summaryrefslogtreecommitdiff
path: root/kernel
AgeCommit message (Collapse)Author
2014-12-01perf: Handle compat ioctlPawel Moll
commit b3f207855f57b9c8f43a547a801340bb5cbc59e5 upstream. When running a 32-bit userspace on a 64-bit kernel (eg. i386 application on x86_64 kernel or 32-bit arm userspace on arm64 kernel) some of the perf ioctls must be treated with special care, as they have a pointer size encoded in the command. For example, PERF_EVENT_IOC_ID in 32-bit world will be encoded as 0x80042407, but 64-bit kernel will expect 0x80082407. In result the ioctl will fail returning -ENOTTY. This patch solves the problem by adding code fixing up the size as compat_ioctl file operation. Reported-by: Drew Richardson <drew.richardson@arm.com> Signed-off-by: Pawel Moll <pawel.moll@arm.com> Signed-off-by: Peter Zijlstra <peterz@infradead.org> Cc: Arnaldo Carvalho de Melo <acme@kernel.org> Cc: Jiri Olsa <jolsa@redhat.com> Link: http://lkml.kernel.org/r/1402671812-9078-1-git-send-email-pawel.moll@arm.com Signed-off-by: Ingo Molnar <mingo@kernel.org> Cc: David Ahern <dsahern@gmail.com> [lizf: Backported to 3.4 by David Ahern] Signed-off-by: Zefan Li <lizefan@huawei.com>
2014-12-01perf: fix perf bug in fork()Peter Zijlstra
commit 6c72e3501d0d62fc064d3680e5234f3463ec5a86 upstream. Oleg noticed that a cleanup by Sylvain actually uncovered a bug; by calling perf_event_free_task() when failing sched_fork() we will not yet have done the memset() on ->perf_event_ctxp[] and will therefore try and 'free' the inherited contexts, which are still in use by the parent process. This is bad.. Suggested-by: Oleg Nesterov <oleg@redhat.com> Reported-by: Oleg Nesterov <oleg@redhat.com> Reported-by: Sylvain 'ythier' Hitier <sylvain.hitier@gmail.com> Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> Cc: Ingo Molnar <mingo@kernel.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> Signed-off-by: Zefan Li <lizefan@huawei.com>
2014-12-01cpuset: PF_SPREAD_PAGE and PF_SPREAD_SLAB should be atomic flagsZefan Li
commit 2ad654bc5e2b211e92f66da1d819e47d79a866f0 upstream. When we change cpuset.memory_spread_{page,slab}, cpuset will flip PF_SPREAD_{PAGE,SLAB} bit of tsk->flags for each task in that cpuset. This should be done using atomic bitops, but currently we don't, which is broken. Tetsuo reported a hard-to-reproduce kernel crash on RHEL6, which happened when one thread tried to clear PF_USED_MATH while at the same time another thread tried to flip PF_SPREAD_PAGE/PF_SPREAD_SLAB. They both operate on the same task. Here's the full report: https://lkml.org/lkml/2014/9/19/230 To fix this, we make PF_SPREAD_PAGE and PF_SPREAD_SLAB atomic flags. v4: - updated mm/slab.c. (Fengguang Wu) - updated Documentation. Cc: Peter Zijlstra <peterz@infradead.org> Cc: Ingo Molnar <mingo@kernel.org> Cc: Miao Xie <miaox@cn.fujitsu.com> Cc: Kees Cook <keescook@chromium.org> Fixes: 950592f7b991 ("cpusets: update tasks' page/slab spread flags in time") Reported-by: Tetsuo Handa <penguin-kernel@I-love.SAKURA.ne.jp> Signed-off-by: Zefan Li <lizefan@huawei.com> Signed-off-by: Tejun Heo <tj@kernel.org> [lizf: Backported to 3.4: - adjust context - check current->flags & PF_MEMPOLICY rather than current->mempolicy]
2014-12-01perf: Fix a race condition in perf_remove_from_context()Cong Wang
commit 3577af70a2ce4853d58e57d832e687d739281479 upstream. We saw a kernel soft lockup in perf_remove_from_context(), it looks like the `perf` process, when exiting, could not go out of the retry loop. Meanwhile, the target process was forking a child. So either the target process should execute the smp function call to deactive the event (if it was running) or it should do a context switch which deactives the event. It seems we optimize out a context switch in perf_event_context_sched_out(), and what's more important, we still test an obsolete task pointer when retrying, so no one actually would deactive that event in this situation. Fix it directly by reloading the task pointer in perf_remove_from_context(). This should cure the above soft lockup. Signed-off-by: Cong Wang <cwang@twopensource.com> Signed-off-by: Cong Wang <xiyou.wangcong@gmail.com> Signed-off-by: Peter Zijlstra <peterz@infradead.org> Cc: Paul Mackerras <paulus@samba.org> Cc: Arnaldo Carvalho de Melo <acme@kernel.org> Cc: Linus Torvalds <torvalds@linux-foundation.org> Link: http://lkml.kernel.org/r/1409696840-843-1-git-send-email-xiyou.wangcong@gmail.com Signed-off-by: Ingo Molnar <mingo@kernel.org> Signed-off-by: Zefan Li <lizefan@huawei.com>
2014-12-01jiffies: Fix timeval conversion to jiffiesAndrew Hunter
commit d78c9300c51d6ceed9f6d078d4e9366f259de28c upstream. timeval_to_jiffies tried to round a timeval up to an integral number of jiffies, but the logic for doing so was incorrect: intervals corresponding to exactly N jiffies would become N+1. This manifested itself particularly repeatedly stopping/starting an itimer: setitimer(ITIMER_PROF, &val, NULL); setitimer(ITIMER_PROF, NULL, &val); would add a full tick to val, _even if it was exactly representable in terms of jiffies_ (say, the result of a previous rounding.) Doing this repeatedly would cause unbounded growth in val. So fix the math. Here's what was wrong with the conversion: we essentially computed (eliding seconds) jiffies = usec * (NSEC_PER_USEC/TICK_NSEC) by using scaling arithmetic, which took the best approximation of NSEC_PER_USEC/TICK_NSEC with denominator of 2^USEC_JIFFIE_SC = x/(2^USEC_JIFFIE_SC), and computed: jiffies = (usec * x) >> USEC_JIFFIE_SC and rounded this calculation up in the intermediate form (since we can't necessarily exactly represent TICK_NSEC in usec.) But the scaling arithmetic is a (very slight) *over*approximation of the true value; that is, instead of dividing by (1 usec/ 1 jiffie), we effectively divided by (1 usec/1 jiffie)-epsilon (rounding down). This would normally be fine, but we want to round timeouts up, and we did so by adding 2^USEC_JIFFIE_SC - 1 before the shift; this would be fine if our division was exact, but dividing this by the slightly smaller factor was equivalent to adding just _over_ 1 to the final result (instead of just _under_ 1, as desired.) In particular, with HZ=1000, we consistently computed that 10000 usec was 11 jiffies; the same was true for any exact multiple of TICK_NSEC. We could possibly still round in the intermediate form, adding something less than 2^USEC_JIFFIE_SC - 1, but easier still is to convert usec->nsec, round in nanoseconds, and then convert using time*spec*_to_jiffies. This adds one constant multiplication, and is not observably slower in microbenchmarks on recent x86 hardware. Tested: the following program: int main() { struct itimerval zero = {{0, 0}, {0, 0}}; /* Initially set to 10 ms. */ struct itimerval initial = zero; initial.it_interval.tv_usec = 10000; setitimer(ITIMER_PROF, &initial, NULL); /* Save and restore several times. */ for (size_t i = 0; i < 10; ++i) { struct itimerval prev; setitimer(ITIMER_PROF, &zero, &prev); /* on old kernels, this goes up by TICK_USEC every iteration */ printf("previous value: %ld %ld %ld %ld\n", prev.it_interval.tv_sec, prev.it_interval.tv_usec, prev.it_value.tv_sec, prev.it_value.tv_usec); setitimer(ITIMER_PROF, &prev, NULL); } return 0; } Cc: Thomas Gleixner <tglx@linutronix.de> Cc: Ingo Molnar <mingo@redhat.com> Cc: Paul Turner <pjt@google.com> Cc: Richard Cochran <richardcochran@gmail.com> Cc: Prarit Bhargava <prarit@redhat.com> Reviewed-by: Paul Turner <pjt@google.com> Reported-by: Aaron Jacobs <jacobsa@google.com> Signed-off-by: Andrew Hunter <ahh@google.com> [jstultz: Tweaked to apply to 3.17-rc] Signed-off-by: John Stultz <john.stultz@linaro.org> [lizf: Backported to 3.4: adjust filename] Signed-off-by: Zefan Li <lizefan@huawei.com>
2014-12-01alarmtimer: Lock k_itimer during timer callbackRichard Larocque
