Age | Commit message (Collapse) | Author |
|
commit 93faccbbfa958a9668d3ab4e30f38dd205cee8d8 upstream.
To support unprivileged users mounting filesystems two permission
checks have to be performed: a test to see if the user allowed to
create a mount in the mount namespace, and a test to see if
the user is allowed to access the specified filesystem.
The automount case is special in that mounting the original filesystem
grants permission to mount the sub-filesystems, to any user who
happens to stumble across the their mountpoint and satisfies the
ordinary filesystem permission checks.
Attempting to handle the automount case by using override_creds
almost works. It preserves the idea that permission to mount
the original filesystem is permission to mount the sub-filesystem.
Unfortunately using override_creds messes up the filesystems
ordinary permission checks.
Solve this by being explicit that a mount is a submount by introducing
vfs_submount, and using it where appropriate.
vfs_submount uses a new mount internal mount flags MS_SUBMOUNT, to let
sget and friends know that a mount is a submount so they can take appropriate
action.
sget and sget_userns are modified to not perform any permission checks
on submounts.
follow_automount is modified to stop using override_creds as that
has proven problemantic.
do_mount is modified to always remove the new MS_SUBMOUNT flag so
that we know userspace will never by able to specify it.
autofs4 is modified to stop using current_real_cred that was put in
there to handle the previous version of submount permission checking.
cifs is modified to pass the mountpoint all of the way down to vfs_submount.
debugfs is modified to pass the mountpoint all of the way down to
trace_automount by adding a new parameter. To make this change easier
a new typedef debugfs_automount_t is introduced to capture the type of
the debugfs automount function.
Fixes: 069d5ac9ae0d ("autofs: Fix automounts by using current_real_cred()->uid")
Fixes: aeaa4a79ff6a ("fs: Call d_automount with the filesystems creds")
Reviewed-by: Trond Myklebust <trond.myklebust@primarydata.com>
Reviewed-by: Seth Forshee <seth.forshee@canonical.com>
Signed-off-by: "Eric W. Biederman" <ebiederm@xmission.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
commit 907565337ebf998a68cb5c5b2174ce5e5da065eb upstream.
Userspace applications should be allowed to expect the membarrier system
call with MEMBARRIER_CMD_SHARED command to issue memory barriers on
nohz_full CPUs, but synchronize_sched() does not take those into
account.
Given that we do not want unrelated processes to be able to affect
real-time sensitive nohz_full CPUs, simply return ENOSYS when membarrier
is invoked on a kernel with enabled nohz_full CPUs.
Signed-off-by: Mathieu Desnoyers <mathieu.desnoyers@efficios.com>
CC: Josh Triplett <josh@joshtriplett.org>
CC: Steven Rostedt <rostedt@goodmis.org>
Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
Cc: Frederic Weisbecker <fweisbec@gmail.com>
Cc: Chris Metcalf <cmetcalf@mellanox.com>
Cc: Rik van Riel <riel@redhat.com>
Acked-by: Lai Jiangshan <jiangshanlai@gmail.com>
Reviewed-by: Josh Triplett <josh@joshtriplett.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
commit 441398d378f29a5ad6d0fcda07918e54e4961800 upstream.
Currently SS_AUTODISARM is not supported in compatibility mode, but does
not return -EINVAL either. This makes dosemu built with -m32 on x86_64
to crash. Also the kernel's sigaltstack selftest fails if compiled with
-m32.
This patch adds the needed support.
Link: http://lkml.kernel.org/r/20170205101213.8163-2-stsp@list.ru
Signed-off-by: Stas Sergeev <stsp@users.sourceforge.net>
Cc: Milosz Tanski <milosz@adfin.com>
Cc: Andy Lutomirski <luto@kernel.org>
Cc: Al Viro <viro@zeniv.linux.org.uk>
Cc: Arnd Bergmann <arnd@arndb.de>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Ingo Molnar <mingo@kernel.org>
Cc: Oleg Nesterov <oleg@redhat.com>
Cc: Nicolas Pitre <nicolas.pitre@linaro.org>
Cc: Waiman Long <Waiman.Long@hpe.com>
Cc: Dave Hansen <dave.hansen@linux.intel.com>
Cc: Dmitry Safonov <dsafonov@virtuozzo.com>
Cc: Wang Xiaoqiang <wangxq10@lzu.edu.cn>
Cc: Oleg Nesterov <oleg@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
commit b5d24fda9c3dce51fcb4eee459550a458eaaf1e2 upstream.
The mem_hotplug_{begin,done} lock coordinates with {get,put}_online_mems()
to hold off "readers" of the current state of memory from new hotplug
actions. mem_hotplug_begin() expects exclusive access, via the
device_hotplug lock, to set mem_hotplug.active_writer. Calling
mem_hotplug_begin() without locking device_hotplug can lead to
corrupting mem_hotplug.refcount and missed wakeups / soft lockups.
[dan.j.williams@intel.com: v2]
Link: http://lkml.kernel.org/r/148728203365.38457.17804568297887708345.stgit@dwillia2-desk3.amr.corp.intel.com
Link: http://lkml.kernel.org/r/148693885680.16345.17802627926777862337.stgit@dwillia2-desk3.amr.corp.intel.com
Fixes: f931ab479dd2 ("mm: fix devm_memremap_pages crash, use mem_hotplug_{begin, done}")
Signed-off-by: Dan Williams <dan.j.williams@intel.com>
Reported-by: Ben Hutchings <ben@decadent.org.uk>
Cc: Michal Hocko <mhocko@suse.com>
Cc: Toshi Kani <toshi.kani@hpe.com>
Cc: Vlastimil Babka <vbabka@suse.cz>
Cc: Logan Gunthorpe <logang@deltatee.com>
Cc: Masayoshi Mizuma <m.mizuma@jp.fujitsu.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
commit f222449c9dfad7c9bb8cb53e64c5c407b172ebbc upstream.
We cannot do printk() from tk_debug_account_sleep_time(), because
tk_debug_account_sleep_time() is called under tk_core seq lock.
The reason why printk() is unsafe there is that console_sem may
invoke scheduler (up()->wake_up_process()->activate_task()), which,
in turn, can return back to timekeeping code, for instance, via
get_time()->ktime_get(), deadlocking the system on tk_core seq lock.
[ 48.950592] ======================================================
[ 48.950622] [ INFO: possible circular locking dependency detected ]
[ 48.950622] 4.10.0-rc7-next-20170213+ #101 Not tainted
[ 48.950622] -------------------------------------------------------
[ 48.950622] kworker/0:0/3 is trying to acquire lock:
[ 48.950653] (tk_core){----..}, at: [<c01cc624>] retrigger_next_event+0x4c/0x90
[ 48.950683]
but task is already holding lock:
[ 48.950683] (hrtimer_bases.lock){-.-...}, at: [<c01cc610>] retrigger_next_event+0x38/0x90
[ 48.950714]
which lock already depends on the new lock.
[ 48.950714]
the existing dependency chain (in reverse order) is:
[ 48.950714]
-> #5 (hrtimer_bases.lock){-.-...}:
[ 48.950744] _raw_spin_lock_irqsave+0x50/0x64
[ 48.950775] lock_hrtimer_base+0x28/0x58
[ 48.950775] hrtimer_start_range_ns+0x20/0x5c8
[ 48.950775] __enqueue_rt_entity+0x320/0x360
[ 48.950805] enqueue_rt_entity+0x2c/0x44
[ 48.950805] enqueue_task_rt+0x24/0x94
[ 48.950836] ttwu_do_activate+0x54/0xc0
[ 48.950836] try_to_wake_up+0x248/0x5c8
[ 48.950836] __setup_irq+0x420/0x5f0
[ 48.950836] request_threaded_irq+0xdc/0x184
[ 48.950866] devm_request_threaded_irq+0x58/0xa4
[ 48.950866] omap_i2c_probe+0x530/0x6a0
[ 48.950897] platform_drv_probe+0x50/0xb0
[ 48.950897] driver_probe_device+0x1f8/0x2cc
[ 48.950897] __driver_attach+0xc0/0xc4
[ 48.950927] bus_for_each_dev+0x6c/0xa0
[ 48.950927] bus_add_driver+0x100/0x210
[ 48.950927] driver_register+0x78/0xf4
[ 48.950958] do_one_initcall+0x3c/0x16c
[ 48.950958] kernel_init_freeable+0x20c/0x2d8
[ 48.950958] kernel_init+0x8/0x110
[ 48.950988] ret_from_fork+0x14/0x24
[ 48.950988]
-> #4 (&rt_b->rt_runtime_lock){-.-...}:
[ 48.951019] _raw_spin_lock+0x40/0x50
[ 48.951019] rq_offline_rt+0x9c/0x2bc
[ 48.951019] set_rq_offline.part.2+0x2c/0x58
[ 48.951049] rq_attach_root+0x134/0x144
[ 48.951049] cpu_attach_domain+0x18c/0x6f4
[ 48.951049] build_sched_domains+0xba4/0xd80
[ 48.951080] sched_init_smp+0x68/0x10c
[ 48.951080] kernel_init_freeable+0x160/0x2d8
[ 48.951080] kernel_init+0x8/0x110
[ 48.951080] ret_from_fork+0x14/0x24
[ 48.951110]
-> #3 (&rq->lock){-.-.-.}:
[ 48.951110] _raw_spin_lock+0x40/0x50
[ 48.951141] task_fork_fair+0x30/0x124
[ 48.951141] sched_fork+0x194/0x2e0
[ 48.951141] copy_process.part.5+0x448/0x1a20
[ 48.951171] _do_fork+0x98/0x7e8
[ 48.951171] kernel_thread+0x2c/0x34
[ 48.951171] rest_init+0x1c/0x18c
[ 48.951202] start_kernel+0x35c/0x3d4
[ 48.951202] 0x8000807c
[ 48.951202]
-> #2 (&p->pi_lock){-.-.-.}:
[ 48.951232] _raw_spin_lock_irqsave+0x50/0x64
[ 48.951232] try_to_wake_up+0x30/0x5c8
[ 48.951232] up+0x4c/0x60
[ 48.951263] __up_console_sem+0x2c/0x58
[ 48.951263] console_unlock+0x3b4/0x650
[ 48.951263] vprintk_emit+0x270/0x474
[ 48.951293] vprintk_default+0x20/0x28
[ 48.951293] printk+0x20/0x30
[ 48.951324] kauditd_hold_skb+0x94/0xb8
[ 48.951324] kauditd_thread+0x1a4/0x56c
[ 48.951324] kthread+0x104/0x148
[ 48.951354] ret_from_fork+0x14/0x24
[ 48.951354]
-> #1 ((console_sem).lock){-.....}:
[ 48.951385] _raw_spin_lock_irqsave+0x50/0x64
[ 48.951385] down_trylock+0xc/0x2c
