Age | Commit message (Collapse) | Author |
|
commit 799b601451b21ebe7af0e6e8f6e2ccd4683c5064 upstream.
Audit rules disappear when an inode they watch is evicted from the cache.
This is likely not what we want.
The guilty commit is "fsnotify: allow marks to not pin inodes in core",
which didn't take into account that audit_tree adds watches with a zero
mask.
Adding any mask should fix this.
Fixes: 90b1e7a57880 ("fsnotify: allow marks to not pin inodes in core")
Signed-off-by: Miklos Szeredi <mszeredi@suse.cz>
Signed-off-by: Paul Moore <pmoore@redhat.com>
Signed-off-by: Zefan Li <lizefan@huawei.com>
|
|
commit 086ba77a6db00ed858ff07451bedee197df868c9 upstream.
ARM has some private syscalls (for example, set_tls(2)) which lie
outside the range of NR_syscalls. If any of these are called while
syscall tracing is being performed, out-of-bounds array access will
occur in the ftrace and perf sys_{enter,exit} handlers.
# trace-cmd record -e raw_syscalls:* true && trace-cmd report
...
true-653 [000] 384.675777: sys_enter: NR 192 (0, 1000, 3, 4000022, ffffffff, 0)
true-653 [000] 384.675812: sys_exit: NR 192 = 1995915264
true-653 [000] 384.675971: sys_enter: NR 983045 (76f74480, 76f74000, 76f74b28, 76f74480, 76f76f74, 1)
true-653 [000] 384.675988: sys_exit: NR 983045 = 0
...
# trace-cmd record -e syscalls:* true
[ 17.289329] Unable to handle kernel paging request at virtual address aaaaaace
[ 17.289590] pgd = 9e71c000
[ 17.289696] [aaaaaace] *pgd=00000000
[ 17.289985] Internal error: Oops: 5 [#1] PREEMPT SMP ARM
[ 17.290169] Modules linked in:
[ 17.290391] CPU: 0 PID: 704 Comm: true Not tainted 3.18.0-rc2+ #21
[ 17.290585] task: 9f4dab00 ti: 9e710000 task.ti: 9e710000
[ 17.290747] PC is at ftrace_syscall_enter+0x48/0x1f8
[ 17.290866] LR is at syscall_trace_enter+0x124/0x184
Fix this by ignoring out-of-NR_syscalls-bounds syscall numbers.
Commit cd0980fc8add "tracing: Check invalid syscall nr while tracing syscalls"
added the check for less than zero, but it should have also checked
for greater than NR_syscalls.
Link: http://lkml.kernel.org/p/1414620418-29472-1-git-send-email-rabin@rab.in
Fixes: cd0980fc8add "tracing: Check invalid syscall nr while tracing syscalls"
Signed-off-by: Rabin Vincent <rabin@rab.in>
Signed-off-by: Steven Rostedt <rostedt@goodmis.org>
[lizf: Backported to 3.4: adjust context]
Signed-off-by: Zefan Li <lizefan@huawei.com>
|
|
commit 60916a9382e88fbf5e54fd36a3e658efd7ab7bed upstream.
syscall_get_nr can return -1 in the case that the task is not executing
a system call.
This patch fixes perf_syscall_{enter,exit} to check that the syscall
number is valid before using it as an index into a bitmap.
Link: http://lkml.kernel.org/r/1345137254-7377-1-git-send-email-will.deacon@arm.com
Cc: Jason Baron <jbaron@redhat.com>
Cc: Wade Farnsworth <wade_farnsworth@mentor.com>
Cc: Frederic Weisbecker <fweisbec@gmail.com>
Signed-off-by: Will Deacon <will.deacon@arm.com>
Signed-off-by: Steven Rostedt <rostedt@goodmis.org>
Signed-off-by: Zefan Li <lizefan@huawei.com>
|
|
commit 94fb823fcb4892614f57e59601bb9d4920f24711 upstream.
If a device's dev_pm_ops::freeze callback fails during the QUIESCE
phase, we don't rollback things correctly calling the thaw and complete
callbacks. This could leave some devices in a suspended state in case of
an error during resuming from hibernation.
Signed-off-by: Imre Deak <imre.deak@intel.com>
Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
Signed-off-by: Zefan Li <lizefan@huawei.com>
|
|
commit 30a6b8031fe14031ab27c1fa3483cb9780e7f63c upstream.
free_pi_state and exit_pi_state_list both clean up futex_pi_state's.
exit_pi_state_list takes the hb lock first, and most callers of
free_pi_state do too. requeue_pi doesn't, which means free_pi_state
can free the pi_state out from under exit_pi_state_list. For example:
task A | task B
exit_pi_state_list |
pi_state = |
curr->pi_state_list->next |
| futex_requeue(requeue_pi=1)
| // pi_state is the same as
| // the one in task A
| free_pi_state(pi_state)
| list_del_init(&pi_state->list)
| kfree(pi_state)
list_del_init(&pi_state->list) |
Move the free_pi_state calls in requeue_pi to before it drops the hb
locks which it's already holding.
[ tglx: Removed a pointless free_pi_state() call and the hb->lock held
debugging. The latter comes via a seperate patch ]
Signed-off-by: Brian Silverman <bsilver16384@gmail.com>
Cc: austin.linux@gmail.com
Cc: darren@dvhart.com
Cc: peterz@infradead.org
Link: http://lkml.kernel.org/r/1414282837-23092-1-git-send-email-bsilver16384@gmail.com
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
[lizf: Backported to 3.4: adjust context]
Signed-off-by: Zefan Li <lizefan@huawei.com>
|
|
commit 6891c4509c792209c44ced55a60f13954cb50ef4 upstream.
If userland creates a timer without specifying a sigevent info, we'll
create one ourself, using a stack local variable. Particularly will we
use the timer ID as sival_int. But as sigev_value is a union containing
a pointer and an int, that assignment will only partially initialize
sigev_value on systems where the size of a pointer is bigger than the
size of an int. On such systems we'll copy the uninitialized stack bytes
from the timer_create() call to userland when the timer actually fires
and we're going to deliver the signal.
Initialize sigev_value with 0 to plug the stack info leak.
Found in the PaX patch, written by the PaX Team.
Fixes: 5a9fa7307285 ("posix-timers: kill ->it_sigev_signo and...")
Signed-off-by: Mathias Krause <minipli@googlemail.com>
Cc: Oleg Nesterov <oleg@redhat.com>
Cc: Brad Spengler <spender@grsecurity.net>
Cc: PaX Team <pageexec@freemail.hu>
Link: http://lkml.kernel.org/r/1412456799-32339-1-git-send-email-minipli@googlemail.com
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
[lizf: Backported to 3.4: adjust filename]
Signed-off-by: Zefan Li <lizefan@huawei.com>
|
|
commit 5695be142e203167e3cb515ef86a88424f3524eb upstream.
PM freezer relies on having all tasks frozen by the time devices are
getting frozen so that no task will touch them while they are getting
frozen. But OOM killer is allowed to kill an already frozen task in
order to handle OOM situtation. In order to protect from late wake ups
OOM killer is disabled after all tasks are frozen. This, however, still
keeps a window open when a killed task didn't manage to die by the time
freeze_processes finishes.
Reduce the race window by checking all tasks after OOM killer has been
disabled. This is still not race free completely unfortunately because
oom_killer_disable cannot stop an already ongoing OOM killer so a task
might still wake up from the fridge and get killed without
freeze_processes noticing. Full synchronization of OOM and freezer is,
however, too heavy weight for this highly unlikely case.
Introduce and check oom_kills counter which gets incremented early when
the allocator enters __alloc_pages_may_oom path and only check all the
tasks if the counter changes during the freezing attempt. The counter
is updated so early to reduce the race window since allocator checked
oom_killer_disabled which is set by PM-freezing code. A false positive
will push the PM-freezer into a slow path but that is not a big deal.
Changes since v1
- push the re-check loop out of freeze_processes into
check_frozen_processes and invert the condition to make the code more
readable as per Rafael
Fixes: f660daac474c6f (oom: thaw threads if oom killed thread is frozen before deferring)
Signed-off-by: Michal Hocko <mhocko@suse.cz>
Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
Signed-off-by: Zefan Li <lizefan@huawei.com>
|
|
commit 0c740d0afc3bff0a097ad03a1c8df92757516f5c upstream.
while_each_thread() and next_thread() should die, almost every lockless
usage is wrong.
1. Unless g == current, the lockless while_each_thread() is not safe.
while_each_thread(g, t) can loop forever if g exits, next_thread()
can't reach the unhashed thread in this case. Note that this can
happen even if g is the group leader, it can exec.
2. Even if while_each_thread() itself was correct, people often use
it wrongly.
It was never safe to just take rcu_read_lock() and loop unless
you verify that pid_alive(g) == T, even the first next_thread()
can point to the already freed/reused memory.
This patch adds signal_struct->thread_head and task->thread_node to
create the normal rcu-safe list with the stable head. The new
for_each_thread(g, t) helper is always safe under rcu_read_lock() as
long as this task_struct can't go away.
Note: of course it is ugly to have both task_struct->thread_node and the
old task_struct->thread_group, we will kill it later, after we change
the users of while_each_thread() to use for_each_thread().
Perhaps we can kill it even before we convert all users, we can
reimplement next_thread(t) using the new thread_head/thread_node. But
we can't do this right now because this will lead to subtle behavioural
changes. For example, do/while_each_thread() always sees at least one
task, while for_each_thread() can do nothing if the whole thread group
has died. Or thread_group_empty(), currently its semantics is not clear
unless thread_group_leader(p) and we need to audit the callers before we
can change it.
So this patch adds the new interface which has to coexist with the old
one for some time, hopefully the next changes will be more or less
straightforward and the old one will go away soon.
