summaryrefslogtreecommitdiff
path: root/kernel/time
AgeCommit message (Collapse)Author
2022-04-20tick/nohz: Use WARN_ON_ONCE() to prevent console saturationPaul Gortmaker
commit 40e97e42961f8c6cc7bd5fe67cc18417e02d78f1 upstream. While running some testing on code that happened to allow the variable tick_nohz_full_running to get set but with no "possible" NOHZ cores to back up that setting, this warning triggered: if (unlikely(tick_do_timer_cpu == TICK_DO_TIMER_NONE)) WARN_ON(tick_nohz_full_running); The console was overwhemled with an endless stream of one WARN per tick per core and there was no way to even see what was going on w/o using a serial console to capture it and then trace it back to this. Change it to WARN_ON_ONCE(). Fixes: 08ae95f4fd3b ("nohz_full: Allow the boot CPU to be nohz_full") Signed-off-by: Paul Gortmaker <paul.gortmaker@windriver.com> Signed-off-by: Thomas Gleixner <tglx@linutronix.de> Cc: stable@vger.kernel.org Link: https://lore.kernel.org/r/20211206145950.10927-3-paul.gortmaker@windriver.com Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2021-12-22timekeeping: Really make sure wall_to_monotonic isn't positiveYu Liao
commit 4e8c11b6b3f0b6a283e898344f154641eda94266 upstream. Even after commit e1d7ba873555 ("time: Always make sure wall_to_monotonic isn't positive") it is still possible to make wall_to_monotonic positive by running the following code: int main(void) { struct timespec time; clock_gettime(CLOCK_MONOTONIC, &time); time.tv_nsec = 0; clock_settime(CLOCK_REALTIME, &time); return 0; } The reason is that the second parameter of timespec64_compare(), ts_delta, may be unnormalized because the delta is calculated with an open coded substraction which causes the comparison of tv_sec to yield the wrong result: wall_to_monotonic = { .tv_sec = -10, .tv_nsec = 900000000 } ts_delta = { .tv_sec = -9, .tv_nsec = -900000000 } That makes timespec64_compare() claim that wall_to_monotonic < ts_delta, but actually the result should be wall_to_monotonic > ts_delta. After normalization, the result of timespec64_compare() is correct because the tv_sec comparison is not longer misleading: wall_to_monotonic = { .tv_sec = -10, .tv_nsec = 900000000 } ts_delta = { .tv_sec = -10, .tv_nsec = 100000000 } Use timespec64_sub() to ensure that ts_delta is normalized, which fixes the issue. Fixes: e1d7ba873555 ("time: Always make sure wall_to_monotonic isn't positive") Signed-off-by: Yu Liao <liaoyu15@huawei.com> Signed-off-by: Thomas Gleixner <tglx@linutronix.de> Cc: stable@vger.kernel.org Link: https://lore.kernel.org/r/20211213135727.1656662-1-liaoyu15@huawei.com Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2021-09-16Revert "posix-cpu-timers: Force next expiration recalc after itimer reset"Greg Kroah-Hartman
This reverts commit c322a963d522e9a4273e18c9d7bd6fd40a25160f which is commit 406dd42bd1ba0c01babf9cde169bb319e52f6147 upstream. It is reported to cause regressions. A proposed fix has been posted, but it is not in a released kernel yet. So just revert this from the stable release so that the bug is fixed. If it's really needed we can add it back in in a future release. Link: https://lore.kernel.org/r/87ilz1pwaq.fsf@wylie.me.uk Reported-by: "Alan J. Wylie" <alan@wylie.me.uk> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Frederic Weisbecker <frederic@kernel.org> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: Peter Zijlstra (Intel) <peterz@infradead.org> Cc: Sasha Levin <sashal@kernel.org> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2021-09-15hrtimer: Ensure timerfd notification for HIGHRES=nThomas Gleixner
[ Upstream commit 8c3b5e6ec0fee18bc2ce38d1dfe913413205f908 ] If high resolution timers are disabled the timerfd notification about a clock was set event is not happening for all cases which use clock_was_set_delayed() because that's a NOP for HIGHRES=n, which is wrong. Make clock_was_set_delayed() unconditially available to fix that. Signed-off-by: Thomas Gleixner <tglx@linutronix.de> Link: https://lore.kernel.org/r/20210713135158.196661266@linutronix.de Signed-off-by: Sasha Levin <sashal@kernel.org>
2021-09-15hrtimer: Avoid double reprogramming in __hrtimer_start_range_ns()Thomas Gleixner
[ Upstream commit 627ef5ae2df8eeccb20d5af0e4cfa4df9e61ed28 ] If __hrtimer_start_range_ns() is invoked with an already armed hrtimer then the timer has to be canceled first and then added back. If the timer is the first expiring timer then on removal the clockevent device is reprogrammed to the next expiring timer to avoid that the pending expiry fires needlessly. If the new expiry time ends up to be the first expiry again then the clock event device has to reprogrammed again. Avoid this by checking whether the timer is the first to expire and in that case, keep the timer on the current CPU and delay the reprogramming up to the point where the timer has been enqueued again. Reported-by: Lorenzo Colitti <lorenzo@google.com> Signed-off-by: Thomas Gleixner <tglx@linutronix.de> Link: https://lore.kernel.org/r/20210713135157.873137732@linutronix.de Signed-off-by: Sasha Levin <sashal@kernel.org>
2021-09-15posix-cpu-timers: Force next expiration recalc after itimer resetFrederic Weisbecker
[ Upstream commit 406dd42bd1ba0c01babf9cde169bb319e52f6147 ] When an itimer deactivates a previously armed expiration, it simply doesn't do anything. As a result the process wide cputime counter keeps running and the tick dependency stays set until it reaches the old ghost expiration value. This can be reproduced with the following snippet: void trigger_process_counter(void) { struct itimerval n = {}; n.it_value.tv_sec = 100; setitimer(ITIMER_VIRTUAL, &n, NULL); n.it_value.tv_sec = 0; setitimer(ITIMER_VIRTUAL, &n, NULL); } Fix this with resetting the relevant base expiration. This is similar to disarming a timer. Signed-off-by: Frederic Weisbecker <frederic@kernel.org> Signed-off-by: Thomas Gleixner <tglx@linutronix.de> Acked-by: Peter Zijlstra (Intel) <peterz@infradead.org> Link: https://lore.kernel.org/r/20210726125513.271824-4-frederic@kernel.org Signed-off-by: Sasha Levin <sashal@kernel.org>
2021-08-12timers: Move clearing of base::timer_running under base:: LockThomas Gleixner
commit bb7262b295472eb6858b5c49893954794027cd84 upstream. syzbot reported KCSAN data races vs. timer_base::timer_running being set to NULL without holding base::lock in expire_timers(). This looks innocent and most reads are clearly not problematic, but Frederic identified an issue which is: int data = 0; void timer_func(struct timer_list *t) { data = 1; } CPU 0 CPU 1 ------------------------------ -------------------------- base = lock_timer_base(timer, &flags); raw_spin_unlock(&base->lock); if (base->running_timer != timer) call_timer_fn(timer, fn, baseclk); ret = detach_if_pending(timer, base, true); base->running_timer = NULL; raw_spin_unlock_irqrestore(&base->lock, flags); raw_spin_lock(&base->lock); x = data; If the timer has previously executed on CPU 1 and then CPU 0 can observe base->running_timer == NULL and returns, assuming the timer has completed, but it's not guaranteed on all architectures. The comment for del_timer_sync() makes that guarantee. Moving the assignment under base->lock prevents this. For non-RT kernel it's performance wise completely irrelevant whether the store happens before or after taking the lock. For an RT kernel moving the store under the lock requires an extra unlock/lock pair in the case that there is a waiter for the timer, but that's not the end of the world. Reported-by: syzbot+aa7c2385d46c5eba0b89@syzkaller.appspotmail.com Reported-by: syzbot+abea4558531bae1ba9fe@syzkaller.appspotmail.com Fixes: 030dcdd197d7 ("timers: Prepare support for PREEMPT_RT") Signed-off-by: Thomas Gleixner <tglx@linutronix.de> Tested-by: Sebastian Andrzej Siewior <bigeasy@linutronix.de> Link: https://lore.kernel.org/r/87lfea7gw8.fsf@nanos.tec.linutronix.de Cc: stable@vger.kernel.org Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2021-07-14clocksource: Retry clock read if long delays detectedPaul E. McKenney
