summaryrefslogtreecommitdiff
path: root/kernel
AgeCommit message (Collapse)Author
2015-06-22ring-buffer-benchmark: Fix the wrong sched_priority of producerWang Long
commit 108029323910c5dd1ef8fa2d10da1ce5fbce6e12 upstream. The producer should be used producer_fifo as its sched_priority, so correct it. Link: http://lkml.kernel.org/r/1433923957-67842-1-git-send-email-long.wanglong@huawei.com Signed-off-by: Wang Long <long.wanglong@huawei.com> Signed-off-by: Steven Rostedt <rostedt@goodmis.org> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2015-05-17revert "softirq: Add support for triggering softirq work on softirqs"Christoph Hellwig
commit fc21c0cff2f425891b28ff6fb6b03b325c977428 upstream. This commit was incomplete in that code to remove items from the per-cpu lists was missing and never acquired a user in the 5 years it has been in the tree. We're going to implement what it seems to try to archive in a simpler way, and this code is in the way of doing so. Signed-off-by: Christoph Hellwig <hch@lst.de> Cc: Jan Kara <jack@suse.cz> Cc: Jens Axboe <axboe@kernel.dk> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> Cc: Pan Xinhui <xinhuix.pan@intel.com> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2015-05-06ksoftirqd: Enable IRQs and call cond_resched() before poking RCUCalvin Owens
commit 28423ad283d5348793b0c45cc9b1af058e776fd6 upstream. While debugging an issue with excessive softirq usage, I encountered the following note in commit 3e339b5dae24a706 ("softirq: Use hotplug thread infrastructure"): [ paulmck: Call rcu_note_context_switch() with interrupts enabled. ] ...but despite this note, the patch still calls RCU with IRQs disabled. This seemingly innocuous change caused a significant regression in softirq CPU usage on the sending side of a large TCP transfer (~1 GB/s): when introducing 0.01% packet loss, the softirq usage would jump to around 25%, spiking as high as 50%. Before the change, the usage would never exceed 5%. Moving the call to rcu_note_context_switch() after the cond_sched() call, as it was originally before the hotplug patch, completely eliminated this problem. Signed-off-by: Calvin Owens <calvinowens@fb.com> Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com> Signed-off-by: Mike Galbraith <mgalbraith@suse.de> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2015-05-06ptrace: fix race between ptrace_resume() and wait_task_stopped()Oleg Nesterov
commit b72c186999e689cb0b055ab1c7b3cd8fffbeb5ed upstream. ptrace_resume() is called when the tracee is still __TASK_TRACED. We set tracee->exit_code and then wake_up_state() changes tracee->state. If the tracer's sub-thread does wait() in between, task_stopped_code(ptrace => T) wrongly looks like another report from tracee. This confuses debugger, and since wait_task_stopped() clears ->exit_code the tracee can miss a signal. Test-case: #include <stdio.h> #include <unistd.h> #include <sys/wait.h> #include <sys/ptrace.h> #include <pthread.h> #include <assert.h> int pid; void *waiter(void *arg) { int stat; for (;;) { assert(pid == wait(&stat)); assert(WIFSTOPPED(stat)); if (WSTOPSIG(stat) == SIGHUP) continue; assert(WSTOPSIG(stat) == SIGCONT); printf("ERR! extra/wrong report:%x\n", stat); } } int main(void) { pthread_t thread; pid = fork(); if (!pid) { assert(ptrace(PTRACE_TRACEME, 0,0,0) == 0); for (;;) kill(getpid(), SIGHUP); } assert(pthread_create(&thread, NULL, waiter, NULL) == 0); for (;;) ptrace(PTRACE_CONT, pid, 0, SIGCONT); return 0; } Note for stable: the bug is very old, but without 9899d11f6544 "ptrace: ensure arch_ptrace/ptrace_request can never race with SIGKILL" the fix should use lock_task_sighand(child). Signed-off-by: Oleg Nesterov <oleg@redhat.com> Reported-by: Pavel Labath <labath@google.com> Tested-by: Pavel Labath <labath@google.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2015-05-06ring-buffer: Replace this_cpu_*() with __this_cpu_*()Steven Rostedt
commit 80a9b64e2c156b6523e7a01f2ba6e5d86e722814 upstream. It has come to my attention that this_cpu_read/write are horrible on architectures other than x86. Worse yet, they actually disable preemption or interrupts! This caused some unexpected tracing results on ARM. 101.356868: preempt_count_add <-ring_buffer_lock_reserve 101.356870: preempt_count_sub <-ring_buffer_lock_reserve The ring_buffer_lock_reserve has recursion protection that requires accessing a per cpu variable. But since preempt_disable() is traced, it too got traced while accessing the variable that is suppose to prevent recursion like this. The generic version of this_cpu_read() and write() are: #define this_cpu_generic_read(pcp) \ ({ typeof(pcp) ret__; \ preempt_disable(); \ ret__ = *this_cpu_ptr(&(pcp)); \ preempt_enable(); \ ret__; \ }) #define this_cpu_generic_to_op(pcp, val, op) \ do { \ unsigned long flags; \ raw_local_irq_save(flags); \ *__this_cpu_ptr(&(pcp)) op val; \ raw_local_irq_restore(flags); \ } while (0) Which is unacceptable for locations that know they are within preempt disabled or interrupt disabled locations. Paul McKenney stated that __this_cpu_() versions produce much better code on other architectures than this_cpu_() does, if we know that the call is done in a preempt disabled location. I also changed the recursive_unlock() to use two local variables instead of accessing the per_cpu variable twice. Link: http://lkml.kernel.org/r/20150317114411.GE3589@linux.vnet.ibm.com Link: http://lkml.kernel.org/r/20150317104038.312e73d1@gandalf.local.home Acked-by: Christoph Lameter <cl@linux.com> Reported-by: Uwe Kleine-Koenig <u.kleine-koenig@pengutronix.de> Tested-by: Uwe Kleine-Koenig <u.kleine-koenig@pengutronix.de> Signed-off-by: Steven Rostedt <rostedt@goodmis.org> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2015-04-29move d_rcu from overlapping d_child to overlapping d_aliasAl Viro
commit 946e51f2bf37f1656916eb75bd0742ba33983c28 upstream. Signed-off-by: Al Viro <viro@zeniv.linux.org.uk> Cc: Ben Hutchings <ben@decadent.org.uk> [hujianyang: Backported to 3.10 refer to the work of Ben Hutchings in 3.2: - Apply name changes in all the different places we use d_alias and d_child - Move the WARN_ON() in __d_free() to d_free() as we don't have dentry_free()] Signed-off-by: hujianyang <hujianyang@huawei.com> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2015-04-19console: Fix console name size mismatchPeter Hurley
commit 30a22c215a0007603ffc08021f2e8b64018517dd upstream. commit 6ae9200f2cab7 ("enlarge console.name") increased the storage for the console name to 16 bytes, but not the corresponding struct console_cmdline::name storage. Console names longer than 8 bytes cause read beyond end-of-string and failure to match console; I'm not sure if there are other unexpected consequences. Signed-off-by: Peter Hurley <peter@hurleysoftware.com> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2015-04-13perf: Fix irq_work 'tail' recursionPeter Zijlstra
commit d525211f9d1be8b523ec7633f080f2116f5ea536 upstream. Vince reported a watchdog lockup like: [<ffffffff8115e114>] perf_tp_event+0xc4/0x210 [<ffffffff810b4f8a>] perf_trace_lock+0x12a/0x160 [<ffffffff810b7f10>] lock_release+0x130/0x260 [<ffffffff816c7474>] _raw_spin_unlock_irqrestore+0x24/0x40 [<ffffffff8107bb4d>] do_send_sig_info+0x5d/0x80 [<ffffffff811f69df>] send_sigio_to_task+0x12f/0x1a0 [<ffffffff811f71ce>] send_sigio+0xae/0x100 [<ffffffff811f72b7>] kill_fasync+0x97/0xf0 [<ffffffff8115d0b4>] perf_event_wakeup+0xd4/0xf0 [<ffffffff8115d103>] perf_pending_event+0x33/0x60 [<ffffffff8114e3fc>] irq_work_run_list+0x4c/0x80 [<ffffffff8114e448>] irq_work_run+0x18/0x40 [<ffffffff810196af>] smp_trace_irq_work_interrupt+0x3f/0xc0 [<ffffffff816c99bd>] trace_irq_work_interrupt+0x6d/0x80 Which is caused by an irq_work generating new irq_work and therefore not allowing forward progress. This happens because processing the perf irq_work triggers another perf event (tracepoint stuff) which in turn generates an irq_work ad infinitum. Avoid this by raising the recursion counter in the irq_work -- which effectively disables all software events (including tracepoints) from actually triggering again. Reported-by: Vince Weaver <vincent.weaver@maine.edu> Tested-by: Vince Weaver <vincent.weaver@maine.edu> Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> Cc: Arnaldo Carvalho de Melo <acme@kernel.org> Cc: Jiri Olsa <jolsa@redhat.com> Cc: Paul Mackerras <paulus@samba.org> Cc: Steven Rostedt <rostedt@goodmis.org> Link: http://lkml.kernel.org/r/20150219170311.GH21418@twins.programming.kicks-ass.net Signed-off-by: Ingo Molnar <mingo@kernel.org> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2015-03-26workqueue: fix hang involving racing cancel[_delayed]_work_sync()'s for ↵Tejun Heo