Signed-off-by: Oleg Nesterov <oleg@redhat.com>
Reviewed-by: Sergey Dyasly <dserrg@gmail.com>
Tested-by: Sergey Dyasly <dserrg@gmail.com>
Reviewed-by: Sameer Nanda <snanda@chromium.org>
Acked-by: David Rientjes <rientjes@google.com>
Cc: "Eric W. Biederman" <ebiederm@xmission.com>
Cc: Frederic Weisbecker <fweisbec@gmail.com>
Cc: Mandeep Singh Baines <msb@chromium.org>
Cc: "Ma, Xindong" <xindong.ma@intel.com>
Cc: Michal Hocko <mhocko@suse.cz>
Cc: "Tu, Xiaobing" <xiaobing.tu@intel.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Signed-off-by: Zefan Li <lizefan@huawei.com>
|
|
commit 80628ca06c5d42929de6bc22c0a41589a834d151 upstream.
Cleanup and preparation for the next changes.
Move the "if (clone_flags & CLONE_THREAD)" code down under "if
(likely(p->pid))" and turn it into into the "else" branch. This makes the
process/thread initialization more symmetrical and removes one check.
Signed-off-by: Oleg Nesterov <oleg@redhat.com>
Cc: "Eric W. Biederman" <ebiederm@xmission.com>
Cc: Michal Hocko <mhocko@suse.cz>
Cc: Pavel Emelyanov <xemul@parallels.com>
Cc: Sergey Dyasly <dserrg@gmail.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Signed-off-by: Zefan Li <lizefan@huawei.com>
|
|
commit 51fae6da640edf9d266c94f36bc806c63c301991 upstream.
Since f660daac474c6f (oom: thaw threads if oom killed thread is frozen
before deferring) OOM killer relies on being able to thaw a frozen task
to handle OOM situation but a3201227f803 (freezer: make freezing() test
freeze conditions in effect instead of TIF_FREEZE) has reorganized the
code and stopped clearing freeze flag in __thaw_task. This means that
the target task only wakes up and goes into the fridge again because the
freezing condition hasn't changed for it. This reintroduces the bug
fixed by f660daac474c6f.
Fix the issue by checking for TIF_MEMDIE thread flag in
freezing_slow_path and exclude the task from freezing completely. If a
task was already frozen it would get woken by __thaw_task from OOM killer
and get out of freezer after rechecking freezing().
Changes since v1
- put TIF_MEMDIE check into freezing_slowpath rather than in __refrigerator
as per Oleg
- return __thaw_task into oom_scan_process_thread because
oom_kill_process will not wake task in the fridge because it is
sleeping uninterruptible
[mhocko@suse.cz: rewrote the changelog]
Fixes: a3201227f803 (freezer: make freezing() test freeze conditions in effect instead of TIF_FREEZE)
Signed-off-by: Cong Wang <xiyou.wangcong@gmail.com>
Signed-off-by: Michal Hocko <mhocko@suse.cz>
Acked-by: Oleg Nesterov <oleg@redhat.com>
Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
Signed-off-by: Zefan Li <lizefan@huawei.com>
|
|
commit 76835b0ebf8a7fe85beb03c75121419a7dec52f0 upstream.
Commit b0c29f79ecea (futexes: Avoid taking the hb->lock if there's
nothing to wake up) changes the futex code to avoid taking a lock when
there are no waiters. This code has been subsequently fixed in commit
11d4616bd07f (futex: revert back to the explicit waiter counting code).
Both the original commit and the fix-up rely on get_futex_key_refs() to
always imply a barrier.
However, for private futexes, none of the cases in the switch statement
of get_futex_key_refs() would be hit and the function completes without
a memory barrier as required before checking the "waiters" in
futex_wake() -> hb_waiters_pending(). The consequence is a race with a
thread waiting on a futex on another CPU, allowing the waker thread to
read "waiters == 0" while the waiter thread to have read "futex_val ==
locked" (in kernel).
Without this fix, the problem (user space deadlocks) can be seen with
Android bionic's mutex implementation on an arm64 multi-cluster system.
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
Reported-by: Matteo Franchin <Matteo.Franchin@arm.com>
Fixes: b0c29f79ecea (futexes: Avoid taking the hb->lock if there's nothing to wake up)
Acked-by: Davidlohr Bueso <dave@stgolabs.net>
Tested-by: Mike Galbraith <umgwanakikbuti@gmail.com>
Cc: Darren Hart <dvhart@linux.intel.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Ingo Molnar <mingo@kernel.org>
Cc: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Signed-off-by: Zefan Li <lizefan@huawei.com>
|
|
commit b3f207855f57b9c8f43a547a801340bb5cbc59e5 upstream.
When running a 32-bit userspace on a 64-bit kernel (eg. i386
application on x86_64 kernel or 32-bit arm userspace on arm64
kernel) some of the perf ioctls must be treated with special
care, as they have a pointer size encoded in the command.
For example, PERF_EVENT_IOC_ID in 32-bit world will be encoded
as 0x80042407, but 64-bit kernel will expect 0x80082407. In
result the ioctl will fail returning -ENOTTY.
This patch solves the problem by adding code fixing up the
size as compat_ioctl file operation.
Reported-by: Drew Richardson <drew.richardson@arm.com>
Signed-off-by: Pawel Moll <pawel.moll@arm.com>
Signed-off-by: Peter Zijlstra <peterz@infradead.org>
Cc: Arnaldo Carvalho de Melo <acme@kernel.org>
Cc: Jiri Olsa <jolsa@redhat.com>
Link: http://lkml.kernel.org/r/1402671812-9078-1-git-send-email-pawel.moll@arm.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Cc: David Ahern <dsahern@gmail.com>
[lizf: Backported to 3.4 by David Ahern]
Signed-off-by: Zefan Li <lizefan@huawei.com>
|
|
commit 6c72e3501d0d62fc064d3680e5234f3463ec5a86 upstream.
Oleg noticed that a cleanup by Sylvain actually uncovered a bug; by
calling perf_event_free_task() when failing sched_fork() we will not yet
have done the memset() on ->perf_event_ctxp[] and will therefore try and
'free' the inherited contexts, which are still in use by the parent
process. This is bad..
Suggested-by: Oleg Nesterov <oleg@redhat.com>
Reported-by: Oleg Nesterov <oleg@redhat.com>
Reported-by: Sylvain 'ythier' Hitier <sylvain.hitier@gmail.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Ingo Molnar <mingo@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Signed-off-by: Zefan Li <lizefan@huawei.com>
|
|
commit 2ad654bc5e2b211e92f66da1d819e47d79a866f0 upstream.
When we change cpuset.memory_spread_{page,slab}, cpuset will flip
PF_SPREAD_{PAGE,SLAB} bit of tsk->flags for each task in that cpuset.
This should be done using atomic bitops, but currently we don't,
which is broken.
Tetsuo reported a hard-to-reproduce kernel crash on RHEL6, which happened
when one thread tried to clear PF_USED_MATH while at the same time another
thread tried to flip PF_SPREAD_PAGE/PF_SPREAD_SLAB. They both operate on
the same task.
Here's the full report:
https://lkml.org/lkml/2014/9/19/230
To fix this, we make PF_SPREAD_PAGE and PF_SPREAD_SLAB atomic flags.
v4:
- updated mm/slab.c. (Fengguang Wu)
- updated Documentation.
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Ingo Molnar <mingo@kernel.org>
Cc: Miao Xie <miaox@cn.fujitsu.com>
Cc: Kees Cook <keescook@chromium.org>
Fixes: 950592f7b991 ("cpusets: update tasks' page/slab spread flags in time")
Reported-by: Tetsuo Handa <penguin-kernel@I-love.SAKURA.ne.jp>
Signed-off-by: Zefan Li <lizefan@huawei.com>
Signed-off-by: Tejun Heo <tj@kernel.org>
[lizf: Backported to 3.4:
- adjust context
- check current->flags & PF_MEMPOLICY rather than current->mempolicy]
|
|
commit 3577af70a2ce4853d58e57d832e687d739281479 upstream.
We saw a kernel soft lockup in perf_remove_from_context(),
it looks like the `perf` process, when exiting, could not go
out of the retry loop. Meanwhile, the target process was forking
a child. So either the target process should execute the smp
function call to deactive the event (if it was running) or it should
do a context switch which deactives the event.
It seems we optimize out a context switch in perf_event_context_sched_out(),
and what's more important, we still test an obsolete task pointer when
retrying, so no one actually would deactive that event in this situation.
Fix it directly by reloading the task pointer in perf_remove_from_context().
This should cure the above soft lockup.
Signed-off-by: Cong Wang <cwang@twopensource.com>
Signed-off-by: Cong Wang <xiyou.wangcong@gmail.com>
Signed-off-by: Peter Zijlstra <peterz@infradead.org>
Cc: Paul Mackerras <paulus@samba.org>
Cc: Arnaldo Carvalho de Melo <acme@kernel.org>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Link: http://lkml.kernel.org/r/1409696840-843-1-git-send-email-xiyou.wangcong@gmail.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Signed-off-by: Zefan Li <lizefan@huawei.com>
|
|
commit d78c9300c51d6ceed9f6d078d4e9366f259de28c upstream.
timeval_to_jiffies tried to round a timeval up to an integral number
of jiffies, but the logic for doing so was incorrect: intervals
corresponding to exactly N jiffies would become N+1. This manifested
itself particularly repeatedly stopping/starting an itimer:
setitimer(ITIMER_PROF, &val, NULL);
setitimer(ITIMER_PROF, NULL, &val);
would add a full tick to val, _even if it was exactly representable in
terms of jiffies_ (say, the result of a previous rounding.) Doing
this repeatedly would cause unbounded growth in val. So fix the math.