[ Upstream commit db3a34e17433de2390eb80d436970edcebd0ca3e ] When the clocksource watchdog marks a clock as unstable, this might be due to that clock being unstable or it might be due to delays that happen to occur between the reads of the two clocks. Yes, interrupts are disabled across those two reads, but there are no shortage of things that can delay interrupts-disabled regions of code ranging from SMI handlers to vCPU preemption. It would be good to have some indication as to why the clock was marked unstable. Therefore, re-read the watchdog clock on either side of the read from the clock under test. If the watchdog clock shows an excessive time delta between its pair of reads, the reads are retried. The maximum number of retries is specified by a new kernel boot parameter clocksource.max_cswd_read_retries, which defaults to three, that is, up to four reads, one initial and up to three retries. If more than one retry was required, a message is printed on the console (the occasional single retry is expected behavior, especially in guest OSes). If the maximum number of retries is exceeded, the clock under test will be marked unstable. However, the probability of this happening due to various sorts of delays is quite small. In addition, the reason (clock-read delays) for the unstable marking will be apparent. Reported-by: Chris Mason <clm@fb.com> Signed-off-by: Paul E. McKenney <paulmck@kernel.org> Signed-off-by: Thomas Gleixner <tglx@linutronix.de> Acked-by: Feng Tang <feng.tang@intel.com> Link: https://lore.kernel.org/r/20210527190124.440372-1-paulmck@kernel.org Signed-off-by: Sasha Levin <sashal@kernel.org>
2021-05-11posix-timers: Preserve return value in clock_adjtime32()Chen Jun
commit 2d036dfa5f10df9782f5278fc591d79d283c1fad upstream. The return value on success (>= 0) is overwritten by the return value of put_old_timex32(). That works correct in the fault case, but is wrong for the success case where put_old_timex32() returns 0. Just check the return value of put_old_timex32() and return -EFAULT in case it is not zero. [ tglx: Massage changelog ] Fixes: 3a4d44b61625 ("ntp: Move adjtimex related compat syscalls to native counterparts") Signed-off-by: Chen Jun <chenjun102@huawei.com> Signed-off-by: Thomas Gleixner <tglx@linutronix.de> Reviewed-by: Richard Cochran <richardcochran@gmail.com> Cc: stable@vger.kernel.org Link: https://lore.kernel.org/r/20210414030449.90692-1-chenjun102@huawei.com Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2021-03-24kernel, fs: Introduce and use set_restart_fn() and arch_set_restart_data()Oleg Nesterov
commit 5abbe51a526253b9f003e9a0a195638dc882d660 upstream. Preparation for fixing get_nr_restart_syscall() on X86 for COMPAT. Add a new helper which sets restart_block->fn and calls a dummy arch_set_restart_data() helper. Fixes: 609c19a385c8 ("x86/ptrace: Stop setting TS_COMPAT in ptrace code") Signed-off-by: Oleg Nesterov <oleg@redhat.com> Signed-off-by: Thomas Gleixner <tglx@linutronix.de> Cc: stable@vger.kernel.org Link: https://lore.kernel.org/r/20210201174641.GA17871@redhat.com Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2021-03-17hrtimer: Update softirq_expires_next correctly after __hrtimer_get_next_event()Anna-Maria Behnsen
[ Upstream commit 46eb1701c046cc18c032fa68f3c8ccbf24483ee4 ] hrtimer_force_reprogram() and hrtimer_interrupt() invokes __hrtimer_get_next_event() to find the earliest expiry time of hrtimer bases. __hrtimer_get_next_event() does not update cpu_base::[softirq_]_expires_next to preserve reprogramming logic. That needs to be done at the callsites. hrtimer_force_reprogram() updates cpu_base::softirq_expires_next only when the first expiring timer is a softirq timer and the soft interrupt is not activated. That's wrong because cpu_base::softirq_expires_next is left stale when the first expiring timer of all bases is a timer which expires in hard interrupt context. hrtimer_interrupt() does never update cpu_base::softirq_expires_next which is wrong too. That becomes a problem when clock_settime() sets CLOCK_REALTIME forward and the first soft expiring timer is in the CLOCK_REALTIME_SOFT base. Setting CLOCK_REALTIME forward moves the clock MONOTONIC based expiry time of that timer before the stale cpu_base::softirq_expires_next. cpu_base::softirq_expires_next is cached to make the check for raising the soft interrupt fast. In the above case the soft interrupt won't be raised until clock monotonic reaches the stale cpu_base::softirq_expires_next value. That's incorrect, but what's worse it that if the softirq timer becomes the first expiring timer of all clock bases after the hard expiry timer has been handled the reprogramming of the clockevent from hrtimer_interrupt() will result in an interrupt storm. That happens because the reprogramming does not use cpu_base::softirq_expires_next, it uses __hrtimer_get_next_event() which returns the actual expiry time. Once clock MONOTONIC reaches cpu_base::softirq_expires_next the soft interrupt is raised and the storm subsides. Change the logic in hrtimer_force_reprogram() to evaluate the soft and hard bases seperately, update softirq_expires_next and handle the case when a soft expiring timer is the first of all bases by comparing the expiry times and updating the required cpu base fields. Split this functionality into a separate function to be able to use it in hrtimer_interrupt() as well without copy paste. Fixes: 5da70160462e ("hrtimer: Implement support for softirq based hrtimers") Reported-by: Mikael Beckius <mikael.beckius@windriver.com> Suggested-by: Thomas Gleixner <tglx@linutronix.de> Tested-by: Mikael Beckius <mikael.beckius@windriver.com> Signed-off-by: Anna-Maria Behnsen <anna-maria@linutronix.de> Signed-off-by: Thomas Gleixner <tglx@linutronix.de> Signed-off-by: Ingo Molnar <mingo@kernel.org> Link: https://lore.kernel.org/r/20210223160240.27518-1-anna-maria@linutronix.de Signed-off-by: Sasha Levin <sashal@kernel.org>
2021-01-06tick/sched: Remove bogus boot "safety" checkThomas Gleixner
[ Upstream commit ba8ea8e7dd6e1662e34e730eadfc52aa6816f9dd ] can_stop_idle_tick() checks whether the do_timer() duty has been taken over by a CPU on boot. That's silly because the boot CPU always takes over with the initial clockevent device. But even if no CPU would have installed a clockevent and taken over the duty then the question whether the tick on the current CPU can be stopped or not is moot. In that case the current CPU would have no clockevent either, so there would be nothing to keep ticking. Remove it. Signed-off-by: Thomas Gleixner <tglx@linutronix.de> Acked-by: Frederic Weisbecker <frederic@kernel.org> Link: https://lore.kernel.org/r/20201206212002.725238293@linutronix.de Signed-off-by: Sasha Levin <sashal@kernel.org>
2020-11-18tick/common: Touch watchdog in tick_unfreeze() on all CPUsChunyan Zhang
commit 5167c506d62dd9ffab73eba23c79b0a8845c9fe1 upstream. Suspend to IDLE invokes tick_unfreeze() on resume. tick_unfreeze() on the first resuming CPU resumes timekeeping, which also has the side effect of resetting the softlockup watchdog on this CPU. But on the secondary CPUs the watchdog is not reset in the resume / unfreeze() path, which can result in false softlockup warnings on those CPUs depending on the time spent in suspend. Prevent this by clearing the softlock watchdog in the unfreeze path also on the secondary resuming CPUs. [ tglx: Massaged changelog ] Signed-off-by: Chunyan Zhang <chunyan.zhang@unisoc.com> Signed-off-by: Thomas Gleixner <tglx@linutronix.de> Link: https://lore.kernel.org/r/20200110083902.27276-1-chunyan.zhang@unisoc.com Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2020-11-18random32: make prandom_u32() output unpredictableGeorge Spelvin
