it print fewer messages to the kernel log by default, add a sysfs knob to allow more suspend-related messages to be printed and add Low Power S0 Idle constraints checks to the ACPI suspend-to-idle code (Rafael Wysocki, Srinivas Pandruvada). - Prefer suspend-to-idle over S3 on ACPI-based systems with the ACPI_FADT_LOW_POWER_S0 flag set and the Low Power Idle S0 _DSM interface present in the ACPI tables (Rafael Wysocki). - Update documentation related to system sleep and rename a number of items in the code to make it cleare that they are related to suspend-to-idle (Rafael Wysocki). - Export a variable allowing device drivers to check the target system sleep state from the core system suspend code (Florian Fainelli). - Clean up the cpuidle subsystem to handle the polling state on x86 in a more straightforward way and to use %pOF instead of full_name (Rafael Wysocki, Rob Herring). - Update the devfreq framework to fix and clean up a few minor issues (Chanwoo Choi, Rob Herring). - Extend diagnostics in the generic power domains (genpd) framework and clean it up slightly (Thara Gopinath, Rob Herring). - Fix and clean up a couple of issues in the operating performance points (OPP) framework (Viresh Kumar, Waldemar Rymarkiewicz). - Add support for RV1108 to the rockchip-io Adaptive Voltage Scaling (AVS) driver (David Wu). - Fix the usage of notifiers in CPU power management on some platforms (Alex Shi). - Update the pm-graph system suspend/hibernation and boot profiling utility (Todd Brandt). - Make it possible to run the cpupower utility without CPU0 (Prarit Bhargava)" * tag 'pm-4.14-rc1' of git://git.kernel.org/pub/scm/linux/kernel/git/rafael/linux-pm: (87 commits) cpuidle: Make drivers initialize polling state cpuidle: Move polling state initialization code to separate file cpuidle: Eliminate the CPUIDLE_DRIVER_STATE_START symbol cpufreq: imx6q: Fix imx6sx low frequency support cpufreq: speedstep-lib: make several arrays static, makes code smaller PM: docs: Delete the obsolete states.txt document PM: docs: Describe high-level PM strategies and sleep states PM / devfreq: Fix memory leak when fail to register device PM / devfreq: Add dependency on PM_OPP PM / devfreq: Move private devfreq_update_stats() into devfreq PM / devfreq: Convert to using %pOF instead of full_name PM / AVS: rockchip-io: add io selectors and supplies for RV1108 cpufreq: ti: Fix 'of_node_put' being called twice in error handling path cpufreq: dt-platdev: Drop few entries from whitelist cpufreq: dt-platdev: Automatically create cpufreq device with OPP v2 ARM: ux500: don't select CPUFREQ_DT cpuidle: Convert to using %pOF instead of full_name cpufreq: Convert to using %pOF instead of full_name PM / Domains: Convert to using %pOF instead of full_name cpufreq: Cap the default transition delay value to 10 ms ...