[ 48.951385] __down_trylock_console_sem+0x24/0x80
[ 48.951385] console_trylock+0x10/0x8c
[ 48.951416] vprintk_emit+0x264/0x474
[ 48.951416] vprintk_default+0x20/0x28
[ 48.951416] printk+0x20/0x30
[ 48.951446] tk_debug_account_sleep_time+0x5c/0x70
[ 48.951446] __timekeeping_inject_sleeptime.constprop.3+0x170/0x1a0
[ 48.951446] timekeeping_resume+0x218/0x23c
[ 48.951477] syscore_resume+0x94/0x42c
[ 48.951477] suspend_enter+0x554/0x9b4
[ 48.951477] suspend_devices_and_enter+0xd8/0x4b4
[ 48.951507] enter_state+0x934/0xbd4
[ 48.951507] pm_suspend+0x14/0x70
[ 48.951507] state_store+0x68/0xc8
[ 48.951538] kernfs_fop_write+0xf4/0x1f8
[ 48.951538] __vfs_write+0x1c/0x114
[ 48.951538] vfs_write+0xa0/0x168
[ 48.951568] SyS_write+0x3c/0x90
[ 48.951568] __sys_trace_return+0x0/0x10
[ 48.951568]
-> #0 (tk_core){----..}:
[ 48.951599] lock_acquire+0xe0/0x294
[ 48.951599] ktime_get_update_offsets_now+0x5c/0x1d4
[ 48.951629] retrigger_next_event+0x4c/0x90
[ 48.951629] on_each_cpu+0x40/0x7c
[ 48.951629] clock_was_set_work+0x14/0x20
[ 48.951660] process_one_work+0x2b4/0x808
[ 48.951660] worker_thread+0x3c/0x550
[ 48.951660] kthread+0x104/0x148
[ 48.951690] ret_from_fork+0x14/0x24
[ 48.951690]
other info that might help us debug this:
[ 48.951690] Chain exists of:
tk_core --> &rt_b->rt_runtime_lock --> hrtimer_bases.lock
[ 48.951721] Possible unsafe locking scenario:
[ 48.951721] CPU0 CPU1
[ 48.951721] ---- ----
[ 48.951721] lock(hrtimer_bases.lock);
[ 48.951751] lock(&rt_b->rt_runtime_lock);
[ 48.951751] lock(hrtimer_bases.lock);
[ 48.951751] lock(tk_core);
[ 48.951782]
*** DEADLOCK ***
[ 48.951782] 3 locks held by kworker/0:0/3:
[ 48.951782] #0: ("events"){.+.+.+}, at: [<c0156590>] process_one_work+0x1f8/0x808
[ 48.951812] #1: (hrtimer_work){+.+...}, at: [<c0156590>] process_one_work+0x1f8/0x808
[ 48.951843] #2: (hrtimer_bases.lock){-.-...}, at: [<c01cc610>] retrigger_next_event+0x38/0x90
[ 48.951843] stack backtrace:
[ 48.951873] CPU: 0 PID: 3 Comm: kworker/0:0 Not tainted 4.10.0-rc7-next-20170213+
[ 48.951904] Workqueue: events clock_was_set_work
[ 48.951904] [<c0110208>] (unwind_backtrace) from [<c010c224>] (show_stack+0x10/0x14)
[ 48.951934] [<c010c224>] (show_stack) from [<c04ca6c0>] (dump_stack+0xac/0xe0)
[ 48.951934] [<c04ca6c0>] (dump_stack) from [<c019b5cc>] (print_circular_bug+0x1d0/0x308)
[ 48.951965] [<c019b5cc>] (print_circular_bug) from [<c019d2a8>] (validate_chain+0xf50/0x1324)
[ 48.951965] [<c019d2a8>] (validate_chain) from [<c019ec18>] (__lock_acquire+0x468/0x7e8)
[ 48.951995] [<c019ec18>] (__lock_acquire) from [<c019f634>] (lock_acquire+0xe0/0x294)
[ 48.951995] [<c019f634>] (lock_acquire) from [<c01d0ea0>] (ktime_get_update_offsets_now+0x5c/0x1d4)
[ 48.952026] [<c01d0ea0>] (ktime_get_update_offsets_now) from [<c01cc624>] (retrigger_next_event+0x4c/0x90)
[ 48.952026] [<c01cc624>] (retrigger_next_event) from [<c01e4e24>] (on_each_cpu+0x40/0x7c)
[ 48.952056] [<c01e4e24>] (on_each_cpu) from [<c01cafc4>] (clock_was_set_work+0x14/0x20)
[ 48.952056] [<c01cafc4>] (clock_was_set_work) from [<c015664c>] (process_one_work+0x2b4/0x808)
[ 48.952087] [<c015664c>] (process_one_work) from [<c0157774>] (worker_thread+0x3c/0x550)
[ 48.952087] [<c0157774>] (worker_thread) from [<c015d644>] (kthread+0x104/0x148)
[ 48.952087] [<c015d644>] (kthread) from [<c0107830>] (ret_from_fork+0x14/0x24)
Replace printk() with printk_deferred(), which does not call into
the scheduler.
Fixes: 0bf43f15db85 ("timekeeping: Prints the amounts of time spent during suspend")
Reported-and-tested-by: Tony Lindgren <tony@atomide.com>
Signed-off-by: Sergey Senozhatsky <sergey.senozhatsky@gmail.com>
Cc: Petr Mladek <pmladek@suse.com>
Cc: Sergey Senozhatsky <sergey.senozhatsky.work@gmail.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: "Rafael J . Wysocki" <rjw@rjwysocki.net>
Cc: Steven Rostedt <rostedt@goodmis.org>
Cc: John Stultz <john.stultz@linaro.org>
Link: http://lkml.kernel.org/r/20170215044332.30449-1-sergey.senozhatsky@gmail.com
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
commit fc98c3c8c9dcafd67adcce69e6ce3191d5306c9c upstream.
Use rcuidle console tracepoint because, apparently, it may be issued
from an idle CPU:
hw-breakpoint: Failed to enable monitor mode on CPU 0.
hw-breakpoint: CPU 0 failed to disable vector catch
===============================
[ ERR: suspicious RCU usage. ]
4.10.0-rc8-next-20170215+ #119 Not tainted
-------------------------------
./include/trace/events/printk.h:32 suspicious rcu_dereference_check() usage!
other info that might help us debug this:
RCU used illegally from idle CPU!
rcu_scheduler_active = 2, debug_locks = 0
RCU used illegally from extended quiescent state!
2 locks held by swapper/0/0:
#0: (cpu_pm_notifier_lock){......}, at: [<c0237e2c>] cpu_pm_exit+0x10/0x54
#1: (console_lock){+.+.+.}, at: [<c01ab350>] vprintk_emit+0x264/0x474
stack backtrace:
CPU: 0 PID: 0 Comm: swapper/0 Not tainted 4.10.0-rc8-next-20170215+ #119
Hardware name: Generic OMAP4 (Flattened Device Tree)
console_unlock
vprintk_emit
vprintk_default
printk
reset_ctrl_regs
dbg_cpu_pm_notify
notifier_call_chain
cpu_pm_exit
omap_enter_idle_coupled
cpuidle_enter_state
cpuidle_enter_state_coupled
do_idle
cpu_startup_entry
start_kernel
This RCU warning, however, is suppressed by lockdep_off() in printk().
lockdep_off() increments the ->lockdep_recursion counter and thus
disables RCU_LOCKDEP_WARN() and debug_lockdep_rcu_enabled(), which want
lockdep to be enabled "current->lockdep_recursion == 0".
Link: http://lkml.kernel.org/r/20170217015932.11898-1-sergey.senozhatsky@gmail.com
Signed-off-by: Sergey Senozhatsky <sergey.senozhatsky@gmail.com>
Reported-by: Tony Lindgren <tony@atomide.com>
Tested-by: Tony Lindgren <tony@atomide.com>
Acked-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
Acked-by: Steven Rostedt (VMware) <rostedt@goodmis.org>
Cc: Petr Mladek <pmladek@suse.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Tony Lindgren <tony@atomide.com>
Cc: Russell King <rmk@armlinux.org.uk>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
commit 25f71d1c3e98ef0e52371746220d66458eac75bc upstream.
The UEVENT user mode helper is enabled before the initcalls are executed
and is available when the root filesystem has been mounted.
The user mode helper is triggered by device init calls and the executable
might use the futex syscall.
futex_init() is marked __initcall which maps to device_initcall, but there
is no guarantee that futex_init() is invoked _before_ the first device init
call which triggers the UEVENT user mode helper.
If the user mode helper uses the futex syscall before futex_init() then the
syscall crashes with a NULL pointer dereference because the futex subsystem
has not been initialized yet.
Move futex_init() to core_initcall so futexes are initialized before the
root filesystem is mounted and the usermode helper becomes available.
[ tglx: Rewrote changelog ]
Signed-off-by: Yang Yang <yang.yang29@zte.com.cn>
Cc: jiang.biao2@zte.com.cn
Cc: jiang.zhengxiong@zte.com.cn
Cc: zhong.weidong@zte.com.cn
Cc: deng.huali@zte.com.cn
Cc: Peter Zijlstra <peterz@infradead.org>
Link: http://lkml.kernel.org/r/1483085875-6130-1-git-send-email-yang.yang29@zte.com.cn
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
commit 451d24d1e5f40bad000fa9abe36ddb16fc9928cb upstream.
Alexei had his box explode because doing read() on a package
(rapl/uncore) event that isn't currently scheduled in ends up doing an
out-of-bounds load.
Rework the code to more explicitly deal with event->oncpu being -1.
Reported-by: Alexei Starovoitov <alexei.starovoitov@gmail.com>
Tested-by: Alexei Starovoitov <ast@kernel.org>
Tested-by: David Carrillo-Cisneros <davidcc@google.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: eranian@google.com
Fixes: d6a2f9035bfc ("perf/core: Introduce PMU_EV_CAP_READ_ACTIVE_PKG")
Link: http://lkml.kernel.org/r/20170131102710.GL6515@twins.programming.kicks-ass.net
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
commit bfeda41d06d85ad9d52f2413cfc2b77be5022f75 upstream.
Since KERN_CONT became meaningful again, lockdep stack traces have had
annoying extra newlines, like this:
[ 5.561122] -> #1 (B){+.+...}:
[ 5.561528]
[ 5.561532] [<ffffffff810d8873>] lock_acquire+0xc3/0x210
[ 5.562178]
[ 5.562181] [<ffffffff816f6414>] mutex_lock_nested+0x74/0x6d0
[ 5.562861]
[ 5.562880] [<ffffffffa01aa3c3>] init_btrfs_fs+0x21/0x196 [btrfs]
[ 5.563717]
[ 5.563721] [<ffffffff81000472>] do_one_initcall+0x52/0x1b0
[ 5.564554]
[ 5.564559] [<ffffffff811a3af6>] do_init_module+0x5f/0x209
[ 5.565357]
[ 5.565361] [<ffffffff81122f4d>] load_module+0x218d/0x2b80
[ 5.566020]
[ 5.566021] [<ffffffff81123beb>] SyS_finit_module+0xeb/0x120
[ 5.566694]
[ 5.566696] [<ffffffff816fd241>] entry_SYSCALL_64_fastpath+0x1f/0xc2
That's happening because each printk() call now gets printed on its own
line, and we do a separate call to print the spaces before the symbol.