commit c51f8f88d705e06bd696d7510aff22b33eb8e638 upstream. Non-cryptographic PRNGs may have great statistical properties, but are usually trivially predictable to someone who knows the algorithm, given a small sample of their output. An LFSR like prandom_u32() is particularly simple, even if the sample is widely scattered bits. It turns out the network stack uses prandom_u32() for some things like random port numbers which it would prefer are *not* trivially predictable. Predictability led to a practical DNS spoofing attack. Oops. This patch replaces the LFSR with a homebrew cryptographic PRNG based on the SipHash round function, which is in turn seeded with 128 bits of strong random key. (The authors of SipHash have *not* been consulted about this abuse of their algorithm.) Speed is prioritized over security; attacks are rare, while performance is always wanted. Replacing all callers of prandom_u32() is the quick fix. Whether to reinstate a weaker PRNG for uses which can tolerate it is an open question. Commit f227e3ec3b5c ("random32: update the net random state on interrupt and activity") was an earlier attempt at a solution. This patch replaces it. Reported-by: Amit Klein <aksecurity@gmail.com> Cc: Willy Tarreau <w@1wt.eu> Cc: Eric Dumazet <edumazet@google.com> Cc: "Jason A. Donenfeld" <Jason@zx2c4.com> Cc: Andy Lutomirski <luto@kernel.org> Cc: Kees Cook <keescook@chromium.org> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: tytso@mit.edu Cc: Florian Westphal <fw@strlen.de> Cc: Marc Plumb <lkml.mplumb@gmail.com> Fixes: f227e3ec3b5c ("random32: update the net random state on interrupt and activity") Signed-off-by: George Spelvin <lkml@sdf.org> Link: https://lore.kernel.org/netdev/20200808152628.GA27941@SDF.ORG/ [ willy: partial reversal of f227e3ec3b5c; moved SIPROUND definitions to prandom.h for later use; merged George's prandom_seed() proposal; inlined siprand_u32(); replaced the net_rand_state[] array with 4 members to fix a build issue; cosmetic cleanups to make checkpatch happy; fixed RANDOM32_SELFTEST build ] Signed-off-by: Willy Tarreau <w@1wt.eu> [wt: backported to 5.4 -- no tracepoint there] Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2020-11-18time: Prevent undefined behaviour in timespec64_to_ns()Zeng Tao
[ Upstream commit cb47755725da7b90fecbb2aa82ac3b24a7adb89b ] UBSAN reports: Undefined behaviour in ./include/linux/time64.h:127:27 signed integer overflow: 17179869187 * 1000000000 cannot be represented in type 'long long int' Call Trace: timespec64_to_ns include/linux/time64.h:127 [inline] set_cpu_itimer+0x65c/0x880 kernel/time/itimer.c:180 do_setitimer+0x8e/0x740 kernel/time/itimer.c:245 __x64_sys_setitimer+0x14c/0x2c0 kernel/time/itimer.c:336 do_syscall_64+0xa1/0x540 arch/x86/entry/common.c:295 Commit bd40a175769d ("y2038: itimer: change implementation to timespec64") replaced the original conversion which handled time clamping correctly with timespec64_to_ns() which has no overflow protection. Fix it in timespec64_to_ns() as this is not necessarily limited to the usage in itimers. [ tglx: Added comment and adjusted the fixes tag ] Fixes: 361a3bf00582 ("time64: Add time64.h header and define struct timespec64") Signed-off-by: Zeng Tao <prime.zeng@hisilicon.com> Signed-off-by: Thomas Gleixner <tglx@linutronix.de> Reviewed-by: Arnd Bergmann <arnd@arndb.de> Cc: stable@vger.kernel.org Link: https://lore.kernel.org/r/1598952616-6416-1-git-send-email-prime.zeng@hisilicon.com Signed-off-by: Sasha Levin <sashal@kernel.org>
2020-10-01timekeeping: Prevent 32bit truncation in scale64_check_overflow()Wen Yang
[ Upstream commit 4cbbc3a0eeed675449b1a4d080008927121f3da3 ] While unlikely the divisor in scale64_check_overflow() could be >= 32bit in scale64_check_overflow(). do_div() truncates the divisor to 32bit at least on 32bit platforms. Use div64_u64() instead to avoid the truncation to 32-bit. [ tglx: Massaged changelog ] Signed-off-by: Wen Yang <wenyang@linux.alibaba.com> Signed-off-by: Thomas Gleixner <tglx@linutronix.de> Link: https://lkml.kernel.org/r/20200120100523.45656-1-wenyang@linux.alibaba.com Signed-off-by: Sasha Levin <sashal@kernel.org>
2020-08-07random32: update the net random state on interrupt and activityWilly Tarreau
commit f227e3ec3b5cad859ad15666874405e8c1bbc1d4 upstream. This modifies the first 32 bits out of the 128 bits of a random CPU's net_rand_state on interrupt or CPU activity to complicate remote observations that could lead to guessing the network RNG's internal state. Note that depending on some network devices' interrupt rate moderation or binding, this re-seeding might happen on every packet or even almost never. In addition, with NOHZ some CPUs might not even get timer interrupts, leaving their local state rarely updated, while they are running networked processes making use of the random state. For this reason, we also perform this update in update_process_times() in order to at least update the state when there is user or system activity, since it's the only case we care about. Reported-by: Amit Klein <aksecurity@gmail.com> Suggested-by: Linus Torvalds <torvalds@linux-foundation.org> Cc: Eric Dumazet <edumazet@google.com> Cc: "Jason A. Donenfeld" <Jason@zx2c4.com> Cc: Andy Lutomirski <luto@kernel.org> Cc: Kees Cook <keescook@chromium.org> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: Peter Zijlstra <peterz@infradead.org> Cc: <stable@vger.kernel.org> Signed-off-by: Willy Tarreau <w@1wt.eu> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2020-07-22timer: Fix wheel index calculation on last levelFrederic Weisbecker
commit e2a71bdea81690b6ef11f4368261ec6f5b6891aa upstream. When an expiration delta falls into the last level of the wheel, that delta has be compared against the maximum possible delay and reduced to fit in if necessary. However instead of comparing the delta against the maximum, the code compares the actual expiry against the maximum. Then instead of fixing the delta to fit in, it sets the maximum delta as the expiry value. This can result in various undesired outcomes, the worst possible one being a timer expiring 15 days ahead to fire immediately. Fixes: 500462a9de65 ("timers: Switch to a non-cascading wheel") Signed-off-by: Frederic Weisbecker <frederic@kernel.org> Signed-off-by: Thomas Gleixner <tglx@linutronix.de> Cc: stable@vger.kernel.org Link: https://lkml.kernel.org/r/20200717140551.29076-2-frederic@kernel.org Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2020-07-22timer: Prevent base->clk from moving backwardFrederic Weisbecker
commit 30c66fc30ee7a98c4f3adf5fb7e213b61884474f upstream. When a timer is enqueued with a negative delta (ie: expiry is below base->clk), it gets added to the wheel as expiring now (base->clk). Yet the value that gets stored in base->next_expiry, while calling trigger_dyntick_cpu(), is the initial timer->expires value. The resulting state becomes: base->next_expiry < base->clk On the next timer enqueue, forward_timer_base() may accidentally rewind base->clk. As a possible outcome, timers may expire way too early, the worst case being that the highest wheel levels get spuriously processed again. To prevent from that, make sure that base->next_expiry doesn't get below base->clk. Fixes: a683f390b93f ("timers: Forward the wheel clock whenever possible") Signed-off-by: Frederic Weisbecker <frederic@kernel.org> Signed-off-by: Thomas Gleixner <tglx@linutronix.de> Reviewed-by: Anna-Maria Behnsen <anna-maria@linutronix.de> Tested-by: Juri Lelli <juri.lelli@redhat.com> Cc: stable@vger.kernel.org Link: https://lkml.kernel.org/r/20200703010657.2302-1-frederic@kernel.org Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2020-04-17time/sched_clock: Expire timer in hardirq contextAhmed S. Darwish
[ Upstream commit 2c8bd58812ee3dbf0d78b566822f7eacd34bdd7b ] To minimize latency, PREEMPT_RT kernels expires hrtimers in preemptible softirq context by default. This can be overriden by marking the timer's expiry with HRTIMER_MODE_HARD. sched_clock_timer is missing this annotation: if its callback is preempted and the duration of the preemption exceeds the wrap around time of the underlying clocksource, sched clock will get out of sync. Mark the sched_clock_timer for expiry in hard interrupt context. Signed-off-by: Ahmed S. Darwish <a.darwish@linutronix.de> Signed-off-by: Thomas Gleixner <tglx@linutronix.de> Link: https://lkml.kernel.org/r/20200309181529.26558-1-a.darwish@linutronix.de Signed-off-by: Sasha Levin <sashal@kernel.org>
2020-03-05lib/vdso: Update coarse timekeeper unconditionallyThomas Gleixner
commit 9f24c540f7f8eb3a981528da9a9a636a5bdf5987 upstream. The low resolution parts of the VDSO, i.e.: clock_gettime(CLOCK_*_COARSE), clock_getres(), time() can be used even if there is no VDSO capable clocksource. But if an architecture opts out of the VDSO data update then this information becomes stale. This affects ARM when there is no architected timer available. The lack of update causes userspace to use stale data forever. Make the update of the low resolution parts unconditional and only skip the update of the high resolution parts if the architecture requests it. Fixes: 44f57d788e7d ("timekeeping: Provide a generic update_vsyscall() implementation") Signed-off-by: Thomas Gleixner <tglx@linutronix.de> Link: https://lore.kernel.org/r/20200114185946.765577901@linutronix.de Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2020-03-05lib/vdso: Make __arch_update_vdso_data() logic understandableThomas Gleixner