Here's what was wrong with the conversion: we essentially computed
(eliding seconds)
jiffies = usec * (NSEC_PER_USEC/TICK_NSEC)
by using scaling arithmetic, which took the best approximation of
NSEC_PER_USEC/TICK_NSEC with denominator of 2^USEC_JIFFIE_SC =
x/(2^USEC_JIFFIE_SC), and computed:
jiffies = (usec * x) >> USEC_JIFFIE_SC
and rounded this calculation up in the intermediate form (since we
can't necessarily exactly represent TICK_NSEC in usec.) But the
scaling arithmetic is a (very slight) *over*approximation of the true
value; that is, instead of dividing by (1 usec/ 1 jiffie), we
effectively divided by (1 usec/1 jiffie)-epsilon (rounding
down). This would normally be fine, but we want to round timeouts up,
and we did so by adding 2^USEC_JIFFIE_SC - 1 before the shift; this
would be fine if our division was exact, but dividing this by the
slightly smaller factor was equivalent to adding just _over_ 1 to the
final result (instead of just _under_ 1, as desired.)
In particular, with HZ=1000, we consistently computed that 10000 usec
was 11 jiffies; the same was true for any exact multiple of
TICK_NSEC.
We could possibly still round in the intermediate form, adding
something less than 2^USEC_JIFFIE_SC - 1, but easier still is to
convert usec->nsec, round in nanoseconds, and then convert using
time*spec*_to_jiffies. This adds one constant multiplication, and is
not observably slower in microbenchmarks on recent x86 hardware.
Tested: the following program:
int main() {
struct itimerval zero = {{0, 0}, {0, 0}};
/* Initially set to 10 ms. */
struct itimerval initial = zero;
initial.it_interval.tv_usec = 10000;
setitimer(ITIMER_PROF, &initial, NULL);
/* Save and restore several times. */
for (size_t i = 0; i < 10; ++i) {
struct itimerval prev;
setitimer(ITIMER_PROF, &zero, &prev);
/* on old kernels, this goes up by TICK_USEC every iteration */
printf("previous value: %ld %ld %ld %ld\n",
prev.it_interval.tv_sec, prev.it_interval.tv_usec,
prev.it_value.tv_sec, prev.it_value.tv_usec);
setitimer(ITIMER_PROF, &prev, NULL);
}
return 0;
}
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: Paul Turner <pjt@google.com>
Cc: Richard Cochran <richardcochran@gmail.com>
Cc: Prarit Bhargava <prarit@redhat.com>
Reviewed-by: Paul Turner <pjt@google.com>
Reported-by: Aaron Jacobs <jacobsa@google.com>
Signed-off-by: Andrew Hunter <ahh@google.com>
[jstultz: Tweaked to apply to 3.17-rc]
Signed-off-by: John Stultz <john.stultz@linaro.org>
[lizf: Backported to 3.4: adjust filename]
Signed-off-by: Zefan Li <lizefan@huawei.com>
|
|
commit 474e941bed9262f5fa2394f9a4a67e24499e5926 upstream.
Locks the k_itimer's it_lock member when handling the alarm timer's
expiry callback.
The regular posix timers defined in posix-timers.c have this lock held
during timout processing because their callbacks are routed through
posix_timer_fn(). The alarm timers follow a different path, so they
ought to grab the lock somewhere else.
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Ingo Molnar <mingo@kernel.org>
Cc: Richard Cochran <richardcochran@gmail.com>
Cc: Prarit Bhargava <prarit@redhat.com>
Cc: Sharvil Nanavati <sharvil@google.com>
Signed-off-by: Richard Larocque <rlarocque@google.com>
Signed-off-by: John Stultz <john.stultz@linaro.org>
Signed-off-by: Zefan Li <lizefan@huawei.com>
|
|
commit 265b81d23a46c39df0a735a3af4238954b41a4c2 upstream.
Avoids sending a signal to alarm timers created with sigev_notify set to
SIGEV_NONE by checking for that special case in the timeout callback.
The regular posix timers avoid sending signals to SIGEV_NONE timers by
not scheduling any callbacks for them in the first place. Although it
would be possible to do something similar for alarm timers, it's simpler
to handle this as a special case in the timeout.
Prior to this patch, the alarm timer would ignore the sigev_notify value
and try to deliver signals to the process anyway. Even worse, the
sanity check for the value of sigev_signo is skipped when SIGEV_NONE was
specified, so the signal number could be bogus. If sigev_signo was an
unitialized value (as it often would be if SIGEV_NONE is used), then
it's hard to predict which signal will be sent.
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Ingo Molnar <mingo@kernel.org>
Cc: Richard Cochran <richardcochran@gmail.com>
Cc: Prarit Bhargava <prarit@redhat.com>
Cc: Sharvil Nanavati <sharvil@google.com>
Signed-off-by: Richard Larocque <rlarocque@google.com>
Signed-off-by: John Stultz <john.stultz@linaro.org>
Signed-off-by: Zefan Li <lizefan@huawei.com>
|
|
commit e86fea764991e00a03ff1e56409ec9cacdbda4c9 upstream.
Returns the time remaining for an alarm timer, rather than the time at
which it is scheduled to expire. If the timer has already expired or it
is not currently scheduled, the it_value's members are set to zero.
This new behavior matches that of the other posix-timers and the POSIX
specifications.
This is a change in user-visible behavior, and may break existing
applications. Hopefully, few users rely on the old incorrect behavior.
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Ingo Molnar <mingo@kernel.org>
Cc: Richard Cochran <richardcochran@gmail.com>
Cc: Prarit Bhargava <prarit@redhat.com>
Cc: Sharvil Nanavati <sharvil@google.com>
Signed-off-by: Richard Larocque <rlarocque@google.com>
[jstultz: minor style tweak]
Signed-off-by: John Stultz <john.stultz@linaro.org>
[lizf: Backported to 3.4:
- add alarm_expires_remaining() introduced by commit 6cffe00f7d4e]
Signed-off-by: Zefan Li <lizefan@huawei.com>
|
|
commit 13c42c2f43b19aab3195f2d357db00d1e885eaa8 upstream.
futex_wait_requeue_pi() calls futex_wait_setup(). If
futex_wait_setup() succeeds it returns with hb->lock held and
preemption disabled. Now the sanity check after this does:
if (match_futex(&q.key, &key2)) {
ret = -EINVAL;
goto out_put_keys;
}
which releases the keys but does not release hb->lock.
So we happily return to user space with hb->lock held and therefor
preemption disabled.
Unlock hb->lock before taking the exit route.
Reported-by: Dave "Trinity" Jones <davej@redhat.com>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Reviewed-by: Darren Hart <dvhart@linux.intel.com>
Reviewed-by: Davidlohr Bueso <dave@stgolabs.net>
Cc: Peter Zijlstra <a.p.zijlstra@chello.nl>
Link: http://lkml.kernel.org/r/alpine.DEB.2.10.1409112318500.4178@nanos
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
[lizf: Backported to 3.4: queue_unlock() takes two parameters]
Signed-off-by: Zefan Li <lizefan@huawei.com>
|
|
commit 71b1fb5c4473a5b1e601d41b109bdfe001ec82e0 upstream.
/proc/<pid>/cgroup contains one cgroup path on each line. If cgroup names are
allowed to contain "\n", applications cannot parse /proc/<pid>/cgroup safely.
Signed-off-by: Alban Crequy <alban.crequy@collabora.co.uk>
Signed-off-by: Tejun Heo <tj@kernel.org>
[lizf: Backported to 3.4:
- adjust context
- s/name/dentry->d_name.name/]
Signed-off-by: Zefan Li <lizefan@huawei.com>
|
|
commit 504d58745c9ca28d33572e2d8a9990b43e06075d upstream.
clockevents_increase_min_delta() calls printk() from under
hrtimer_bases.lock. That causes lock inversion on scheduler locks because
printk() can call into the scheduler. Lockdep puts it as:
======================================================
[ INFO: possible circular locking dependency detected ]
3.15.0-rc8-06195-g939f04b #2 Not tainted
-------------------------------------------------------
trinity-main/74 is trying to acquire lock:
(&port_lock_key){-.....}, at: [<811c60be>] serial8250_console_write+0x8c/0x10c
but task is already holding lock:
(hrtimer_bases.lock){-.-...}, at: [<8103caeb>] hrtimer_try_to_cancel+0x13/0x66
which lock already depends on the new lock.