commit 474e941bed9262f5fa2394f9a4a67e24499e5926 upstream. Locks the k_itimer's it_lock member when handling the alarm timer's expiry callback. The regular posix timers defined in posix-timers.c have this lock held during timout processing because their callbacks are routed through posix_timer_fn(). The alarm timers follow a different path, so they ought to grab the lock somewhere else. Cc: Thomas Gleixner <tglx@linutronix.de> Cc: Ingo Molnar <mingo@kernel.org> Cc: Richard Cochran <richardcochran@gmail.com> Cc: Prarit Bhargava <prarit@redhat.com> Cc: Sharvil Nanavati <sharvil@google.com> Signed-off-by: Richard Larocque <rlarocque@google.com> Signed-off-by: John Stultz <john.stultz@linaro.org> Signed-off-by: Zefan Li <lizefan@huawei.com>
2014-12-01alarmtimer: Do not signal SIGEV_NONE timersRichard Larocque
commit 265b81d23a46c39df0a735a3af4238954b41a4c2 upstream. Avoids sending a signal to alarm timers created with sigev_notify set to SIGEV_NONE by checking for that special case in the timeout callback. The regular posix timers avoid sending signals to SIGEV_NONE timers by not scheduling any callbacks for them in the first place. Although it would be possible to do something similar for alarm timers, it's simpler to handle this as a special case in the timeout. Prior to this patch, the alarm timer would ignore the sigev_notify value and try to deliver signals to the process anyway. Even worse, the sanity check for the value of sigev_signo is skipped when SIGEV_NONE was specified, so the signal number could be bogus. If sigev_signo was an unitialized value (as it often would be if SIGEV_NONE is used), then it's hard to predict which signal will be sent. Cc: Thomas Gleixner <tglx@linutronix.de> Cc: Ingo Molnar <mingo@kernel.org> Cc: Richard Cochran <richardcochran@gmail.com> Cc: Prarit Bhargava <prarit@redhat.com> Cc: Sharvil Nanavati <sharvil@google.com> Signed-off-by: Richard Larocque <rlarocque@google.com> Signed-off-by: John Stultz <john.stultz@linaro.org> Signed-off-by: Zefan Li <lizefan@huawei.com>
2014-12-01alarmtimer: Return relative times in timer_gettimeRichard Larocque
commit e86fea764991e00a03ff1e56409ec9cacdbda4c9 upstream. Returns the time remaining for an alarm timer, rather than the time at which it is scheduled to expire. If the timer has already expired or it is not currently scheduled, the it_value's members are set to zero. This new behavior matches that of the other posix-timers and the POSIX specifications. This is a change in user-visible behavior, and may break existing applications. Hopefully, few users rely on the old incorrect behavior. Cc: Thomas Gleixner <tglx@linutronix.de> Cc: Ingo Molnar <mingo@kernel.org> Cc: Richard Cochran <richardcochran@gmail.com> Cc: Prarit Bhargava <prarit@redhat.com> Cc: Sharvil Nanavati <sharvil@google.com> Signed-off-by: Richard Larocque <rlarocque@google.com> [jstultz: minor style tweak] Signed-off-by: John Stultz <john.stultz@linaro.org> [lizf: Backported to 3.4: - add alarm_expires_remaining() introduced by commit 6cffe00f7d4e] Signed-off-by: Zefan Li <lizefan@huawei.com>
2014-12-01futex: Unlock hb->lock in futex_wait_requeue_pi() error pathThomas Gleixner
commit 13c42c2f43b19aab3195f2d357db00d1e885eaa8 upstream. futex_wait_requeue_pi() calls futex_wait_setup(). If futex_wait_setup() succeeds it returns with hb->lock held and preemption disabled. Now the sanity check after this does: if (match_futex(&q.key, &key2)) { ret = -EINVAL; goto out_put_keys; } which releases the keys but does not release hb->lock. So we happily return to user space with hb->lock held and therefor preemption disabled. Unlock hb->lock before taking the exit route. Reported-by: Dave "Trinity" Jones <davej@redhat.com> Signed-off-by: Thomas Gleixner <tglx@linutronix.de> Reviewed-by: Darren Hart <dvhart@linux.intel.com> Reviewed-by: Davidlohr Bueso <dave@stgolabs.net> Cc: Peter Zijlstra <a.p.zijlstra@chello.nl> Link: http://lkml.kernel.org/r/alpine.DEB.2.10.1409112318500.4178@nanos Signed-off-by: Thomas Gleixner <tglx@linutronix.de> [lizf: Backported to 3.4: queue_unlock() takes two parameters] Signed-off-by: Zefan Li <lizefan@huawei.com>
2014-12-01cgroup: reject cgroup names with ' 'Alban Crequy
commit 71b1fb5c4473a5b1e601d41b109bdfe001ec82e0 upstream. /proc/<pid>/cgroup contains one cgroup path on each line. If cgroup names are allowed to contain "\n", applications cannot parse /proc/<pid>/cgroup safely. Signed-off-by: Alban Crequy <alban.crequy@collabora.co.uk> Signed-off-by: Tejun Heo <tj@kernel.org> [lizf: Backported to 3.4: - adjust context - s/name/dentry->d_name.name/] Signed-off-by: Zefan Li <lizefan@huawei.com>
2014-08-07timer: Fix lock inversion between hrtimer_bases.lock and scheduler locksJan Kara
commit 504d58745c9ca28d33572e2d8a9990b43e06075d upstream. clockevents_increase_min_delta() calls printk() from under hrtimer_bases.lock. That causes lock inversion on scheduler locks because printk() can call into the scheduler. Lockdep puts it as: ====================================================== [ INFO: possible circular locking dependency detected ] 3.15.0-rc8-06195-g939f04b #2 Not tainted ------------------------------------------------------- trinity-main/74 is trying to acquire lock: (&port_lock_key){-.....}, at: [<811c60be>] serial8250_console_write+0x8c/0x10c but task is already holding lock: (hrtimer_bases.lock){-.-...}, at: [<8103caeb>] hrtimer_try_to_cancel+0x13/0x66 which lock already depends on the new lock. the existing dependency chain (in reverse order) is: -> #5 (hrtimer_bases.lock){-.-...}: [<8104a942>] lock_acquire+0x92/0x101 [<8142f11d>] _raw_spin_lock_irqsave+0x2e/0x3e [<8103c918>] __hrtimer_start_range_ns+0x1c/0x197 [<8107ec20>] perf_swevent_start_hrtimer.part.41+0x7a/0x85 [<81080792>] task_clock_event_start+0x3a/0x3f [<810807a4>] task_clock_event_add+0xd/0x14 [<8108259a>] event_sched_in+0xb6/0x17a [<810826a2>] group_sched_in+0x44/0x122 [<81082885>] ctx_sched_in.isra.67+0x105/0x11f [<810828e6>] perf_event_sched_in.isra.70+0x47/0x4b [<81082bf6>] __perf_install_in_context+0x8b/0xa3 [<8107eb8e>] remote_function+0x12/0x2a [<8105f5af>] smp_call_function_single+0x2d/0x53 [<8107e17d>] task_function_call+0x30/0x36 [<8107fb82>] perf_install_in_context+0x87/0xbb [<810852c9>] SYSC_perf_event_open+0x5c6/0x701 [<810856f9>] SyS_perf_event_open+0x17/0x19 [<8142f8ee>] syscall_call+0x7/0xb -> #4 (&ctx->lock){......}: [<8104a942>] lock_acquire+0x92/0x101 [<8142f04c>] _raw_spin_lock+0x21/0x30 [<81081df3>] __perf_event_task_sched_out+0x1dc/0x34f [<8142cacc>] __schedule+0x4c6/0x4cb [<8142cae0>] schedule+0xf/0x11 [<8142f9a6>] work_resched+0x5/0x30 -> #3 (&rq->lock){-.-.-.}: [<8104a942>] lock_acquire+0x92/0x101 [<8142f04c>] _raw_spin_lock+0x21/0x30 [<81040873>] __task_rq_lock+0x33/0x3a [<8104184c>] wake_up_new_task+0x25/0xc2 [<8102474b>] do_fork+0x15c/0x2a0 [<810248a9>] kernel_thread+0x1a/0x1f [<814232a2>] rest_init+0x1a/0x10e [<817af949>] start_kernel+0x303/0x308 [<817af2ab>] i386_start_kernel+0x79/0x7d -> #2 (&p->pi_lock){-.-...}: [<8104a942>] lock_acquire+0x92/0x101 [<8142f11d>] _raw_spin_lock_irqsave+0x2e/0x3e [<810413dd>] try_to_wake_up+0x1d/0xd6 [<810414cd>] default_wake_function+0xb/0xd [<810461f3>] __wake_up_common+0x39/0x59 [<81046346>] __wake_up+0x29/0x3b [<811b8733>] tty_wakeup+0x49/0x51 [<811c3568>] uart_write_wakeup+0x17/0x19 [<811c5dc1>] serial8250_tx_chars+0xbc/0xfb [<811c5f28>] serial8250_handle_irq+0x54/0x6a [<811c5f57>] serial8250_default_handle_irq+0x19/0x1c [<811c56d8>] serial8250_interrupt+0x38/0x9e [<810510e7>] handle_irq_event_percpu+0x5f/0x1e2 [<81051296>] handle_irq_event+0x2c/0x43 [<81052cee>] handle_level_irq+0x57/0x80 [<81002a72>] handle_irq+0x46/0x5c [<810027df>] do_IRQ+0x32/0x89 [<8143036e>] common_interrupt+0x2e/0x33 [<8142f23c>] _raw_spin_unlock_irqrestore+0x3f/0x49 [<811c25a4>] uart_start+0x2d/0x32 [<811c2c04>] uart_write+0xc7/0xd6 [<811bc6f6>] n_tty_write+0xb8/0x35e [<811b9beb>] tty_write+0x163/0x1e4 [<811b9cd9>] redirected_tty_write+0x6d/0x75 [<810b6ed6>] vfs_write+0x75/0xb0 [<810b7265>] SyS_write+0x44/0x77 [<8142f8ee>] syscall_call+0x7/0xb -> #1 (&tty->write_wait){-.....