commit 9a6b55ac4a44060bcb782baf002859b2a2c63267 upstream. The function name suggests that this is a boolean checking whether the architecture asks for an update of the VDSO data, but it works the other way round. To spare further confusion invert the logic. Fixes: 44f57d788e7d ("timekeeping: Provide a generic update_vsyscall() implementation") Signed-off-by: Thomas Gleixner <tglx@linutronix.de> Link: https://lore.kernel.org/r/20200114185946.656652824@linutronix.de Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2020-02-24alarmtimer: Make alarmtimer platform device child of RTC deviceStephen Boyd
[ Upstream commit c79108bd19a8490315847e0c95ac6526fcd8e770 ] The alarmtimer_suspend() function will fail if an RTC device is on a bus such as SPI or i2c and that RTC device registers and probes after alarmtimer_init() registers and probes the 'alarmtimer' platform device. This is because system wide suspend suspends devices in the reverse order of their probe. When alarmtimer_suspend() attempts to program the RTC for a wakeup it will try to program an RTC device on a bus that has already been suspended. Move the alarmtimer device registration to happen when the RTC which is used for wakeup is registered. Register the 'alarmtimer' platform device as a child of the RTC device too, so that it can be guaranteed that the RTC device won't be suspended when alarmtimer_suspend() is called. Reported-by: Douglas Anderson <dianders@chromium.org> Signed-off-by: Stephen Boyd <swboyd@chromium.org> Signed-off-by: Thomas Gleixner <tglx@linutronix.de> Reviewed-by: Douglas Anderson <dianders@chromium.org> Link: https://lore.kernel.org/r/20200124055849.154411-2-swboyd@chromium.org Signed-off-by: Sasha Levin <sashal@kernel.org>
2020-02-11clocksource: Prevent double add_timer_on() for watchdog_timerKonstantin Khlebnikov
commit febac332a819f0e764aa4da62757ba21d18c182b upstream. Kernel crashes inside QEMU/KVM are observed: kernel BUG at kernel/time/timer.c:1154! BUG_ON(timer_pending(timer) || !timer->function) in add_timer_on(). At the same time another cpu got: general protection fault: 0000 [#1] SMP PTI of poinson pointer 0xdead000000000200 in: __hlist_del at include/linux/list.h:681 (inlined by) detach_timer at kernel/time/timer.c:818 (inlined by) expire_timers at kernel/time/timer.c:1355 (inlined by) __run_timers at kernel/time/timer.c:1686 (inlined by) run_timer_softirq at kernel/time/timer.c:1699 Unfortunately kernel logs are badly scrambled, stacktraces are lost. Printing the timer->function before the BUG_ON() pointed to clocksource_watchdog(). The execution of clocksource_watchdog() can race with a sequence of clocksource_stop_watchdog() .. clocksource_start_watchdog(): expire_timers() detach_timer(timer, true); timer->entry.pprev = NULL; raw_spin_unlock_irq(&base->lock); call_timer_fn clocksource_watchdog() clocksource_watchdog_kthread() or clocksource_unbind() spin_lock_irqsave(&watchdog_lock, flags); clocksource_stop_watchdog(); del_timer(&watchdog_timer); watchdog_running = 0; spin_unlock_irqrestore(&watchdog_lock, flags); spin_lock_irqsave(&watchdog_lock, flags); clocksource_start_watchdog(); add_timer_on(&watchdog_timer, ...); watchdog_running = 1; spin_unlock_irqrestore(&watchdog_lock, flags); spin_lock(&watchdog_lock); add_timer_on(&watchdog_timer, ...); BUG_ON(timer_pending(timer) || !timer->function); timer_pending() -> true BUG() I.e. inside clocksource_watchdog() watchdog_timer could be already armed. Check timer_pending() before calling add_timer_on(). This is sufficient as all operations are synchronized by watchdog_lock. Fixes: 75c5158f70c0 ("timekeeping: Update clocksource with stop_machine") Signed-off-by: Konstantin Khlebnikov <khlebnikov@yandex-team.ru> Signed-off-by: Thomas Gleixner <tglx@linutronix.de> Cc: stable@vger.kernel.org Link: https://lore.kernel.org/r/158048693917.4378.13823603769948933793.stgit@buzz Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2020-02-11alarmtimer: Unregister wakeup source when module get failsStephen Boyd
commit 6b6d188aae79a630957aefd88ff5c42af6553ee3 upstream. The alarmtimer_rtc_add_device() function creates a wakeup source and then tries to grab a module reference. If that fails the function returns early with an error code, but fails to remove the wakeup source. Cleanup this exit path so there is no dangling wakeup source, which is named 'alarmtime' left allocated which will conflict with another RTC device that may be registered later. Fixes: 51218298a25e ("alarmtimer: Ensure RTC module is not unloaded") Signed-off-by: Stephen Boyd <swboyd@chromium.org> Signed-off-by: Thomas Gleixner <tglx@linutronix.de> Reviewed-by: Douglas Anderson <dianders@chromium.org> Cc: stable@vger.kernel.org Link: https://lore.kernel.org/r/20200109155910.907-2-swboyd@chromium.org Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2020-01-23tick/sched: Annotate lockless access to last_jiffies_updateEric Dumazet
commit de95a991bb72e009f47e0c4bbc90fc5f594588d5 upstream. syzbot (KCSAN) reported a data-race in tick_do_update_jiffies64(): BUG: KCSAN: data-race in tick_do_update_jiffies64 / tick_do_update_jiffies64 write to 0xffffffff8603d008 of 8 bytes by interrupt on cpu 1: tick_do_update_jiffies64+0x100/0x250 kernel/time/tick-sched.c:73 tick_sched_do_timer+0xd4/0xe0 kernel/time/tick-sched.c:138 tick_sched_timer+0x43/0xe0 kernel/time/tick-sched.c:1292 __run_hrtimer kernel/time/hrtimer.c:1514 [inline] __hrtimer_run_queues+0x274/0x5f0 kernel/time/hrtimer.c:1576 hrtimer_interrupt+0x22a/0x480 kernel/time/hrtimer.c:1638 local_apic_timer_interrupt arch/x86/kernel/apic/apic.c:1110 [inline] smp_apic_timer_interrupt+0xdc/0x280 arch/x86/kernel/apic/apic.c:1135 apic_timer_interrupt+0xf/0x20 arch/x86/entry/entry_64.S:830 arch_local_irq_restore arch/x86/include/asm/paravirt.h:756 [inline] kcsan_setup_watchpoint+0x1d4/0x460 kernel/kcsan/core.c:436 check_access kernel/kcsan/core.c:466 [inline] __tsan_read1 kernel/kcsan/core.c:593 [inline] __tsan_read1+0xc2/0x100 kernel/kcsan/core.c:593 kallsyms_expand_symbol.constprop.0+0x70/0x160 kernel/kallsyms.c:79 kallsyms_lookup_name+0x7f/0x120 kernel/kallsyms.c:170 insert_report_filterlist kernel/kcsan/debugfs.c:155 [inline] debugfs_write+0x14b/0x2d0 kernel/kcsan/debugfs.c:256 full_proxy_write+0xbd/0x100 fs/debugfs/file.c:225 __vfs_write+0x67/0xc0 fs/read_write.c:494 vfs_write fs/read_write.c:558 [inline] vfs_write+0x18a/0x390 fs/read_write.c:542 ksys_write+0xd5/0x1b0 fs/read_write.c:611 __do_sys_write fs/read_write.c:623 [inline] __se_sys_write fs/read_write.c:620 [inline] __x64_sys_write+0x4c/0x60 fs/read_write.c:620 do_syscall_64+0xcc/0x370 arch/x86/entry/common.c:290 entry_SYSCALL_64_after_hwframe+0x44/0xa9 read to 0xffffffff8603d008 of 8 bytes by task 0 on cpu 0: tick_do_update_jiffies64+0x2b/0x250 kernel/time/tick-sched.c:62 tick_nohz_update_jiffies kernel/time/tick-sched.c:505 [inline] tick_nohz_irq_enter kernel/time/tick-sched.c:1257 [inline] tick_irq_enter+0x139/0x1c0 kernel/time/tick-sched.c:1274 irq_enter+0x4f/0x60 kernel/softirq.c:354 entering_irq arch/x86/include/asm/apic.h:517 [inline] entering_ack_irq arch/x86/include/asm/apic.h:523 [inline] smp_apic_timer_interrupt+0x55/0x280 arch/x86/kernel/apic/apic.c:1133 apic_timer_interrupt+0xf/0x20 arch/x86/entry/entry_64.S:830 native_safe_halt+0xe/0x10 arch/x86/include/asm/irqflags.h:60 arch_cpu_idle+0xa/0x10 arch/x86/kernel/process.c:571 default_idle_call+0x1e/0x40 kernel/sched/idle.c:94 cpuidle_idle_call kernel/sched/idle.c:154 [inline] do_idle+0x1af/0x280 kernel/sched/idle.c:263 cpu_startup_entry+0x1b/0x20 kernel/sched/idle.c:355 rest_init+0xec/0xf6 init/main.c:452 arch_call_rest_init+0x17/0x37 start_kernel+0x838/0x85e init/main.c:786 x86_64_start_reservations+0x29/0x2b arch/x86/kernel/head64.c:490 x86_64_start_kernel+0x72/0x76 arch/x86/kernel/head64.c:471 secondary_startup_64+0xa4/0xb0 arch/x86/kernel/head_64.S:241 Reported by Kernel Concurrency Sanitizer on: CPU: 0 PID: 0 Comm: swapper/0 Not tainted 5.4.0-rc7+ #0 Hardware name: Google Google Compute Engine/Google Compute Engine, BIOS Google 01/01/2011 Use READ_ONCE() and WRITE_ONCE() to annotate this expected race. Reported-by: syzbot <syzkaller@googlegroups.com> Signed-off-by: Eric Dumazet <edumazet@google.com> Signed-off-by: Thomas Gleixner <tglx@linutronix.de> Link: https://lore.kernel.org/r/20191205045619.204946-1-edumazet@google.com Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2020-01-04ptp: fix the race between the release of ptp_clock and cdevVladis Dronov