the existing dependency chain (in reverse order) is:
-> #5 (hrtimer_bases.lock){-.-...}:
[<8104a942>] lock_acquire+0x92/0x101
[<8142f11d>] _raw_spin_lock_irqsave+0x2e/0x3e
[<8103c918>] __hrtimer_start_range_ns+0x1c/0x197
[<8107ec20>] perf_swevent_start_hrtimer.part.41+0x7a/0x85
[<81080792>] task_clock_event_start+0x3a/0x3f
[<810807a4>] task_clock_event_add+0xd/0x14
[<8108259a>] event_sched_in+0xb6/0x17a
[<810826a2>] group_sched_in+0x44/0x122
[<81082885>] ctx_sched_in.isra.67+0x105/0x11f
[<810828e6>] perf_event_sched_in.isra.70+0x47/0x4b
[<81082bf6>] __perf_install_in_context+0x8b/0xa3
[<8107eb8e>] remote_function+0x12/0x2a
[<8105f5af>] smp_call_function_single+0x2d/0x53
[<8107e17d>] task_function_call+0x30/0x36
[<8107fb82>] perf_install_in_context+0x87/0xbb
[<810852c9>] SYSC_perf_event_open+0x5c6/0x701
[<810856f9>] SyS_perf_event_open+0x17/0x19
[<8142f8ee>] syscall_call+0x7/0xb
-> #4 (&ctx->lock){......}:
[<8104a942>] lock_acquire+0x92/0x101
[<8142f04c>] _raw_spin_lock+0x21/0x30
[<81081df3>] __perf_event_task_sched_out+0x1dc/0x34f
[<8142cacc>] __schedule+0x4c6/0x4cb
[<8142cae0>] schedule+0xf/0x11
[<8142f9a6>] work_resched+0x5/0x30
-> #3 (&rq->lock){-.-.-.}:
[<8104a942>] lock_acquire+0x92/0x101
[<8142f04c>] _raw_spin_lock+0x21/0x30
[<81040873>] __task_rq_lock+0x33/0x3a
[<8104184c>] wake_up_new_task+0x25/0xc2
[<8102474b>] do_fork+0x15c/0x2a0
[<810248a9>] kernel_thread+0x1a/0x1f
[<814232a2>] rest_init+0x1a/0x10e
[<817af949>] start_kernel+0x303/0x308
[<817af2ab>] i386_start_kernel+0x79/0x7d
-> #2 (&p->pi_lock){-.-...}:
[<8104a942>] lock_acquire+0x92/0x101
[<8142f11d>] _raw_spin_lock_irqsave+0x2e/0x3e
[<810413dd>] try_to_wake_up+0x1d/0xd6
[<810414cd>] default_wake_function+0xb/0xd
[<810461f3>] __wake_up_common+0x39/0x59
[<81046346>] __wake_up+0x29/0x3b
[<811b8733>] tty_wakeup+0x49/0x51
[<811c3568>] uart_write_wakeup+0x17/0x19
[<811c5dc1>] serial8250_tx_chars+0xbc/0xfb
[<811c5f28>] serial8250_handle_irq+0x54/0x6a
[<811c5f57>] serial8250_default_handle_irq+0x19/0x1c
[<811c56d8>] serial8250_interrupt+0x38/0x9e
[<810510e7>] handle_irq_event_percpu+0x5f/0x1e2
[<81051296>] handle_irq_event+0x2c/0x43
[<81052cee>] handle_level_irq+0x57/0x80
[<81002a72>] handle_irq+0x46/0x5c
[<810027df>] do_IRQ+0x32/0x89
[<8143036e>] common_interrupt+0x2e/0x33
[<8142f23c>] _raw_spin_unlock_irqrestore+0x3f/0x49
[<811c25a4>] uart_start+0x2d/0x32
[<811c2c04>] uart_write+0xc7/0xd6
[<811bc6f6>] n_tty_write+0xb8/0x35e
[<811b9beb>] tty_write+0x163/0x1e4
[<811b9cd9>] redirected_tty_write+0x6d/0x75
[<810b6ed6>] vfs_write+0x75/0xb0
[<810b7265>] SyS_write+0x44/0x77
[<8142f8ee>] syscall_call+0x7/0xb
-> #1 (&tty->write_wait){-.....}:
[<8104a942>] lock_acquire+0x92/0x101
[<8142f11d>] _raw_spin_lock_irqsave+0x2e/0x3e
[<81046332>] __wake_up+0x15/0x3b
[<811b8733>] tty_wakeup+0x49/0x51
[<811c3568>] uart_write_wakeup+0x17/0x19
[<811c5dc1>] serial8250_tx_chars+0xbc/0xfb
[<811c5f28>] serial8250_handle_irq+0x54/0x6a
[<811c5f57>] serial8250_default_handle_irq+0x19/0x1c
[<811c56d8>] serial8250_interrupt+0x38/0x9e
[<810510e7>] handle_irq_event_percpu+0x5f/0x1e2
[<81051296>] handle_irq_event+0x2c/0x43
[<81052cee>] handle_level_irq+0x57/0x80
[<81002a72>] handle_irq+0x46/0x5c
[<810027df>] do_IRQ+0x32/0x89
[<8143036e>] common_interrupt+0x2e/0x33
[<8142f23c>] _raw_spin_unlock_irqrestore+0x3f/0x49
[<811c25a4>] uart_start+0x2d/0x32
[<811c2c04>] uart_write+0xc7/0xd6
[<811bc6f6>] n_tty_write+0xb8/0x35e
[<811b9beb>] tty_write+0x163/0x1e4
[<811b9cd9>] redirected_tty_write+0x6d/0x75
[<810b6ed6>] vfs_write+0x75/0xb0
[<810b7265>] SyS_write+0x44/0x77
[<8142f8ee>] syscall_call+0x7/0xb
-> #0 (&port_lock_key){-.....}:
[<8104a62d>] __lock_acquire+0x9ea/0xc6d
[<8104a942>] lock_acquire+0x92/0x101
[<8142f11d>] _raw_spin_lock_irqsave+0x2e/0x3e
[<811c60be>] serial8250_console_write+0x8c/0x10c
[<8104e402>] call_console_drivers.constprop.31+0x87/0x118
[<8104f5d5>] console_unlock+0x1d7/0x398
[<8104fb70>] vprintk_emit+0x3da/0x3e4
[<81425f76>] printk+0x17/0x19
[<8105bfa0>] clockevents_program_min_delta+0x104/0x116
[<8105c548>] clockevents_program_event+0xe7/0xf3
[<8105cc1c>] tick_program_event+0x1e/0x23
[<8103c43c>] hrtimer_force_reprogram+0x88/0x8f
[<8103c49e>] __remove_hrtimer+0x5b/0x79
[<8103cb21>] hrtimer_try_to_cancel+0x49/0x66
[<8103cb4b>] hrtimer_cancel+0xd/0x18
[<8107f102>] perf_swevent_cancel_hrtimer.part.60+0x2b/0x30
[<81080705>] task_clock_event_stop+0x20/0x64
[<81080756>] task_clock_event_del+0xd/0xf
[<81081350>] event_sched_out+0xab/0x11e
[<810813e0>] group_sched_out+0x1d/0x66
[<81081682>] ctx_sched_out+0xaf/0xbf
[<81081e04>] __perf_event_task_sched_out+0x1ed/0x34f
[<8142cacc>] __schedule+0x4c6/0x4cb
[<8142cae0>] schedule+0xf/0x11
[<8142f9a6>] work_resched+0x5/0x30
other info that might help us debug this:
Chain exists of:
&port_lock_key --> &ctx->lock --> hrtimer_bases.lock
Possible unsafe locking scenario:
CPU0 CPU1
---- ----
lock(hrtimer_bases.lock);
lock(&ctx->lock);
lock(hrtimer_bases.lock);
lock(&port_lock_key);
*** DEADLOCK ***
4 locks held by trinity-main/74:
#0: (&rq->lock){-.-.-.}, at: [<8142c6f3>] __schedule+0xed/0x4cb
#1: (&ctx->lock){......}, at: [<81081df3>] __perf_event_task_sched_out+0x1dc/0x34f
#2: (hrtimer_bases.lock){-.-...}, at: [<8103caeb>] hrtimer_try_to_cancel+0x13/0x66
#3: (console_lock){+.+...}, at: [<8104fb5d>] vprintk_emit+0x3c7/0x3e4
stack backtrace:
CPU: 0 PID: 74 Comm: trinity-main Not tainted 3.15.0-rc8-06195-g939f04b #2
00000000 81c3a310 8b995c14 81426f69 8b995c44 81425a99 8161f671 8161f570
8161f538 8161f559 8161f538 8b995c78 8b142bb0 00000004 8b142fdc 8b142bb0
8b995ca8 8104a62d 8b142fac 000016f2 81c3a310 00000001 00000001 00000003
Call Trace:
[<81426f69>] dump_stack+0x16/0x18
[<81425a99>] print_circular_bug+0x18f/0x19c
[<8104a62d>] __lock_acquire+0x9ea/0xc6d
[<8104a942>] lock_acquire+0x92/0x101
[<811c60be>] ? serial8250_console_write+0x8c/0x10c
[<811c6032>] ? wait_for_xmitr+0x76/0x76
[<8142f11d>] _raw_spin_lock_irqsave+0x2e/0x3e
[<811c60be>] ? serial8250_console_write+0x8c/0x10c
[<811c60be>] serial8250_console_write+0x8c/0x10c
[<8104af87>] ? lock_release+0x191/0x223
[<811c6032>] ? wait_for_xmitr+0x76/0x76
[<8104e402>] call_console_drivers.constprop.31+0x87/0x118
[<8104f5d5>] console_unlock+0x1d7/0x398
[<8104fb70>] vprintk_emit+0x3da/0x3e4
[<81425f76>] printk+0x17/0x19
[<8105bfa0>] clockevents_program_min_delta+0x104/0x116
[<8105cc1c>] tick_program_event+0x1e/0x23
[<8103c43c>] hrtimer_force_reprogram+0x88/0x8f
[<8103c49e>] __remove_hrtimer+0x5b/0x79
[<8103cb21>] hrtimer_try_to_cancel+0x49/0x66
[<8103cb4b>] hrtimer_cancel+0xd/0x18
[<8107f102>] perf_swevent_cancel_hrtimer.part.60+0x2b/0x30
[<81080705>] task_clock_event_stop+0x20/0x64
[<81080756>] task_clock_event_del+0xd/0xf
[<81081350>] event_sched_out+0xab/0x11e
[<810813e0>] group_sched_out+0x1d/0x66
[<81081682>] ctx_sched_out+0xaf/0xbf
[<81081e04>] __perf_event_task_sched_out+0x1ed/0x34f
[<8104416d>] ? __dequeue_entity+0x23/0x27
[<81044505>] ? pick_next_task_fair+0xb1/0x120
[<8142cacc>] __schedule+0x4c6/0x4cb
[<81047574>] ? trace_hardirqs_off_caller+0xd7/0x108
[<810475b0>] ? trace_hardirqs_off+0xb/0xd
[<81056346>] ? rcu_irq_exit+0x64/0x77
Fix the problem by using printk_deferred() which does not call into the
scheduler.