Fix it by doing the printk() directly instead of using the
print_ip_sym() helper.
Additionally, the symbol address isn't very helpful, so let's get rid of
that, too. The final result looks like this:
[ 5.194518] -> #1 (B){+.+...}:
[ 5.195002] lock_acquire+0xc3/0x210
[ 5.195439] mutex_lock_nested+0x74/0x6d0
[ 5.196491] do_one_initcall+0x52/0x1b0
[ 5.196939] do_init_module+0x5f/0x209
[ 5.197355] load_module+0x218d/0x2b80
[ 5.197792] SyS_finit_module+0xeb/0x120
[ 5.198251] entry_SYSCALL_64_fastpath+0x1f/0xc2
Suggested-by: Linus Torvalds <torvalds@linux-foundation.org>
Signed-off-by: Omar Sandoval <osandov@fb.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: kernel-team@fb.com
Fixes: 4bcc595ccd80 ("printk: reinstate KERN_CONT for printing continuation lines")
Link: http://lkml.kernel.org/r/43b4e114724b2bdb0308fa86cb33aa07d3d67fad.1486510315.git.osandov@fb.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
commit 08d85f3ea99f1eeafc4e8507936190e86a16ee8c upstream.
Since commit f3b0946d629c ("genirq/msi: Make sure PCI MSIs are
activated early"), we can end-up activating a PCI/MSI twice (once
at allocation time, and once at startup time).
This is normally of no consequences, except that there is some
HW out there that may misbehave if activate is used more than once
(the GICv3 ITS, for example, uses the activate callback
to issue the MAPVI command, and the architecture spec says that
"If there is an existing mapping for the EventID-DeviceID
combination, behavior is UNPREDICTABLE").
While this could be worked around in each individual driver, it may
make more sense to tackle the issue at the core level. In order to
avoid getting in that situation, let's have a per-interrupt flag
to remember if we have already activated that interrupt or not.
Fixes: f3b0946d629c ("genirq/msi: Make sure PCI MSIs are activated early")
Reported-and-tested-by: Andre Przywara <andre.przywara@arm.com>
Signed-off-by: Marc Zyngier <marc.zyngier@arm.com>
Link: http://lkml.kernel.org/r/1484668848-24361-1-git-send-email-marc.zyngier@arm.com
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
commit 07cd12945551b63ecb1a349d50a6d69d1d6feb4a upstream.
While refactoring cgroup creation, a5bca2152036 ("cgroup: factor out
cgroup_create() out of cgroup_mkdir()") incorrectly onlined subsystems
before the new cgroup is associated with it kernfs_node. This is fine
for cgroup proper but cgroup_name/path() depend on the associated
kernfs_node and if a subsystem makes the new cgroup_subsys_state
visible, which they're allowed to after onlining, it can lead to NULL
dereference.
The current code performs cgroup creation and subsystem onlining in
cgroup_create() and cgroup_mkdir() makes the cgroup and subsystems
visible afterwards. There's no reason to online the subsystems early
and we can simply drop cgroup_apply_control_enable() call from
cgroup_create() so that the subsystems are onlined and made visible at
the same time.
Signed-off-by: Tejun Heo <tj@kernel.org>
Reported-by: Konstantin Khlebnikov <khlebnikov@yandex-team.ru>
Fixes: a5bca2152036 ("cgroup: factor out cgroup_create() out of cgroup_mkdir()")
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
commit 79c6f448c8b79c321e4a1f31f98194e4f6b6cae7 upstream.
The hwlat tracer creates a kernel thread at start of the tracer. It is
pinned to a single CPU and will move to the next CPU after each period of
running. If the user modifies the migration thread's affinity, it will not
change after that happens.
The original code created the thread at the first instance it was called,
but later was changed to destroy the thread after the tracer was finished,
and would not be created until the next instance of the tracer was
established. The code that initialized the affinity was only called on the
initial instantiation of the tracer. After that, it was not initialized, and
the previous affinity did not match the current newly created one, making
it appear that the user modified the thread's affinity when it did not, and
the thread failed to migrate again.
Fixes: 0330f7aa8ee6 ("tracing: Have hwlat trace migrate across tracing_cpumask CPUs")
Signed-off-by: Steven Rostedt (VMware) <rostedt@goodmis.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
commit 0b3589be9b98994ce3d5aeca52445d1f5627c4ba upstream.
Andres reported that MMAP2 records for anonymous memory always have
their protection field 0.
Turns out, someone daft put the prot/flags generation code in the file
branch, leaving them unset for anonymous memory.
Reported-by: Andres Freund <andres@anarazel.de>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Alexander Shishkin <alexander.shishkin@linux.intel.com>
Cc: Arnaldo Carvalho de Melo <acme@redhat.com>
Cc: Don Zickus <dzickus@redhat.com
Cc: Jiri Olsa <jolsa@redhat.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Stephane Eranian <eranian@gmail.com>
Cc: Stephane Eranian <eranian@google.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: acme@kernel.org
Cc: anton@ozlabs.org
Cc: namhyung@kernel.org
Fixes: f972eb63b100 ("perf: Pass protection and flags bits through mmap2 interface")
Link: http://lkml.kernel.org/r/20170126221508.GF6536@twins.programming.kicks-ass.net
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
commit a76a82a3e38c8d3fb6499e3dfaeb0949241ab588 upstream.
Dmitry reported a KASAN use-after-free on event->group_leader.
It turns out there's a hole in perf_remove_from_context() due to
event_function_call() not calling its function when the task
associated with the event is already dead.
In this case the event will have been detached from the task, but the
grouping will have been retained, such that group operations might
still work properly while there are live child events etc.
This does however mean that we can miss a perf_group_detach() call
when the group decomposes, this in turn can then lead to
use-after-free.
Fix it by explicitly doing the group detach if its still required.
Reported-by: Dmitry Vyukov <dvyukov@google.com>
Tested-by: Dmitry Vyukov <dvyukov@google.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Alexander Shishkin <alexander.shishkin@linux.intel.com>
Cc: Arnaldo Carvalho de Melo <acme@kernel.org>
Cc: Arnaldo Carvalho de Melo <acme@redhat.com>
Cc: Jiri Olsa <jolsa@redhat.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Mathieu Desnoyers <mathieu.desnoyers@efficios.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: syzkaller <syzkaller@googlegroups.com>
Fixes: 63b6da39bb38 ("perf: Fix perf_event_exit_task() race")
Link: http://lkml.kernel.org/r/20170126153955.GD6515@twins.programming.kicks-ass.net
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
commit 321027c1fe77f892f4ea07846aeae08cefbbb290 upstream.
Di Shen reported a race between two concurrent sys_perf_event_open()
calls where both try and move the same pre-existing software group
into a hardware context.
The problem is exactly that described in commit:
f63a8daa5812 ("perf: Fix event->ctx locking")
... where, while we wait for a ctx->mutex acquisition, the event->ctx
relation can have changed under us.
That very same commit failed to recognise sys_perf_event_context() as an
external access vector to the events and thereby didn't apply the
established locking rules correctly.
So while one sys_perf_event_open() call is stuck waiting on
mutex_lock_double(), the other (which owns said locks) moves the group
about. So by the time the former sys_perf_event_open() acquires the
locks, the context we've acquired is stale (and possibly dead).
Apply the established locking rules as per perf_event_ctx_lock_nested()
to the mutex_lock_double() for the 'move_group' case. This obviously means
we need to validate state after we acquire the locks.
Reported-by: Di Shen (Keen Lab)
Tested-by: John Dias <joaodias@google.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Alexander Shishkin <alexander.shishkin@linux.intel.com>
Cc: Arnaldo Carvalho de Melo <acme@kernel.org>
Cc: Arnaldo Carvalho de Melo <acme@redhat.com>
Cc: Jiri Olsa <jolsa@redhat.com>
Cc: Kees Cook <keescook@chromium.org>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Min Chong <mchong@google.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Stephane Eranian <eranian@google.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Vince Weaver <vincent.weaver@maine.edu>
Fixes: f63a8daa5812 ("perf: Fix event->ctx locking")
Link: http://lkml.kernel.org/r/20170106131444.GZ3174@twins.programming.kicks-ass.net
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
commit ff9f8a7cf935468a94d9927c68b00daae701667e upstream.
We perform the conversion between kernel jiffies and ms only when
exporting kernel value to user space.
We need to do the opposite operation when value is written by user.
Only matters when HZ != 1000
Signed-off-by: Eric Dumazet <edumazet@google.com>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
commit 880a38547ff08715ce4f1daf9a4bb30c87676e68 upstream.
The ucounts_lock is being used to protect various ucounts lifecycle
management functionalities. However, those services can also be invoked
when a pidns is being freed in an RCU callback (e.g. softirq context).
This can lead to deadlocks. There were already efforts trying to
prevent similar deadlocks in add7c65ca426 ("pid: fix lockdep deadlock
warning due to ucount_lock"), however they just moved the context
from hardirq to softrq. Fix this issue once and for all by explictly
making the lock disable irqs altogether.
Dmitry Vyukov <dvyukov@google.com> reported:
> I've got the following deadlock report while running syzkaller fuzzer
> on eec0d3d065bfcdf9cd5f56dd2a36b94d12d32297 of linux-next (on odroid
> device if it matters):
>
> =================================
> [ INFO: inconsistent lock state ]
> 4.10.0-rc3-next-20170112-xc2-dirty #6 Not tainted
> ---------------------------------
> inconsistent {SOFTIRQ-ON-W} -> {IN-SOFTIRQ-W} usage.