PREEMPT_NONE commit 8603e1b30027f943cc9c1eef2b291d42c3347af1 upstream. cancel[_delayed]_work_sync() are implemented using __cancel_work_timer() which grabs the PENDING bit using try_to_grab_pending() and then flushes the work item with PENDING set to prevent the on-going execution of the work item from requeueing itself. try_to_grab_pending() can always grab PENDING bit without blocking except when someone else is doing the above flushing during cancelation. In that case, try_to_grab_pending() returns -ENOENT. In this case, __cancel_work_timer() currently invokes flush_work(). The assumption is that the completion of the work item is what the other canceling task would be waiting for too and thus waiting for the same condition and retrying should allow forward progress without excessive busy looping Unfortunately, this doesn't work if preemption is disabled or the latter task has real time priority. Let's say task A just got woken up from flush_work() by the completion of the target work item. If, before task A starts executing, task B gets scheduled and invokes __cancel_work_timer() on the same work item, its try_to_grab_pending() will return -ENOENT as the work item is still being canceled by task A and flush_work() will also immediately return false as the work item is no longer executing. This puts task B in a busy loop possibly preventing task A from executing and clearing the canceling state on the work item leading to a hang. task A task B worker executing work __cancel_work_timer() try_to_grab_pending() set work CANCELING flush_work() block for work completion completion, wakes up A __cancel_work_timer() while (forever) { try_to_grab_pending() -ENOENT as work is being canceled flush_work() false as work is no longer executing } This patch removes the possible hang by updating __cancel_work_timer() to explicitly wait for clearing of CANCELING rather than invoking flush_work() after try_to_grab_pending() fails with -ENOENT. Link: http://lkml.kernel.org/g/20150206171156.GA8942@axis.com v3: bit_waitqueue() can't be used for work items defined in vmalloc area. Switched to custom wake function which matches the target work item and exclusive wait and wakeup. v2: v1 used wake_up() on bit_waitqueue() which leads to NULL deref if the target bit waitqueue has wait_bit_queue's on it. Use DEFINE_WAIT_BIT() and __wake_up_bit() instead. Reported by Tomeu Vizoso. Signed-off-by: Tejun Heo <tj@kernel.org> Reported-by: Rabin Vincent <rabin.vincent@axis.com> Cc: Tomeu Vizoso <tomeu.vizoso@gmail.com> Tested-by: Jesper Nilsson <jesper.nilsson@axis.com> Tested-by: Rabin Vincent <rabin.vincent@axis.com> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2015-03-18PM / QoS: remove duplicate call to pm_qos_update_targetMichael Scott
In 3.10.y backport patch 1dba303727f52ea062580b0a9b3f0c3b462769cf, the logic to call pm_qos_update_target was moved to __pm_qos_update_request. However, the original code was left in function pm_qos_update_request. Currently, if pm_qos_update_request is called where new_value != req->node.prio then pm_qos_update_target will be called twice in a row. Once in pm_qos_update_request and then again in the following call to _pm_qos_update_request. Removing the left over code from pm_qos_update_request stops this second call to pm_qos_update_target where the work of removing / re-adding the new_value in the constraints list would be duplicated. Signed-off-by: Michael Scott <michael.scott@linaro.org> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2015-03-06ntp: Fixup adjtimex freq validation on 32-bit systemsJohn Stultz
commit 29183a70b0b828500816bd794b3fe192fce89f73 upstream. Additional validation of adjtimex freq values to avoid potential multiplication overflows were added in commit 5e5aeb4367b (time: adjtimex: Validate the ADJ_FREQUENCY values) Unfortunately the patch used LONG_MAX/MIN instead of LLONG_MAX/MIN, which was fine on 64-bit systems, but being much smaller on 32-bit systems caused false positives resulting in most direct frequency adjustments to fail w/ EINVAL. ntpd only does direct frequency adjustments at startup, so the issue was not as easily observed there, but other time sync applications like ptpd and chrony were more effected by the bug. See bugs: https://bugzilla.kernel.org/show_bug.cgi?id=92481 https://bugzilla.redhat.com/show_bug.cgi?id=1188074 This patch changes the checks to use LLONG_MAX for clarity, and additionally the checks are disabled on 32-bit systems since LLONG_MAX/PPM_SCALE is always larger then the 32-bit long freq value, so multiplication overflows aren't possible there. Reported-by: Josh Boyer <jwboyer@fedoraproject.org> Reported-by: George Joseph <george.joseph@fairview5.com> Tested-by: George Joseph <george.joseph@fairview5.com> Signed-off-by: John Stultz <john.stultz@linaro.org> Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Sasha Levin <sasha.levin@oracle.com> Link: http://lkml.kernel.org/r/1423553436-29747-1-git-send-email-john.stultz@linaro.org [ Prettified the changelog and the comments a bit. ] Signed-off-by: Ingo Molnar <mingo@kernel.org> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2015-03-06kdb: fix incorrect counts in KDB summary command outputJay Lan
commit 146755923262037fc4c54abc28c04b1103f3cc51 upstream. The output of KDB 'summary' command should report MemTotal, MemFree and Buffers output in kB. Current codes report in unit of pages. A define of K(x) as is defined in the code, but not used. This patch would apply the define to convert the values to kB. Please include me on Cc on replies. I do not subscribe to linux-kernel. Signed-off-by: Jay Lan <jlan@sgi.com> Signed-off-by: Jason Wessel <jason.wessel@windriver.com> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2015-03-06tracing: Fix unmapping loop in tracing_mark_writeVikram Mulukutla
commit 7215853e985a4bef1a6c14e00e89dfec84f1e457 upstream. Commit 6edb2a8a385f0cdef51dae37ff23e74d76d8a6ce introduced an array map_pages that contains the addresses returned by kmap_atomic. However, when unmapping those pages, map_pages[0] is unmapped before map_pages[1], breaking the nesting requirement as specified in the documentation for kmap_atomic/kunmap_atomic. This was caught by the highmem debug code present in kunmap_atomic. Fix the loop to do the unmapping properly. Link: http://lkml.kernel.org/r/1418871056-6614-1-git-send-email-markivx@codeaurora.org Reviewed-by: Stephen Boyd <sboyd@codeaurora.org> Reported-by: Lime Yang <limey@codeaurora.org> Signed-off-by: Vikram Mulukutla <markivx@codeaurora.org> Signed-off-by: Steven Rostedt <rostedt@goodmis.org> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2015-02-11smpboot: Add missing get_online_cpus() in smpboot_register_percpu_thread()Lai Jiangshan
commit 4bee96860a65c3a62d332edac331b3cf936ba3ad upstream. The following race exists in the smpboot percpu threads management: CPU0 CPU1 cpu_up(2) get_online_cpus(); smpboot_create_threads(2); smpboot_register_percpu_thread(); for_each_online_cpu(); __smpboot_create_thread(); __cpu_up(2); This results in a missing per cpu thread for the newly onlined cpu2 and in a NULL pointer dereference on a consecutive offline of that cpu. Proctect smpboot_register_percpu_thread() with get_online_cpus() to prevent that. [ tglx: Massaged changelog and removed the change in smpboot_unregister_percpu_thread() because that's an optimization and therefor not stable material. ] Signed-off-by: Lai Jiangshan <laijs@cn.fujitsu.com> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: Rusty Russell <rusty@rustcorp.com.au> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Srivatsa S. Bhat <srivatsa.bhat@linux.vnet.ibm.com> Cc: David Rientjes <rientjes@google.com> Link: http://lkml.kernel.org/r/1406777421-12830-1-git-send-email-laijs@cn.fujitsu.com Signed-off-by: Thomas Gleixner <tglx@linutronix.de> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2015-02-05workqueue: fix subtle pool management issue which can stall whole worker_poolTejun Heo