}: [<8104a942>] lock_acquire+0x92/0x101 [<8142f11d>] _raw_spin_lock_irqsave+0x2e/0x3e [<81046332>] __wake_up+0x15/0x3b [<811b8733>] tty_wakeup+0x49/0x51 [<811c3568>] uart_write_wakeup+0x17/0x19 [<811c5dc1>] serial8250_tx_chars+0xbc/0xfb [<811c5f28>] serial8250_handle_irq+0x54/0x6a [<811c5f57>] serial8250_default_handle_irq+0x19/0x1c [<811c56d8>] serial8250_interrupt+0x38/0x9e [<810510e7>] handle_irq_event_percpu+0x5f/0x1e2 [<81051296>] handle_irq_event+0x2c/0x43 [<81052cee>] handle_level_irq+0x57/0x80 [<81002a72>] handle_irq+0x46/0x5c [<810027df>] do_IRQ+0x32/0x89 [<8143036e>] common_interrupt+0x2e/0x33 [<8142f23c>] _raw_spin_unlock_irqrestore+0x3f/0x49 [<811c25a4>] uart_start+0x2d/0x32 [<811c2c04>] uart_write+0xc7/0xd6 [<811bc6f6>] n_tty_write+0xb8/0x35e [<811b9beb>] tty_write+0x163/0x1e4 [<811b9cd9>] redirected_tty_write+0x6d/0x75 [<810b6ed6>] vfs_write+0x75/0xb0 [<810b7265>] SyS_write+0x44/0x77 [<8142f8ee>] syscall_call+0x7/0xb -> #0 (&port_lock_key){-.....}: [<8104a62d>] __lock_acquire+0x9ea/0xc6d [<8104a942>] lock_acquire+0x92/0x101 [<8142f11d>] _raw_spin_lock_irqsave+0x2e/0x3e [<811c60be>] serial8250_console_write+0x8c/0x10c [<8104e402>] call_console_drivers.constprop.31+0x87/0x118 [<8104f5d5>] console_unlock+0x1d7/0x398 [<8104fb70>] vprintk_emit+0x3da/0x3e4 [<81425f76>] printk+0x17/0x19 [<8105bfa0>] clockevents_program_min_delta+0x104/0x116 [<8105c548>] clockevents_program_event+0xe7/0xf3 [<8105cc1c>] tick_program_event+0x1e/0x23 [<8103c43c>] hrtimer_force_reprogram+0x88/0x8f [<8103c49e>] __remove_hrtimer+0x5b/0x79 [<8103cb21>] hrtimer_try_to_cancel+0x49/0x66 [<8103cb4b>] hrtimer_cancel+0xd/0x18 [<8107f102>] perf_swevent_cancel_hrtimer.part.60+0x2b/0x30 [<81080705>] task_clock_event_stop+0x20/0x64 [<81080756>] task_clock_event_del+0xd/0xf [<81081350>] event_sched_out+0xab/0x11e [<810813e0>] group_sched_out+0x1d/0x66 [<81081682>] ctx_sched_out+0xaf/0xbf [<81081e04>] __perf_event_task_sched_out+0x1ed/0x34f [<8142cacc>] __schedule+0x4c6/0x4cb [<8142cae0>] schedule+0xf/0x11 [<8142f9a6>] work_resched+0x5/0x30 other info that might help us debug this: Chain exists of: &port_lock_key --> &ctx->lock --> hrtimer_bases.lock Possible unsafe locking scenario: CPU0 CPU1 ---- ---- lock(hrtimer_bases.lock); lock(&ctx->lock); lock(hrtimer_bases.lock); lock(&port_lock_key); *** DEADLOCK *** 4 locks held by trinity-main/74: #0: (&rq->lock){-.-.-.}, at: [<8142c6f3>] __schedule+0xed/0x4cb #1: (&ctx->lock){......}, at: [<81081df3>] __perf_event_task_sched_out+0x1dc/0x34f #2: (hrtimer_bases.lock){-.-...}, at: [<8103caeb>] hrtimer_try_to_cancel+0x13/0x66 #3: (console_lock){+.+...}, at: [<8104fb5d>] vprintk_emit+0x3c7/0x3e4 stack backtrace: CPU: 0 PID: 74 Comm: trinity-main Not tainted 3.15.0-rc8-06195-g939f04b #2 00000000 81c3a310 8b995c14 81426f69 8b995c44 81425a99 8161f671 8161f570 8161f538 8161f559 8161f538 8b995c78 8b142bb0 00000004 8b142fdc 8b142bb0 8b995ca8 8104a62d 8b142fac 000016f2 81c3a310 00000001 00000001 00000003 Call Trace: [<81426f69>] dump_stack+0x16/0x18 [<81425a99>] print_circular_bug+0x18f/0x19c [<8104a62d>] __lock_acquire+0x9ea/0xc6d [<8104a942>] lock_acquire+0x92/0x101 [<811c60be>] ? serial8250_console_write+0x8c/0x10c [<811c6032>] ? wait_for_xmitr+0x76/0x76 [<8142f11d>] _raw_spin_lock_irqsave+0x2e/0x3e [<811c60be>] ? serial8250_console_write+0x8c/0x10c [<811c60be>] serial8250_console_write+0x8c/0x10c [<8104af87>] ? lock_release+0x191/0x223 [<811c6032>] ? wait_for_xmitr+0x76/0x76 [<8104e402>] call_console_drivers.constprop.31+0x87/0x118 [<8104f5d5>] console_unlock+0x1d7/0x398 [<8104fb70>] vprintk_emit+0x3da/0x3e4 [<81425f76>] printk+0x17/0x19 [<8105bfa0>] clockevents_program_min_delta+0x104/0x116 [<8105cc1c>] tick_program_event+0x1e/0x23 [<8103c43c>] hrtimer_force_reprogram+0x88/0x8f [<8103c49e>] __remove_hrtimer+0x5b/0x79 [<8103cb21>] hrtimer_try_to_cancel+0x49/0x66 [<8103cb4b>] hrtimer_cancel+0xd/0x18 [<8107f102>] perf_swevent_cancel_hrtimer.part.60+0x2b/0x30 [<81080705>] task_clock_event_stop+0x20/0x64 [<81080756>] task_clock_event_del+0xd/0xf [<81081350>] event_sched_out+0xab/0x11e [<810813e0>] group_sched_out+0x1d/0x66 [<81081682>] ctx_sched_out+0xaf/0xbf [<81081e04>] __perf_event_task_sched_out+0x1ed/0x34f [<8104416d>] ? __dequeue_entity+0x23/0x27 [<81044505>] ? pick_next_task_fair+0xb1/0x120 [<8142cacc>] __schedule+0x4c6/0x4cb [<81047574>] ? trace_hardirqs_off_caller+0xd7/0x108 [<810475b0>] ? trace_hardirqs_off+0xb/0xd [<81056346>] ? rcu_irq_exit+0x64/0x77 Fix the problem by using printk_deferred() which does not call into the scheduler. Reported-by: Fengguang Wu <fengguang.wu@intel.com> Signed-off-by: Jan Kara <jack@suse.cz> Signed-off-by: Thomas Gleixner <tglx@linutronix.de> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2014-08-07printk: rename printk_sched to printk_deferredJohn Stultz
commit aac74dc495456412c4130a1167ce4beb6c1f0b38 upstream. After learning we'll need some sort of deferred printk functionality in the timekeeping core, Peter suggested we rename the printk_sched function so it can be reused by needed subsystems. This only changes the function name. No logic changes. Signed-off-by: John Stultz <john.stultz@linaro.org> Reviewed-by: Steven Rostedt <rostedt@goodmis.org> Cc: Jan Kara <jack@suse.cz> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Jiri Bohac <jbohac@suse.cz> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: Ingo Molnar <mingo@redhat.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2014-07-28PM / sleep: Fix request_firmware() error at resumeTakashi Iwai
commit 4320f6b1d9db4ca912c5eb6ecb328b2e090e1586 upstream. The commit [247bc037: PM / Sleep: Mitigate race between the freezer and request_firmware()] introduced the finer state control, but it also leads to a new bug; for example, a bug report regarding the firmware loading of intel BT device at suspend/resume: https://bugzilla.novell.com/show_bug.cgi?id=873790 The root cause seems to be a small window between the process resume and the clear of usermodehelper lock. The request_firmware() function checks the UMH lock and gives up when it's in UMH_DISABLE state. This is for avoiding the invalid f/w loading during suspend/resume phase. The problem is, however, that usermodehelper_enable() is called at the end of thaw_processes(). Thus, a thawed process in between can kick off the f/w loader code path (in this case, via btusb_setup_intel()) even before the call of usermodehelper_enable(). Then usermodehelper_read_trylock() returns an error and request_firmware() spews WARN_ON() in the end. This oneliner patch fixes the issue just by setting to UMH_FREEZING state again before restarting tasks, so that the call of request_firmware() will be blocked until the end of this function instead of returning an error. Fixes: 247bc0374254 (PM / Sleep: Mitigate race between the freezer and request_firmware()) Link: https://bugzilla.novell.com/show_bug.cgi?id=873790 Signed-off-by: Takashi Iwai <tiwai@suse.de> Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2014-07-28alarmtimer: Fix bug where relative alarm timers were treated as absoluteJohn Stultz
commit 16927776ae757d0d132bdbfabbfe2c498342bd59 upstream. Sharvil noticed with the posix timer_settime interface, using the CLOCK_REALTIME_ALARM or CLOCK_BOOTTIME_ALARM clockid, if the users tried to specify a relative time timer, it would incorrectly be treated as absolute regardless of the state of the flags argument. This patch corrects this, properly checking the absolute/relative flag, as well as adds further error checking that no invalid flag bits are set. Reported-by: Sharvil Nanavati <sharvil@google.com> Signed-off-by: John Stultz <john.stultz@linaro.org> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: Ingo Molnar <mingo@kernel.org> Cc: Prarit Bhargava <prarit@redhat.com> Cc: Sharvil Nanavati <sharvil@google.com> Link: http://lkml.kernel.org/r/1404767171-6902-1-git-send-email-john.stultz@linaro.org Signed-off-by: Thomas Gleixner <tglx@linutronix.de> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2014-07-17rtmutex: Plug slow unlock raceThomas Gleixner