Reported-by: Fengguang Wu <fengguang.wu@intel.com>
Signed-off-by: Jan Kara <jack@suse.cz>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
commit aac74dc495456412c4130a1167ce4beb6c1f0b38 upstream.
After learning we'll need some sort of deferred printk functionality in
the timekeeping core, Peter suggested we rename the printk_sched function
so it can be reused by needed subsystems.
This only changes the function name. No logic changes.
Signed-off-by: John Stultz <john.stultz@linaro.org>
Reviewed-by: Steven Rostedt <rostedt@goodmis.org>
Cc: Jan Kara <jack@suse.cz>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Jiri Bohac <jbohac@suse.cz>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Ingo Molnar <mingo@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
commit 4320f6b1d9db4ca912c5eb6ecb328b2e090e1586 upstream.
The commit [247bc037: PM / Sleep: Mitigate race between the freezer
and request_firmware()] introduced the finer state control, but it
also leads to a new bug; for example, a bug report regarding the
firmware loading of intel BT device at suspend/resume:
https://bugzilla.novell.com/show_bug.cgi?id=873790
The root cause seems to be a small window between the process resume
and the clear of usermodehelper lock. The request_firmware() function
checks the UMH lock and gives up when it's in UMH_DISABLE state. This
is for avoiding the invalid f/w loading during suspend/resume phase.
The problem is, however, that usermodehelper_enable() is called at the
end of thaw_processes(). Thus, a thawed process in between can kick
off the f/w loader code path (in this case, via btusb_setup_intel())
even before the call of usermodehelper_enable(). Then
usermodehelper_read_trylock() returns an error and request_firmware()
spews WARN_ON() in the end.
This oneliner patch fixes the issue just by setting to UMH_FREEZING
state again before restarting tasks, so that the call of
request_firmware() will be blocked until the end of this function
instead of returning an error.
Fixes: 247bc0374254 (PM / Sleep: Mitigate race between the freezer and request_firmware())
Link: https://bugzilla.novell.com/show_bug.cgi?id=873790
Signed-off-by: Takashi Iwai <tiwai@suse.de>
Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
commit 16927776ae757d0d132bdbfabbfe2c498342bd59 upstream.
Sharvil noticed with the posix timer_settime interface, using the
CLOCK_REALTIME_ALARM or CLOCK_BOOTTIME_ALARM clockid, if the users
tried to specify a relative time timer, it would incorrectly be
treated as absolute regardless of the state of the flags argument.
This patch corrects this, properly checking the absolute/relative flag,
as well as adds further error checking that no invalid flag bits are set.
Reported-by: Sharvil Nanavati <sharvil@google.com>
Signed-off-by: John Stultz <john.stultz@linaro.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Ingo Molnar <mingo@kernel.org>
Cc: Prarit Bhargava <prarit@redhat.com>
Cc: Sharvil Nanavati <sharvil@google.com>
Link: http://lkml.kernel.org/r/1404767171-6902-1-git-send-email-john.stultz@linaro.org
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
commit 27e35715df54cbc4f2d044f681802ae30479e7fb upstream.
When the rtmutex fast path is enabled the slow unlock function can
create the following situation:
spin_lock(foo->m->wait_lock);
foo->m->owner = NULL;
rt_mutex_lock(foo->m); <-- fast path
free = atomic_dec_and_test(foo->refcnt);
rt_mutex_unlock(foo->m); <-- fast path
if (free)
kfree(foo);
spin_unlock(foo->m->wait_lock); <--- Use after free.
Plug the race by changing the slow unlock to the following scheme:
while (!rt_mutex_has_waiters(m)) {
/* Clear the waiters bit in m->owner */
clear_rt_mutex_waiters(m);
owner = rt_mutex_owner(m);
spin_unlock(m->wait_lock);
if (cmpxchg(m->owner, owner, 0) == owner)
return;
spin_lock(m->wait_lock);
}
So in case of a new waiter incoming while the owner tries the slow
path unlock we have two situations:
unlock(wait_lock);
lock(wait_lock);
cmpxchg(p, owner, 0) == owner
mark_rt_mutex_waiters(lock);
acquire(lock);
Or:
unlock(wait_lock);
lock(wait_lock);
mark_rt_mutex_waiters(lock);
cmpxchg(p, owner, 0) != owner
enqueue_waiter();
unlock(wait_lock);
lock(wait_lock);
wakeup_next waiter();
unlock(wait_lock);
lock(wait_lock);
acquire(lock);
If the fast path is disabled, then the simple
m->owner = NULL;
unlock(m->wait_lock);
is sufficient as all access to m->owner is serialized via
m->wait_lock;
Also document and clarify the wakeup_next_waiter function as suggested
by Oleg Nesterov.
Reported-by: Steven Rostedt <rostedt@goodmis.org>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Reviewed-by: Steven Rostedt <rostedt@goodmis.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Link: http://lkml.kernel.org/r/20140611183852.937945560@linutronix.de
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Mike Galbraith <umgwanakikbuti@gmail.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
commit 3d5c9340d1949733eb37616abd15db36aef9a57c upstream.
Even in the case when deadlock detection is not requested by the
caller, we can detect deadlocks. Right now the code stops the lock
chain walk and keeps the waiter enqueued, even on itself. Silly not to
yell when such a scenario is detected and to keep the waiter enqueued.
Return -EDEADLK unconditionally and handle it at the call sites.
The futex calls return -EDEADLK. The non futex ones dequeue the
waiter, throw a warning and put the task into a schedule loop.
Tagged for stable as it makes the code more robust.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Cc: Steven Rostedt <rostedt@goodmis.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Brad Mouring <bmouring@ni.com>
Link: http://lkml.kernel.org/r/20140605152801.836501969@linutronix.de
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Mike Galbraith <umgwanakikbuti@gmail.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
commit 82084984383babe728e6e3c9a8e5c46278091315 upstream.
When we walk the lock chain, we drop all locks after each step. So the
lock chain can change under us before we reacquire the locks. That's
harmless in principle as we just follow the wrong lock path. But it
can lead to a false positive in the dead lock detection logic:
T0 holds L0
T0 blocks on L1 held by T1
T1 blocks on L2 held by T2
T2 blocks on L3 held by T3
T4 blocks on L4 held by T4
Now we walk the chain
lock T1 -> lock L2 -> adjust L2 -> unlock T1 ->
lock T2 -> adjust T2 -> drop locks
T2 times out and blocks on L0
Now we continue:
lock T2 -> lock L0 -> deadlock detected, but it's not a deadlock at all.
Brad tried to work around that in the deadlock detection logic itself,
but the more I looked at it the less I liked it, because it's crystal
ball magic after the fact.
We actually can detect a chain change very simple:
lock T1 -> lock L2 -> adjust L2 -> unlock T1 -> lock T2 -> adjust T2 ->
next_lock = T2->pi_blocked_on->lock;
drop locks
T2 times out and blocks on L0
Now we continue:
lock T2 ->
if (next_lock != T2->pi_blocked_on->lock)
return;
So if we detect that T2 is now blocked on a different lock we stop the
chain walk. That's also correct in the following scenario:
lock T1 -> lock L2 -> adjust L2 -> unlock T1 -> lock T2 -> adjust T2 ->
next_lock = T2->pi_blocked_on->lock;
drop locks
T3 times out and drops L3
T2 acquires L3 and blocks on L4 now
Now we continue:
lock T2 ->
if (next_lock != T2->pi_blocked_on->lock)
return;
We don't have to follow up the chain at that point, because T2
propagated our priority up to T4 already.
[ Folded a cleanup patch from peterz ]
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Reported-by: Brad Mouring <bmouring@ni.com>
Cc: Steven Rostedt <rostedt@goodmis.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Link: http://lkml.kernel.org/r/20140605152801.930031935@linutronix.de
Signed-off-by: Mike Galbraith <umgwanakikbuti@gmail.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
commit 397335f004f41e5fcf7a795e94eb3ab83411a17c upstream.
The current deadlock detection logic does not work reliably due to the
following early exit path:
/*
* Drop out, when the task has no waiters. Note,
* top_waiter can be NULL, when we are in the deboosting
* mode!
*/
if (top_waiter && (!task_has_pi_waiters(task) ||
top_waiter != task_top_pi_waiter(task)))
goto out_unlock_pi;
So this not only exits when the task has no waiters, it also exits
unconditionally when the current waiter is not the top priority waiter
of the task.
So in a nested locking scenario, it might abort the lock chain walk
and therefor miss a potential deadlock.
Simple fix: Continue the chain walk, when deadlock detection is
enabled.
We also avoid the whole enqueue, if we detect the deadlock right away
(A-A). It's an optimization, but also prevents that another waiter who
comes in after the detection and before the task has undone the damage
observes the situation and detects the deadlock and returns
-EDEADLOCK, which is wrong as the other task is not in a deadlock
situation.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Cc: Peter Zijlstra <peterz@infradead.org>
Reviewed-by: Steven Rostedt <rostedt@goodmis.org>
Cc: Lai Jiangshan <laijs@cn.fujitsu.com>
Link: http://lkml.kernel.org/r/20140522031949.725272460@linutronix.de
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Mike Galbraith <umgwanakikbuti@gmail.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
commit 099ed151675cd1d2dbeae1dac697975f6a68716d upstream.
Disabling reading and writing to the trace file should not be able to
disable all function tracing callbacks. There's other users today
(like kprobes and perf). Reading a trace file should not stop those
from happening.
Reviewed-by: Masami Hiramatsu <masami.hiramatsu.pt@hitachi.com>
Signed-off-by: Steven Rostedt <rostedt@goodmis.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
commit 391acf970d21219a2a5446282d3b20eace0c0d7a upstream.