commit 29187a9eeaf362d8422e62e17a22a6e115277a49 upstream. A worker_pool's forward progress is guaranteed by the fact that the last idle worker assumes the manager role to create more workers and summon the rescuers if creating workers doesn't succeed in timely manner before proceeding to execute work items. This manager role is implemented in manage_workers(), which indicates whether the worker may proceed to work item execution with its return value. This is necessary because multiple workers may contend for the manager role, and, if there already is a manager, others should proceed to work item execution. Unfortunately, the function also indicates that the worker may proceed to work item execution if need_to_create_worker() is false at the head of the function. need_to_create_worker() tests the following conditions. pending work items && !nr_running && !nr_idle The first and third conditions are protected by pool->lock and thus won't change while holding pool->lock; however, nr_running can change asynchronously as other workers block and resume and while it's likely to be zero, as someone woke this worker up in the first place, some other workers could have become runnable inbetween making it non-zero. If this happens, manage_worker() could return false even with zero nr_idle making the worker, the last idle one, proceed to execute work items. If then all workers of the pool end up blocking on a resource which can only be released by a work item which is pending on that pool, the whole pool can deadlock as there's no one to create more workers or summon the rescuers. This patch fixes the problem by removing the early exit condition from maybe_create_worker() and making manage_workers() return false iff there's already another manager, which ensures that the last worker doesn't start executing work items. We can leave the early exit condition alone and just ignore the return value but the only reason it was put there is because the manage_workers() used to perform both creations and destructions of workers and thus the function may be invoked while the pool is trying to reduce the number of workers. Now that manage_workers() is called only when more workers are needed, the only case this early exit condition is triggered is rare race conditions rendering it pointless. Tested with simulated workload and modified workqueue code which trigger the pool deadlock reliably without this patch. Signed-off-by: Tejun Heo <tj@kernel.org> Reported-by: Eric Sandeen <sandeen@sandeen.net> Link: http://lkml.kernel.org/g/54B019F4.8030009@sandeen.net Cc: Dave Chinner <david@fromorbit.com> Cc: Lai Jiangshan <laijs@cn.fujitsu.com> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2015-01-29time: adjtimex: Validate the ADJ_FREQUENCY valuesSasha Levin
commit 5e5aeb4367b450a28f447f6d5ab57d8f2ab16a5f upstream. Verify that the frequency value from userspace is valid and makes sense. Unverified values can cause overflows later on. Cc: Thomas Gleixner <tglx@linutronix.de> Cc: Ingo Molnar <mingo@kernel.org> Signed-off-by: Sasha Levin <sasha.levin@oracle.com> [jstultz: Fix up bug for negative values and drop redunent cap check] Signed-off-by: John Stultz <john.stultz@linaro.org> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2015-01-29time: settimeofday: Validate the values of tv from userSasha Levin
commit 6ada1fc0e1c4775de0e043e1bd3ae9d065491aa5 upstream. An unvalidated user input is multiplied by a constant, which can result in an undefined behaviour for large values. While this is validated later, we should avoid triggering undefined behaviour. Cc: Thomas Gleixner <tglx@linutronix.de> Cc: Ingo Molnar <mingo@kernel.org> Signed-off-by: Sasha Levin <sasha.levin@oracle.com> [jstultz: include trivial milisecond->microsecond correction noticed by Andy] Signed-off-by: John Stultz <john.stultz@linaro.org> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2015-01-16perf: Fix events installation during moving groupJiri Olsa
commit 9fc81d87420d0d3fd62d5e5529972c0ad9eab9cc upstream. We allow PMU driver to change the cpu on which the event should be installed to. This happened in patch: e2d37cd213dc ("perf: Allow the PMU driver to choose the CPU on which to install events") This patch also forces all the group members to follow the currently opened events cpu if the group happened to be moved. This and the change of event->cpu in perf_install_in_context() function introduced in: 0cda4c023132 ("perf: Introduce perf_pmu_migrate_context()") forces group members to change their event->cpu, if the currently-opened-event's PMU changed the cpu and there is a group move. Above behaviour causes problem for breakpoint events, which uses event->cpu to touch cpu specific data for breakpoints accounting. By changing event->cpu, some breakpoints slots were wrongly accounted for given cpu. Vinces's perf fuzzer hit this issue and caused following WARN on my setup: WARNING: CPU: 0 PID: 20214 at arch/x86/kernel/hw_breakpoint.c:119 arch_install_hw_breakpoint+0x142/0x150() Can't find any breakpoint slot [...] This patch changes the group moving code to keep the event's original cpu. Reported-by: Vince Weaver <vince@deater.net> Signed-off-by: Jiri Olsa <jolsa@redhat.com> Cc: Arnaldo Carvalho de Melo <acme@redhat.com> Cc: Frederic Weisbecker <fweisbec@gmail.com> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Stephane Eranian <eranian@google.com> Cc: Vince Weaver <vince@deater.net> Cc: Yan, Zheng <zheng.z.yan@intel.com> Link: http://lkml.kernel.org/r/1418243031-20367-3-git-send-email-jolsa@kernel.org Signed-off-by: Ingo Molnar <mingo@kernel.org> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2015-01-08exit: pidns: alloc_pid() leaks pid_namespace if child_reaper is exitingOleg Nesterov
commit 24c037ebf5723d4d9ab0996433cee4f96c292a4d upstream. alloc_pid() does get_pid_ns() beforehand but forgets to put_pid_ns() if it fails because disable_pid_allocation() was called by the exiting child_reaper. We could simply move get_pid_ns() down to successful return, but this fix tries to be as trivial as possible. Signed-off-by: Oleg Nesterov <oleg@redhat.com> Reviewed-by: "Eric W. Biederman" <ebiederm@xmission.com> Cc: Aaron Tomlin <atomlin@redhat.com> Cc: Pavel Emelyanov <xemul@parallels.com> Cc: Serge Hallyn <serge.hallyn@ubuntu.com> Cc: Sterling Alexander <stalexan@redhat.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2015-01-08userns: Allow setting gid_maps without privilege when setgroups is disabledEric W. Biederman
commit 66d2f338ee4c449396b6f99f5e75cd18eb6df272 upstream. Now that setgroups can be disabled and not reenabled, setting gid_map without privielge can now be enabled when setgroups is disabled. This restores most of the functionality that was lost when unprivileged setting of gid_map was removed. Applications that use this functionality will need to check to see if they use setgroups or init_groups, and if they don't they can be fixed by simply disabling setgroups before writing to gid_map. Reviewed-by: Andy Lutomirski <luto@amacapital.net> Signed-off-by: "Eric W. Biederman" <ebiederm@xmission.com> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2015-01-08userns: Add a knob to disable setgroups on a per user namespace basisEric W. Biederman
commit 9cc46516ddf497ea16e8d7cb986ae03a0f6b92f8 upstream. - Expose the knob to user space through a proc file /proc/<pid>/setgroups A value of "deny" means the setgroups system call is disabled in the current processes user namespace and can not be enabled in the future in this user namespace. A value of "allow" means the segtoups system call is enabled. - Descendant user namespaces inherit the value of setgroups from their parents. - A proc file is used (instead of a sysctl) as sysctls currently do not allow checking the permissions at open time. - Writing to the proc file is restricted to before the gid_map for the user namespace is set. This ensures that disabling setgroups at a user namespace level will never remove the ability to call setgroups from a process that already has that ability. A process may opt in to the setgroups disable for itself by creating, entering and configuring a user namespace or by calling setns on an existing user namespace with setgroups disabled. Processes without privileges already can not call setgroups so this is a noop. Prodcess with privilege become processes without privilege when entering a user namespace and as with any other path to dropping privilege they would not have the ability to call setgroups. So this remains within the bounds of what is possible without a knob to disable setgroups permanently in a user namespace. Signed-off-by: "Eric W. Biederman" <ebiederm@xmission.com> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2015-01-08userns: Rename id_map_mutex to userns_state_mutexEric W. Biederman