commit 27e35715df54cbc4f2d044f681802ae30479e7fb upstream. When the rtmutex fast path is enabled the slow unlock function can create the following situation: spin_lock(foo->m->wait_lock); foo->m->owner = NULL; rt_mutex_lock(foo->m); <-- fast path free = atomic_dec_and_test(foo->refcnt); rt_mutex_unlock(foo->m); <-- fast path if (free) kfree(foo); spin_unlock(foo->m->wait_lock); <--- Use after free. Plug the race by changing the slow unlock to the following scheme: while (!rt_mutex_has_waiters(m)) { /* Clear the waiters bit in m->owner */ clear_rt_mutex_waiters(m); owner = rt_mutex_owner(m); spin_unlock(m->wait_lock); if (cmpxchg(m->owner, owner, 0) == owner) return; spin_lock(m->wait_lock); } So in case of a new waiter incoming while the owner tries the slow path unlock we have two situations: unlock(wait_lock); lock(wait_lock); cmpxchg(p, owner, 0) == owner mark_rt_mutex_waiters(lock); acquire(lock); Or: unlock(wait_lock); lock(wait_lock); mark_rt_mutex_waiters(lock); cmpxchg(p, owner, 0) != owner enqueue_waiter(); unlock(wait_lock); lock(wait_lock); wakeup_next waiter(); unlock(wait_lock); lock(wait_lock); acquire(lock); If the fast path is disabled, then the simple m->owner = NULL; unlock(m->wait_lock); is sufficient as all access to m->owner is serialized via m->wait_lock; Also document and clarify the wakeup_next_waiter function as suggested by Oleg Nesterov. Reported-by: Steven Rostedt <rostedt@goodmis.org> Signed-off-by: Thomas Gleixner <tglx@linutronix.de> Reviewed-by: Steven Rostedt <rostedt@goodmis.org> Cc: Peter Zijlstra <peterz@infradead.org> Link: http://lkml.kernel.org/r/20140611183852.937945560@linutronix.de Signed-off-by: Thomas Gleixner <tglx@linutronix.de> Signed-off-by: Mike Galbraith <umgwanakikbuti@gmail.com> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2014-07-17rtmutex: Handle deadlock detection smarterThomas Gleixner
commit 3d5c9340d1949733eb37616abd15db36aef9a57c upstream. Even in the case when deadlock detection is not requested by the caller, we can detect deadlocks. Right now the code stops the lock chain walk and keeps the waiter enqueued, even on itself. Silly not to yell when such a scenario is detected and to keep the waiter enqueued. Return -EDEADLK unconditionally and handle it at the call sites. The futex calls return -EDEADLK. The non futex ones dequeue the waiter, throw a warning and put the task into a schedule loop. Tagged for stable as it makes the code more robust. Signed-off-by: Thomas Gleixner <tglx@linutronix.de> Cc: Steven Rostedt <rostedt@goodmis.org> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Brad Mouring <bmouring@ni.com> Link: http://lkml.kernel.org/r/20140605152801.836501969@linutronix.de Signed-off-by: Thomas Gleixner <tglx@linutronix.de> Signed-off-by: Mike Galbraith <umgwanakikbuti@gmail.com> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2014-07-17rtmutex: Detect changes in the pi lock chainThomas Gleixner
commit 82084984383babe728e6e3c9a8e5c46278091315 upstream. When we walk the lock chain, we drop all locks after each step. So the lock chain can change under us before we reacquire the locks. That's harmless in principle as we just follow the wrong lock path. But it can lead to a false positive in the dead lock detection logic: T0 holds L0 T0 blocks on L1 held by T1 T1 blocks on L2 held by T2 T2 blocks on L3 held by T3 T4 blocks on L4 held by T4 Now we walk the chain lock T1 -> lock L2 -> adjust L2 -> unlock T1 -> lock T2 -> adjust T2 -> drop locks T2 times out and blocks on L0 Now we continue: lock T2 -> lock L0 -> deadlock detected, but it's not a deadlock at all. Brad tried to work around that in the deadlock detection logic itself, but the more I looked at it the less I liked it, because it's crystal ball magic after the fact. We actually can detect a chain change very simple: lock T1 -> lock L2 -> adjust L2 -> unlock T1 -> lock T2 -> adjust T2 -> next_lock = T2->pi_blocked_on->lock; drop locks T2 times out and blocks on L0 Now we continue: lock T2 -> if (next_lock != T2->pi_blocked_on->lock) return; So if we detect that T2 is now blocked on a different lock we stop the chain walk. That's also correct in the following scenario: lock T1 -> lock L2 -> adjust L2 -> unlock T1 -> lock T2 -> adjust T2 -> next_lock = T2->pi_blocked_on->lock; drop locks T3 times out and drops L3 T2 acquires L3 and blocks on L4 now Now we continue: lock T2 -> if (next_lock != T2->pi_blocked_on->lock) return; We don't have to follow up the chain at that point, because T2 propagated our priority up to T4 already. [ Folded a cleanup patch from peterz ] Signed-off-by: Thomas Gleixner <tglx@linutronix.de> Reported-by: Brad Mouring <bmouring@ni.com> Cc: Steven Rostedt <rostedt@goodmis.org> Cc: Peter Zijlstra <peterz@infradead.org> Link: http://lkml.kernel.org/r/20140605152801.930031935@linutronix.de Signed-off-by: Mike Galbraith <umgwanakikbuti@gmail.com> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2014-07-17rtmutex: Fix deadlock detector for realThomas Gleixner
commit 397335f004f41e5fcf7a795e94eb3ab83411a17c upstream. The current deadlock detection logic does not work reliably due to the following early exit path: /* * Drop out, when the task has no waiters. Note, * top_waiter can be NULL, when we are in the deboosting * mode! */ if (top_waiter && (!task_has_pi_waiters(task) || top_waiter != task_top_pi_waiter(task))) goto out_unlock_pi; So this not only exits when the task has no waiters, it also exits unconditionally when the current waiter is not the top priority waiter of the task. So in a nested locking scenario, it might abort the lock chain walk and therefor miss a potential deadlock. Simple fix: Continue the chain walk, when deadlock detection is enabled. We also avoid the whole enqueue, if we detect the deadlock right away (A-A). It's an optimization, but also prevents that another waiter who comes in after the detection and before the task has undone the damage observes the situation and detects the deadlock and returns -EDEADLOCK, which is wrong as the other task is not in a deadlock situation. Signed-off-by: Thomas Gleixner <tglx@linutronix.de> Cc: Peter Zijlstra <peterz@infradead.org> Reviewed-by: Steven Rostedt <rostedt@goodmis.org> Cc: Lai Jiangshan <laijs@cn.fujitsu.com> Link: http://lkml.kernel.org/r/20140522031949.725272460@linutronix.de Signed-off-by: Thomas Gleixner <tglx@linutronix.de> Signed-off-by: Mike Galbraith <umgwanakikbuti@gmail.com> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2014-07-17tracing: Remove ftrace_stop/start() from reading the trace fileSteven Rostedt (Red Hat)
commit 099ed151675cd1d2dbeae1dac697975f6a68716d upstream. Disabling reading and writing to the trace file should not be able to disable all function tracing callbacks. There's other users today (like kprobes and perf). Reading a trace file should not stop those from happening. Reviewed-by: Masami Hiramatsu <masami.hiramatsu.pt@hitachi.com> Signed-off-by: Steven Rostedt <rostedt@goodmis.org> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2014-07-17cpuset,mempolicy: fix sleeping function called from invalid contextGu Zheng