2017-09-04Merge branch 'timers-core-for-linus' of ↵Linus Torvalds
git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip Pull timer fixes from Thomas Gleixner: "A rather small update for the time(r) subsystem: - A new clocksource driver IMX-TPM - Minor fixes to the alarmtimer facility - Device tree cleanups for Renesas drivers - A new kselftest and fixes for the timer related tests - Conversion of the clocksource drivers to use %pOF - Use the proper helpers to access rlimits in the posix-cpu-timer code" * 'timers-core-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip: alarmtimer: Ensure RTC module is not unloaded clocksource: Convert to using %pOF instead of full_name clocksource/drivers/bcm2835: Remove message for a memory allocation failure devicetree: bindings: Remove deprecated properties devicetree: bindings: Remove unused 32-bit CMT bindings devicetree: bindings: Deprecate property, update example devicetree: bindings: r8a73a4 and R-Car Gen2 CMT bindings devicetree: bindings: R-Car Gen2 CMT0 and CMT1 bindings devicetree: bindings: Remove sh7372 CMT binding clocksource/drivers/imx-tpm: Add imx tpm timer support dt-bindings: timer: Add nxp tpm timer binding doc posix-cpu-timers: Use dedicated helper to access rlimit values alarmtimer: Fix unavailable wake-up source in sysfs timekeeping: Use proper timekeeper for debug code kselftests: timers: set-timer-lat: Add one-shot timer test cases kselftests: timers: set-timer-lat: Tweak reporting when timer fires early kselftests: timers: freq-step: Fix build warning kselftests: timers: freq-step: Define ADJ_SETOFFSET if device has older kernel headers
2017-09-04Merge branch 'pm-sleep'Rafael J. Wysocki
* pm-sleep: ACPI / PM: Check low power idle constraints for debug only PM / s2idle: Rename platform operations structure PM / s2idle: Rename ->enter_freeze to ->enter_s2idle PM / s2idle: Rename freeze_state enum and related items PM / s2idle: Rename PM_SUSPEND_FREEZE to PM_SUSPEND_TO_IDLE ACPI / PM: Prefer suspend-to-idle over S3 on some systems platform/x86: intel-hid: Wake up Dell Latitude 7275 from suspend-to-idle PM / suspend: Define pr_fmt() in suspend.c PM / suspend: Use mem_sleep_labels[] strings in messages PM / sleep: Put pm_test under CONFIG_PM_SLEEP_DEBUG PM / sleep: Check pm_wakeup_pending() in __device_suspend_noirq() PM / core: Add error argument to dpm_show_time() PM / core: Split dpm_suspend_noirq() and dpm_resume_noirq() PM / s2idle: Rearrange the main suspend-to-idle loop PM / timekeeping: Print debug messages when requested PM / sleep: Mark suspend/hibernation start and finish PM / sleep: Do not print debug messages by default PM / suspend: Export pm_suspend_target_state
2017-08-31alarmtimer: Ensure RTC module is not unloadedAlexandre Belloni
When registering the rtc device to be used to handle alarm timers, get_device is used to ensure the device doesn't go away but the module can still be unloaded. Call try_module_get to ensure the rtc driver will not go away. Reported-and-tested-by: Michal Simek <monstr@monstr.eu> Signed-off-by: Alexandre Belloni <alexandre.belloni@free-electrons.com> Signed-off-by: Thomas Gleixner <tglx@linutronix.de> Acked-by: John Stultz <john.stultz@linaro.org> Cc: Stephen Boyd <sboyd@codeaurora.org> Link: http://lkml.kernel.org/r/20170820220146.30969-1-alexandre.belloni@free-electrons.com
2017-08-26time: Fix ktime_get_raw() incorrect base accumulationJohn Stultz
In comqit fc6eead7c1e2 ("time: Clean up CLOCK_MONOTONIC_RAW time handling"), the following code got mistakenly added to the update of the raw timekeeper: /* Update the monotonic raw base */ seconds = tk->raw_sec; nsec = (u32)(tk->tkr_raw.xtime_nsec >> tk->tkr_raw.shift); tk->tkr_raw.base = ns_to_ktime(seconds * NSEC_PER_SEC + nsec); Which adds the raw_sec value and the shifted down raw xtime_nsec to the base value. But the read function adds the shifted down tk->tkr_raw.xtime_nsec value another time, The result of this is that ktime_get_raw() users (which are all internal users) see the raw time move faster then it should (the rate at which can vary with the current size of tkr_raw.xtime_nsec), which has resulted in at least problems with graphics rendering performance. The change