> swapper/2/0 [HC0[0]:SC1[1]:HE1:SE0] takes:
> (ucounts_lock){+.?...}, at: [< inline >] spin_lock
> ./include/linux/spinlock.h:302
> (ucounts_lock){+.?...}, at: [<ffff2000081678c8>]
> put_ucounts+0x60/0x138 kernel/ucount.c:162
> {SOFTIRQ-ON-W} state was registered at:
> [<ffff2000081c82d8>] mark_lock+0x220/0xb60 kernel/locking/lockdep.c:3054
> [< inline >] mark_irqflags kernel/locking/lockdep.c:2941
> [<ffff2000081c97a8>] __lock_acquire+0x388/0x3260 kernel/locking/lockdep.c:3295
> [<ffff2000081cce24>] lock_acquire+0xa4/0x138 kernel/locking/lockdep.c:3753
> [< inline >] __raw_spin_lock ./include/linux/spinlock_api_smp.h:144
> [<ffff200009798128>] _raw_spin_lock+0x90/0xd0 kernel/locking/spinlock.c:151
> [< inline >] spin_lock ./include/linux/spinlock.h:302
> [< inline >] get_ucounts kernel/ucount.c:131
> [<ffff200008167c28>] inc_ucount+0x80/0x6c8 kernel/ucount.c:189
> [< inline >] inc_mnt_namespaces fs/namespace.c:2818
> [<ffff200008481850>] alloc_mnt_ns+0x78/0x3a8 fs/namespace.c:2849
> [<ffff200008487298>] create_mnt_ns+0x28/0x200 fs/namespace.c:2959
> [< inline >] init_mount_tree fs/namespace.c:3199
> [<ffff200009bd6674>] mnt_init+0x258/0x384 fs/namespace.c:3251
> [<ffff200009bd60bc>] vfs_caches_init+0x6c/0x80 fs/dcache.c:3626
> [<ffff200009bb1114>] start_kernel+0x414/0x460 init/main.c:648
> [<ffff200009bb01e8>] __primary_switched+0x6c/0x70 arch/arm64/kernel/head.S:456
> irq event stamp: 2316924
> hardirqs last enabled at (2316924): [< inline >] rcu_do_batch
> kernel/rcu/tree.c:2911
> hardirqs last enabled at (2316924): [< inline >]
> invoke_rcu_callbacks kernel/rcu/tree.c:3182
> hardirqs last enabled at (2316924): [< inline >]
> __rcu_process_callbacks kernel/rcu/tree.c:3149
> hardirqs last enabled at (2316924): [<ffff200008210414>]
> rcu_process_callbacks+0x7a4/0xc28 kernel/rcu/tree.c:3166
> hardirqs last disabled at (2316923): [< inline >] rcu_do_batch
> kernel/rcu/tree.c:2900
> hardirqs last disabled at (2316923): [< inline >]
> invoke_rcu_callbacks kernel/rcu/tree.c:3182
> hardirqs last disabled at (2316923): [< inline >]
> __rcu_process_callbacks kernel/rcu/tree.c:3149
> hardirqs last disabled at (2316923): [<ffff20000820fe80>]
> rcu_process_callbacks+0x210/0xc28 kernel/rcu/tree.c:3166
> softirqs last enabled at (2316912): [<ffff20000811b4c4>]
> _local_bh_enable+0x4c/0x80 kernel/softirq.c:155
> softirqs last disabled at (2316913): [< inline >]
> do_softirq_own_stack ./include/linux/interrupt.h:488
> softirqs last disabled at (2316913): [< inline >]
> invoke_softirq kernel/softirq.c:371
> softirqs last disabled at (2316913): [<ffff20000811c994>]
> irq_exit+0x264/0x308 kernel/softirq.c:405
>
> other info that might help us debug this:
> Possible unsafe locking scenario:
>
> CPU0
> ----
> lock(ucounts_lock);
> <Interrupt>
> lock(ucounts_lock);
>
> *** DEADLOCK ***
>
> 1 lock held by swapper/2/0:
> #0: (rcu_callback){......}, at: [< inline >] __rcu_reclaim
> kernel/rcu/rcu.h:108
> #0: (rcu_callback){......}, at: [< inline >] rcu_do_batch
> kernel/rcu/tree.c:2919
> #0: (rcu_callback){......}, at: [< inline >]
> invoke_rcu_callbacks kernel/rcu/tree.c:3182
> #0: (rcu_callback){......}, at: [< inline >]
> __rcu_process_callbacks kernel/rcu/tree.c:3149
> #0: (rcu_callback){......}, at: [<ffff200008210390>]
> rcu_process_callbacks+0x720/0xc28 kernel/rcu/tree.c:3166
>
> stack backtrace:
> CPU: 2 PID: 0 Comm: swapper/2 Not tainted 4.10.0-rc3-next-20170112-xc2-dirty #6
> Hardware name: Hardkernel ODROID-C2 (DT)
> Call trace:
> [<ffff20000808fa60>] dump_backtrace+0x0/0x440 arch/arm64/kernel/traps.c:500
> [<ffff20000808fec0>] show_stack+0x20/0x30 arch/arm64/kernel/traps.c:225
> [<ffff2000088a99e0>] dump_stack+0x110/0x168
> [<ffff2000082fa2b4>] print_usage_bug.part.27+0x49c/0x4bc
> kernel/locking/lockdep.c:2387
> [< inline >] print_usage_bug kernel/locking/lockdep.c:2357
> [< inline >] valid_state kernel/locking/lockdep.c:2400
> [< inline >] mark_lock_irq kernel/locking/lockdep.c:2617
> [<ffff2000081c89ec>] mark_lock+0x934/0xb60 kernel/locking/lockdep.c:3065
> [< inline >] mark_irqflags kernel/locking/lockdep.c:2923
> [<ffff2000081c9a60>] __lock_acquire+0x640/0x3260 kernel/locking/lockdep.c:3295
> [<ffff2000081cce24>] lock_acquire+0xa4/0x138 kernel/locking/lockdep.c:3753
> [< inline >] __raw_spin_lock ./include/linux/spinlock_api_smp.h:144
> [<ffff200009798128>] _raw_spin_lock+0x90/0xd0 kernel/locking/spinlock.c:151
> [< inline >] spin_lock ./include/linux/spinlock.h:302
> [<ffff2000081678c8>] put_ucounts+0x60/0x138 kernel/ucount.c:162
> [<ffff200008168364>] dec_ucount+0xf4/0x158 kernel/ucount.c:214
> [< inline >] dec_pid_namespaces kernel/pid_namespace.c:89
> [<ffff200008293dc8>] delayed_free_pidns+0x40/0xe0 kernel/pid_namespace.c:156
> [< inline >] __rcu_reclaim kernel/rcu/rcu.h:118
> [< inline >] rcu_do_batch kernel/rcu/tree.c:2919
> [< inline >] invoke_rcu_callbacks kernel/rcu/tree.c:3182
> [< inline >] __rcu_process_callbacks kernel/rcu/tree.c:3149
> [<ffff2000082103d8>] rcu_process_callbacks+0x768/0xc28 kernel/rcu/tree.c:3166
> [<ffff2000080821dc>] __do_softirq+0x324/0x6e0 kernel/softirq.c:284
> [< inline >] do_softirq_own_stack ./include/linux/interrupt.h:488
> [< inline >] invoke_softirq kernel/softirq.c:371
> [<ffff20000811c994>] irq_exit+0x264/0x308 kernel/softirq.c:405
> [<ffff2000081ecc28>] __handle_domain_irq+0xc0/0x150 kernel/irq/irqdesc.c:636
> [<ffff200008081c80>] gic_handle_irq+0x68/0xd8
> Exception stack(0xffff8000648e7dd0 to 0xffff8000648e7f00)
> 7dc0: ffff8000648d4b3c 0000000000000007
> 7de0: 0000000000000000 1ffff0000c91a967 1ffff0000c91a967 1ffff0000c91a967
> 7e00: ffff20000a4b6b68 0000000000000001 0000000000000007 0000000000000001
> 7e20: 1fffe4000149ae90 ffff200009d35000 0000000000000000 0000000000000002
> 7e40: 0000000000000000 0000000000000000 0000000002624a1a 0000000000000000
> 7e60: 0000000000000000 ffff200009cbcd88 000060006d2ed000 0000000000000140
> 7e80: ffff200009cff000 ffff200009cb6000 ffff200009cc2020 ffff200009d2159d
> 7ea0: 0000000000000000 ffff8000648d4380 0000000000000000 ffff8000648e7f00
> 7ec0: ffff20000820a478 ffff8000648e7f00 ffff20000820a47c 0000000010000145
> 7ee0: 0000000000000140 dfff200000000000 ffffffffffffffff ffff20000820a478
> [<ffff2000080837f8>] el1_irq+0xb8/0x130 arch/arm64/kernel/entry.S:486
> [< inline >] arch_local_irq_restore
> ./arch/arm64/include/asm/irqflags.h:81
> [<ffff20000820a47c>] rcu_idle_exit+0x64/0xa8 kernel/rcu/tree.c:1030
> [< inline >] cpuidle_idle_call kernel/sched/idle.c:200
> [<ffff2000081bcbfc>] do_idle+0x1dc/0x2d0 kernel/sched/idle.c:243
> [<ffff2000081bd1cc>] cpu_startup_entry+0x24/0x28 kernel/sched/idle.c:345
> [<ffff200008099f8c>] secondary_start_kernel+0x2cc/0x358
> arch/arm64/kernel/smp.c:276
> [<000000000279f1a4>] 0x279f1a4
Reported-by: Dmitry Vyukov <dvyukov@google.com>
Tested-by: Dmitry Vyukov <dvyukov@google.com>
Fixes: add7c65ca426 ("pid: fix lockdep deadlock warning due to ucount_lock")
Fixes: f333c700c610 ("pidns: Add a limit on the number of pid namespaces")
Link: https://www.spinics.net/lists/kernel/msg2426637.html
Signed-off-by: Nikolay Borisov <n.borisov.lkml@gmail.com>
Signed-off-by: Eric W. Biederman <ebiederm@xmission.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
commit 52d7e48b86fc108e45a656d8e53e4237993c481d upstream.
The current preemptible RCU implementation goes through three phases
during bootup. In the first phase, there is only one CPU that is running
with preemption disabled, so that a no-op is a synchronous grace period.
In the second mid-boot phase, the scheduler is running, but RCU has
not yet gotten its kthreads spawned (and, for expedited grace periods,
workqueues are not yet running. During this time, any attempt to do
a synchronous grace period will hang the system (or complain bitterly,
depending). In the third and final phase, RCU is fully operational and
everything works normally.
This has been OK for some time, but there has recently been some
synchronous grace periods showing up during the second mid-boot phase.
This code worked "by accident" for awhile, but started failing as soon
as expedited RCU grace periods switched over to workqueues in commit
8b355e3bc140 ("rcu: Drive expedited grace periods from workqueue").
Note that the code was buggy even before this commit, as it was subject
to failure on real-time systems that forced all expedited grace periods
to run as normal grace periods (for example, using the rcu_normal ksysfs
parameter). The callchain from the failure case is as follows:
early_amd_iommu_init()
|-> acpi_put_table(ivrs_base);
|-> acpi_tb_put_table(table_desc);
|-> acpi_tb_invalidate_table(table_desc);
|-> acpi_tb_release_table(...)
|-> acpi_os_unmap_memory
|-> acpi_os_unmap_iomem
|-> acpi_os_map_cleanup
|-> synchronize_rcu_expedited
The kernel showing this callchain was built with CONFIG_PREEMPT_RCU=y,
which caused the code to try using workqueues before they were
initialized, which did not go well.