commit 391acf970d21219a2a5446282d3b20eace0c0d7a upstream. When runing with the kernel(3.15-rc7+), the follow bug occurs: [ 9969.258987] BUG: sleeping function called from invalid context at kernel/locking/mutex.c:586 [ 9969.359906] in_atomic(): 1, irqs_disabled(): 0, pid: 160655, name: python [ 9969.441175] INFO: lockdep is turned off. [ 9969.488184] CPU: 26 PID: 160655 Comm: python Tainted: G A 3.15.0-rc7+ #85 [ 9969.581032] Hardware name: FUJITSU-SV PRIMEQUEST 1800E/SB, BIOS PRIMEQUEST 1000 Series BIOS Version 1.39 11/16/2012 [ 9969.706052] ffffffff81a20e60 ffff8803e941fbd0 ffffffff8162f523 ffff8803e941fd18 [ 9969.795323] ffff8803e941fbe0 ffffffff8109995a ffff8803e941fc58 ffffffff81633e6c [ 9969.884710] ffffffff811ba5dc ffff880405c6b480 ffff88041fdd90a0 0000000000002000 [ 9969.974071] Call Trace: [ 9970.003403] [<ffffffff8162f523>] dump_stack+0x4d/0x66 [ 9970.065074] [<ffffffff8109995a>] __might_sleep+0xfa/0x130 [ 9970.130743] [<ffffffff81633e6c>] mutex_lock_nested+0x3c/0x4f0 [ 9970.200638] [<ffffffff811ba5dc>] ? kmem_cache_alloc+0x1bc/0x210 [ 9970.272610] [<ffffffff81105807>] cpuset_mems_allowed+0x27/0x140 [ 9970.344584] [<ffffffff811b1303>] ? __mpol_dup+0x63/0x150 [ 9970.409282] [<ffffffff811b1385>] __mpol_dup+0xe5/0x150 [ 9970.471897] [<ffffffff811b1303>] ? __mpol_dup+0x63/0x150 [ 9970.536585] [<ffffffff81068c86>] ? copy_process.part.23+0x606/0x1d40 [ 9970.613763] [<ffffffff810bf28d>] ? trace_hardirqs_on+0xd/0x10 [ 9970.683660] [<ffffffff810ddddf>] ? monotonic_to_bootbased+0x2f/0x50 [ 9970.759795] [<ffffffff81068cf0>] copy_process.part.23+0x670/0x1d40 [ 9970.834885] [<ffffffff8106a598>] do_fork+0xd8/0x380 [ 9970.894375] [<ffffffff81110e4c>] ? __audit_syscall_entry+0x9c/0xf0 [ 9970.969470] [<ffffffff8106a8c6>] SyS_clone+0x16/0x20 [ 9971.030011] [<ffffffff81642009>] stub_clone+0x69/0x90 [ 9971.091573] [<ffffffff81641c29>] ? system_call_fastpath+0x16/0x1b The cause is that cpuset_mems_allowed() try to take mutex_lock(&callback_mutex) under the rcu_read_lock(which was hold in __mpol_dup()). And in cpuset_mems_allowed(), the access to cpuset is under rcu_read_lock, so in __mpol_dup, we can reduce the rcu_read_lock protection region to protect the access to cpuset only in current_cpuset_is_being_rebound(). So that we can avoid this bug. This patch is a temporary solution that just addresses the bug mentioned above, can not fix the long-standing issue about cpuset.mems rebinding on fork(): "When the forker's task_struct is duplicated (which includes ->mems_allowed) and it races with an update to cpuset_being_rebound in update_tasks_nodemask() then the task's mems_allowed doesn't get updated. And the child task's mems_allowed can be wrong if the cpuset's nodemask changes before the child has been added to the cgroup's tasklist." Signed-off-by: Gu Zheng <guz.fnst@cn.fujitsu.com> Acked-by: Li Zefan <lizefan@huawei.com> Signed-off-by: Tejun Heo <tj@kernel.org> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2014-07-06tracing: Fix syscall_*regfunc() vs copy_process() raceOleg Nesterov
commit 4af4206be2bd1933cae20c2b6fb2058dbc887f7c upstream. syscall_regfunc() and syscall_unregfunc() should set/clear TIF_SYSCALL_TRACEPOINT system-wide, but do_each_thread() can race with copy_process() and miss the new child which was not added to the process/thread lists yet. Change copy_process() to update the child's TIF_SYSCALL_TRACEPOINT under tasklist. Link: http://lkml.kernel.org/p/20140413185854.GB20668@redhat.com Fixes: a871bd33a6c0 "tracing: Add syscall tracepoints" Acked-by: Frederic Weisbecker <fweisbec@gmail.com> Acked-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com> Signed-off-by: Oleg Nesterov <oleg@redhat.com> Signed-off-by: Steven Rostedt <rostedt@goodmis.org> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2014-06-30genirq: Sanitize spurious interrupt detection of threaded irqsThomas Gleixner
commit 1e77d0a1ed7417d2a5a52a7b8d32aea1833faa6c upstream. Till reported that the spurious interrupt detection of threaded interrupts is broken in two ways: - note_interrupt() is called for each action thread of a shared interrupt line. That's wrong as we are only interested whether none of the device drivers felt responsible for the interrupt, but by calling multiple times for a single interrupt line we account IRQ_NONE even if one of the drivers felt responsible. - note_interrupt() when called from the thread handler is not serialized. That leaves the members of irq_desc which are used for the spurious detection unprotected. To solve this we need to defer the spurious detection of a threaded interrupt to the next hardware interrupt context where we have implicit serialization. If note_interrupt is called with action_ret == IRQ_WAKE_THREAD, we check whether the previous interrupt requested a deferred check. If not, we request a deferred check for the next hardware interrupt and return. If set, we check whether one of the interrupt threads signaled success. Depending on this information we feed the result into the spurious detector. If one primary handler of a shared interrupt returns IRQ_HANDLED we disable the deferred check of irq threads on the same line, as we have found at least one device driver who cared. Reported-by: Till Straumann <strauman@slac.stanford.edu> Signed-off-by: Thomas Gleixner <tglx@linutronix.de> Tested-by: Austin Schuh <austin@peloton-tech.com> Cc: Oliver Hartkopp <socketcan@hartkopp.net> Cc: Wolfgang Grandegger <wg@grandegger.com> Cc: Pavel Pisa <pisa@cmp.felk.cvut.cz> Cc: Marc Kleine-Budde <mkl@pengutronix.de> Cc: linux-can@vger.kernel.org Link: http://lkml.kernel.org/r/alpine.LFD.2.02.1303071450130.22263@ionos Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2014-06-26nohz: Fix another inconsistency between CONFIG_NO_HZ=n and nohz=offThomas Gleixner
commit 0e576acbc1d9600cf2d9b4a141a2554639959d50 upstream. If CONFIG_NO_HZ=n tick_nohz_get_sleep_length() returns NSEC_PER_SEC/HZ. If CONFIG_NO_HZ=y and the nohz functionality is disabled via the command line option "nohz=off" or not enabled due to missing hardware support, then tick_nohz_get_sleep_length() returns 0. That happens because ts->sleep_length is never set in that case. Set it to NSEC_PER_SEC/HZ when the NOHZ mode is inactive. Reported-by: Michal Hocko <mhocko@suse.cz> Reported-by: Borislav Petkov <bp@alien8.de> Signed-off-by: Thomas Gleixner <tglx@linutronix.de> Cc: Rui Xiang <rui.xiang@huawei.com> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2014-06-16auditsc: audit_krule mask accesses need bounds checkingAndy Lutomirski
commit a3c54931199565930d6d84f4c3456f6440aefd41 upstream. Fixes an easy DoS and possible information disclosure. This does nothing about the broken state of x32 auditing. eparis: If the admin has enabled auditd and has specifically loaded audit rules. This bug has been around since before git. Wow... Signed-off-by: Andy Lutomirski <luto@amacapital.net> Signed-off-by: Eric Paris <eparis@redhat.com> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2014-06-11sched: Fix hotplug vs. set_cpus_allowed_ptr()Lai Jiangshan
commit 6acbfb96976fc3350e30d964acb1dbbdf876d55e upstream. Lai found that: WARNING: CPU: 1 PID: 13 at arch/x86/kernel/smp.c:124 native_smp_send_reschedule+0x2d/0x4b() ... migration_cpu_stop+0x1d/0x22 was caused by set_cpus_allowed_ptr() assuming that cpu_active_mask is always a sub-set of cpu_online_mask. This isn't true since 5fbd036b552f ("sched: Cleanup cpu_active madness"). So set active and online at the same time to avoid this particular problem. Fixes: 5fbd036b552f ("sched: Cleanup cpu_active madness") Signed-off-by: Lai Jiangshan <laijs@cn.fujitsu.com> Signed-off-by: Peter Zijlstra <peterz@infradead.org> Cc: Andrew Morton <akpm@linux-foundation.org> Cc: Gautham R. Shenoy <ego@linux.vnet.ibm.com> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Michael wang <wangyun@linux.vnet.ibm.com> Cc: Paul Gortmaker <paul.gortmaker@windriver.com> Cc: Rafael J. Wysocki <rafael.j.wysocki@intel.com> Cc: Srivatsa S. Bhat <srivatsa.bhat@linux.vnet.ibm.com> Cc: Toshi Kani <toshi.kani@hp.com> Link: http://lkml.kernel.org/r/53758B12.8060609@cn.fujitsu.com Signed-off-by: Ingo Molnar <mingo@kernel.org> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2014-06-11perf: Fix race in removing an eventPeter Zijlstra