commit f0d62aec931e4ae3333c797d346dc4f188f454ba upstream. Generalize id_map_mutex so it can be used for more state of a user namespace. Reviewed-by: Andy Lutomirski <luto@amacapital.net> Signed-off-by: "Eric W. Biederman" <ebiederm@xmission.com> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2015-01-08userns: Only allow the creator of the userns unprivileged mappingsEric W. Biederman
commit f95d7918bd1e724675de4940039f2865e5eec5fe upstream. If you did not create the user namespace and are allowed to write to uid_map or gid_map you should already have the necessary privilege in the parent user namespace to establish any mapping you want so this will not affect userspace in practice. Limiting unprivileged uid mapping establishment to the creator of the user namespace makes it easier to verify all credentials obtained with the uid mapping can be obtained without the uid mapping without privilege. Limiting unprivileged gid mapping establishment (which is temporarily absent) to the creator of the user namespace also ensures that the combination of uid and gid can already be obtained without privilege. This is part of the fix for CVE-2014-8989. Reviewed-by: Andy Lutomirski <luto@amacapital.net> Signed-off-by: "Eric W. Biederman" <ebiederm@xmission.com> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2015-01-08userns: Check euid no fsuid when establishing an unprivileged uid mappingEric W. Biederman
commit 80dd00a23784b384ccea049bfb3f259d3f973b9d upstream. setresuid allows the euid to be set to any of uid, euid, suid, and fsuid. Therefor it is safe to allow an unprivileged user to map their euid and use CAP_SETUID privileged with exactly that uid, as no new credentials can be obtained. I can not find a combination of existing system calls that allows setting uid, euid, suid, and fsuid from the fsuid making the previous use of fsuid for allowing unprivileged mappings a bug. This is part of a fix for CVE-2014-8989. Reviewed-by: Andy Lutomirski <luto@amacapital.net> Signed-off-by: "Eric W. Biederman" <ebiederm@xmission.com> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2015-01-08userns: Don't allow unprivileged creation of gid mappingsEric W. Biederman
commit be7c6dba2332cef0677fbabb606e279ae76652c3 upstream. As any gid mapping will allow and must allow for backwards compatibility dropping groups don't allow any gid mappings to be established without CAP_SETGID in the parent user namespace. For a small class of applications this change breaks userspace and removes useful functionality. This small class of applications includes tools/testing/selftests/mount/unprivilged-remount-test.c Most of the removed functionality will be added back with the addition of a one way knob to disable setgroups. Once setgroups is disabled setting the gid_map becomes as safe as setting the uid_map. For more common applications that set the uid_map and the gid_map with privilege this change will have no affect. This is part of a fix for CVE-2014-8989. Reviewed-by: Andy Lutomirski <luto@amacapital.net> Signed-off-by: "Eric W. Biederman" <ebiederm@xmission.com> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2015-01-08userns: Don't allow setgroups until a gid mapping has been setablishedEric W. Biederman
commit 273d2c67c3e179adb1e74f403d1e9a06e3f841b5 upstream. setgroups is unique in not needing a valid mapping before it can be called, in the case of setgroups(0, NULL) which drops all supplemental groups. The design of the user namespace assumes that CAP_SETGID can not actually be used until a gid mapping is established. Therefore add a helper function to see if the user namespace gid mapping has been established and call that function in the setgroups permission check. This is part of the fix for CVE-2014-8989, being able to drop groups without privilege using user namespaces. Reviewed-by: Andy Lutomirski <luto@amacapital.net> Signed-off-by: "Eric W. Biederman" <ebiederm@xmission.com> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2015-01-08userns: Document what the invariant required for safe unprivileged mappings.Eric W. Biederman
commit 0542f17bf2c1f2430d368f44c8fcf2f82ec9e53e upstream. The rule is simple. Don't allow anything that wouldn't be allowed without unprivileged mappings. It was previously overlooked that establishing gid mappings would allow dropping groups and potentially gaining permission to files and directories that had lesser permissions for a specific group than for all other users. This is the rule needed to fix CVE-2014-8989 and prevent any other security issues with new_idmap_permitted. The reason for this rule is that the unix permission model is old and there are programs out there somewhere that take advantage of every little corner of it. So allowing a uid or gid mapping to be established without privielge that would allow anything that would not be allowed without that mapping will result in expectations from some code somewhere being violated. Violated expectations about the behavior of the OS is a long way to say a security issue. Signed-off-by: "Eric W. Biederman" <ebiederm@xmission.com> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2015-01-08groups: Consolidate the setgroups permission checksEric W. Biederman
commit 7ff4d90b4c24a03666f296c3d4878cd39001e81e upstream. Today there are 3 instances of setgroups and due to an oversight their permission checking has diverged. Add a common function so that they may all share the same permission checking code. This corrects the current oversight in the current permission checks and adds a helper to avoid this in the future. A user namespace security fix will update this new helper, shortly. Signed-off-by: "Eric W. Biederman" <ebiederm@xmission.com> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2014-12-06uprobes, x86: Fix _TIF_UPROBE vs _TIF_NOTIFY_RESUMEAndy Lutomirski
commit 82975bc6a6df743b9a01810fb32cb65d0ec5d60b upstream. x86 call do_notify_resume on paranoid returns if TIF_UPROBE is set but not on non-paranoid returns. I suspect that this is a mistake and that the code only works because int3 is paranoid. Setting _TIF_NOTIFY_RESUME in the uprobe code was probably a workaround for the x86 bug. With that bug fixed, we can remove _TIF_NOTIFY_RESUME from the uprobes code. Reported-by: Oleg Nesterov <oleg@redhat.com> Acked-by: Srikar Dronamraju <srikar@linux.vnet.ibm.com> Acked-by: Borislav Petkov <bp@suse.de> Signed-off-by: Andy Lutomirski <luto@amacapital.net> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2014-11-21perf: Handle compat ioctlPawel Moll
commit b3f207855f57b9c8f43a547a801340bb5cbc59e5 upstream. When running a 32-bit userspace on a 64-bit kernel (eg. i386 application on x86_64 kernel or 32-bit arm userspace on arm64 kernel) some of the perf ioctls must be treated with special care, as they have a pointer size encoded in the command. For example, PERF_EVENT_IOC_ID in 32-bit world will be encoded as 0x80042407, but 64-bit kernel will expect 0x80082407. In result the ioctl will fail returning -ENOTTY. This patch solves the problem by adding code fixing up the size as compat_ioctl file operation. Reported-by: Drew Richardson <drew.richardson@arm.com> Signed-off-by: Pawel Moll <pawel.moll@arm.com> Signed-off-by: Peter Zijlstra <peterz@infradead.org> Cc: Arnaldo Carvalho de Melo <acme@kernel.org> Cc: Jiri Olsa <jolsa@redhat.com> Link: http://lkml.kernel.org/r/1402671812-9078-1-git-send-email-pawel.moll@arm.com Signed-off-by: Ingo Molnar <mingo@kernel.org> Signed-off-by: David Ahern <daahern@cisco.com> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2014-11-21audit: keep inode pinnedMiklos Szeredi
commit 799b601451b21ebe7af0e6e8f6e2ccd4683c5064 upstream. Audit rules disappear when an inode they watch is evicted from the cache. This is likely not what we want. The guilty commit is "fsnotify: allow marks to not pin inodes in core", which didn't take into account that audit_tree adds watches with a zero mask. Adding any mask should fix this. Fixes: 90b1e7a57880 ("fsnotify: allow marks to not pin inodes in core") Signed-off-by: Miklos Szeredi <mszeredi@suse.cz> Signed-off-by: Paul Moore <pmoore@redhat.com> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2014-11-14posix-timers: Fix stack info leak in timer_create()Mathias Krause