This commit therefore reworks RCU to permit synchronous grace periods
to proceed during this mid-boot phase. This commit is therefore a
fix to a regression introduced in v4.9, and is therefore being put
forward post-merge-window in v4.10.
This commit sets a flag from the existing rcu_scheduler_starting()
function which causes all synchronous grace periods to take the expedited
path. The expedited path now checks this flag, using the requesting task
to drive the expedited grace period forward during the mid-boot phase.
Finally, this flag is updated by a core_initcall() function named
rcu_exp_runtime_mode(), which causes the runtime codepaths to be used.
Note that this arrangement assumes that tasks are not sent POSIX signals
(or anything similar) from the time that the first task is spawned
through core_initcall() time.
Fixes: 8b355e3bc140 ("rcu: Drive expedited grace periods from workqueue")
Reported-by: "Zheng, Lv" <lv.zheng@intel.com>
Reported-by: Borislav Petkov <bp@alien8.de>
Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
Tested-by: Stan Kain <stan.kain@gmail.com>
Tested-by: Ivan <waffolz@hotmail.com>
Tested-by: Emanuel Castelo <emanuel.castelo@gmail.com>
Tested-by: Bruno Pesavento <bpesavento@infinito.it>
Tested-by: Borislav Petkov <bp@suse.de>
Tested-by: Frederic Bezies <fredbezies@gmail.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
commit f466ae66fa6a599f9a53b5f9bafea4b8cfffa7fb upstream.
It is now legal to invoke synchronize_sched() at early boot, which causes
Tiny RCU's synchronize_sched() to emit spurious splats. This commit
therefore removes the cond_resched() from Tiny RCU's synchronize_sched().
Fixes: 8b355e3bc140 ("rcu: Drive expedited grace periods from workqueue")
Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
commit add7c65ca426b7a37184dd3d2172394e23d585d6 upstream.
=========================================================
[ INFO: possible irq lock inversion dependency detected ]
4.10.0-rc2-00024-g4aecec9-dirty #118 Tainted: G W
---------------------------------------------------------
swapper/1/0 just changed the state of lock:
(&(&sighand->siglock)->rlock){-.....}, at: [<ffffffffbd0a1bc6>] __lock_task_sighand+0xb6/0x2c0
but this lock took another, HARDIRQ-unsafe lock in the past:
(ucounts_lock){+.+...}
and interrupts could create inverse lock ordering between them.
other info that might help us debug this:
Chain exists of: &(&sighand->siglock)->rlock --> &(&tty->ctrl_lock)->rlock --> ucounts_lock
Possible interrupt unsafe locking scenario:
CPU0 CPU1
---- ----
lock(ucounts_lock);
local_irq_disable();
lock(&(&sighand->siglock)->rlock);
lock(&(&tty->ctrl_lock)->rlock);
<Interrupt>
lock(&(&sighand->siglock)->rlock);
*** DEADLOCK ***
This patch removes a dependency between rlock and ucount_lock.
Fixes: f333c700c610 ("pidns: Add a limit on the number of pid namespaces")
Signed-off-by: Andrei Vagin <avagin@openvz.org>
Acked-by: Al Viro <viro@ZenIV.linux.org.uk>
Signed-off-by: Eric W. Biederman <ebiederm@xmission.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
commit b6416e61012429e0277bd15a229222fd17afc1c1 upstream.
Modules that use static_key_deferred need a way to synchronize with
any delayed work that is still pending when the module is unloaded.
Introduce static_key_deferred_flush() which flushes any pending
jump label updates.
Signed-off-by: David Matlack <dmatlack@google.com>
Acked-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
commit f931ab479dd24cf7a2c6e2df19778406892591fb upstream.
Both arch_add_memory() and arch_remove_memory() expect a single threaded
context.
For example, arch/x86/mm/init_64.c::kernel_physical_mapping_init() does
not hold any locks over this check and branch:
if (pgd_val(*pgd)) {
pud = (pud_t *)pgd_page_vaddr(*pgd);
paddr_last = phys_pud_init(pud, __pa(vaddr),
__pa(vaddr_end),
page_size_mask);
continue;
}
pud = alloc_low_page();
paddr_last = phys_pud_init(pud, __pa(vaddr), __pa(vaddr_end),
page_size_mask);
The result is that two threads calling devm_memremap_pages()
simultaneously can end up colliding on pgd initialization. This leads
to crash signatures like the following where the loser of the race
initializes the wrong pgd entry:
BUG: unable to handle kernel paging request at ffff888ebfff0000
IP: memcpy_erms+0x6/0x10
PGD 2f8e8fc067 PUD 0 /* <---- Invalid PUD */
Oops: 0000 [#1] SMP DEBUG_PAGEALLOC
CPU: 54 PID: 3818 Comm: systemd-udevd Not tainted 4.6.7+ #13
task: ffff882fac290040 ti: ffff882f887a4000 task.ti: ffff882f887a4000
RIP: memcpy_erms+0x6/0x10
[..]
Call Trace:
? pmem_do_bvec+0x205/0x370 [nd_pmem]
? blk_queue_enter+0x3a/0x280
pmem_rw_page+0x38/0x80 [nd_pmem]
bdev_read_page+0x84/0xb0
Hold the standard memory hotplug mutex over calls to
arch_{add,remove}_memory().
Fixes: 41e94a851304 ("add devm_memremap_pages")
Link: http://lkml.kernel.org/r/148357647831.9498.12606007370121652979.stgit@dwillia2-desk3.amr.corp.intel.com
Signed-off-by: Dan Williams <dan.j.williams@intel.com>
Cc: Christoph Hellwig <hch@lst.de>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
commit c1a9eeb938b5433947e5ea22f89baff3182e7075 upstream.
When a disfunctional timer, e.g. dummy timer, is installed, the tick core
tries to setup the broadcast timer.
If no broadcast device is installed, the kernel crashes with a NULL pointer
dereference in tick_broadcast_setup_oneshot() because the function has no
sanity check.
Reported-by: Mason <slash.tmp@free.fr>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Cc: Mark Rutland <mark.rutland@arm.com>
Cc: Anna-Maria Gleixner <anna-maria@linutronix.de>
Cc: Richard Cochran <rcochran@linutronix.de>
Cc: Sebastian Andrzej Siewior <bigeasy@linutronix.de>
Cc: Daniel Lezcano <daniel.lezcano@linaro.org>
Cc: Peter Zijlstra <peterz@infradead.org>,
Cc: Sebastian Frias <sf84@laposte.net>
Cc: Thibaud Cornic <thibaud_cornic@sigmadesigns.com>
Cc: Robin Murphy <robin.murphy@arm.com>
Link: http://lkml.kernel.org/r/1147ef90-7877-e4d2-bb2b-5c4fa8d3144b@free.fr
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
commit c0af52437254fda8b0cdbaae5a9b6d9327f1fcd5 upstream.
Commit 34c3d9819fda ("genirq/affinity: Provide smarter irq spreading
infrastructure") introduced a better IRQ spreading mechanism, taking
account of the available NUMA nodes in the machine.
Problem is that the algorithm of retrieving the nodemask iterates
"linearly" based on the number of online nodes - some architectures
present non-linear node distribution among the nodemask, like PowerPC.
If this is the case, the algorithm lead to a wrong node count number
and therefore to a bad/incomplete IRQ affinity distribution.
For example, this problem were found in a machine with 128 CPUs and two
nodes, namely nodes 0 and 8 (instead of 0 and 1, if it was linearly
distributed). This led to a wrong affinity distribution which then led to
a bad mq allocation for nvme driver.
Finally, we take the opportunity to fix a comment regarding the affinity
distribution when we have _more_ nodes than vectors.
Fixes: 34c3d9819fda ("genirq/affinity: Provide smarter irq spreading infrastructure")
Reported-by: Gabriel Krisman Bertazi <gabriel@krisman.be>
Signed-off-by: Guilherme G. Piccoli <gpiccoli@linux.vnet.ibm.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Gabriel Krisman Bertazi <gabriel@krisman.be>
Reviewed-by: Gavin Shan <gwshan@linux.vnet.ibm.com>
Cc: linux-pci@vger.kernel.org
Cc: linuxppc-dev@lists.ozlabs.org
Cc: hch@lst.de
Link: http://lkml.kernel.org/r/1481738472-2671-1-git-send-email-gpiccoli@linux.vnet.ibm.com
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
commit 9a29d0fbc2d9ad99fb8a981ab72548cc360e9d4c upstream.
Smatch complains that we started using the array offset before we
checked that it was valid.
Fixes: 017c59c042d0 ('relay: Use per CPU constructs for the relay channel buffer pointers')
Link: http://lkml.kernel.org/r/20161013084947.GC16198@mwanda
Signed-off-by: Dan Carpenter <dan.carpenter@oracle.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
commit 794de08a16cf1fc1bf785dc48f66d36218cf6d88 upstream.
Both the wakeup and irqsoff tracers can use the function graph tracer when
the display-graph option is set. The problem is that they ignore the notrace
file, and record the entry of functions that would be ignored by the
function_graph tracer. This causes the trace->depth to be recorded into the
ring buffer. The set_graph_notrace uses a trick by adding a large negative
number to the trace->depth when a graph function is to be ignored.
On trace output, the graph function uses the depth to record a stack of
functions. But since the depth is negative, it accesses the array with a
negative number and causes an out of bounds access that can cause a kernel
oops or corrupt data.
Have the print functions handle cases where a tracer still records functions
even when they are in set_graph_notrace.
Also add warnings if the depth is below zero before accessing the array.
Note, the function graph logic will still prevent the return of these
functions from being recorded, which means that they will be left hanging
without a return. For example:
# echo '*spin*' > set_graph_notrace
# echo 1 > options/display-graph
# echo wakeup > current_tracer
# cat trace
[...]
_raw_spin_lock() {
preempt_count_add() {
do_raw_spin_lock() {
update_rq_clock();
Where it should look like:
_raw_spin_lock() {
preempt_count_add();
do_raw_spin_lock();
}
update_rq_clock();
Cc: Namhyung Kim <namhyung.kim@lge.com>
Fixes: 29ad23b00474 ("ftrace: Add set_graph_notrace filter")
Signed-off-by: Steven Rostedt <rostedt@goodmis.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
commit 9c1645727b8fa90d07256fdfcc45bf831242a3ab upstream.
The clocksource delta to nanoseconds conversion is using signed math, but
the delta is unsigned. This makes the conversion space smaller than
necessary and in case of a multiplication overflow the conversion can
become negative. The conversion is done with scaled math:
s64 nsec_delta = ((s64)clkdelta * clk->mult) >> clk->shift;
Shifting a signed integer right obvioulsy preserves the sign, which has
interesting consequences:
- Time jumps backwards
- __iter_div_u64_rem() which is used in one of the calling code pathes
will take forever to piecewise calculate the seconds/nanoseconds part.