commit 46ce0fe97a6be7532ce6126bb26ce89fed81528c upstream. When removing a (sibling) event we do: raw_spin_lock_irq(&ctx->lock); perf_group_detach(event); raw_spin_unlock_irq(&ctx->lock); <hole> perf_remove_from_context(event); raw_spin_lock_irq(&ctx->lock); ... raw_spin_unlock_irq(&ctx->lock); Now, assuming the event is a sibling, it will be 'unreachable' for things like ctx_sched_out() because that iterates the groups->siblings, and we just unhooked the sibling. So, if during <hole> we get ctx_sched_out(), it will miss the event and not call event_sched_out() on it, leaving it programmed on the PMU. The subsequent perf_remove_from_context() call will find the ctx is inactive and only call list_del_event() to remove the event from all other lists. Hereafter we can proceed to free the event; while still programmed! Close this hole by moving perf_group_detach() inside the same ctx->lock region(s) perf_remove_from_context() has. The condition on inherited events only in __perf_event_exit_task() is likely complete crap because non-inherited events are part of groups too and we're tearing down just the same. But leave that for another patch. Most-likely-Fixes: e03a9a55b4e ("perf: Change close() semantics for group events") Reported-by: Vince Weaver <vincent.weaver@maine.edu> Tested-by: Vince Weaver <vincent.weaver@maine.edu> Much-staring-at-traces-by: Vince Weaver <vincent.weaver@maine.edu> Much-staring-at-traces-by: Thomas Gleixner <tglx@linutronix.de> Cc: Arnaldo Carvalho de Melo <acme@kernel.org> Cc: Linus Torvalds <torvalds@linux-foundation.org> Signed-off-by: Peter Zijlstra <peterz@infradead.org> Link: http://lkml.kernel.org/r/20140505093124.GN17778@laptop.programming.kicks-ass.net Signed-off-by: Ingo Molnar <mingo@kernel.org> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2014-06-11perf: Limit perf_event_attr::sample_period to 63 bitsPeter Zijlstra
commit 0819b2e30ccb93edf04876237b6205eef84ec8d2 upstream. Vince reported that using a large sample_period (one with bit 63 set) results in wreckage since while the sample_period is fundamentally unsigned (negative periods don't make sense) the way we implement things very much rely on signed logic. So limit sample_period to 63 bits to avoid tripping over this. Reported-by: Vince Weaver <vincent.weaver@maine.edu> Signed-off-by: Peter Zijlstra <peterz@infradead.org> Link: http://lkml.kernel.org/n/tip-p25fhunibl4y3qi0zuqmyf4b@git.kernel.org Signed-off-by: Thomas Gleixner <tglx@linutronix.de> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2014-06-11perf: Prevent false warning in perf_swevent_addJiri Olsa
commit 39af6b1678afa5880dda7e375cf3f9d395087f6d upstream. The perf cpu offline callback takes down all cpu context events and releases swhash->swevent_hlist. This could race with task context software event being just scheduled on this cpu via perf_swevent_add while cpu hotplug code already cleaned up event's data. The race happens in the gap between the cpu notifier code and the cpu being actually taken down. Note that only cpu ctx events are terminated in the perf cpu hotplug code. It's easily reproduced with: $ perf record -e faults perf bench sched pipe while putting one of the cpus offline: # echo 0 > /sys/devices/system/cpu/cpu1/online Console emits following warning: WARNING: CPU: 1 PID: 2845 at kernel/events/core.c:5672 perf_swevent_add+0x18d/0x1a0() Modules linked in: CPU: 1 PID: 2845 Comm: sched-pipe Tainted: G W 3.14.0+ #256 Hardware name: Intel Corporation Montevina platform/To be filled by O.E.M., BIOS AMVACRB1.86C.0066.B00.0805070703 05/07/2008 0000000000000009 ffff880077233ab8 ffffffff81665a23 0000000000200005 0000000000000000 ffff880077233af8 ffffffff8104732c 0000000000000046 ffff88007467c800 0000000000000002 ffff88007a9cf2a0 0000000000000001 Call Trace: [<ffffffff81665a23>] dump_stack+0x4f/0x7c [<ffffffff8104732c>] warn_slowpath_common+0x8c/0xc0 [<ffffffff8104737a>] warn_slowpath_null+0x1a/0x20 [<ffffffff8110fb3d>] perf_swevent_add+0x18d/0x1a0 [<ffffffff811162ae>] event_sched_in.isra.75+0x9e/0x1f0 [<ffffffff8111646a>] group_sched_in+0x6a/0x1f0 [<ffffffff81083dd5>] ? sched_clock_local+0x25/0xa0 [<ffffffff811167e6>] ctx_sched_in+0x1f6/0x450 [<ffffffff8111757b>] perf_event_sched_in+0x6b/0xa0 [<ffffffff81117a4b>] perf_event_context_sched_in+0x7b/0xc0 [<ffffffff81117ece>] __perf_event_task_sched_in+0x43e/0x460 [<ffffffff81096f1e>] ? put_lock_stats.isra.18+0xe/0x30 [<ffffffff8107b3c8>] finish_task_switch+0xb8/0x100 [<ffffffff8166a7de>] __schedule+0x30e/0xad0 [<ffffffff81172dd2>] ? pipe_read+0x3e2/0x560 [<ffffffff8166b45e>] ? preempt_schedule_irq+0x3e/0x70 [<ffffffff8166b45e>] ? preempt_schedule_irq+0x3e/0x70 [<ffffffff8166b464>] preempt_schedule_irq+0x44/0x70 [<ffffffff816707f0>] retint_kernel+0x20/0x30 [<ffffffff8109e60a>] ? lockdep_sys_exit+0x1a/0x90 [<ffffffff812a4234>] lockdep_sys_exit_thunk+0x35/0x67 [<ffffffff81679321>] ? sysret_check+0x5/0x56 Fixing this by tracking the cpu hotplug state and displaying the WARN only if current cpu is initialized properly. Cc: Corey Ashford <cjashfor@linux.vnet.ibm.com> Cc: Frederic Weisbecker <fweisbec@gmail.com> Cc: Ingo Molnar <mingo@kernel.org> Cc: Paul Mackerras <paulus@samba.org> Cc: Arnaldo Carvalho de Melo <acme@redhat.com> Reported-by: Fengguang Wu <fengguang.wu@intel.com> Signed-off-by: Jiri Olsa <jolsa@redhat.com> Signed-off-by: Peter Zijlstra <peterz@infradead.org> Link: http://lkml.kernel.org/r/1396861448-10097-1-git-send-email-jolsa@redhat.com Signed-off-by: Thomas Gleixner <tglx@linutronix.de> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2014-06-11sched: Use CPUPRI_NR_PRIORITIES instead of MAX_RT_PRIO in cpupri checkSteven Rostedt (Red Hat)
commit 6227cb00cc120f9a43ce8313bb0475ddabcb7d01 upstream. The check at the beginning of cpupri_find() makes sure that the task_pri variable does not exceed the cp->pri_to_cpu array length. But that length is CPUPRI_NR_PRIORITIES not MAX_RT_PRIO, where it will miss the last two priorities in that array. As task_pri is computed from convert_prio() which should never be bigger than CPUPRI_NR_PRIORITIES, if the check should cause a panic if it is hit. Reported-by: Mike Galbraith <umgwanakikbuti@gmail.com> Signed-off-by: Steven Rostedt <rostedt@goodmis.org> Signed-off-by: Peter Zijlstra <peterz@infradead.org> Link: http://lkml.kernel.org/r/1397015410.5212.13.camel@marge.simpson.net Signed-off-by: Ingo Molnar <mingo@kernel.org> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2014-06-07futex: Make lookup_pi_state more robustThomas Gleixner
commit 54a217887a7b658e2650c3feff22756ab80c7339 upstream. The current implementation of lookup_pi_state has ambigous handling of the TID value 0 in the user space futex. We can get into the kernel even if the TID value is 0, because either there is a stale waiters bit or the owner died bit is set or we are called from the requeue_pi path or from user space just for fun. The current code avoids an explicit sanity check for pid = 0 in case that kernel internal state (waiters) are found for the user space address. This can lead to state leakage and worse under some circumstances. Handle the cases explicit: Waiter | pi_state | pi->owner | uTID | uODIED | ? [1] NULL | --- | --- | 0 | 0/1 | Valid [2] NULL | --- | --- | >0 | 0/1 | Valid [3] Found | NULL | -- | Any | 0/1 | Invalid [4] Found | Found | NULL | 0 | 1 | Valid [5] Found | Found | NULL | >0 | 1 | Invalid [6] Found | Found | task | 0 | 1 | Valid [7] Found | Found | NULL | Any | 0 | Invalid [8] Found | Found | task | ==taskTID | 0/1 | Valid [9] Found | Found | task | 0 | 0 | Invalid [10] Found | Found | task | !=taskTID | 0/1 | Invalid [1] Indicates that the kernel can acquire the futex atomically. We came came here due to a stale FUTEX_WAITERS/FUTEX_OWNER_DIED bit. [2] Valid, if TID does not belong to a kernel thread. If no matching thread is found then it indicates that the owner TID has died. [3] Invalid. The waiter is queued on a non PI futex [4] Valid state after exit_robust_list(), which sets the user space value to FUTEX_WAITERS | FUTEX_OWNER_DIED. [5] The user space value got manipulated between exit_robust_list() and exit_pi_state_list() [6] Valid state after exit_pi_state_list() which sets the new owner in the pi_state but cannot access the user space value. [7] pi_state->owner can only be NULL when the OWNER_DIED bit is set. [8] Owner and user space value match [9] There is no transient state which sets the user space TID to 0 except exit_robust_list(), but this is indicated by the FUTEX_OWNER_DIED bit. See [4] [10] There is no transient state which leaves owner and user space TID out of sync. Signed-off-by: Thomas Gleixner <tglx@linutronix.de> Cc: Kees Cook <keescook@chromium.org> Cc: Will Drewry <wad@chromium.org> Cc: Darren Hart <dvhart@linux.intel.com> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2014-06-07futex: Always cleanup owner tid in unlock_piThomas Gleixner