tried to match the monotonic base update logic: seconds = (u64)(tk->xtime_sec + tk->wall_to_monotonic.tv_sec); nsec = (u32) tk->wall_to_monotonic.tv_nsec; tk->tkr_mono.base = ns_to_ktime(seconds * NSEC_PER_SEC + nsec); Which adds the wall_to_monotonic.tv_nsec value, but not the tk->tkr_mono.xtime_nsec value to the base. To fix this, simplify the tkr_raw.base accumulation to only accumulate the raw_sec portion, and do not include the tkr_raw.xtime_nsec portion, which will be added at read time. Fixes: fc6eead7c1e2 ("time: Clean up CLOCK_MONOTONIC_RAW time handling") Reported-and-tested-by: Chris Wilson <chris@chris-wilson.co.uk> Signed-off-by: John Stultz <john.stultz@linaro.org> Signed-off-by: Thomas Gleixner <tglx@linutronix.de> Cc: Prarit Bhargava <prarit@redhat.com> Cc: Kevin Brodsky <kevin.brodsky@arm.com> Cc: Richard Cochran <richardcochran@gmail.com> Cc: Stephen Boyd <stephen.boyd@linaro.org> Cc: Will Deacon <will.deacon@arm.com> Cc: Miroslav Lichvar <mlichvar@redhat.com> Cc: Daniel Mentz <danielmentz@google.com> Link: http://lkml.kernel.org/r/1503701824-1645-1-git-send-email-john.stultz@linaro.org
2017-08-24timers: Fix excessive granularity of new timers after a nohz idleNicholas Piggin
When a timer base is idle, it is forwarded when a new timer is added to ensure that granularity does not become excessive. When not idle, the timer tick is expected to increment the base. However there are several problems: - If an existing timer is modified, the base is forwarded only after the index is calculated. - The base is not forwarded by add_timer_on. - There is a window after a timer is restarted from a nohz idle, after it is marked not-idle and before the timer tick on this CPU, where a timer may be added but the ancient base does not get forwarded. These result in excessive granularity (a 1 jiffy timeout can blow out to 100s of jiffies), which cause the rcu lockup detector to trigger, among other things. Fix this by keeping track of whether the timer base has been idle since it was last run or forwarded, and if so then forward it before adding a new timer. There is still a case where mod_timer optimises the case of a pending timer mod with the same expiry time, where the timer can see excessive granularity relative to the new, shorter interval. A comment is added, but it's not changed because it is an important fastpath for networking. This has been tested and found to fix the RCU softlockup messages. Testing was also done with tracing to measure requested versus achieved wakeup latencies for all non-deferrable timers in an idle system (with no lockup watchdogs running). Wakeup latency relative to absolute latency is calculated (note this suffers from round-up skew at low absolute times) and analysed: max avg std upstream 506.0 1.20 4.68 patched 2.0 1.08 0.15 The bug was noticed due to the lockup detector Kconfig changes dropping it out of people's .configs and resulting in larger base clk skew When the lockup detectors are enabled, no CPU can go idle for longer than 4 seconds, which limits the granularity errors. Sub-optimal timer behaviour is observable on a smaller scale in that case: max avg std upstream 9.0 1.05 0.19 patched 2.0 1.04 0.11 Fixes: Fixes: a683f390b93f ("timers: Forward the wheel clock whenever possible") Signed-off-by: Nicholas Piggin <npiggin@gmail.com> Signed-off-by: Thomas Gleixner <tglx@linutronix.de> Tested-by: Jonathan Cameron <Jonathan.Cameron@huawei.com> Tested-by: David Miller <davem@davemloft.net> Cc: dzickus@redhat.com Cc: sfr@canb.auug.org.au Cc: mpe@ellerman.id.au Cc: Stephen Boyd <sboyd@codeaurora.org> Cc: linuxarm@huawei.com Cc: abdhalee@linux.vnet.ibm.com Cc: John Stultz <john.stultz@linaro.org> Cc: akpm@linux-foundation.org Cc: paulmck@linux.vnet.ibm.com Cc: torvalds@linux-foundation.org Cc: stable@vger.kernel.org Link: http://lkml.kernel.org/r/20170822084348.21436-1-npiggin@gmail.com
2017-08-20Merge branch 'fortglx/4.14/time' of ↵Thomas Gleixner
https://git.linaro.org/people/john.stultz/linux into timers/core Pull timekeepig updates from John Stultz - kselftest improvements - Use the proper timekeeper in the debug code - Prevent accessing an unavailable wakeup source in the alarmtimer sysfs interface.