[ Upstream commit a33121e5487b424339636b25c35d3a180eaa5f5e ] In a case when a ptp chardev (like /dev/ptp0) is open but an underlying device is removed, closing this file leads to a race. This reproduces easily in a kvm virtual machine: ts# cat openptp0.c int main() { ... fp = fopen("/dev/ptp0", "r"); ... sleep(10); } ts# uname -r 5.5.0-rc3-46cf053e ts# cat /proc/cmdline ... slub_debug=FZP ts# modprobe ptp_kvm ts# ./openptp0 & [1] 670 opened /dev/ptp0, sleeping 10s... ts# rmmod ptp_kvm ts# ls /dev/ptp* ls: cannot access '/dev/ptp*': No such file or directory ts# ...woken up [ 48.010809] general protection fault: 0000 [#1] SMP [ 48.012502] CPU: 6 PID: 658 Comm: openptp0 Not tainted 5.5.0-rc3-46cf053e #25 [ 48.014624] Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), ... [ 48.016270] RIP: 0010:module_put.part.0+0x7/0x80 [ 48.017939] RSP: 0018:ffffb3850073be00 EFLAGS: 00010202 [ 48.018339] RAX: 000000006b6b6b6b RBX: 6b6b6b6b6b6b6b6b RCX: ffff89a476c00ad0 [ 48.018936] RDX: fffff65a08d3ea08 RSI: 0000000000000247 RDI: 6b6b6b6b6b6b6b6b [ 48.019470] ... ^^^ a slub poison [ 48.023854] Call Trace: [ 48.024050] __fput+0x21f/0x240 [ 48.024288] task_work_run+0x79/0x90 [ 48.024555] do_exit+0x2af/0xab0 [ 48.024799] ? vfs_write+0x16a/0x190 [ 48.025082] do_group_exit+0x35/0x90 [ 48.025387] __x64_sys_exit_group+0xf/0x10 [ 48.025737] do_syscall_64+0x3d/0x130 [ 48.026056] entry_SYSCALL_64_after_hwframe+0x44/0xa9 [ 48.026479] RIP: 0033:0x7f53b12082f6 [ 48.026792] ... [ 48.030945] Modules linked in: ptp i6300esb watchdog [last unloaded: ptp_kvm] [ 48.045001] Fixing recursive fault but reboot is needed! This happens in: static void __fput(struct file *file) { ... if (file->f_op->release) file->f_op->release(inode, file); <<< cdev is kfree'd here if (unlikely(S_ISCHR(inode->i_mode) && inode->i_cdev != NULL && !(mode & FMODE_PATH))) { cdev_put(inode->i_cdev); <<< cdev fields are accessed here Namely: __fput() posix_clock_release() kref_put(&clk->kref, delete_clock) <<< the last reference delete_clock() delete_ptp_clock() kfree(ptp) <<< cdev is embedded in ptp cdev_put module_put(p->owner) <<< *p is kfree'd, bang! Here cdev is embedded in posix_clock which is embedded in ptp_clock. The race happens because ptp_clock's lifetime is controlled by two refcounts: kref and cdev.kobj in posix_clock. This is wrong. Make ptp_clock's sysfs device a parent of cdev with cdev_device_add() created especially for such cases. This way the parent device with its ptp_clock is not released until all references to the cdev are released. This adds a requirement that an initialized but not exposed struct device should be provided to posix_clock_register() by a caller instead of a simple dev_t. This approach was adopted from the commit 72139dfa2464 ("watchdog: Fix the race between the release of watchdog_core_data and cdev"). See details of the implementation in the commit 233ed09d7fda ("chardev: add helper function to register char devs with a struct device"). Link: https://lore.kernel.org/linux-fsdevel/20191125125342.6189-1-vdronov@redhat.com/T/#u Analyzed-by: Stephen Johnston <sjohnsto@redhat.com> Analyzed-by: Vern Lovejoy <vlovejoy@redhat.com> Signed-off-by: Vladis Dronov <vdronov@redhat.com> Acked-by: Richard Cochran <richardcochran@gmail.com> Signed-off-by: David S. Miller <davem@davemloft.net> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2020-01-04hrtimer: Annotate lockless access to timer->stateEric Dumazet
commit 56144737e67329c9aaed15f942d46a6302e2e3d8 upstream. syzbot reported various data-race caused by hrtimer_is_queued() reading timer->state. A READ_ONCE() is required there to silence the warning. Also add the corresponding WRITE_ONCE() when timer->state is set. In remove_hrtimer() the hrtimer_is_queued() helper is open coded to avoid loading timer->state twice. KCSAN reported these cases: BUG: KCSAN: data-race in __remove_hrtimer / tcp_pacing_check write to 0xffff8880b2a7d388 of 1 bytes by interrupt on cpu 0: __remove_hrtimer+0x52/0x130 kernel/time/hrtimer.c:991 __run_hrtimer kernel/time/hrtimer.c:1496 [inline] __hrtimer_run_queues+0x250/0x600 kernel/time/hrtimer.c:1576 hrtimer_run_softirq+0x10e/0x150 kernel/time/hrtimer.c:1593 __do_softirq+0x115/0x33f kernel/softirq.c:292 run_ksoftirqd+0x46/0x60 kernel/softirq.c:603 smpboot_thread_fn+0x37d/0x4a0 kernel/smpboot.c:165 kthread+0x1d4/0x200 drivers/block/aoe/aoecmd.c:1253 ret_from_fork+0x1f/0x30 arch/x86/entry/entry_64.S:352 read to 0xffff8880b2a7d388 of 1 bytes by task 24652 on cpu 1: tcp_pacing_check net/ipv4/tcp_output.c:2235 [inline] tcp_pacing_check+0xba/0x130 net/ipv4/tcp_output.c:2225 tcp_xmit_retransmit_queue+0x32c/0x5a0 net/ipv4/tcp_output.c:3044 tcp_xmit_recovery+0x7c/0x120 net/ipv4/tcp_input.c:3558 tcp_ack+0x17b6/0x3170 net/ipv4/tcp_input.c:3717 tcp_rcv_established+0x37e/0xf50 net/ipv4/tcp_input.c:5696 tcp_v4_do_rcv+0x381/0x4e0 net/ipv4/tcp_ipv4.c:1561 sk_backlog_rcv include/net/sock.h:945 [inline] __release_sock+0x135/0x1e0 net/core/sock.c:2435 release_sock+0x61/0x160 net/core/sock.c:2951 sk_stream_wait_memory+0x3d7/0x7c0 net/core/stream.c:145 tcp_sendmsg_locked+0xb47/0x1f30 net/ipv4/tcp.c:1393 tcp_sendmsg+0x39/0x60 net/ipv4/tcp.c:1434 inet_sendmsg+0x6d/0x90 net/ipv4/af_inet.c:807 sock_sendmsg_nosec net/socket.c:637 [inline] sock_sendmsg+0x9f/0xc0 net/socket.c:657 BUG: KCSAN: data-race in __remove_hrtimer / __tcp_ack_snd_check write to 0xffff8880a3a65588 of 1 bytes by interrupt on cpu 0: __remove_hrtimer+0x52/0x130 kernel/time/hrtimer.c:991 __run_hrtimer kernel/time/hrtimer.c:1496 [inline] __hrtimer_run_queues+0x250/0x600 kernel/time/hrtimer.c:1576 hrtimer_run_softirq+0x10e/0x150 kernel/time/hrtimer.c:1593 __do_softirq+0x115/0x33f kernel/softirq.c:292 invoke_softirq kernel/softirq.c:373 [inline] irq_exit+0xbb/0xe0 kernel/softirq.c:413 exiting_irq arch/x86/include/asm/apic.h:536 [inline] smp_apic_timer_interrupt+0xe6/0x280 arch/x86/kernel/apic/apic.c:1137 apic_timer_interrupt+0xf/0x20 arch/x86/entry/entry_64.S:830 read to 0xffff8880a3a65588 of 1 bytes by task 22891 on cpu 1: __tcp_ack_snd_check+0x415/0x4f0 net/ipv4/tcp_input.c:5265 tcp_ack_snd_check net/ipv4/tcp_input.c:5287 [inline] tcp_rcv_established+0x750/0xf50 net/ipv4/tcp_input.c:5708 tcp_v4_do_rcv+0x381/0x4e0 net/ipv4/tcp_ipv4.c:1561 sk_backlog_rcv include/net/sock.h:945 [inline] __release_sock+0x135/0x1e0 net/core/sock.c:2435 release_sock+0x61/0x160 net/core/sock.c:2951 sk_stream_wait_memory+0x3d7/0x7c0 net/core/stream.c:145 tcp_sendmsg_locked+0xb47/0x1f30 net/ipv4/tcp.c:1393 tcp_sendmsg+0x39/0x60 net/ipv4/tcp.c:1434 inet_sendmsg+0x6d/0x90 net/ipv4/af_inet.c:807 sock_sendmsg_nosec net/socket.c:637 [inline] sock_sendmsg+0x9f/0xc0 net/socket.c:657 __sys_sendto+0x21f/0x320 net/socket.c:1952 __do_sys_sendto net/socket.c:1964 [inline] __se_sys_sendto net/socket.c:1960 [inline] __x64_sys_sendto+0x89/0xb0 net/socket.c:1960 do_syscall_64+0xcc/0x370 arch/x86/entry/common.c:290 Reported by Kernel Concurrency Sanitizer on: CPU: 1 PID: 24652 Comm: syz-executor.3 Not tainted 5.4.0-rc3+ #0 Hardware name: Google Google Compute Engine/Google Compute Engine, BIOS Google 01/01/2011 [ tglx: Added comments ] Reported-by: syzbot <syzkaller@googlegroups.com> Signed-off-by: Eric Dumazet <edumazet@google.com> Signed-off-by: Thomas Gleixner <tglx@linutronix.de> Link: https://lkml.kernel.org/r/20191106174804.74723-1-edumazet@google.com Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2019-12-13time: Zero the upper 32-bits in __kernel_timespec on 32-bitDmitry Safonov