commit 13fbca4c6ecd96ec1a1cfa2e4f2ce191fe928a5e upstream. If the owner died bit is set at futex_unlock_pi, we currently do not cleanup the user space futex. So the owner TID of the current owner (the unlocker) persists. That's observable inconsistant state, especially when the ownership of the pi state got transferred. Clean it up unconditionally. Signed-off-by: Thomas Gleixner <tglx@linutronix.de> Cc: Kees Cook <keescook@chromium.org> Cc: Will Drewry <wad@chromium.org> Cc: Darren Hart <dvhart@linux.intel.com> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2014-06-07futex: Validate atomic acquisition in futex_lock_pi_atomic()Thomas Gleixner
commit b3eaa9fc5cd0a4d74b18f6b8dc617aeaf1873270 upstream. We need to protect the atomic acquisition in the kernel against rogue user space which sets the user space futex to 0, so the kernel side acquisition succeeds while there is existing state in the kernel associated to the real owner. Verify whether the futex has waiters associated with kernel state. If it has, return -EINVAL. The state is corrupted already, so no point in cleaning it up. Subsequent calls will fail as well. Not our problem. [ tglx: Use futex_top_waiter() and explain why we do not need to try restoring the already corrupted user space state. ] Signed-off-by: Darren Hart <dvhart@linux.intel.com> Cc: Kees Cook <keescook@chromium.org> Cc: Will Drewry <wad@chromium.org> Signed-off-by: Thomas Gleixner <tglx@linutronix.de> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2014-06-07futex-prevent-requeue-pi-on-same-futex.patch futex: Forbid uaddr == uaddr2 ↵Thomas Gleixner
in futex_requeue(..., requeue_pi=1) commit e9c243a5a6de0be8e584c604d353412584b592f8 upstream. If uaddr == uaddr2, then we have broken the rule of only requeueing from a non-pi futex to a pi futex with this call. If we attempt this, then dangling pointers may be left for rt_waiter resulting in an exploitable condition. This change brings futex_requeue() in line with futex_wait_requeue_pi() which performs the same check as per commit 6f7b0a2a5c0f ("futex: Forbid uaddr == uaddr2 in futex_wait_requeue_pi()") [ tglx: Compare the resulting keys as well, as uaddrs might be different depending on the mapping ] Fixes CVE-2014-3153. Reported-by: Pinkie Pie Signed-off-by: Will Drewry <wad@chromium.org> Signed-off-by: Kees Cook <keescook@chromium.org> Signed-off-by: Thomas Gleixner <tglx@linutronix.de> Reviewed-by: Darren Hart <dvhart@linux.intel.com> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2014-06-07tracing: Keep overwrite in sync between regular and snapshot buffersSteven Rostedt (Red Hat)
commit 80902822658aab18330569587cdb69ac1dfdcea8 upstream. Changing the overwrite mode for the ring buffer via the trace option only sets the normal buffer. But the snapshot buffer could swap with it, and then the snapshot would be in non overwrite mode and the normal buffer would be in overwrite mode, even though the option flag states otherwise. Keep the two buffers overwrite modes in sync. Signed-off-by: Steven Rostedt <rostedt@goodmis.org> Cc: Rui Xiang <rui.xiang@huawei.com> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2014-06-07perf: Fix error return codeWei Yongjun
commit c481420248c6730246d2a1b1773d5d7007ae0835 upstream. Fix to return -ENOMEM in the allocation error case instead of 0 (if pmu_bus_running == 1), as done elsewhere in this function. Signed-off-by: Wei Yongjun <yongjun_wei@trendmicro.com.cn> Cc: a.p.zijlstra@chello.nl Cc: paulus@samba.org Cc: acme@ghostprotocols.net Link: http://lkml.kernel.org/r/CAPgLHd8j_fWcgqe%3DKLWjpBj%2B%3Do0Pw6Z-SEq%3DNTPU08c2w1tngQ@mail.gmail.com [ Tweaked the error code setting placement and the changelog. ] Signed-off-by: Ingo Molnar <mingo@kernel.org> Cc: Rui Xiang <rui.xiang@huawei.com> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2014-06-07sched/debug: Fix sd->*_idx limit range avoiding overflowlibin
commit fd9b86d37a600488dbd80fe60cca46b822bff1cd upstream. Commit 201c373e8e ("sched/debug: Limit sd->*_idx range on sysctl") was an incomplete bug fix. This patch fixes sd->*_idx limit range to [0 ~ CPU_LOAD_IDX_MAX-1] avoiding array overflow caused by setting sd->*_idx to CPU_LOAD_IDX_MAX on sysctl. Signed-off-by: Libin <huawei.libin@huawei.com> Cc: <jiang.liu@huawei.com> Cc: <guohanjun@huawei.com> Cc: Peter Zijlstra <peterz@infradead.org> Link: http://lkml.kernel.org/r/51626610.2040607@huawei.com Signed-off-by: Ingo Molnar <mingo@kernel.org> Cc: Rui Xiang <rui.xiang@huawei.com> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2014-06-07sched/debug: Limit sd->*_idx range on sysctlNamhyung Kim
commit 201c373e8e4823700d3160d5c28e1ab18fd1193e upstream. Various sd->*_idx's are used for refering the rq's load average table when selecting a cpu to run. However they can be set to any number with sysctl knobs so that it can crash the kernel if something bad is given. Fix it by limiting them into the actual range. Signed-off-by: Namhyung Kim <namhyung@kernel.org> Signed-off-by: Peter Zijlstra <a.p.zijlstra@chello.nl> Link: http://lkml.kernel.org/r/1345104204-8317-1-git-send-email-namhyung@kernel.org Signed-off-by: Ingo Molnar <mingo@kernel.org> Cc: Rui Xiang <rui.xiang@huawei.com> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2014-06-07ftrace: Check module functions being traced on reloadSteven Rostedt (Red Hat)
commit 8c4f3c3fa9681dc549cd35419b259496082fef8b upstream. There's been a nasty bug that would show up and not give much info. The bug displayed the following warning: WARNING: at kernel/trace/ftrace.c:1529 __ftrace_hash_rec_update+0x1e3/0x230() Pid: 20903, comm: bash Tainted: G O 3.6.11+ #38405.trunk Call Trace: [<ffffffff8103e5ff>] warn_slowpath_common+0x7f/0xc0 [<ffffffff8103e65a>] warn_slowpath_null+0x1a/0x20 [<ffffffff810c2ee3>] __ftrace_hash_rec_update+0x1e3/0x230 [<ffffffff810c4f28>] ftrace_hash_move+0x28/0x1d0 [<ffffffff811401cc>] ? kfree+0x2c/0x110 [<ffffffff810c68ee>] ftrace_regex_release+0x8e/0x150 [<ffffffff81149f1e>] __fput+0xae/0x220 [<ffffffff8114a09e>] ____fput+0xe/0x10 [<ffffffff8105fa22>] task_work_run+0x72/0x90 [<ffffffff810028ec>] do_notify_resume+0x6c/0xc0 [<ffffffff8126596e>] ? trace_hardirqs_on_thunk+0x3a/0x3c [<ffffffff815c0f88>] int_signal+0x12/0x17 ---[ end trace 793179526ee09b2c ]--- It was finally narrowed down to unloading a module that was being traced. It was actually more than that. When functions are being traced, there's a table of all functions that have a ref count of the number of active tracers attached to that function. When a function trace callback is registered to a function, the function's record ref count is incremented. When it is unregistered, the function's record ref count is decremented. If an inconsistency is detected (ref count goes below zero) the above warning is shown and the function tracing is permanently disabled until reboot. The ftrace callback ops holds a hash of functions that it filters on (and/or filters off). If the hash is empty, the default means to filter all functions (for the filter_hash) or to disable no functions (for the notrace_hash). When a module is unloaded, it frees the function records that represent the module functions. These records exist on their own pages, that is function records for one module will not exist on the same page as function records for other modules or even the core kernel. Now when a module unloads, the records that represents its functions are freed. When the