commit 6891c4509c792209c44ced55a60f13954cb50ef4 upstream. If userland creates a timer without specifying a sigevent info, we'll create one ourself, using a stack local variable. Particularly will we use the timer ID as sival_int. But as sigev_value is a union containing a pointer and an int, that assignment will only partially initialize sigev_value on systems where the size of a pointer is bigger than the size of an int. On such systems we'll copy the uninitialized stack bytes from the timer_create() call to userland when the timer actually fires and we're going to deliver the signal. Initialize sigev_value with 0 to plug the stack info leak. Found in the PaX patch, written by the PaX Team. Fixes: 5a9fa7307285 ("posix-timers: kill ->it_sigev_signo and...") Signed-off-by: Mathias Krause <minipli@googlemail.com> Cc: Oleg Nesterov <oleg@redhat.com> Cc: Brad Spengler <spender@grsecurity.net> Cc: PaX Team <pageexec@freemail.hu> Link: http://lkml.kernel.org/r/1412456799-32339-1-git-send-email-minipli@googlemail.com Signed-off-by: Thomas Gleixner <tglx@linutronix.de> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2014-11-14PM / Sleep: fix recovery during resuming from hibernationImre Deak
commit 94fb823fcb4892614f57e59601bb9d4920f24711 upstream. If a device's dev_pm_ops::freeze callback fails during the QUIESCE phase, we don't rollback things correctly calling the thaw and complete callbacks. This could leave some devices in a suspended state in case of an error during resuming from hibernation. Signed-off-by: Imre Deak <imre.deak@intel.com> Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2014-11-14OOM, PM: OOM killed task shouldn't escape PM suspendMichal Hocko
commit 5695be142e203167e3cb515ef86a88424f3524eb upstream. PM freezer relies on having all tasks frozen by the time devices are getting frozen so that no task will touch them while they are getting frozen. But OOM killer is allowed to kill an already frozen task in order to handle OOM situtation. In order to protect from late wake ups OOM killer is disabled after all tasks are frozen. This, however, still keeps a window open when a killed task didn't manage to die by the time freeze_processes finishes. Reduce the race window by checking all tasks after OOM killer has been disabled. This is still not race free completely unfortunately because oom_killer_disable cannot stop an already ongoing OOM killer so a task might still wake up from the fridge and get killed without freeze_processes noticing. Full synchronization of OOM and freezer is, however, too heavy weight for this highly unlikely case. Introduce and check oom_kills counter which gets incremented early when the allocator enters __alloc_pages_may_oom path and only check all the tasks if the counter changes during the freezing attempt. The counter is updated so early to reduce the race window since allocator checked oom_killer_disabled which is set by PM-freezing code. A false positive will push the PM-freezer into a slow path but that is not a big deal. Changes since v1 - push the re-check loop out of freeze_processes into check_frozen_processes and invert the condition to make the code more readable as per Rafael Fixes: f660daac474c6f (oom: thaw threads if oom killed thread is frozen before deferring) Signed-off-by: Michal Hocko <mhocko@suse.cz> Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2014-11-14freezer: Do not freeze tasks killed by OOM killerCong Wang
commit 51fae6da640edf9d266c94f36bc806c63c301991 upstream. Since f660daac474c6f (oom: thaw threads if oom killed thread is frozen before deferring) OOM killer relies on being able to thaw a frozen task to handle OOM situation but a3201227f803 (freezer: make freezing() test freeze conditions in effect instead of TIF_FREEZE) has reorganized the code and stopped clearing freeze flag in __thaw_task. This means that the target task only wakes up and goes into the fridge again because the freezing condition hasn't changed for it. This reintroduces the bug fixed by f660daac474c6f. Fix the issue by checking for TIF_MEMDIE thread flag in freezing_slow_path and exclude the task from freezing completely. If a task was already frozen it would get woken by __thaw_task from OOM killer and get out of freezer after rechecking freezing(). Changes since v1 - put TIF_MEMDIE check into freezing_slowpath rather than in __refrigerator as per Oleg - return __thaw_task into oom_scan_process_thread because oom_kill_process will not wake task in the fridge because it is sleeping uninterruptible [mhocko@suse.cz: rewrote the changelog] Fixes: a3201227f803 (freezer: make freezing() test freeze conditions in effect instead of TIF_FREEZE) Signed-off-by: Cong Wang <xiyou.wangcong@gmail.com> Signed-off-by: Michal Hocko <mhocko@suse.cz> Acked-by: Oleg Nesterov <oleg@redhat.com> Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2014-11-14modules, lock around setting of MODULE_STATE_UNFORMEDPrarit Bhargava
commit d3051b489aa81ca9ba62af366149ef42b8dae97c upstream. A panic was seen in the following sitation. There are two threads running on the system. The first thread is a system monitoring thread that is reading /proc/modules. The second thread is loading and unloading a module (in this example I'm using my simple dummy-module.ko). Note, in the "real world" this occurred with the qlogic driver module. When doing this, the following panic occurred: ------------[ cut here ]------------ kernel BUG at kernel/module.c:3739! invalid opcode: 0000 [#1] SMP Modules linked in: binfmt_misc sg nfsv3 rpcsec_gss_krb5 nfsv4 dns_resolver nfs fscache intel_powerclamp coretemp kvm_intel kvm crct10dif_pclmul crc32_pclmul crc32c_intel ghash_clmulni_intel aesni_intel lrw igb gf128mul glue_helper iTCO_wdt iTCO_vendor_support ablk_helper ptp sb_edac cryptd pps_core edac_core shpchp i2c_i801 pcspkr wmi lpc_ich ioatdma mfd_core dca ipmi_si nfsd ipmi_msghandler auth_rpcgss nfs_acl lockd sunrpc xfs libcrc32c sr_mod cdrom sd_mod crc_t10dif crct10dif_common mgag200 syscopyarea sysfillrect sysimgblt i2c_algo_bit drm_kms_helper ttm isci drm libsas ahci libahci scsi_transport_sas libata i2c_core dm_mirror dm_region_hash dm_log dm_mod [last unloaded: dummy_module] CPU: 37 PID: 186343 Comm: cat Tainted: GF O-------------- 3.10.0+ #7 Hardware name: Intel Corporation S2600CP/S2600CP, BIOS RMLSDP.86I.00.29.D696.1311111329 11/11/2013 task: ffff8807fd2d8000 ti: ffff88080fa7c000 task.ti: ffff88080fa7c000 RIP: 0010:[<ffffffff810d64c5>] [<ffffffff810d64c5>] module_flags+0xb5/0xc0 RSP: 0018:ffff88080fa7fe18 EFLAGS: 00010246 RAX: 0000000000000003 RBX: ffffffffa03b5200 RCX: 0000000000000000 RDX: 0000000000001000 RSI: ffff88080fa7fe38 RDI: ffffffffa03b5000 RBP: ffff88080fa7fe28 R08: 0000000000000010 R09: 0000000000000000 R10: 0000000000000000 R11: 000000000000000f R12: ffffffffa03b5000 R13: ffffffffa03b5008 R14: ffffffffa03b5200 R15: ffffffffa03b5000 FS: 00007f6ae57ef740(0000) GS:ffff88101e7a0000(0000) knlGS:0000000000000000 CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033 CR2: 0000000000404f70 CR3: 0000000ffed48000 CR4: 00000000001407e0 DR0: 0000000000000000 DR1: 0000000000000000 DR2: 0000000000000000 DR3: 0000000000000000 DR6: 00000000ffff0ff0 DR7: 0000000000000400 Stack: ffffffffa03b5200 ffff8810101e4800 ffff88080fa7fe70 ffffffff810d666c ffff88081e807300 000000002e0f2fbf 0000000000000000 ffff88100f257b00 ffffffffa03b5008 ffff88080fa7ff48 ffff8810101e4800 ffff88080fa7fee0 Call Trace: [<ffffffff810d666c>] m_show+0x19c/0x1e0 [<ffffffff811e4d7e>] seq_read+0x16e/0x3b0 [<ffffffff812281ed>] proc_reg_read+0x3d/0x80 [<ffffffff811c0f2c>] vfs_read+0x9c/0x170 [<ffffffff811c1a58>] SyS_read+0x58/0xb0 [<ffffffff81605829>] system_call_fastpath+0x16/0x1b Code: 48 63 c2 83 c2 01 c6 04 03 29 48 63 d2 eb d9 0f 1f 80 00 00 00 00 48 63 d2 c6 04 13 2d 41 8b 0c 24 8d 50 02 83 f9 01 75 b2 eb cb <0f> 0b 66 0f 1f 84 00 00 00 00 00 0f 1f 44 00 00 55 48 89 e5 41 RIP [<ffffffff810d64c5>] module_flags+0xb5/0xc0 RSP <ffff88080fa7fe18> Consider the two processes running on the system. CPU 0 (/proc/modules reader) CPU 1 (loading/unloading module) CPU 0 opens /proc/modules, and starts displaying data for each module by traversing the modules list via fs/seq_file.c:seq_open() and fs/seq_file.c:seq_read(). For each module in the modules list, seq_read does op->start() <-- this is a pointer to m_start() op->show() <- this is a pointer to m_show() op->stop() <-- this is a pointer to m_stop() The