When runing with the kernel(3.15-rc7+), the follow bug occurs:
[ 9969.258987] BUG: sleeping function called from invalid context at kernel/locking/mutex.c:586
[ 9969.359906] in_atomic(): 1, irqs_disabled(): 0, pid: 160655, name: python
[ 9969.441175] INFO: lockdep is turned off.
[ 9969.488184] CPU: 26 PID: 160655 Comm: python Tainted: G A 3.15.0-rc7+ #85
[ 9969.581032] Hardware name: FUJITSU-SV PRIMEQUEST 1800E/SB, BIOS PRIMEQUEST 1000 Series BIOS Version 1.39 11/16/2012
[ 9969.706052] ffffffff81a20e60 ffff8803e941fbd0 ffffffff8162f523 ffff8803e941fd18
[ 9969.795323] ffff8803e941fbe0 ffffffff8109995a ffff8803e941fc58 ffffffff81633e6c
[ 9969.884710] ffffffff811ba5dc ffff880405c6b480 ffff88041fdd90a0 0000000000002000
[ 9969.974071] Call Trace:
[ 9970.003403] [<ffffffff8162f523>] dump_stack+0x4d/0x66
[ 9970.065074] [<ffffffff8109995a>] __might_sleep+0xfa/0x130
[ 9970.130743] [<ffffffff81633e6c>] mutex_lock_nested+0x3c/0x4f0
[ 9970.200638] [<ffffffff811ba5dc>] ? kmem_cache_alloc+0x1bc/0x210
[ 9970.272610] [<ffffffff81105807>] cpuset_mems_allowed+0x27/0x140
[ 9970.344584] [<ffffffff811b1303>] ? __mpol_dup+0x63/0x150
[ 9970.409282] [<ffffffff811b1385>] __mpol_dup+0xe5/0x150
[ 9970.471897] [<ffffffff811b1303>] ? __mpol_dup+0x63/0x150
[ 9970.536585] [<ffffffff81068c86>] ? copy_process.part.23+0x606/0x1d40
[ 9970.613763] [<ffffffff810bf28d>] ? trace_hardirqs_on+0xd/0x10
[ 9970.683660] [<ffffffff810ddddf>] ? monotonic_to_bootbased+0x2f/0x50
[ 9970.759795] [<ffffffff81068cf0>] copy_process.part.23+0x670/0x1d40
[ 9970.834885] [<ffffffff8106a598>] do_fork+0xd8/0x380
[ 9970.894375] [<ffffffff81110e4c>] ? __audit_syscall_entry+0x9c/0xf0
[ 9970.969470] [<ffffffff8106a8c6>] SyS_clone+0x16/0x20
[ 9971.030011] [<ffffffff81642009>] stub_clone+0x69/0x90
[ 9971.091573] [<ffffffff81641c29>] ? system_call_fastpath+0x16/0x1b
The cause is that cpuset_mems_allowed() try to take
mutex_lock(&callback_mutex) under the rcu_read_lock(which was hold in
__mpol_dup()). And in cpuset_mems_allowed(), the access to cpuset is
under rcu_read_lock, so in __mpol_dup, we can reduce the rcu_read_lock
protection region to protect the access to cpuset only in
current_cpuset_is_being_rebound(). So that we can avoid this bug.
This patch is a temporary solution that just addresses the bug
mentioned above, can not fix the long-standing issue about cpuset.mems
rebinding on fork():
"When the forker's task_struct is duplicated (which includes
->mems_allowed) and it races with an update to cpuset_being_rebound
in update_tasks_nodemask() then the task's mems_allowed doesn't get
updated. And the child task's mems_allowed can be wrong if the
cpuset's nodemask changes before the child has been added to the
cgroup's tasklist."
Signed-off-by: Gu Zheng <guz.fnst@cn.fujitsu.com>
Acked-by: Li Zefan <lizefan@huawei.com>
Signed-off-by: Tejun Heo <tj@kernel.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
commit 4af4206be2bd1933cae20c2b6fb2058dbc887f7c upstream.
syscall_regfunc() and syscall_unregfunc() should set/clear
TIF_SYSCALL_TRACEPOINT system-wide, but do_each_thread() can race
with copy_process() and miss the new child which was not added to
the process/thread lists yet.
Change copy_process() to update the child's TIF_SYSCALL_TRACEPOINT
under tasklist.
Link: http://lkml.kernel.org/p/20140413185854.GB20668@redhat.com
Fixes: a871bd33a6c0 "tracing: Add syscall tracepoints"
Acked-by: Frederic Weisbecker <fweisbec@gmail.com>
Acked-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
Signed-off-by: Oleg Nesterov <oleg@redhat.com>
Signed-off-by: Steven Rostedt <rostedt@goodmis.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
commit 1e77d0a1ed7417d2a5a52a7b8d32aea1833faa6c upstream.
Till reported that the spurious interrupt detection of threaded
interrupts is broken in two ways:
- note_interrupt() is called for each action thread of a shared
interrupt line. That's wrong as we are only interested whether none
of the device drivers felt responsible for the interrupt, but by
calling multiple times for a single interrupt line we account
IRQ_NONE even if one of the drivers felt responsible.
- note_interrupt() when called from the thread handler is not
serialized. That leaves the members of irq_desc which are used for
the spurious detection unprotected.
To solve this we need to defer the spurious detection of a threaded
interrupt to the next hardware interrupt context where we have
implicit serialization.
If note_interrupt is called with action_ret == IRQ_WAKE_THREAD, we
check whether the previous interrupt requested a deferred check. If
not, we request a deferred check for the next hardware interrupt and
return.
If set, we check whether one of the interrupt threads signaled
success. Depending on this information we feed the result into the
spurious detector.
If one primary handler of a shared interrupt returns IRQ_HANDLED we
disable the deferred check of irq threads on the same line, as we have
found at least one device driver who cared.
Reported-by: Till Straumann <strauman@slac.stanford.edu>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Tested-by: Austin Schuh <austin@peloton-tech.com>
Cc: Oliver Hartkopp <socketcan@hartkopp.net>
Cc: Wolfgang Grandegger <wg@grandegger.com>
Cc: Pavel Pisa <pisa@cmp.felk.cvut.cz>
Cc: Marc Kleine-Budde <mkl@pengutronix.de>
Cc: linux-can@vger.kernel.org
Link: http://lkml.kernel.org/r/alpine.LFD.2.02.1303071450130.22263@ionos
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
commit 0e576acbc1d9600cf2d9b4a141a2554639959d50 upstream.
If CONFIG_NO_HZ=n tick_nohz_get_sleep_length() returns NSEC_PER_SEC/HZ.
If CONFIG_NO_HZ=y and the nohz functionality is disabled via the
command line option "nohz=off" or not enabled due to missing hardware
support, then tick_nohz_get_sleep_length() returns 0. That happens
because ts->sleep_length is never set in that case.
Set it to NSEC_PER_SEC/HZ when the NOHZ mode is inactive.
Reported-by: Michal Hocko <mhocko@suse.cz>
Reported-by: Borislav Petkov <bp@alien8.de>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Cc: Rui Xiang <rui.xiang@huawei.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
commit a3c54931199565930d6d84f4c3456f6440aefd41 upstream.
Fixes an easy DoS and possible information disclosure.
This does nothing about the broken state of x32 auditing.
eparis: If the admin has enabled auditd and has specifically loaded
audit rules. This bug has been around since before git. Wow...
Signed-off-by: Andy Lutomirski <luto@amacapital.net>
Signed-off-by: Eric Paris <eparis@redhat.com>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
commit 6acbfb96976fc3350e30d964acb1dbbdf876d55e upstream.
Lai found that:
WARNING: CPU: 1 PID: 13 at arch/x86/kernel/smp.c:124 native_smp_send_reschedule+0x2d/0x4b()
...
migration_cpu_stop+0x1d/0x22
was caused by set_cpus_allowed_ptr() assuming that cpu_active_mask is
always a sub-set of cpu_online_mask.
This isn't true since 5fbd036b552f ("sched: Cleanup cpu_active madness").
So set active and online at the same time to avoid this particular
problem.
Fixes: 5fbd036b552f ("sched: Cleanup cpu_active madness")
Signed-off-by: Lai Jiangshan <laijs@cn.fujitsu.com>
Signed-off-by: Peter Zijlstra <peterz@infradead.org>
Cc: Andrew Morton <akpm@linux-foundation.org>
Cc: Gautham R. Shenoy <ego@linux.vnet.ibm.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Michael wang <wangyun@linux.vnet.ibm.com>
Cc: Paul Gortmaker <paul.gortmaker@windriver.com>
Cc: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
Cc: Srivatsa S. Bhat <srivatsa.bhat@linux.vnet.ibm.com>
Cc: Toshi Kani <toshi.kani@hp.com>
Link: http://lkml.kernel.org/r/53758B12.8060609@cn.fujitsu.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
commit 46ce0fe97a6be7532ce6126bb26ce89fed81528c upstream.
When removing a (sibling) event we do:
raw_spin_lock_irq(&ctx->lock);
perf_group_detach(event);
raw_spin_unlock_irq(&ctx->lock);
<hole>
perf_remove_from_context(event);
raw_spin_lock_irq(&ctx->lock);
...
raw_spin_unlock_irq(&ctx->lock);
Now, assuming the event is a sibling, it will be 'unreachable' for
things like ctx_sched_out() because that iterates the
groups->siblings, and we just unhooked the sibling.
So, if during <hole> we get ctx_sched_out(), it will miss the event
and not call event_sched_out() on it, leaving it programmed on the
PMU.
The subsequent perf_remove_from_context() call will find the ctx is
inactive and only call list_del_event() to remove the event from all
other lists.