This has been reported by several people with different scenarios:
David observed that when stopping a VM with a debugger:
"It was essentially the stopped by debugger case. I forget exactly why,
but the guest was being explicitly stopped from outside, it wasn't just
scheduling lag. I think it was something in the vicinity of 10 minutes
stopped."
When lifting the stop the machine went dead.
The stopped by debugger case is not really interesting, but nevertheless it
would be a good thing not to die completely.
But this was also observed on a live system by Liav:
"When the OS is too overloaded, delta will get a high enough value for the
msb of the sum delta * tkr->mult + tkr->xtime_nsec to be set, and so
after the shift the nsec variable will gain a value similar to
0xffffffffff000000."
Unfortunately this has been reintroduced recently with commit 6bd58f09e1d8
("time: Add cycles to nanoseconds translation"). It had been fixed a year
ago already in commit 35a4933a8959 ("time: Avoid signed overflow in
timekeeping_get_ns()").
Though it's not surprising that the issue has been reintroduced because the
function itself and the whole call chain uses s64 for the result and the
propagation of it. The change in this recent commit is subtle:
s64 nsec;
- nsec = (d * m + n) >> s:
+ nsec = d * m + n;
+ nsec >>= s;
d being type of cycle_t adds another level of obfuscation.
This wouldn't have happened if the previous change to unsigned computation
would have made the 'nsec' variable u64 right away and a follow up patch
had cleaned up the whole call chain.
There have been patches submitted which basically did a revert of the above
patch leaving everything else unchanged as signed. Back to square one. This
spawned a admittedly pointless discussion about potential users which rely
on the unsigned behaviour until someone pointed out that it had been fixed
before. The changelogs of said patches added further confusion as they made
finally false claims about the consequences for eventual users which expect
signed results.
Despite delta being cycle_t, aka. u64, it's very well possible to hand in
a signed negative value and the signed computation will happily return the
correct result. But nobody actually sat down and analyzed the code which
was added as user after the propably unintended signed conversion.
Though in sensitive code like this it's better to analyze it proper and
make sure that nothing relies on this than hunting the subtle wreckage half
a year later. After analyzing all call chains it stands that no caller can
hand in a negative value (which actually would work due to the s64 cast)
and rely on the signed math to do the right thing.
Change the conversion function to unsigned math. The conversion of all call
chains is done in a follow up patch.
This solves the starvation issue, which was caused by the negative result,
but it does not solve the underlying problem. It merily procrastinates
it. When the timekeeper update is deferred long enough that the unsigned
multiplication overflows, then time going backwards is observable again.
It does neither solve the issue of clocksources with a small counter width
which will wrap around possibly several times and cause random time stamps
to be generated. But those are usually not found on systems used for
virtualization, so this is likely a non issue.
I took the liberty to claim authorship for this simply because
analyzing all callsites and writing the changelog took substantially
more time than just making the simple s/s64/u64/ change and ignore the
rest.
Fixes: 6bd58f09e1d8 ("time: Add cycles to nanoseconds translation")
Reported-by: David Gibson <david@gibson.dropbear.id.au>
Reported-by: Liav Rehana <liavr@mellanox.com>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Reviewed-by: David Gibson <david@gibson.dropbear.id.au>
Acked-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Parit Bhargava <prarit@redhat.com>
Cc: Laurent Vivier <lvivier@redhat.com>
Cc: "Christopher S. Hall" <christopher.s.hall@intel.com>
Cc: Chris Metcalf <cmetcalf@mellanox.com>
Cc: Richard Cochran <richardcochran@gmail.com>
Cc: John Stultz <john.stultz@linaro.org>
Link: http://lkml.kernel.org/r/20161208204228.688545601@linutronix.de
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
commit 2d13bb6494c807bcf3f78af0e96c0b8615a94385 upstream.
We've got a delay loop waiting for secondary CPUs. That loop uses
loops_per_jiffy. However, loops_per_jiffy doesn't actually mean how
many tight loops make up a jiffy on all architectures. It is quite
common to see things like this in the boot log:
Calibrating delay loop (skipped), value calculated using timer
frequency.. 48.00 BogoMIPS (lpj=24000)
In my case I was seeing lots of cases where other CPUs timed out
entering the debugger only to print their stack crawls shortly after the
kdb> prompt was written.
Elsewhere in kgdb we already use udelay(), so that should be safe enough
to use to implement our timeout. We'll delay 1 ms for 1000 times, which
should give us a full second of delay (just like the old code wanted)
but allow us to notice that we're done every 1 ms.
[akpm@linux-foundation.org: simplifications, per Daniel]
Link: http://lkml.kernel.org/r/1477091361-2039-1-git-send-email-dianders@chromium.org
Signed-off-by: Douglas Anderson <dianders@chromium.org>
Reviewed-by: Daniel Thompson <daniel.thompson@linaro.org>
Cc: Jason Wessel <jason.wessel@windriver.com>
Cc: Brian Norris <briannorris@chromium.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
commit 4d1f0fb096aedea7bb5489af93498a82e467c480 upstream.
NMI handler doesn't call set_irq_regs(), it's set only by normal IRQ.
Thus get_irq_regs() returns NULL or stale registers snapshot with IP/SP
pointing to the code interrupted by IRQ which was interrupted by NMI.
NULL isn't a problem: in this case watchdog calls dump_stack() and
prints full stack trace including NMI. But if we're stuck in IRQ
handler then NMI watchlog will print stack trace without IRQ part at
all.
This patch uses registers snapshot passed into NMI handler as arguments:
these registers point exactly to the instruction interrupted by NMI.
Fixes: 55537871ef66 ("kernel/watchdog.c: perform all-CPU backtrace in case of hard lockup")
Link: http://lkml.kernel.org/r/146771764784.86724.6006627197118544150.stgit@buzz
Signed-off-by: Konstantin Khlebnikov <khlebnikov@yandex-team.ru>
Cc: Jiri Kosina <jkosina@suse.cz>
Cc: Ulrich Obergfell <uobergfe@redhat.com>
Cc: Aaron Tomlin <atomlin@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
commit 84d77d3f06e7e8dea057d10e8ec77ad71f721be3 upstream.
It is the reasonable expectation that if an executable file is not
readable there will be no way for a user without special privileges to
read the file. This is enforced in ptrace_attach but if ptrace
is already attached before exec there is no enforcement for read-only
executables.
As the only way to read such an mm is through access_process_vm
spin a variant called ptrace_access_vm that will fail if the
target process is not being ptraced by the current process, or
the current process did not have sufficient privileges when ptracing
began to read the target processes mm.
In the ptrace implementations replace access_process_vm by
ptrace_access_vm. There remain several ptrace sites that still use
access_process_vm as they are reading the target executables
instructions (for kernel consumption) or register stacks. As such it
does not appear necessary to add a permission check to those calls.
This bug has always existed in Linux.
Fixes: v1.0
Reported-by: Andy Lutomirski <luto@amacapital.net>
Signed-off-by: "Eric W. Biederman" <ebiederm@xmission.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
commit 64b875f7ac8a5d60a4e191479299e931ee949b67 upstream.
When the flag PT_PTRACE_CAP was added the PTRACE_TRACEME path was
overlooked. This can result in incorrect behavior when an application
like strace traces an exec of a setuid executable.
Further PT_PTRACE_CAP does not have enough information for making good
security decisions as it does not report which user namespace the
capability is in. This has already allowed one mistake through
insufficient granulariy.
I found this issue when I was testing another corner case of exec and
discovered that I could not get strace to set PT_PTRACE_CAP even when
running strace as root with a full set of caps.
This change fixes the above issue with strace allowing stracing as
root a setuid executable without disabling setuid. More fundamentaly
this change allows what is allowable at all times, by using the correct
information in it's decision.
Fixes: 4214e42f96d4 ("v2.4.9.11 -> v2.4.9.12")
Signed-off-by: "Eric W. Biederman" <ebiederm@xmission.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
commit bfedb589252c01fa505ac9f6f2a3d5d68d707ef4 upstream.
During exec dumpable is cleared if the file that is being executed is
not readable by the user executing the file. A bug in
ptrace_may_access allows reading the file if the executable happens to
enter into a subordinate user namespace (aka clone(CLONE_NEWUSER),
unshare(CLONE_NEWUSER), or setns(fd, CLONE_NEWUSER).
This problem is fixed with only necessary userspace breakage by adding
a user namespace owner to mm_struct, captured at the time of exec, so
it is clear in which user namespace CAP_SYS_PTRACE must be present in
to be able to safely give read permission to the executable.
The function ptrace_may_access is modified to verify that the ptracer
has CAP_SYS_ADMIN in task->mm->user_ns instead of task->cred->user_ns.
This ensures that if the task changes it's cred into a subordinate
user namespace it does not become ptraceable.
The function ptrace_attach is modified to only set PT_PTRACE_CAP when
CAP_SYS_PTRACE is held over task->mm->user_ns. The intent of
PT_PTRACE_CAP is to be a flag to note that whatever permission changes
the task might go through the tracer has sufficient permissions for
it not to be an issue. task->cred->user_ns is always the same
as or descendent of mm->user_ns. Which guarantees that having
CAP_SYS_PTRACE over mm->user_ns is the worst case for the tasks
credentials.
To prevent regressions mm->dumpable and mm->user_ns are not considered
when a task has no mm. As simply failing ptrace_may_attach causes
regressions in privileged applications attempting to read things
such as /proc/<pid>/stat
Acked-by: Kees Cook <keescook@chromium.org>
Tested-by: Cyrill Gorcunov <gorcunov@openvz.org>
Fixes: 8409cca70561 ("userns: allow ptrace from non-init user namespaces")
Signed-off-by: "Eric W. Biederman" <ebiederm@xmission.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
commit f84df2a6f268de584a201e8911384a2d244876e3 upstream.
When the user namespace support was merged the need to prevent
ptrace from revealing the contents of an unreadable executable
was overlooked.
Correct this oversight by ensuring that the executed file
or files are in mm->user_ns, by adjusting mm->user_ns.
Use the new function privileged_wrt_inode_uidgid to see if
the executable is a member of the user namespace, and as such
if having CAP_SYS_PTRACE in the user namespace should allow
tracing the executable. If not update mm->user_ns to
the parent user namespace until an appropriate parent is found.
Reported-by: Jann Horn <jann@thejh.net>
Fixes: 9e4a36ece652 ("userns: Fail exec for suid and sgid binaries with ids outside our user namespace.")
Signed-off-by: "Eric W. Biederman" <ebiederm@xmission.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
commit 777c6e0daebb3fcefbbd6f620410a946b07ef6d0 upstream.