m_start(), m_show(), and m_stop() module functions are defined in kernel/module.c. The m_start() and m_stop() functions acquire and release the module_mutex respectively. ie) When reading /proc/modules, the module_mutex is acquired and released for each module. m_show() is called with the module_mutex held. It accesses the module struct data and attempts to write out module data. It is in this code path that the above BUG_ON() warning is encountered, specifically m_show() calls static char *module_flags(struct module *mod, char *buf) { int bx = 0; BUG_ON(mod->state == MODULE_STATE_UNFORMED); ... The other thread, CPU 1, in unloading the module calls the syscall delete_module() defined in kernel/module.c. The module_mutex is acquired for a short time, and then released. free_module() is called without the module_mutex. free_module() then sets mod->state = MODULE_STATE_UNFORMED, also without the module_mutex. Some additional code is called and then the module_mutex is reacquired to remove the module from the modules list: /* Now we can delete it from the lists */ mutex_lock(&module_mutex); stop_machine(__unlink_module, mod, NULL); mutex_unlock(&module_mutex); This is the sequence of events that leads to the panic. CPU 1 is removing dummy_module via delete_module(). It acquires the module_mutex, and then releases it. CPU 1 has NOT set dummy_module->state to MODULE_STATE_UNFORMED yet. CPU 0, which is reading the /proc/modules, acquires the module_mutex and acquires a pointer to the dummy_module which is still in the modules list. CPU 0 calls m_show for dummy_module. The check in m_show() for MODULE_STATE_UNFORMED passed for dummy_module even though it is being torn down. Meanwhile CPU 1, which has been continuing to remove dummy_module without holding the module_mutex, now calls free_module() and sets dummy_module->state to MODULE_STATE_UNFORMED. CPU 0 now calls module_flags() with dummy_module and ... static char *module_flags(struct module *mod, char *buf) { int bx = 0; BUG_ON(mod->state == MODULE_STATE_UNFORMED); and BOOM. Acquire and release the module_mutex lock around the setting of MODULE_STATE_UNFORMED in the teardown path, which should resolve the problem. Testing: In the unpatched kernel I can panic the system within 1 minute by doing while (true) do insmod dummy_module.ko; rmmod dummy_module.ko; done and while (true) do cat /proc/modules; done in separate terminals. In the patched kernel I was able to run just over one hour without seeing any issues. I also verified the output of panic via sysrq-c and the output of /proc/modules looks correct for all three states for the dummy_module. dummy_module 12661 0 - Unloading 0xffffffffa03a5000 (OE-) dummy_module 12661 0 - Live 0xffffffffa03bb000 (OE) dummy_module 14015 1 - Loading 0xffffffffa03a5000 (OE+) Signed-off-by: Prarit Bhargava <prarit@redhat.com> Reviewed-by: Oleg Nesterov <oleg@redhat.com> Signed-off-by: Rusty Russell <rusty@rustcorp.com.au> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2014-11-14tracing/syscalls: Ignore numbers outside NR_syscalls' rangeRabin Vincent
commit 086ba77a6db00ed858ff07451bedee197df868c9 upstream. ARM has some private syscalls (for example, set_tls(2)) which lie outside the range of NR_syscalls. If any of these are called while syscall tracing is being performed, out-of-bounds array access will occur in the ftrace and perf sys_{enter,exit} handlers. # trace-cmd record -e raw_syscalls:* true && trace-cmd report ... true-653 [000] 384.675777: sys_enter: NR 192 (0, 1000, 3, 4000022, ffffffff, 0) true-653 [000] 384.675812: sys_exit: NR 192 = 1995915264 true-653 [000] 384.675971: sys_enter: NR 983045 (76f74480, 76f74000, 76f74b28, 76f74480, 76f76f74, 1) true-653 [000] 384.675988: sys_exit: NR 983045 = 0 ... # trace-cmd record -e syscalls:* true [ 17.289329] Unable to handle kernel paging request at virtual address aaaaaace [ 17.289590] pgd = 9e71c000 [ 17.289696] [aaaaaace] *pgd=00000000 [ 17.289985] Internal error: Oops: 5 [#1] PREEMPT SMP ARM [ 17.290169] Modules linked in: [ 17.290391] CPU: 0 PID: 704 Comm: true Not tainted 3.18.0-rc2+ #21 [ 17.290585] task: 9f4dab00 ti: 9e710000 task.ti: 9e710000 [ 17.290747] PC is at ftrace_syscall_enter+0x48/0x1f8 [ 17.290866] LR is at syscall_trace_enter+0x124/0x184 Fix this by ignoring out-of-NR_syscalls-bounds syscall numbers. Commit cd0980fc8add "tracing: Check invalid syscall nr while tracing syscalls" added the check for less than zero, but it should have also checked for greater than NR_syscalls. Link: http://lkml.kernel.org/p/1414620418-29472-1-git-send-email-rabin@rab.in Fixes: cd0980fc8add "tracing: Check invalid syscall nr while tracing syscalls" Signed-off-by: Rabin Vincent <rabin@rab.in> Signed-off-by: Steven Rostedt <rostedt@goodmis.org> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2014-10-09jiffies: Fix timeval conversion to jiffiesAndrew Hunter
commit d78c9300c51d6ceed9f6d078d4e9366f259de28c upstream. timeval_to_jiffies tried to round a timeval up to an integral number of jiffies, but the logic for doing so was incorrect: intervals corresponding to exactly N jiffies would become N+1. This manifested itself particularly repeatedly stopping/starting an itimer: setitimer(ITIMER_PROF, &val, NULL); setitimer(ITIMER_PROF, NULL, &val); would add a full tick to val, _even if it was exactly representable in terms of jiffies_ (say, the result of a previous rounding.) Doing this repeatedly would cause unbounded growth in val. So fix the math. Here's what was wrong with the conversion: we essentially computed (eliding seconds) jiffies = usec * (NSEC_PER_USEC/TICK_NSEC) by using scaling arithmetic, which took the best approximation of NSEC_PER_USEC/TICK_NSEC with denominator of 2^USEC_JIFFIE_SC = x/(2^USEC_JIFFIE_SC), and computed: jiffies = (usec * x) >> USEC_JIFFIE_SC and rounded this calculation up in the intermediate form (since we can't necessarily exactly represent TICK_NSEC in usec.) But the scaling arithmetic is a (very slight) *over*approximation of the true value; that is, instead of dividing by (1 usec/ 1 jiffie), we effectively divided by (1 usec/1 jiffie)-epsilon (rounding down). This would normally be fine, but we want to round timeouts up, and we did so by adding 2^USEC_JIFFIE_SC - 1 before the shift; this would be fine if our division was exact, but dividing this by the slightly smaller factor was equivalent to adding just _over_ 1 to the final result (instead of just _under_ 1, as desired.) In particular, with HZ=1000, we consistently computed that 10000 usec was 11 jiffies; the same was true for any exact multiple of TICK_NSEC. We could possibly still round in the intermediate form, adding something less than 2^USEC_JIFFIE_SC - 1, but easier still is to convert usec->nsec, round in nanoseconds, and then convert using time*spec*_to_jiffies. This adds one constant multiplication, and is not observably slower in microbenchmarks on recent x86 hardware. Tested: the following program: int main() { struct itimerval zero = {{0, 0}, {0, 0}}; /* Initially set to 10 ms. */ struct itimerval initial = zero; initial.it_interval.tv_usec = 10000; setitimer(ITIMER_PROF, &initial, NULL); /* Save and restore several times. */ for (size_t i = 0; i < 10; ++i) { struct itimerval prev; setitimer(ITIMER_PROF, &zero, &prev); /* on old kernels, this goes up by TICK_USEC every iteration */ printf("previous value: %ld %ld %ld %ld\n", prev.it_interval.tv_sec, prev.it_interval.tv_usec, prev.it_value.tv_sec, prev.it_value.tv_usec); setitimer(ITIMER_PROF, &prev, NULL); } return 0; } Cc: Thomas Gleixner <tglx@linutronix.de> Cc: Ingo Molnar <mingo@redhat.com> Cc: Paul Turner <pjt@google.com> Cc: Richard Cochran <richardcochran@gmail.com> Cc: Prarit Bhargava <prarit@redhat.com> Reviewed-by: Paul Turner <pjt@google.com> Reported-by: Aaron Jacobs <jacobsa@google.com> Signed-off-by: Andrew Hunter <ahh@google.com> [jstultz: Tweaked to apply to 3.17-rc] Signed-off-by: John Stultz <john.stultz@linaro.org> [bwh: Backported to 3.16: adjust filename] Signed-off-by: Ben Hutchings <ben@decadent.org.uk> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2014-10-09ring-buffer: Fix infinite spin in reading bufferSteven Rostedt (Red Hat)