Hereafter we can proceed to free the event; while still programmed!
Close this hole by moving perf_group_detach() inside the same
ctx->lock region(s) perf_remove_from_context() has.
The condition on inherited events only in __perf_event_exit_task() is
likely complete crap because non-inherited events are part of groups
too and we're tearing down just the same. But leave that for another
patch.
Most-likely-Fixes: e03a9a55b4e ("perf: Change close() semantics for group events")
Reported-by: Vince Weaver <vincent.weaver@maine.edu>
Tested-by: Vince Weaver <vincent.weaver@maine.edu>
Much-staring-at-traces-by: Vince Weaver <vincent.weaver@maine.edu>
Much-staring-at-traces-by: Thomas Gleixner <tglx@linutronix.de>
Cc: Arnaldo Carvalho de Melo <acme@kernel.org>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Signed-off-by: Peter Zijlstra <peterz@infradead.org>
Link: http://lkml.kernel.org/r/20140505093124.GN17778@laptop.programming.kicks-ass.net
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
commit 0819b2e30ccb93edf04876237b6205eef84ec8d2 upstream.
Vince reported that using a large sample_period (one with bit 63 set)
results in wreckage since while the sample_period is fundamentally
unsigned (negative periods don't make sense) the way we implement
things very much rely on signed logic.
So limit sample_period to 63 bits to avoid tripping over this.
Reported-by: Vince Weaver <vincent.weaver@maine.edu>
Signed-off-by: Peter Zijlstra <peterz@infradead.org>
Link: http://lkml.kernel.org/n/tip-p25fhunibl4y3qi0zuqmyf4b@git.kernel.org
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
commit 39af6b1678afa5880dda7e375cf3f9d395087f6d upstream.
The perf cpu offline callback takes down all cpu context
events and releases swhash->swevent_hlist.
This could race with task context software event being just
scheduled on this cpu via perf_swevent_add while cpu hotplug
code already cleaned up event's data.
The race happens in the gap between the cpu notifier code
and the cpu being actually taken down. Note that only cpu
ctx events are terminated in the perf cpu hotplug code.
It's easily reproduced with:
$ perf record -e faults perf bench sched pipe
while putting one of the cpus offline:
# echo 0 > /sys/devices/system/cpu/cpu1/online
Console emits following warning:
WARNING: CPU: 1 PID: 2845 at kernel/events/core.c:5672 perf_swevent_add+0x18d/0x1a0()
Modules linked in:
CPU: 1 PID: 2845 Comm: sched-pipe Tainted: G W 3.14.0+ #256
Hardware name: Intel Corporation Montevina platform/To be filled by O.E.M., BIOS AMVACRB1.86C.0066.B00.0805070703 05/07/2008
0000000000000009 ffff880077233ab8 ffffffff81665a23 0000000000200005
0000000000000000 ffff880077233af8 ffffffff8104732c 0000000000000046
ffff88007467c800 0000000000000002 ffff88007a9cf2a0 0000000000000001
Call Trace:
[<ffffffff81665a23>] dump_stack+0x4f/0x7c
[<ffffffff8104732c>] warn_slowpath_common+0x8c/0xc0
[<ffffffff8104737a>] warn_slowpath_null+0x1a/0x20
[<ffffffff8110fb3d>] perf_swevent_add+0x18d/0x1a0
[<ffffffff811162ae>] event_sched_in.isra.75+0x9e/0x1f0
[<ffffffff8111646a>] group_sched_in+0x6a/0x1f0
[<ffffffff81083dd5>] ? sched_clock_local+0x25/0xa0
[<ffffffff811167e6>] ctx_sched_in+0x1f6/0x450
[<ffffffff8111757b>] perf_event_sched_in+0x6b/0xa0
[<ffffffff81117a4b>] perf_event_context_sched_in+0x7b/0xc0
[<ffffffff81117ece>] __perf_event_task_sched_in+0x43e/0x460
[<ffffffff81096f1e>] ? put_lock_stats.isra.18+0xe/0x30
[<ffffffff8107b3c8>] finish_task_switch+0xb8/0x100
[<ffffffff8166a7de>] __schedule+0x30e/0xad0
[<ffffffff81172dd2>] ? pipe_read+0x3e2/0x560
[<ffffffff8166b45e>] ? preempt_schedule_irq+0x3e/0x70
[<ffffffff8166b45e>] ? preempt_schedule_irq+0x3e/0x70
[<ffffffff8166b464>] preempt_schedule_irq+0x44/0x70
[<ffffffff816707f0>] retint_kernel+0x20/0x30
[<ffffffff8109e60a>] ? lockdep_sys_exit+0x1a/0x90
[<ffffffff812a4234>] lockdep_sys_exit_thunk+0x35/0x67
[<ffffffff81679321>] ? sysret_check+0x5/0x56
Fixing this by tracking the cpu hotplug state and displaying
the WARN only if current cpu is initialized properly.
Cc: Corey Ashford <cjashfor@linux.vnet.ibm.com>
Cc: Frederic Weisbecker <fweisbec@gmail.com>
Cc: Ingo Molnar <mingo@kernel.org>
Cc: Paul Mackerras <paulus@samba.org>
Cc: Arnaldo Carvalho de Melo <acme@redhat.com>
Reported-by: Fengguang Wu <fengguang.wu@intel.com>
Signed-off-by: Jiri Olsa <jolsa@redhat.com>
Signed-off-by: Peter Zijlstra <peterz@infradead.org>
Link: http://lkml.kernel.org/r/1396861448-10097-1-git-send-email-jolsa@redhat.com
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
commit 6227cb00cc120f9a43ce8313bb0475ddabcb7d01 upstream.
The check at the beginning of cpupri_find() makes sure that the task_pri
variable does not exceed the cp->pri_to_cpu array length. But that length
is CPUPRI_NR_PRIORITIES not MAX_RT_PRIO, where it will miss the last two
priorities in that array.
As task_pri is computed from convert_prio() which should never be bigger
than CPUPRI_NR_PRIORITIES, if the check should cause a panic if it is
hit.
Reported-by: Mike Galbraith <umgwanakikbuti@gmail.com>
Signed-off-by: Steven Rostedt <rostedt@goodmis.org>
Signed-off-by: Peter Zijlstra <peterz@infradead.org>
Link: http://lkml.kernel.org/r/1397015410.5212.13.camel@marge.simpson.net
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
commit 54a217887a7b658e2650c3feff22756ab80c7339 upstream.
The current implementation of lookup_pi_state has ambigous handling of
the TID value 0 in the user space futex. We can get into the kernel
even if the TID value is 0, because either there is a stale waiters bit
or the owner died bit is set or we are called from the requeue_pi path
or from user space just for fun.
The current code avoids an explicit sanity check for pid = 0 in case
that kernel internal state (waiters) are found for the user space
address. This can lead to state leakage and worse under some
circumstances.
Handle the cases explicit:
Waiter | pi_state | pi->owner | uTID | uODIED | ?
[1] NULL | --- | --- | 0 | 0/1 | Valid
[2] NULL | --- | --- | >0 | 0/1 | Valid
[3] Found | NULL | -- | Any | 0/1 | Invalid
[4] Found | Found | NULL | 0 | 1 | Valid
[5] Found | Found | NULL | >0 | 1 | Invalid
[6] Found | Found | task | 0 | 1 | Valid
[7] Found | Found | NULL | Any | 0 | Invalid
[8] Found | Found | task | ==taskTID | 0/1 | Valid
[9] Found | Found | task | 0 | 0 | Invalid
[10] Found | Found | task | !=taskTID | 0/1 | Invalid
[1] Indicates that the kernel can acquire the futex atomically. We
came came here due to a stale FUTEX_WAITERS/FUTEX_OWNER_DIED bit.
[2] Valid, if TID does not belong to a kernel thread. If no matching
thread is found then it indicates that the owner TID has died.
[3] Invalid. The waiter is queued on a non PI futex
[4] Valid state after exit_robust_list(), which sets the user space
value to FUTEX_WAITERS | FUTEX_OWNER_DIED.
[5] The user space value got manipulated between exit_robust_list()
and exit_pi_state_list()
[6] Valid state after exit_pi_state_list() which sets the new owner in
the pi_state but cannot access the user space value.
[7] pi_state->owner can only be NULL when the OWNER_DIED bit is set.
[8] Owner and user space value match
[9] There is no transient state which sets the user space TID to 0
except exit_robust_list(), but this is indicated by the
FUTEX_OWNER_DIED bit. See [4]
[10] There is no transient state which leaves owner and user space
TID out of sync.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Cc: Kees Cook <keescook@chromium.org>
Cc: Will Drewry <wad@chromium.org>
Cc: Darren Hart <dvhart@linux.intel.com>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
commit 13fbca4c6ecd96ec1a1cfa2e4f2ce191fe928a5e upstream.
If the owner died bit is set at futex_unlock_pi, we currently do not
cleanup the user space futex. So the owner TID of the current owner
(the unlocker) persists. That's observable inconsistant state,
especially when the ownership of the pi state got transferred.
Clean it up unconditionally.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Cc: Kees Cook <keescook@chromium.org>
Cc: Will Drewry <wad@chromium.org>
Cc: Darren Hart <dvhart@linux.intel.com>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
commit b3eaa9fc5cd0a4d74b18f6b8dc617aeaf1873270 upstream.
We need to protect the atomic acquisition in the kernel against rogue
user space which sets the user space futex to 0, so the kernel side
acquisition succeeds while there is existing state in the kernel
associated to the real owner.
Verify whether the futex has waiters associated with kernel state. If
it has, return -EINVAL. The state is corrupted already, so no point in
cleaning it up. Subsequent calls will fail as well. Not our problem.