Yu Zhao has noticed that __unregister_cpu_notifier only unregisters its
notifiers when HOTPLUG_CPU=y while the registration might succeed even
when HOTPLUG_CPU=n if MODULE is enabled. This means that e.g. zswap
might keep a stale notifier on the list on the manual clean up during
the pool tear down and thus corrupt the list. Resulting in the following
[ 144.964346] BUG: unable to handle kernel paging request at ffff880658a2be78
[ 144.971337] IP: [<ffffffffa290b00b>] raw_notifier_chain_register+0x1b/0x40
<snipped>
[ 145.122628] Call Trace:
[ 145.125086] [<ffffffffa28e5cf8>] __register_cpu_notifier+0x18/0x20
[ 145.131350] [<ffffffffa2a5dd73>] zswap_pool_create+0x273/0x400
[ 145.137268] [<ffffffffa2a5e0fc>] __zswap_param_set+0x1fc/0x300
[ 145.143188] [<ffffffffa2944c1d>] ? trace_hardirqs_on+0xd/0x10
[ 145.149018] [<ffffffffa2908798>] ? kernel_param_lock+0x28/0x30
[ 145.154940] [<ffffffffa2a3e8cf>] ? __might_fault+0x4f/0xa0
[ 145.160511] [<ffffffffa2a5e237>] zswap_compressor_param_set+0x17/0x20
[ 145.167035] [<ffffffffa2908d3c>] param_attr_store+0x5c/0xb0
[ 145.172694] [<ffffffffa290848d>] module_attr_store+0x1d/0x30
[ 145.178443] [<ffffffffa2b2b41f>] sysfs_kf_write+0x4f/0x70
[ 145.183925] [<ffffffffa2b2a5b9>] kernfs_fop_write+0x149/0x180
[ 145.189761] [<ffffffffa2a99248>] __vfs_write+0x18/0x40
[ 145.194982] [<ffffffffa2a9a412>] vfs_write+0xb2/0x1a0
[ 145.200122] [<ffffffffa2a9a732>] SyS_write+0x52/0xa0
[ 145.205177] [<ffffffffa2ff4d97>] entry_SYSCALL_64_fastpath+0x12/0x17
This can be even triggered manually by changing
/sys/module/zswap/parameters/compressor multiple times.
Fix this issue by making unregister APIs symmetric to the register so
there are no surprises.
Fixes: 47e627bc8c9a ("[PATCH] hotplug: Allow modules to use the cpu hotplug notifiers even if !CONFIG_HOTPLUG_CPU")
Reported-and-tested-by: Yu Zhao <yuzhao@google.com>
Signed-off-by: Michal Hocko <mhocko@suse.com>
Cc: linux-mm@kvack.org
Cc: Andrew Morton <akpm@linux-foundation.org>
Cc: Dan Streetman <ddstreet@ieee.org>
Link: http://lkml.kernel.org/r/20161207135438.4310-1-mhocko@kernel.org
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
In __sanitizer_cov_trace_pc we use task_struct and fields within it, but
as we haven't included <linux/sched.h>, it is not guaranteed to be
defined. While we usually happen to acquire the definition through a
transitive include, this is fragile (and hasn't been true in the past,
causing issues with backports).
Include <linux/sched.h> to avoid any fragility.
[mark.rutland@arm.com: rewrote changelog]
Link: http://lkml.kernel.org/r/1481007384-27529-1-git-send-email-wangkefeng.wang@huawei.com
Signed-off-by: Kefeng Wang <wangkefeng.wang@huawei.com>
Acked-by: Mark Rutland <mark.rutland@arm.com>
Cc: Dmitry Vyukov <dvyukov@google.com>
Cc: Andrey Ryabinin <aryabinin@virtuozzo.com>
Cc: James Morse <james.morse@arm.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip
Pull scheduler fix from Ingo Molnar:
"An autogroup nice level adjustment bug fix"
* 'sched-urgent-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip:
sched/autogroup: Fix 64-bit kernel nice level adjustment
|
|
git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip
Pull perf fixes from Ingo Molnar:
"A bogus warning fix, a counter width handling fix affecting certain
machines, plus a oneliner hw-enablement patch for Knights Mill CPUs"
* 'perf-urgent-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip:
perf/core: Remove invalid warning from list_update_cgroup_even()t
perf/x86: Fix full width counter, counter overflow
perf/x86/intel: Enable C-state residency events for Knights Mill
|
|
git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip
Pull locking fixes from Ingo Molnar:
"Two rtmutex race fixes (which miraculously never triggered, that we
know of), plus two lockdep printk formatting regression fixes"
* 'locking-urgent-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip:
lockdep: Fix report formatting
locking/rtmutex: Use READ_ONCE() in rt_mutex_owner()
locking/rtmutex: Prevent dequeue vs. unlock race
locking/selftest: Fix output since KERN_CONT changes
|
|
Since commit:
4bcc595ccd80 ("printk: reinstate KERN_CONT for printing continuation lines")
printk() requires KERN_CONT to continue log messages. Lots of printk()
in lockdep.c and print_ip_sym() don't have it. As the result lockdep
reports are completely messed up.
Add missing KERN_CONT and inline print_ip_sym() where necessary.
Example of a messed up report:
0-rc5+ #41 Not tainted
-------------------------------------------------------
syz-executor0/5036 is trying to acquire lock:
(
rtnl_mutex
){+.+.+.}
, at:
[<ffffffff86b3d6ac>] rtnl_lock+0x1c/0x20
but task is already holding lock:
(
&net->packet.sklist_lock
){+.+...}
, at:
[<ffffffff873541a6>] packet_diag_dump+0x1a6/0x1920
which lock already depends on the new lock.
the existing dependency chain (in reverse order) is:
-> #3
(
&net->packet.sklist_lock
+.+...}
...
Without this patch all scripts that parse kernel bug reports are broken.
Signed-off-by: Dmitry Vyukov <dvyukov@google.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: andreyknvl@google.com
Cc: aryabinin@virtuozzo.com
Cc: joe@perches.com
Cc: syzkaller@googlegroups.com
Link: http://lkml.kernel.org/r/1480343083-48731-1-git-send-email-dvyukov@google.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
|
|
The warning introduced in commit:
864c2357ca89 ("perf/core: Do not set cpuctx->cgrp for unscheduled cgroups")
assumed that a cgroup switch always precedes list_del_event. This is
not the case. Remove warning.
Make sure that cpuctx->cgrp is NULL until a cgroup event is sched in
or ctx->nr_cgroups == 0.
Signed-off-by: David Carrillo-Cisneros <davidcc@google.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Alexander Shishkin <alexander.shishkin@linux.intel.com>
Cc: Arnaldo Carvalho de Melo <acme@redhat.com>
Cc: Borislav Petkov <bp@suse.de>
Cc: Fenghua Yu <fenghua.yu@intel.com>
Cc: Jiri Olsa <jolsa@redhat.com>
Cc: Kan Liang <kan.liang@intel.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Marcelo Tosatti <mtosatti@redhat.com>
Cc: Nilay Vaish <nilayvaish@gmail.com>
Cc: Paul Turner <pjt@google.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Ravi V Shankar <ravi.v.shankar@intel.com>
Cc: Stephane Eranian <eranian@google.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Vegard Nossum <vegard.nossum@gmail.com>
Cc: Vikas Shivappa <vikas.shivappa@linux.intel.com>
Cc: Vince Weaver <vincent.weaver@maine.edu>
Link: http://lkml.kernel.org/r/1480841177-27299-1-git-send-email-davidcc@google.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
|
|
Pull networking fixes from David Miller:
1) Lots more phydev and probe error path leaks in various drivers by
Johan Hovold.
2) Fix race in packet_set_ring(), from Philip Pettersson.
3) Use after free in dccp_invalid_packet(), from Eric Dumazet.
4) Signnedness overflow in SO_{SND,RCV}BUFFORCE, also from Eric
Dumazet.
5) When tunneling between ipv4 and ipv6 we can be left with the wrong
skb->protocol value as we enter the IPSEC engine and this causes all
kinds of problems. Set it before the output path does any
dst_output() calls, from Eli Cooper.
6) bcmgenet uses wrong device struct pointer in DMA API calls, fix from
Florian Fainelli.
7) Various netfilter nat bug fixes from FLorian Westphal.
8) Fix memory leak in ipvlan_link_new(), from Gao Feng.
9) Locking fixes, particularly wrt. socket lookups, in l2tp from
Guillaume Nault.
10) Avoid invoking rhash teardowns in atomic context by moving netlink
cb->done() dump completion from a worker thread. Fix from Herbert
Xu.
11) Buffer refcount problems in tun and macvtap on errors, from Jason
Wang.
12) We don't set Kconfig symbol DEFAULT_TCP_CONG properly when the user
selects BBR. Fix from Julian Wollrath.
13) Fix deadlock in transmit path on altera TSE driver, from Lino
Sanfilippo.
14) Fix unbalanced reference counting in dsa_switch_tree, from Nikita
Yushchenko.
15) tc_tunnel_key needs to be properly exported to userspace via uapi,
fix from Roi Dayan.
16) rds_tcp_init_net() doesn't unregister notifier in error path, fix
from Sowmini Varadhan.
17) Stale packet header pointer access after pskb_expand_head() in
genenve driver, fix from Sabrina Dubroca.
* git://git.kernel.org/pub/scm/linux/kernel/git/davem/net: (103 commits)
net: avoid signed overflows for SO_{SND|RCV}BUFFORCE
geneve: avoid use-after-free of skb->data
tipc: check minimum bearer MTU
net: renesas: ravb: unintialized return value
sh_eth: remove unchecked interrupts for RZ/A1
net: bcmgenet: Utilize correct struct device for all DMA operations
NET: usb: qmi_wwan: add support for Telit LE922A PID 0x1040
cdc_ether: Fix handling connection notification
ip6_offload: check segs for NULL in ipv6_gso_segment.
RDS: TCP: unregister_netdevice_notifier() in error path of rds_tcp_init_net
Revert: "ip6_tunnel: Update skb->protocol to ETH_P_IPV6 in ip6_tnl_xmit()"
ipv6: Set skb->protocol properly for local output
ipv4: Set skb->protocol properly for local output
packet: fix race condition in packet_set_ring
net: ethernet: altera: TSE: do not use tx queue lock in tx completion handler
net: ethernet: altera: TSE: Remove unneeded dma sync for tx buffers
net: ethernet: stmmac: fix of-node and fixed-link-phydev leaks
net: ethernet: stmmac: platform: fix outdated function header
net: ethernet: stmmac: dwmac-meson8b: fix probe error path
net: ethernet: stmmac: dwmac-generic: fix probe error path
...
|
|
While debugging the rtmutex unlock vs. dequeue race Will suggested to use
READ_ONCE() in rt_mutex_owner() as it might race against the
cmpxchg_release() in unlock_rt_mutex_safe().
Will: "It's a minor thing which will most likely not matter in practice"
Careful search did not unearth an actual problem in todays code, but it's
better to be safe than surprised.