commit 24607f114fd14f2f37e3e0cb3d47bce96e81e848 upstream. Commit 651e22f2701b "ring-buffer: Always reset iterator to reader page" fixed one bug but in the process caused another one. The reset is to update the header page, but that fix also changed the way the cached reads were updated. The cache reads are used to test if an iterator needs to be updated or not. A ring buffer iterator, when created, disables writes to the ring buffer but does not stop other readers or consuming reads from happening. Although all readers are synchronized via a lock, they are only synchronized when in the ring buffer functions. Those functions may be called by any number of readers. The iterator continues down when its not interrupted by a consuming reader. If a consuming read occurs, the iterator starts from the beginning of the buffer. The way the iterator sees that a consuming read has happened since its last read is by checking the reader "cache". The cache holds the last counts of the read and the reader page itself. Commit 651e22f2701b changed what was saved by the cache_read when the rb_iter_reset() occurred, making the iterator never match the cache. Then if the iterator calls rb_iter_reset(), it will go into an infinite loop by checking if the cache doesn't match, doing the reset and retrying, just to see that the cache still doesn't match! Which should never happen as the reset is suppose to set the cache to the current value and there's locks that keep a consuming reader from having access to the data. Fixes: 651e22f2701b "ring-buffer: Always reset iterator to reader page" Signed-off-by: Steven Rostedt <rostedt@goodmis.org> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2014-10-09perf: fix perf bug in fork()Peter Zijlstra
commit 6c72e3501d0d62fc064d3680e5234f3463ec5a86 upstream. Oleg noticed that a cleanup by Sylvain actually uncovered a bug; by calling perf_event_free_task() when failing sched_fork() we will not yet have done the memset() on ->perf_event_ctxp[] and will therefore try and 'free' the inherited contexts, which are still in use by the parent process. This is bad.. Suggested-by: Oleg Nesterov <oleg@redhat.com> Reported-by: Oleg Nesterov <oleg@redhat.com> Reported-by: Sylvain 'ythier' Hitier <sylvain.hitier@gmail.com> Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> Cc: Ingo Molnar <mingo@kernel.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2014-10-05introduce for_each_thread() to replace the buggy while_each_thread()Oleg Nesterov
commit 0c740d0afc3bff0a097ad03a1c8df92757516f5c upstream. while_each_thread() and next_thread() should die, almost every lockless usage is wrong. 1. Unless g == current, the lockless while_each_thread() is not safe. while_each_thread(g, t) can loop forever if g exits, next_thread() can't reach the unhashed thread in this case. Note that this can happen even if g is the group leader, it can exec. 2. Even if while_each_thread() itself was correct, people often use it wrongly. It was never safe to just take rcu_read_lock() and loop unless you verify that pid_alive(g) == T, even the first next_thread() can point to the already freed/reused memory. This patch adds signal_struct->thread_head and task->thread_node to create the normal rcu-safe list with the stable head. The new for_each_thread(g, t) helper is always safe under rcu_read_lock() as long as this task_struct can't go away. Note: of course it is ugly to have both task_struct->thread_node and the old task_struct->thread_group, we will kill it later, after we change the users of while_each_thread() to use for_each_thread(). Perhaps we can kill it even before we convert all users, we can reimplement next_thread(t) using the new thread_head/thread_node. But we can't do this right now because this will lead to subtle behavioural changes. For example, do/while_each_thread() always sees at least one task, while for_each_thread() can do nothing if the whole thread group has died. Or thread_group_empty(), currently its semantics is not clear unless thread_group_leader(p) and we need to audit the callers before we can change it. So this patch adds the new interface which has to coexist with the old one for some time, hopefully the next changes will be more or less straightforward and the old one will go away soon. Signed-off-by: Oleg Nesterov <oleg@redhat.com> Reviewed-by: Sergey Dyasly <dserrg@gmail.com> Tested-by: Sergey Dyasly <dserrg@gmail.com> Reviewed-by: Sameer Nanda <snanda@chromium.org> Acked-by: David Rientjes <rientjes@google.com> Cc: "Eric W. Biederman" <ebiederm@xmission.com> Cc: Frederic Weisbecker <fweisbec@gmail.com> Cc: Mandeep Singh Baines <msb@chromium.org> Cc: "Ma, Xindong" <xindong.ma@intel.com> Cc: Michal Hocko <mhocko@suse.cz> Cc: "Tu, Xiaobing" <xiaobing.tu@intel.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> Cc: Li Zefan <lizefan@huawei.com> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2014-10-05kernel/fork.c:copy_process(): unify CLONE_THREAD-or-thread_group_leader codeOleg Nesterov
commit 80628ca06c5d42929de6bc22c0a41589a834d151 upstream. Cleanup and preparation for the next changes. Move the "if (clone_flags & CLONE_THREAD)" code down under "if (likely(p->pid))" and turn it into into the "else" branch. This makes the process/thread initialization more symmetrical and removes one check. Signed-off-by: Oleg Nesterov <oleg@redhat.com> Cc: "Eric W. Biederman" <ebiederm@xmission.com> Cc: Michal Hocko <mhocko@suse.cz> Cc: Pavel Emelyanov <xemul@parallels.com> Cc: Sergey Dyasly <dserrg@gmail.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> Cc: Li Zefan <lizefan@huawei.com> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2014-10-05PM / sleep: Use valid_state() for platform-dependent sleep states onlyRafael J. Wysocki
commit 43e8317b0bba1d6eb85f38a4a233d82d7c20d732 upstream. Use the observation that, for platform-dependent sleep states (PM_SUSPEND_STANDBY, PM_SUSPEND_MEM), a given state is either always supported or always unsupported and store that information in pm_states[] instead of calling valid_state() every time we need to check it. Also do not use valid_state() for PM_SUSPEND_FREEZE, which is always valid, and move the pm_test_level validity check for PM_SUSPEND_FREEZE directly into enter_state(). Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com> Cc: Brian Norris <computersforpeace@gmail.com> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2014-10-05PM / sleep: Add state field to pm_states[] entriesRafael J. Wysocki
commit 27ddcc6596e50cb8f03d2e83248897667811d8f6 upstream. To allow sleep states corresponding to the "mem", "standby" and "freeze" lables to be different from the pm_states[] indexes of those strings, introduce struct pm_sleep_state, consisting of a string label and a state number, and turn pm_states[] into an array of objects of that type. This modification should not lead to any functional changes. Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com> Cc: Brian Norris <computersforpeace@gmail.com> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2014-10-05perf: Fix a race condition in perf_remove_from_context()Cong Wang
commit 3577af70a2ce4853d58e57d832e687d739281479 upstream. We saw a kernel soft lockup in perf_remove_from_context(), it looks like the `perf` process, when exiting, could not go out of the retry loop. Meanwhile, the target process was forking a child. So either the target process should execute the smp function call to deactive the event (if it was running) or it should do a context switch which deactives the event. It seems we optimize out a context switch in perf_event_context_sched_out(), and what's more important, we still test an obsolete task pointer when retrying, so no one actually would deactive that event in this situation. Fix it directly by reloading the task pointer in perf_remove_from_context(). This should cure the above soft lockup. Signed-off-by: Cong Wang <cwang@twopensource.com> Signed-off-by: Cong Wang <xiyou.wangcong@gmail.com> Signed-off-by: Peter Zijlstra <peterz@infradead.org> Cc: Paul Mackerras <paulus@samba.org> Cc: Arnaldo Carvalho de Melo <acme@kernel.org> Cc: Linus Torvalds <torvalds@linux-foundation.org> Link: http://lkml.kernel.org/r/1409696840-843-1-git-send-email-xiyou.wangcong@gmail.com Signed-off-by: Ingo Molnar <mingo@kernel.org> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2014-10-05alarmtimer: Lock k_itimer during timer callbackRichard Larocque