[ tglx: Use futex_top_waiter() and explain why we do not need to try
restoring the already corrupted user space state. ]
Signed-off-by: Darren Hart <dvhart@linux.intel.com>
Cc: Kees Cook <keescook@chromium.org>
Cc: Will Drewry <wad@chromium.org>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
in futex_requeue(..., requeue_pi=1)
commit e9c243a5a6de0be8e584c604d353412584b592f8 upstream.
If uaddr == uaddr2, then we have broken the rule of only requeueing from
a non-pi futex to a pi futex with this call. If we attempt this, then
dangling pointers may be left for rt_waiter resulting in an exploitable
condition.
This change brings futex_requeue() in line with futex_wait_requeue_pi()
which performs the same check as per commit 6f7b0a2a5c0f ("futex: Forbid
uaddr == uaddr2 in futex_wait_requeue_pi()")
[ tglx: Compare the resulting keys as well, as uaddrs might be
different depending on the mapping ]
Fixes CVE-2014-3153.
Reported-by: Pinkie Pie
Signed-off-by: Will Drewry <wad@chromium.org>
Signed-off-by: Kees Cook <keescook@chromium.org>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Reviewed-by: Darren Hart <dvhart@linux.intel.com>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
commit 80902822658aab18330569587cdb69ac1dfdcea8 upstream.
Changing the overwrite mode for the ring buffer via the trace
option only sets the normal buffer. But the snapshot buffer could
swap with it, and then the snapshot would be in non overwrite mode
and the normal buffer would be in overwrite mode, even though the
option flag states otherwise.
Keep the two buffers overwrite modes in sync.
Signed-off-by: Steven Rostedt <rostedt@goodmis.org>
Cc: Rui Xiang <rui.xiang@huawei.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
commit c481420248c6730246d2a1b1773d5d7007ae0835 upstream.
Fix to return -ENOMEM in the allocation error case instead of 0
(if pmu_bus_running == 1), as done elsewhere in this function.
Signed-off-by: Wei Yongjun <yongjun_wei@trendmicro.com.cn>
Cc: a.p.zijlstra@chello.nl
Cc: paulus@samba.org
Cc: acme@ghostprotocols.net
Link: http://lkml.kernel.org/r/CAPgLHd8j_fWcgqe%3DKLWjpBj%2B%3Do0Pw6Z-SEq%3DNTPU08c2w1tngQ@mail.gmail.com
[ Tweaked the error code setting placement and the changelog. ]
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Cc: Rui Xiang <rui.xiang@huawei.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
commit fd9b86d37a600488dbd80fe60cca46b822bff1cd upstream.
Commit 201c373e8e ("sched/debug: Limit sd->*_idx range on
sysctl") was an incomplete bug fix.
This patch fixes sd->*_idx limit range to [0 ~ CPU_LOAD_IDX_MAX-1]
avoiding array overflow caused by setting sd->*_idx to CPU_LOAD_IDX_MAX
on sysctl.
Signed-off-by: Libin <huawei.libin@huawei.com>
Cc: <jiang.liu@huawei.com>
Cc: <guohanjun@huawei.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Link: http://lkml.kernel.org/r/51626610.2040607@huawei.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Cc: Rui Xiang <rui.xiang@huawei.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
commit 201c373e8e4823700d3160d5c28e1ab18fd1193e upstream.
Various sd->*_idx's are used for refering the rq's load average table
when selecting a cpu to run. However they can be set to any number
with sysctl knobs so that it can crash the kernel if something bad is
given. Fix it by limiting them into the actual range.
Signed-off-by: Namhyung Kim <namhyung@kernel.org>
Signed-off-by: Peter Zijlstra <a.p.zijlstra@chello.nl>
Link: http://lkml.kernel.org/r/1345104204-8317-1-git-send-email-namhyung@kernel.org
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Cc: Rui Xiang <rui.xiang@huawei.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
commit 8c4f3c3fa9681dc549cd35419b259496082fef8b upstream.
There's been a nasty bug that would show up and not give much info.
The bug displayed the following warning:
WARNING: at kernel/trace/ftrace.c:1529 __ftrace_hash_rec_update+0x1e3/0x230()
Pid: 20903, comm: bash Tainted: G O 3.6.11+ #38405.trunk
Call Trace:
[<ffffffff8103e5ff>] warn_slowpath_common+0x7f/0xc0
[<ffffffff8103e65a>] warn_slowpath_null+0x1a/0x20
[<ffffffff810c2ee3>] __ftrace_hash_rec_update+0x1e3/0x230
[<ffffffff810c4f28>] ftrace_hash_move+0x28/0x1d0
[<ffffffff811401cc>] ? kfree+0x2c/0x110
[<ffffffff810c68ee>] ftrace_regex_release+0x8e/0x150
[<ffffffff81149f1e>] __fput+0xae/0x220
[<ffffffff8114a09e>] ____fput+0xe/0x10
[<ffffffff8105fa22>] task_work_run+0x72/0x90
[<ffffffff810028ec>] do_notify_resume+0x6c/0xc0
[<ffffffff8126596e>] ? trace_hardirqs_on_thunk+0x3a/0x3c
[<ffffffff815c0f88>] int_signal+0x12/0x17
---[ end trace 793179526ee09b2c ]---
It was finally narrowed down to unloading a module that was being traced.
It was actually more than that. When functions are being traced, there's
a table of all functions that have a ref count of the number of active
tracers attached to that function. When a function trace callback is
registered to a function, the function's record ref count is incremented.
When it is unregistered, the function's record ref count is decremented.
If an inconsistency is detected (ref count goes below zero) the above
warning is shown and the function tracing is permanently disabled until
reboot.
The ftrace callback ops holds a hash of functions that it filters on
(and/or filters off). If the hash is empty, the default means to filter
all functions (for the filter_hash) or to disable no functions (for the
notrace_hash).
When a module is unloaded, it frees the function records that represent
the module functions. These records exist on their own pages, that is
function records for one module will not exist on the same page as
function records for other modules or even the core kernel.
Now when a module unloads, the records that represents its functions are
freed. When the module is loaded again, the records are recreated with
a default ref count of zero (unless there's a callback that traces all
functions, then they will also be traced, and the ref count will be
incremented).
The problem is that if an ftrace callback hash includes functions of the
module being unloaded, those hash entries will not be removed. If the
module is reloaded in the same location, the hash entries still point
to the functions of the module but the module's ref counts do not reflect
that.
With the help of Steve and Joern, we found a reproducer:
Using uinput module and uinput_release function.
cd /sys/kernel/debug/tracing
modprobe uinput
echo uinput_release > set_ftrace_filter
echo function > current_tracer
rmmod uinput
modprobe uinput
# check /proc/modules to see if loaded in same addr, otherwise try again
echo nop > current_tracer
[BOOM]
The above loads the uinput module, which creates a table of functions that
can be traced within the module.
We add uinput_release to the filter_hash to trace just that function.
Enable function tracincg, which increments the ref count of the record
associated to uinput_release.
Remove uinput, which frees the records including the one that represents
uinput_release.
Load the uinput module again (and make sure it's at the same address).
This recreates the function records all with a ref count of zero,
including uinput_release.
Disable function tracing, which will decrement the ref count for uinput_release
which is now zero because of the module removal and reload, and we have
a mismatch (below zero ref count).
The solution is to check all currently tracing ftrace callbacks to see if any
are tracing any of the module's functions when a module is loaded (it already does
that with callbacks that trace all functions). If a callback happens to have
a module function being traced, it increments that records ref count and starts
tracing that function.
There may be a strange side effect with this, where tracing module functions
on unload and then reloading a new module may have that new module's functions
being traced. This may be something that confuses the user, but it's not
a big deal. Another approach is to disable all callback hashes on module unload,
but this leaves some ftrace callbacks that may not be registered, but can
still have hashes tracing the module's function where ftrace doesn't know about
it. That situation can cause the same bug. This solution solves that case too.
Another benefit of this solution, is it is possible to trace a module's
function on unload and load.
Link: http://lkml.kernel.org/r/20130705142629.GA325@redhat.com
Reported-by: Jörn Engel <joern@logfs.org>
Reported-by: Dave Jones <davej@redhat.com>
Reported-by: Steve Hodgson <steve@purestorage.com>
Tested-by: Steve Hodgson <steve@purestorage.com>
Signed-off-by: Steven Rostedt <rostedt@goodmis.org>
Cc: Rui Xiang <rui.xiang@huawei.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
commit bf378d341e4873ed928dc3c636252e6895a21f50 upstream.
The PPC64 people noticed a missing memory barrier and crufty old
comments in the perf ring buffer code. So update all the comments and
add the missing barrier.
When the architecture implements local_t using atomic_long_t there
will be double barriers issued; but short of introducing more
conditional barrier primitives this is the best we can do.
Reported-by: Victor Kaplansky <victork@il.ibm.com>
Tested-by: Victor Kaplansky <victork@il.ibm.com>
Signed-off-by: Peter Zijlstra <peterz@infradead.org>
Cc: Mathieu Desnoyers <mathieu.desnoyers@polymtl.ca>
Cc: michael@ellerman.id.au
Cc: Paul McKenney <paulmck@linux.vnet.ibm.com>
Cc: Michael Neuling <mikey@neuling.org>
Cc: Frederic Weisbecker <fweisbec@gmail.com>
Cc: anton@samba.org
Cc: benh@kernel.crashing.org
Link: http://lkml.kernel.org/r/20131025173749.GG19466@laptop.lan
Signed-off-by: Ingo Molnar <mingo@kernel.org>
[bwh: Backported to 3.2: adjust filename]
Signed-off-by: Ben Hutchings <ben@decadent.org.uk>
Cc: Rui Xiang <rui.xiang@huawei.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|