commit 7b8474466ed97be458c825f34a85f2c2b84c3f95 upstream. On compat interfaces, the high order bits of nanoseconds should be zeroed out. This is because the application code or the libc do not guarantee zeroing of these. If used without zeroing, kernel might be at risk of using timespec values incorrectly. Originally it was handled correctly, but lost during is_compat_syscall() cleanup. Revert the condition back to check CONFIG_64BIT. Fixes: 98f76206b335 ("compat: Cleanup in_compat_syscall() callers") Reported-by: Ben Hutchings <ben.hutchings@codethink.co.uk> Signed-off-by: Dmitry Safonov <dima@arista.com> Signed-off-by: Thomas Gleixner <tglx@linutronix.de> Cc: stable@vger.kernel.org Link: https://lore.kernel.org/r/20191121000303.126523-1-dima@arista.com Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2019-11-12ntp/y2038: Remove incorrect time_t truncationArnd Bergmann
A cast to 'time_t' was accidentally left in place during the conversion of __do_adjtimex() to 64-bit timestamps, so the resulting value is incorrectly truncated. Remove the cast so the 64-bit time gets propagated correctly. Fixes: ead25417f82e ("timex: use __kernel_timex internally") Signed-off-by: Arnd Bergmann <arnd@arndb.de> Signed-off-by: Thomas Gleixner <tglx@linutronix.de> Cc: stable@vger.kernel.org Link: https://lkml.kernel.org/r/20191108203435.112759-2-arnd@arndb.de
2019-11-04timekeeping/vsyscall: Update VDSO data unconditionallyHuacai Chen
The update of the VDSO data is depending on __arch_use_vsyscall() returning True. This is a leftover from the attempt to map the features of various architectures 1:1 into generic code. The usage of __arch_use_vsyscall() in the actual vsyscall implementations got dropped and replaced by the requirement for the architecture code to return U64_MAX if the global clocksource is not usable in the VDSO. But the __arch_use_vsyscall() check in the update code stayed which causes the VDSO data to be stale or invalid when an architecture actually implements that function and returns False when the current clocksource is not usable in the VDSO. As a consequence the VDSO implementations of clock_getres(), time(), clock_gettime(CLOCK_.*_COARSE) operate on invalid data and return bogus information. Remove the __arch_use_vsyscall() check from the VDSO update function and update the VDSO data unconditionally. [ tglx: Massaged changelog and removed the now useless implementations in asm-generic/ARM64/MIPS ] Fixes: 44f57d788e7deecb50 ("timekeeping: Provide a generic update_vsyscall() implementation") Signed-off-by: Huacai Chen <chenhc@lemote.com> Signed-off-by: Thomas Gleixner <tglx@linutronix.de> Cc: Andy Lutomirski <luto@kernel.org> Cc: Vincenzo Frascino <vincenzo.frascino@arm.com> Cc: Arnd Bergmann <arnd@arndb.de> Cc: Paul Burton <paul.burton@mips.com> Cc: linux-mips@vger.kernel.org Cc: linux-arm-kernel@lists.infradead.org Cc: stable@vger.kernel.org Link: https://lkml.kernel.org/r/1571887709-11447-1-git-send-email-chenhc@lemote.com
2019-10-23posix-cpu-timers: Fix two trivial commentsYi Wang
Recent changes modified the function arguments of thread_group_sample_cputime() and task_cputimers_expired(), but forgot to update the comments. Fix it up. [ tglx: Changed the argument name of task_cputimers_expired() as the pointer points to an array of samples. ] Fixes: b7be4ef1365d ("posix-cpu-timers: Switch thread group sampling to array") Fixes: 001f7971433a ("posix-cpu-timers: Make expiry checks array based") Signed-off-by: Yi Wang <wang.yi59@zte.com.cn> Signed-off-by: Thomas Gleixner <tglx@linutronix.de> Link: https://lkml.kernel.org/r/1571643852-21848-1-git-send-email-wang.yi59@zte.com.cn
2019-10-23timers/sched_clock: Include local timekeeping.h for missing declarationsBen Dooks (Codethink)
Include the timekeeping.h header to get the declaration of the sched_clock_{suspend,resume} functions. Fixes the following sparse warnings: kernel/time/sched_clock.c:275:5: warning: symbol 'sched_clock_suspend' was not declared. Should it be static? kernel/time/sched_clock.c:286:6: warning: symbol 'sched_clock_resume' was not declared. Should it be static? Signed-off-by: Ben Dooks (Codethink) <ben.dooks@codethink.co.uk> Signed-off-by: Thomas Gleixner <tglx@linutronix.de> Link: https://lkml.kernel.org/r/20191022131226.11465-1-ben.dooks@codethink.co.uk
2019-10-14hrtimer: Annotate lockless access to timer->baseEric Dumazet
Followup to commit dd2261ed45aa ("hrtimer: Protect lockless access to timer->base") lock_hrtimer_base() fetches timer->base without lock exclusion. Compiler is allowed to read timer->base twice (even if considered dumb) which could end up trying to lock migration_base and return &migration_base. base = timer->base; if (likely(base != &migration_base)) { /* compiler reads timer->base again, and now (base == &migration_base) raw_spin_lock_irqsave(&base->cpu_base->lock, *flags); if (likely(base == timer->base)) return base; /* == &migration_base ! */ Similarly the write sides must use WRITE_ONCE() to avoid store tearing. Signed-off-by: Eric Dumazet <edumazet@google.com> Signed-off-by: Thomas Gleixner <tglx@linutronix.de> Link: https://lkml.kernel.org/r/20191008173204.180879-1-edumazet@google.com
2019-09-27tick: broadcast-hrtimer: Fix a race in bc_set_nextBalasubramani Vivekanandan
When a cpu requests broadcasting, before starting the tick broadcast hrtimer, bc_set_next() checks if the timer callback (bc_handler) is active using hrtimer_try_to_cancel(). But hrtimer_try_to_cancel() does not provide the required synchronization when the callback is active on other core. The callback could have already executed tick_handle_oneshot_broadcast() and could have also returned. But still there is a small time window where the hrtimer_try_to_cancel() returns -1. In that case bc_set_next() returns without doing anything, but the next_event of the tick broadcast clock device is already set to a timeout value. In the race condition diagram below, CPU #1 is running the timer callback and CPU #2 is entering idle state and so calls bc_set_next(). In the worst case, the next_event will contain an expiry time, but the hrtimer will not be started which happens when the racing callback returns HRTIMER_NORESTART. The hrtimer might never recover if all further requests from the CPUs to subscribe to tick broadcast have timeout greater than the next_event of tick broadcast clock device. This leads to cascading of failures and finally noticed as rcu stall warnings Here is a depiction of the race condition CPU #1 (Running timer callback) CPU #2 (Enter idle and subscribe to tick broadcast) --------------------- --------------------- __run_hrtimer() tick_broadcast_enter() bc_handler() __tick_broadcast_oneshot_control() tick_handle_oneshot_broadcast() raw_spin_lock(&tick_broadcast_lock); dev->next_event = KTIME_MAX; //wait for tick_broadcast_lock //next_event for tick broadcast clock set to KTIME_MAX since no other cores subscribed to tick broadcasting raw_spin_unlock(&tick_broadcast_lock); if (dev->next_event == KTIME_MAX) return HRTIMER_NORESTART // callback function exits without restarting the hrtimer //tick_broadcast_lock acquired raw_spin_lock(&tick_broadcast_lock); tick_broadcast_set_event() clockevents_program_event() dev->next_event = expires; bc_set_next() hrtimer_try_to_cancel() //returns -1 since the timer callback is active. Exits without restarting the timer cpu_base->running = NULL; The comment that hrtimer cannot be armed from within the callback is wrong. It is fine to start the hrtimer from within the callback. Also it is safe to start the hrtimer from the enter/exit idle code while the broadcast handler is active. The enter/exit idle code and the broadcast handler are synchronized using tick_broadcast_lock. So there is no need for the existing try to cancel logic. All this can be removed which will eliminate the race condition as well. Fixes: 5d1638acb9f6 ("tick: Introduce hrtimer based broadcast") Originally-by: Thomas Gleixner <tglx@linutronix.de> Signed-off-by: Balasubramani Vivekanandan <balasubramani_vivekanandan@mentor.com> Signed-off-by: Thomas Gleixner <tglx@linutronix.de> Cc: stable@vger.kernel.org Link: https://lkml.kernel.org/r/20190926135101.12102-2-balasubramani_vivekanandan@mentor.com
2019-09-26Merge branch 'timers-urgent-for-linus' of ↵Linus Torvalds
git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip Pull timer fix from Ingo Molnar: "Fix a timer expiry bug that would cause spurious delay of timers" * 'timers-urgent-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip: timer: Read jiffies once when forwarding base clk
2019-09-19timer: Read jiffies once when forwarding base clkLi RongQing