commit 474e941bed9262f5fa2394f9a4a67e24499e5926 upstream. Locks the k_itimer's it_lock member when handling the alarm timer's expiry callback. The regular posix timers defined in posix-timers.c have this lock held during timout processing because their callbacks are routed through posix_timer_fn(). The alarm timers follow a different path, so they ought to grab the lock somewhere else. Cc: Thomas Gleixner <tglx@linutronix.de> Cc: Ingo Molnar <mingo@kernel.org> Cc: Richard Cochran <richardcochran@gmail.com> Cc: Prarit Bhargava <prarit@redhat.com> Cc: Sharvil Nanavati <sharvil@google.com> Signed-off-by: Richard Larocque <rlarocque@google.com> Signed-off-by: John Stultz <john.stultz@linaro.org> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2014-10-05alarmtimer: Do not signal SIGEV_NONE timersRichard Larocque
commit 265b81d23a46c39df0a735a3af4238954b41a4c2 upstream. Avoids sending a signal to alarm timers created with sigev_notify set to SIGEV_NONE by checking for that special case in the timeout callback. The regular posix timers avoid sending signals to SIGEV_NONE timers by not scheduling any callbacks for them in the first place. Although it would be possible to do something similar for alarm timers, it's simpler to handle this as a special case in the timeout. Prior to this patch, the alarm timer would ignore the sigev_notify value and try to deliver signals to the process anyway. Even worse, the sanity check for the value of sigev_signo is skipped when SIGEV_NONE was specified, so the signal number could be bogus. If sigev_signo was an unitialized value (as it often would be if SIGEV_NONE is used), then it's hard to predict which signal will be sent. Cc: Thomas Gleixner <tglx@linutronix.de> Cc: Ingo Molnar <mingo@kernel.org> Cc: Richard Cochran <richardcochran@gmail.com> Cc: Prarit Bhargava <prarit@redhat.com> Cc: Sharvil Nanavati <sharvil@google.com> Signed-off-by: Richard Larocque <rlarocque@google.com> Signed-off-by: John Stultz <john.stultz@linaro.org> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2014-10-05kcmp: fix standard comparison bugRasmus Villemoes
commit acbbe6fbb240a927ee1f5994f04d31267d422215 upstream. The C operator <= defines a perfectly fine total ordering on the set of values representable in a long. However, unlike its namesake in the integers, it is not translation invariant, meaning that we do not have "b <= c" iff "a+b <= a+c" for all a,b,c. This means that it is always wrong to try to boil down the relationship between two longs to a question about the sign of their difference, because the resulting relation [a LEQ b iff a-b <= 0] is neither anti-symmetric or transitive. The former is due to -LONG_MIN==LONG_MIN (take any two a,b with a-b = LONG_MIN; then a LEQ b and b LEQ a, but a != b). The latter can either be seen observing that x LEQ x+1 for all x, implying x LEQ x+1 LEQ x+2 ... LEQ x-1 LEQ x; or more directly with the simple example a=LONG_MIN, b=0, c=1, for which a-b < 0, b-c < 0, but a-c > 0. Note that it makes absolutely no difference that a transmogrying bijection has been applied before the comparison is done. In fact, had the obfuscation not been done, one could probably not observe the bug (assuming all values being compared always lie in one half of the address space, the mathematical value of a-b is always representable in a long). As it stands, one can easily obtain three file descriptors exhibiting the non-transitivity of kcmp(). Side note 1: I can't see that ensuring the MSB of the multiplier is set serves any purpose other than obfuscating the obfuscating code. Side note 2: #include <stdio.h> #include <stdlib.h> #include <string.h> #include <fcntl.h> #include <unistd.h> #include <assert.h> #include <sys/syscall.h> enum kcmp_type { KCMP_FILE, KCMP_VM, KCMP_FILES, KCMP_FS, KCMP_SIGHAND, KCMP_IO, KCMP_SYSVSEM, KCMP_TYPES, }; pid_t pid; int kcmp(pid_t pid1, pid_t pid2, int type, unsigned long idx1, unsigned long idx2) { return syscall(SYS_kcmp, pid1, pid2, type, idx1, idx2); } int cmp_fd(int fd1, int fd2) { int c = kcmp(pid, pid, KCMP_FILE, fd1, fd2); if (c < 0) { perror("kcmp"); exit(1); } assert(0 <= c && c < 3); return c; } int cmp_fdp(const void *a, const void *b) { static const int normalize[] = {0, -1, 1}; return normalize[cmp_fd(*(int*)a, *(int*)b)]; } #define MAX 100 /* This is plenty; I've seen it trigger for MAX==3 */ int main(int argc, char *argv[]) { int r, s, count = 0; int REL[3] = {0,0,0}; int fd[MAX]; pid = getpid(); while (count < MAX) { r = open("/dev/null", O_RDONLY); if (r < 0) break; fd[count++] = r; } printf("opened %d file descriptors\n", count); for (r = 0; r < count; ++r) { for (s = r+1; s < count; ++s) { REL[cmp_fd(fd[r], fd[s])]++; } } printf("== %d\t< %d\t> %d\n", REL[0], REL[1], REL[2]); qsort(fd, count, sizeof(fd[0]), cmp_fdp); memset(REL, 0, sizeof(REL)); for (r = 0; r < count; ++r) { for (s = r+1; s < count; ++s) { REL[cmp_fd(fd[r], fd[s])]++; } } printf("== %d\t< %d\t> %d\n", REL[0], REL[1], REL[2]); return (REL[0] + REL[2] != 0); } Signed-off-by: Rasmus Villemoes <linux@rasmusvillemoes.dk> Reviewed-by: Cyrill Gorcunov <gorcunov@openvz.org> "Eric W. Biederman" <ebiederm@xmission.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2014-10-05trace: Fix epoll hang when we race with new entriesJosef Bacik
commit 4ce97dbf50245227add17c83d87dc838e7ca79d0 upstream. Epoll on trace_pipe can sometimes hang in a weird case. If the ring buffer is empty when we set waiters_pending but an event shows up exactly at that moment we can miss being woken up by the ring buffers irq work. Since ring_buffer_empty() is inherently racey we will sometimes think that the buffer is not empty. So we don't get woken up and we don't think there are any events even though there were some ready when we added the watch, which makes us hang. This patch fixes this by making sure that we are actually on the wait list before we set waiters_pending, and add a memory barrier to make sure ring_buffer_empty() is going to be correct. Link: http://lkml.kernel.org/p/1408989581-23727-1-git-send-email-jbacik@fb.com Cc: Martin Lau <kafai@fb.com> Signed-off-by: Josef Bacik <jbacik@fb.com> Signed-off-by: Steven Rostedt <rostedt@goodmis.org> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2014-09-17ring-buffer: Up rb_iter_peek() loop count to 3Steven Rostedt (Red Hat)
commit 021de3d904b88b1771a3a2cfc5b75023c391e646 upstream. After writting a test to try to trigger the bug that caused the ring buffer iterator to become corrupted, I hit another bug: WARNING: CPU: 1 PID: 5281 at kernel/trace/ring_buffer.c:3766 rb_iter_peek+0x113/0x238() Modules linked in: ipt_MASQUERADE sunrpc [...] CPU: 1 PID: 5281 Comm: grep Tainted: G W 3.16.0-rc3-test+ #143 Hardware name: To Be Filled By O.E.M. To Be Filled By O.E.M./To be filled by O.E.M., BIOS SDBLI944.86P 05/08/2007 0000000000000000 ffffffff81809a80 ffffffff81503fb0 0000000000000000 ffffffff81040ca1 ffff8800796d6010 ffffffff810c138d ffff8800796d6010 ffff880077438c80 ffff8800796d6010 ffff88007abbe600 0000000000000003 Call Trace: [<ffffffff81503fb0>] ? dump_stack+0x4a/0x75 [<ffffffff81040ca1>] ? warn_slowpath_common+0x7e/0x97 [<ffffffff810c138d>] ? rb_iter_peek+0x113/0x238 [<ffffffff810c138d>] ? rb_iter_peek+0x113/0x238 [<ffffffff810c14df>] ? ring_buffer_iter_peek+0x2d/0x5c [<ffffffff810c6f73>] ? tracing_iter_reset+0x6e/0x96 [<ffffffff810c74a3>] ? s_start+0xd7/0x17b [<ffffffff8112b13e>] ? kmem_cache_alloc_trace+0xda/0xea [<ffffffff8114cf94>] ? seq_read+0x148/0x361 [<ffffffff81132d98>] ? vfs_read+0x93/0xf1 [<ffffffff81132f1b>] ? SyS_read+0x60/0x8e [<ffffffff8150bf9f>] ? tracesys+0xdd/0xe2 Debugging this bug, which triggers when the rb_iter_peek() loops too many times (more than 2 times), I discovered there's a case that can cause that function to legitimately loop 3 times! rb_iter_peek() is different than rb_buffer_peek() as the rb_buffer_peek() only deals with the reader page (it's for consuming reads). The rb_iter_peek() is for traversing the buffer without consuming it, and as such, it can loop for one more reason. That is, if we hit the end of the reader page or any page, it will go to the next page and try again. That is, we have this: 1. iter->head > iter->head_page->page->commit (rb_inc_iter() which moves the iter to the next page) try again 2. event = rb_iter_head_event() event->type_len == RINGBUF_TYPE_TIME_EXTEND rb_advance_iter() try again 3. read the event. But we never get to 3, because the count is greater than 2 and we cause the WARNING and return NULL. Up the counter to 3. Fixes: 69d1b839f7ee "ring-buffer: Bind time extend and data events together" Signed-off-by: Steven Rostedt <rostedt@goodmis.org> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>