Suggested-by: Will Deacon <will.deacon@arm.com>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Acked-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: David Daney <ddaney@caviumnetworks.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Mark Rutland <mark.rutland@arm.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Sebastian Siewior <bigeasy@linutronix.de>
Cc: Steven Rostedt <rostedt@goodmis.org>
Cc: <stable@vger.kernel.org>
Link: http://lkml.kernel.org/r/20161130210030.431379999@linutronix.de
Signed-off-by: Ingo Molnar <mingo@kernel.org>
|
|
David reported a futex/rtmutex state corruption. It's caused by the
following problem:
CPU0 CPU1 CPU2
l->owner=T1
rt_mutex_lock(l)
lock(l->wait_lock)
l->owner = T1 | HAS_WAITERS;
enqueue(T2)
boost()
unlock(l->wait_lock)
schedule()
rt_mutex_lock(l)
lock(l->wait_lock)
l->owner = T1 | HAS_WAITERS;
enqueue(T3)
boost()
unlock(l->wait_lock)
schedule()
signal(->T2) signal(->T3)
lock(l->wait_lock)
dequeue(T2)
deboost()
unlock(l->wait_lock)
lock(l->wait_lock)
dequeue(T3)
===> wait list is now empty
deboost()
unlock(l->wait_lock)
lock(l->wait_lock)
fixup_rt_mutex_waiters()
if (wait_list_empty(l)) {
owner = l->owner & ~HAS_WAITERS;
l->owner = owner
==> l->owner = T1
}
lock(l->wait_lock)
rt_mutex_unlock(l) fixup_rt_mutex_waiters()
if (wait_list_empty(l)) {
owner = l->owner & ~HAS_WAITERS;
cmpxchg(l->owner, T1, NULL)
===> Success (l->owner = NULL)
l->owner = owner
==> l->owner = T1
}
That means the problem is caused by fixup_rt_mutex_waiters() which does the
RMW to clear the waiters bit unconditionally when there are no waiters in
the rtmutexes rbtree.
This can be fatal: A concurrent unlock can release the rtmutex in the
fastpath because the waiters bit is not set. If the cmpxchg() gets in the
middle of the RMW operation then the previous owner, which just unlocked
the rtmutex is set as the owner again when the write takes place after the
successfull cmpxchg().
The solution is rather trivial: verify that the owner member of the rtmutex
has the waiters bit set before clearing it. This does not require a
cmpxchg() or other atomic operations because the waiters bit can only be
set and cleared with the rtmutex wait_lock held. It's also safe against the
fast path unlock attempt. The unlock attempt via cmpxchg() will either see
the bit set and take the slowpath or see the bit cleared and release it
atomically in the fastpath.
It's remarkable that the test program provided by David triggers on ARM64
and MIPS64 really quick, but it refuses to reproduce on x86-64, while the
problem exists there as well. That refusal might explain that this got not
discovered earlier despite the bug existing from day one of the rtmutex
implementation more than 10 years ago.
Thanks to David for meticulously instrumenting the code and providing the
information which allowed to decode this subtle problem.
Reported-by: David Daney <ddaney@caviumnetworks.com>
Tested-by: David Daney <david.daney@cavium.com>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Reviewed-by: Steven Rostedt <rostedt@goodmis.org>
Acked-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Mark Rutland <mark.rutland@arm.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Sebastian Siewior <bigeasy@linutronix.de>
Cc: Will Deacon <will.deacon@arm.com>
Cc: stable@vger.kernel.org
Fixes: 23f78d4a03c5 ("[PATCH] pi-futex: rt mutex core")
Link: http://lkml.kernel.org/r/20161130210030.351136722@linutronix.de
Signed-off-by: Ingo Molnar <mingo@kernel.org>
|
|
If we have a branch that looks something like this
int foo = map->value;
if (condition) {
foo += blah;
} else {
foo = bar;
}
map->array[foo] = baz;
We will incorrectly assume that the !condition branch is equal to the condition
branch as the register for foo will be UNKNOWN_VALUE in both cases. We need to
adjust this logic to only do this if we didn't do a varlen access after we
processed the !condition branch, otherwise we have different ranges and need to
check the other branch as well.
Fixes: 484611357c19 ("bpf: allow access into map value arrays")
Reported-by: Jann Horn <jannh@google.com>
Signed-off-by: Josef Bacik <jbacik@fb.com>
Acked-by: Alexei Starovoitov <ast@kernel.org>
Acked-by: Daniel Borkmann <daniel@iogearbox.net>
Signed-off-by: David S. Miller <davem@davemloft.net>
|
|
This enables CONFIG_MODVERSIONS again, but allows for missing symbol CRC
information in order to work around the issue that newer binutils
versions seem to occasionally drop the CRC on the floor. binutils 2.26
seems to work fine, while binutils 2.27 seems to break MODVERSIONS of
symbols that have been defined in assembler files.
[ We've had random missing CRC's before - it may be an old problem that
just is now reliably triggered with the weak asm symbols and a new
version of binutils ]
Some day I really do want to remove MODVERSIONS entirely. Sadly, today
does not appear to be that day: Debian people apparently do want the
option to enable MODVERSIONS to make it easier to have external modules
across kernel versions, and this seems to be a fairly minimal fix for
the annoying problem.
Cc: Ben Hutchings <ben@decadent.org.uk>
Acked-by: Michal Marek <mmarek@suse.com>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
Michael Kerrisk reported:
> Regarding the previous paragraph... My tests indicate
> that writing *any* value to the autogroup [nice priority level]
> file causes the task group to get a lower priority.
Because autogroup didn't call the then meaningless scale_load()...
Autogroup nice level adjustment has been broken ever since load
resolution was increased for 64-bit kernels. Use scale_load() to
scale group weight.
Michael Kerrisk tested this patch to fix the problem:
> Applied and tested against 4.9-rc6 on an Intel u7 (4 cores).
> Test setup:
>
> Terminal window 1: running 40 CPU burner jobs
> Terminal window 2: running 40 CPU burner jobs
> Terminal window 1: running 1 CPU burner job
>
> Demonstrated that:
> * Writing "0" to the autogroup file for TW1 now causes no change
> to the rate at which the process on the terminal consume CPU.
> * Writing -20 to the autogroup file for TW1 caused those processes
> to get the lion's share of CPU while TW2 TW3 get a tiny amount.
> * Writing -20 to the autogroup files for TW1 and TW3 allowed the
> process on TW3 to get as much CPU as it was getting as when
> the autogroup nice values for both terminals were 0.
Reported-by: Michael Kerrisk <mtk.manpages@gmail.com>
Tested-by: Michael Kerrisk <mtk.manpages@gmail.com>
Signed-off-by: Mike Galbraith <umgwanakikbuti@gmail.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <a.p.zijlstra@chello.nl>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: linux-man <linux-man@vger.kernel.org>
Cc: stable@vger.kernel.org
Link: http://lkml.kernel.org/r/1479897217.4306.6.camel@gmx.de
Signed-off-by: Ingo Molnar <mingo@kernel.org>
|
|
git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip
Pull perf fixes from Ingo Molnar:
"Six fixes for bugs that were found via fuzzing, and a trivial
hw-enablement patch for AMD Family-17h CPU PMUs"
* 'perf-urgent-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip:
perf/x86/intel/uncore: Allow only a single PMU/box within an events group
perf/x86/intel: Cure bogus unwind from PEBS entries
perf/x86: Restore TASK_SIZE check on frame pointer
perf/core: Fix address filter parser
perf/x86: Add perf support for AMD family-17h processors
perf/x86/uncore: Fix crash by removing bogus event_list[] handling for SNB client uncore IMC
perf/core: Do not set cpuctx->cgrp for unscheduled cgroups
|
|
Exactly because for_each_thread() in autogroup_move_group() can't see it
and update its ->sched_task_group before _put() and possibly free().
So the exiting task needs another sched_move_task() before exit_notify()
and we need to re-introduce the PF_EXITING (or similar) check removed by
the previous change for another reason.
Signed-off-by: Oleg Nesterov <oleg@redhat.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Mike Galbraith <efault@gmx.de>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: hartsjc@redhat.com
Cc: vbendel@redhat.com
Cc: vlovejoy@redhat.com
Link: http://lkml.kernel.org/r/20161114184612.GA15968@redhat.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
|
|
The PF_EXITING check in task_wants_autogroup() is no longer needed. Remove
it, but see the next patch.
However the comment is correct in that autogroup_move_group() must always
change task_group() for every thread so the sysctl_ check is very wrong;
we can race with cgroups and even sys_setsid() is not safe because a task
running with task_group() == ag->tg must participate in refcounting:
int main(void)
{
int sctl = open("/proc/sys/kernel/sched_autogroup_enabled", O_WRONLY);
assert(sctl > 0);
if (fork()) {
wait(NULL); // destroy the child's ag/tg
pause();
}
assert(pwrite(sctl, "1\n", 2, 0) == 2);
assert(setsid() > 0);
if (fork())
pause();
kill(getppid(), SIGKILL);
sleep(1);
// The child has gone, the grandchild runs with kref == 1
assert(pwrite(sctl, "0\n", 2, 0) == 2);
assert(setsid() > 0);
// runs with the freed ag/tg
for (;;)
sleep(1);
return 0;
}
crashes the kernel. It doesn't really need sleep(1), it doesn't matter if
autogroup_move_group() actually frees the task_group or this happens later.
Reported-by: Vern Lovejoy <vlovejoy@redhat.com>
Signed-off-by: Oleg Nesterov <oleg@redhat.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Mike Galbraith <efault@gmx.de>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: hartsjc@redhat.com
Cc: vbendel@redhat.com
Link: http://lkml.kernel.org/r/20161114184609.GA15965@redhat.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
|
|
Pull sparc fixes from David Miller:
1) With modern networking cards we can run out of 32-bit DMA space, so
support 64-bit DMA addressing when possible on sparc64. From Dave
Tushar.
2) Some signal frame validation checks are inverted on sparc32, fix
from Andreas Larsson.
3) Lockdep tables can get too large in some circumstances on sparc64,
add a way to adjust the size a bit. From Babu Moger.
4) Fix NUMA node probing on some sun4v systems, from Thomas Tai.
* git://git.kernel.org/pub/scm/linux/kernel/git/davem/sparc:
sparc: drop duplicate header scatterlist.h
lockdep: Limit static allocations if PROVE_LOCKING_SMALL is defined
config: Adding the new config parameter CONFIG_PROVE_LOCKING_SMALL for sparc
sunbmac: Fix compiler warning
sunqe: Fix compiler warnings
sparc64: Enable 64-bit DMA
sparc64: Enable sun4v dma ops to use IOMMU v2 APIs
sparc64: Bind PCIe devices to use IOMMU v2 service
sparc64: Initialize iommu_map_table and iommu_pool
sparc64: Add ATU (new IOMMU) support
sparc64: Add FORCE_MAX_ZONEORDER and default to 13
sparc64: fix compile warning section mismatch in find_node()
sparc32: Fix inverted invalid_frame_pointer checks on sigreturns
sparc64: Fix find_node warning if numa node cannot be found
|