The timer delayed for more than 3 seconds warning was triggered during testing. Workqueue: events_unbound sched_tick_remote RIP: 0010:sched_tick_remote+0xee/0x100 ... Call Trace: process_one_work+0x18c/0x3a0 worker_thread+0x30/0x380 kthread+0x113/0x130 ret_from_fork+0x22/0x40 The reason is that the code in collect_expired_timers() uses jiffies unprotected: if (next_event > jiffies) base->clk = jiffies; As the compiler is allowed to reload the value base->clk can advance between the check and the store and in the worst case advance farther than next event. That causes the timer expiry to be delayed until the wheel pointer wraps around. Convert the code to use READ_ONCE() Fixes: 236968383cf5 ("timers: Optimize collect_expired_timers() for NOHZ") Signed-off-by: Li RongQing <lirongqing@baidu.com> Signed-off-by: Liang ZhiCheng <liangzhicheng@baidu.com> Signed-off-by: Thomas Gleixner <tglx@linutronix.de> Cc: stable@vger.kernel.org Link: https://lkml.kernel.org/r/1568894687-14499-1-git-send-email-lirongqing@baidu.com
2019-09-17Merge tag 'pm-5.4-rc1' of ↵Linus Torvalds
git://git.kernel.org/pub/scm/linux/kernel/git/rafael/linux-pm Pull power management updates from Rafael Wysocki: "These include a rework of the main suspend-to-idle code flow (related to the handling of spurious wakeups), a switch over of several users of cpufreq notifiers to QoS-based limits, a new devfreq driver for Tegra20, a new cpuidle driver and governor for virtualized guests, an extension of the wakeup sources framework to expose wakeup sources as device objects in sysfs, and more. Specifics: - Rework the main suspend-to-idle control flow to avoid repeating "noirq" device resume and suspend operations in case of spurious wakeups from the ACPI EC and decouple the ACPI EC wakeups support from the LPS0 _DSM support (Rafael Wysocki). - Extend the wakeup sources framework to expose wakeup sources as device objects in sysfs (Tri Vo, Stephen Boyd). - Expose system suspend statistics in sysfs (Kalesh Singh). - Introduce a new haltpoll cpuidle driver and a new matching governor for virtualized guests wanting to do guest-side polling in the idle loop (Marcelo Tosatti, Joao Martins, Wanpeng Li, Stephen Rothwell). - Fix the menu and teo cpuidle governors to allow the scheduler tick to be stopped if PM QoS is used to limit the CPU idle state exit latency in some cases (Rafael Wysocki). - Increase the resolution of the play_idle() argument to microseconds for more fine-grained injection of CPU idle cycles (Daniel Lezcano). - Switch over some users of cpuidle notifiers to the new QoS-based frequency limits and drop the CPUFREQ_ADJUST and CPUFREQ_NOTIFY policy notifier events (Viresh Kumar). - Add new cpufreq driver based on nvmem for sun50i (Yangtao Li). - Add support for MT8183 and MT8516 to the mediatek cpufreq driver (Andrew-sh.Cheng, Fabien Parent). - Add i.MX8MN support to the imx-cpufreq-dt cpufreq driver (Anson Huang). - Add qcs404 to cpufreq-dt-platdev blacklist (Jorge Ramirez-Ortiz). - Update the qcom cpufreq driver (among other things, to make it easier to extend and to use kryo cpufreq for other nvmem-based SoCs) and add qcs404 support to it (Niklas Cassel, Douglas RAILLARD, Sibi Sankar, Sricharan R). - Fix assorted issues and make assorted minor improvements in the cpufreq code (Colin Ian King, Douglas RAILLARD, Florian Fainelli, Gustavo Silva, Hariprasad Kelam). - Add new devfreq driver for NVidia Tegra20 (Dmitry Osipenko, Arnd Bergmann). - Add new Exynos PPMU events to devfreq events and extend that mechanism (Lukasz Luba). - Fix and clean up the exynos-bus devfreq driver (Kamil Konieczny). - Improve devfreq documentation and governor code, fix spelling typos in devfreq (Ezequiel Garcia, Krzysztof Kozlowski, Leonard Crestez, MyungJoo Ham, Gaël PORTAY). - Add regulators enable and disable to the OPP (operating performance points) framework (Kamil Konieczny). - Update the OPP framework to support multiple opp-suspend properties (Anson Huang). - Fix assorted issues and make assorted minor improvements in the OPP code (Niklas Cassel, Viresh Kumar, Yue Hu). - Clean up the generic power domains (genpd) framework (Ulf Hansson). - Clean up assorted pieces of power management code and documentation (Akinobu Mita, Amit Kucheria, Chuhong Yuan). - Update the pm-graph tool to version 5.5 including multiple fixes and improvements (Todd Brandt). - Update the cpupower utility (Benjamin Weis, Geert Uytterhoeven, Sébastien Szymanski)" * tag 'pm-5.4-rc1' of git://git.kernel.org/pub/scm/linux/kernel/git/rafael/linux-pm: (126 commits) cpuidle-haltpoll: Enable kvm guest polling when dedicated physical CPUs are available cpuidle-haltpoll: do not set an owner to allow modunload cpuidle-haltpoll: return -ENODEV on modinit failure cpuidle-haltpoll: set haltpoll as preferred governor cpuidle: allow governor switch on cpuidle_register_driver() PM: runtime: Documentation: add runtime_status ABI document pm-graph: make setVal unbuffered again for python2 and python3 powercap: idle_inject: Use higher resolution for idle injection cpuidle: play_idle: Increase the resolution to usec cpuidle-haltpoll: vcpu hotplug support cpufreq: Add qcs404 to cpufreq-dt-platdev blacklist cpufreq: qcom: Add support for qcs404 on nvmem driver cpufreq: qcom: Refactor the driver to make it easier to extend cpufreq: qcom: Re-organise kryo cpufreq to use it for other nvmem based qcom socs dt-bindings: opp: Add qcom-opp bindings with properties needed for CPR dt-bindings: opp: qcom-nvmem: Support pstates provided by a power domain Documentation: cpufreq: Update policy notifier documentation cpufreq: Remove CPUFREQ_ADJUST and CPUFREQ_NOTIFY policy notifier events PM / Domains: Verify PM domain type in dev_pm_genpd_set_performance_state() PM / Domains: Simplify genpd_lookup_dev() ...
2019-09-17Merge branch 'timers-core-for-linus' of ↵Linus Torvalds
git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip Pull core timer updates from Thomas Gleixner: "Timers and timekeeping updates: - A large overhaul of the posix CPU timer code which is a preparation for moving the CPU timer expiry out into task work so it can be properly accounted on the task/process. An update to the bogus permission checks will come later during the merge window as feedback was not complete before heading of for travel. - Switch the timerqueue code to use cached rbtrees and get rid of the homebrewn caching of the leftmost node. - Consolidate hrtimer_init() + hrtimer_init_sleeper() calls into a single function - Implement the separation of hrtimers to be forced to expire in hard interrupt context even when PREEMPT_RT is enabled and mark the affected timers accordingly. - Implement a mechanism for hrtimers and the timer wheel to protect RT against priority inversion and live lock issues when a (hr)timer which should be canceled is currently executing the callback. Instead of infinitely spinning, the task which tries to cancel the timer blocks on a per cpu base expiry lock which is held and released by the (hr)timer expiry code. - Enable the Hyper-V TSC page based sched_clock for Hyper-V guests resulting in faster access to timekeeping functions. - Updates to various clocksource/clockevent drivers and their device tree bindings. - The usual small improvements all over the place" * 'timers-core-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip: (101 commits) posix-cpu-timers: Fix permission check regression posix-cpu-timers: Always clear head pointer on dequeue hrtimer: Add a missing bracket and hide `migration_base' on !SMP posix-cpu-timers: Make expiry_active check actually work correctly posix-timers: Unbreak CONFIG_POSIX_TIMERS=n build tick: Mark sched_timer to expire in hard interrupt context hrtimer: Add kernel doc annotation for HRTIMER_MODE_HARD x86/hyperv: Hide pv_ops access for CONFIG_PARAVIRT=n posix-cpu-timers: Utilize timerqueue for storage posix-cpu-timers: Move state tracking to struct posix_cputimers posix-cpu-timers: Deduplicate rlimit handling posix-cpu-timers: Remove pointless comparisons posix-cpu-timers: Get rid of 64bit divisions posix-cpu-timers: Consolidate timer expiry further posix-cpu-timers: Get rid of zero checks rlimit: Rewrite non-sensical RLIMIT_CPU comment posix-cpu-timers: Respect INFINITY for hard RTTIME limit posix-cpu-timers: Switch thread group sampling to array posix-cpu-timers: Restructure expiry array posix-cpu-timers: Remove cputime_expires ...
2019-09-17Merge branch 'pm-sleep'Rafael J. Wysocki
* pm-sleep: (29 commits) ACPI: PM: s2idle: Always set up EC GPE for system wakeup ACPI: PM: s2idle: Avoid rearming SCI for wakeup unnecessarily PM / wakeup: Unexport wakeup_source_sysfs_{add,remove}() PM / wakeup: Register wakeup class kobj after device is added PM / wakeup: Fix sysfs registration error path PM / wakeup: Show wakeup sources stats in sysfs PM / wakeup: Use wakeup_source_register() in wakelock.c PM / wakeup: Drop wakeup_source_init(), wakeup_source_prepare() PM: sleep: Replace strncmp() with str_has_prefix() PM: suspend: Fix platform_suspend_prepare_noirq() intel-hid: Disable button array during suspend-to-idle intel-hid: intel-vbtn: Avoid leaking wakeup_mode set ACPI: PM: s2idle: Execute LPS0 _DSM functions with suspended devices ACPI: EC: PM: Make acpi_ec_dispatch_gpe() print debug message ACPI: EC: PM: Consolidate some code depending on PM_SLEEP ACPI: PM: s2idle: Eliminate acpi_sleep_no_ec_events() ACPI: PM: s2idle: Switch EC over to polling during "noirq" suspend ACPI: PM: s2idle: Add acpi.sleep_no_lps0 module parameter ACPI: PM: s2idle: Rearrange lps0_device_attach() PM/sleep: Expose suspend stats in sysfs ...
2019-09-10posix-cpu-timers: Fix permission check regressionThomas Gleixner
The recent consolidation of the three permission checks introduced a subtle regression. For timer_create() with a process wide timer it returns the current task if the lookup through the PID which is encoded into the clockid results in returning current. That's broken because it does not validate whether the current task is the group leader. That was caused by the two different variants of permission checks: - posix_cpu_timer_get() allowed access to the process wide clock when the looked up task is current. That's not an issue because the process wide clock is in the shared sighand. - posix_cpu_timer_create() made sure that the looked up task is the group leader. Restore the previous state. Note, that these permission checks are more than questionable, but that's subject to follow up changes. Fixes: 6ae40e3fdcd3 ("posix-cpu-timers: Provide task validation functions") Signed-off-by: Thomas Gleixner <tglx@linutronix.de> Reviewed-by: Frederic Weisbecker <frederic@kernel.org> Link: https://lkml.kernel.org/r/alpine.DEB.2.21.1909052314110.1902@nanos.tec.linutronix.de
2019-09-05alarmtimer: Use EOPNOTSUPP instead of ENOTSUPPThadeu Lima de Souza Cascardo
ENOTSUPP is not supposed to be returned to userspace. This was found on an OpenPower machine, where the RTC does not support set_alarm. On that system, a clock_nanosleep(CLOCK_REALTIME_ALARM, ...) results in "524 Unknown error 524" Replace it with EOPNOTSUPP which results in the expected "95 Operation not supported" error. Fixes: 1c6b39ad3f01 (alarmtimers: Return -ENOTSUPP if no RTC device is present) Signed-off-by: Thadeu Lima de Souza Cascardo <cascardo@canonical.com> Signed-off-by: Thomas Gleixner <tglx@linutronix.de> Cc: stable@vger.kernel.org Link: https://lkml.kernel.org/r/20190903171802.28314-1-cascardo@canonical.com
2019-09-05hrtimer: Add a missing bracket and hide `migration_base' on !SMPSebastian Andrzej Siewior
The recent change to avoid taking the expiry lock when a timer is currently migrated missed to add a bracket at the end of the if statement leading to compile errors. Since that commit the variable `migration_base' is always used but it is only available on SMP configuration thus leading to another compile error. The changelog says "The timer base and base->cpu_base cannot be NULL in the code path", so it is safe to limit this check to SMP configurations only. Add the missing bracket to the if statement and hide `migration_base' behind CONFIG_SMP bars. [ tglx: Mark the functions inline ... ] Fixes: 68b2c8c1e4210 ("hrtimer: Don't take expiry_lock when timer is currently migrated") Signed-off-by: Sebastian Andrzej Siewior <bigeasy@linutronix.de> Signed-off-by: Thomas Gleixner <tglx@linutronix.de> Link: https://lkml.kernel.org/r/20190904145527.eah7z56ntwobqm6j@linutronix.de
2019-08-29posix-cpu-timers: Make expiry_active check actually work correctlyThomas Gleixner
The state tracking changes broke the expiry active check by not writing to it and instead sitting timers_active, which is already set. That's not a big issue as the actual expiry is protected by sighand lock, so concurrent handling is not possible. That means that the second task which invokes that function executes the expiry code for nothing. Write to the proper flag. Also add a check whether the flag is set into check_process_timers(). That check had been missing in the code before the rework already. The check for another task handling the expiry of process wide timers was only done in the fastpath check. If the fastpath check returns true because a per task timer expired, then the checking of process wide timers was done in parallel which is as explained above just a waste of cycles. Fixes: 244d49e30653 ("posix-cpu-timers: Move state tracking to struct posix_cputimers") Signed-off-by: Thomas Gleixner <tglx@linutronix.de> Cc: Frederic Weisbecker <frederic@kernel.org>
2019-08-28tick: Mark sched_timer to expire in hard interrupt contextSebastian Andrzej Siewior
sched_timer must be initialized with the _HARD mode suffix to ensure expiry in hard interrupt context on RT. The previous conversion to HARD expiry mode missed on one instance in tick_nohz_switch_to_nohz(). Fix it up. Fixes: 902a9f9c50905 ("tick: Mark tick related hrtimers to expiry in hard interrupt context") Signed-off-by: Sebastian Andrzej Siewior <bigeasy@linutronix.de> Signed-off-by: Thomas Gleixner <tglx@linutronix.de> Link: https://lkml.kernel.org/r/20190823113845.12125-3-bigeasy@linutronix.de
2019-08-28posix-cpu-timers: Utilize timerqueue for storageThomas Gleixner
Using a linear O(N) search for timer insertion affects execution time and D-cache footprint badly with a larger number of timers. Switch the storage to a timerqueue which is already used for hrtimers and alarmtimers. It does not affect the size of struct k_itimer as it.alarm is still larger. The extra list head for the expiry list will go away later once the expiry is moved into task work context. Signed-off-by: Thomas Gleixner <tglx@linutronix.de> Reviewed-by: Frederic Weisbecker <frederic@kernel.org> Link: https://lkml.kernel.org/r/alpine.DEB.2.21.1908272129220.1939@nanos.tec.linutronix.de
2019-08-28posix-cpu-timers: Move state tracking to struct posix_cputimersThomas Gleixner
Put it where it belongs and clean up the ifdeffery in fork completely. Signed-off-by: Thomas Gleixner <tglx@linutronix.de> Link: https://lkml.kernel.org/r/20190821192922.743229404@linutronix.de
2019-08-28posix-cpu-timers: Deduplicate rlimit handlingThomas Gleixner
Both thread and process expiry functions have the same functionality for sending signals for soft and hard RLIMITs duplicated in 4 different ways. Split it out into a common function and cleanup the callsites. Signed-off-by: Thomas Gleixner <tglx@linutronix.de> Reviewed-by: Frederic Weisbecker <frederic@kernel.org> Link: https://lkml.kernel.org/r/20190821192922.653276779@linutronix.de
2019-08-28posix-cpu-timers: Remove pointless comparisonsThomas Gleixner
The soft RLIMIT expiry code checks whether the soft limit is greater than the hard limit. That's pointless because if the soft RLIMIT is greater than the hard RLIMIT then that code cannot be reached as the hard RLIMIT check is before that and already killed the process. Remove it. Signed-off-by: Thomas Gleixner <tglx@linutronix.de> Reviewed-by: Frederic Weisbecker <frederic@kernel.org> Link: https://lkml.kernel.org/r/20190821192922.548747613@linutronix.de
2019-08-28posix-cpu-timers: Get rid of 64bit divisionsThomas Gleixner
Instead of dividing A to match the units of B it's more efficient to multiply B to match the units of A. Signed-off-by: Thomas Gleixner <tglx@linutronix.de> Reviewed-by: Frederic Weisbecker <frederic@kernel.org> Link: https://lkml.kernel.org/r/20190821192922.458286860@linutronix.de