module is loaded again, the records are recreated with a default ref count of zero (unless there's a callback that traces all functions, then they will also be traced, and the ref count will be incremented). The problem is that if an ftrace callback hash includes functions of the module being unloaded, those hash entries will not be removed. If the module is reloaded in the same location, the hash entries still point to the functions of the module but the module's ref counts do not reflect that. With the help of Steve and Joern, we found a reproducer: Using uinput module and uinput_release function. cd /sys/kernel/debug/tracing modprobe uinput echo uinput_release > set_ftrace_filter echo function > current_tracer rmmod uinput modprobe uinput # check /proc/modules to see if loaded in same addr, otherwise try again echo nop > current_tracer [BOOM] The above loads the uinput module, which creates a table of functions that can be traced within the module. We add uinput_release to the filter_hash to trace just that function. Enable function tracincg, which increments the ref count of the record associated to uinput_release. Remove uinput, which frees the records including the one that represents uinput_release. Load the uinput module again (and make sure it's at the same address). This recreates the function records all with a ref count of zero, including uinput_release. Disable function tracing, which will decrement the ref count for uinput_release which is now zero because of the module removal and reload, and we have a mismatch (below zero ref count). The solution is to check all currently tracing ftrace callbacks to see if any are tracing any of the module's functions when a module is loaded (it already does that with callbacks that trace all functions). If a callback happens to have a module function being traced, it increments that records ref count and starts tracing that function. There may be a strange side effect with this, where tracing module functions on unload and then reloading a new module may have that new module's functions being traced. This may be something that confuses the user, but it's not a big deal. Another approach is to disable all callback hashes on module unload, but this leaves some ftrace callbacks that may not be registered, but can still have hashes tracing the module's function where ftrace doesn't know about it. That situation can cause the same bug. This solution solves that case too. Another benefit of this solution, is it is possible to trace a module's function on unload and load. Link: http://lkml.kernel.org/r/20130705142629.GA325@redhat.com Reported-by: Jörn Engel <joern@logfs.org> Reported-by: Dave Jones <davej@redhat.com> Reported-by: Steve Hodgson <steve@purestorage.com> Tested-by: Steve Hodgson <steve@purestorage.com> Signed-off-by: Steven Rostedt <rostedt@goodmis.org> Cc: Rui Xiang <rui.xiang@huawei.com> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2014-06-07perf: Fix perf ring buffer memory orderingPeter Zijlstra
commit bf378d341e4873ed928dc3c636252e6895a21f50 upstream. The PPC64 people noticed a missing memory barrier and crufty old comments in the perf ring buffer code. So update all the comments and add the missing barrier. When the architecture implements local_t using atomic_long_t there will be double barriers issued; but short of introducing more conditional barrier primitives this is the best we can do. Reported-by: Victor Kaplansky <victork@il.ibm.com> Tested-by: Victor Kaplansky <victork@il.ibm.com> Signed-off-by: Peter Zijlstra <peterz@infradead.org> Cc: Mathieu Desnoyers <mathieu.desnoyers@polymtl.ca> Cc: michael@ellerman.id.au Cc: Paul McKenney <paulmck@linux.vnet.ibm.com> Cc: Michael Neuling <mikey@neuling.org> Cc: Frederic Weisbecker <fweisbec@gmail.com> Cc: anton@samba.org Cc: benh@kernel.crashing.org Link: http://lkml.kernel.org/r/20131025173749.GG19466@laptop.lan Signed-off-by: Ingo Molnar <mingo@kernel.org> [bwh: Backported to 3.2: adjust filename] Signed-off-by: Ben Hutchings <ben@decadent.org.uk> Cc: Rui Xiang <rui.xiang@huawei.com> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2014-06-07hrtimer: Set expiry time before switch_hrtimer_base()Viresh Kumar
commit 84ea7fe37908254c3bd90910921f6e1045c1747a upstream. switch_hrtimer_base() calls hrtimer_check_target() which ensures that we do not migrate a timer to a remote cpu if the timer expires before the current programmed expiry time on that remote cpu. But __hrtimer_start_range_ns() calls switch_hrtimer_base() before the new expiry time is set. So the sanity check in hrtimer_check_target() is operating on stale or even uninitialized data. Update expiry time before calling switch_hrtimer_base(). [ tglx: Rewrote changelog once again ] Signed-off-by: Viresh Kumar <viresh.kumar@linaro.org> Cc: linaro-kernel@lists.linaro.org Cc: linaro-networking@linaro.org Cc: fweisbec@gmail.com Cc: arvind.chauhan@arm.com Link: http://lkml.kernel.org/r/81999e148745fc51bbcd0615823fbab9b2e87e23.1399882253.git.viresh.kumar@linaro.org Signed-off-by: Thomas Gleixner <tglx@linutronix.de> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2014-06-07hrtimer: Prevent remote enqueue of leftmost timersLeon Ma
commit 012a45e3f4af68e86d85cce060c6c2fed56498b2 upstream. If a cpu is idle and starts an hrtimer which is not pinned on that same cpu, the nohz code might target the timer to a different cpu. In the case that we switch the cpu base of the timer we already have a sanity check in place, which determines whether the timer is earlier than the current leftmost timer on the target cpu. In that case we enqueue the timer on the current cpu because we cannot reprogram the clock event device on the target. If the timers base is already the target CPU we do not have this sanity check in place so we enqueue the timer as the leftmost timer in the target cpus rb tree, but we cannot reprogram the clock event device on the target cpu. So the timer expires late and subsequently prevents the reprogramming of the target cpu clock event device until the previously programmed event fires or a timer with an earlier expiry time gets enqueued on the target cpu itself. Add the same target check as we have for the switch base case and start the timer on the current cpu if it would become the leftmost timer on the target. [ tglx: Rewrote subject and changelog ] Signed-off-by: Leon Ma <xindong.ma@intel.com> Link: http://lkml.kernel.org/r/1398847391-5994-1-git-send-email-xindong.ma@intel.com Signed-off-by: Thomas Gleixner <tglx@linutronix.de> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2014-06-07hrtimer: Prevent all reprogramming if hang detectedStuart Hayes
commit 6c6c0d5a1c949d2e084706f9e5fb1fccc175b265 upstream. If the last hrtimer interrupt detected a hang it sets hang_detected=1 and programs the clock event device with a delay to let the system make progress. If hang_detected == 1, we prevent reprogramming of the clock event device in hrtimer_reprogram() but not in hrtimer_force_reprogram(). This can lead to the following situation: hrtimer_interrupt() hang_detected = 1; program ce device to Xms from now (hang delay) We have two timers pending: T1 expires 50ms from now T2 expires 5s from now Now T1 gets canceled, which causes hrtimer_force_reprogram() to be invoked, which in turn programs the clock event device to T2 (5 seconds from now). Any hrtimer_start after that will not reprogram the hardware due to hang_detected still being set. So we effectivly block all timers until the T2 event fires and cleans up the hang situation. Add a check for hang_detected to hrtimer_force_reprogram() which prevents the reprogramming of the hang delay in the hardware timer. The subsequent hrtimer_interrupt will resolve all outstanding issues. [ tglx: Rewrote subject and changelog and fixed up the comment in hrtimer_force_reprogram() ] Signed-off-by: Stuart Hayes <stuart.w.hayes@gmail.com> Link: http://lkml.kernel.org/r/53602DC6.2060101@gmail.com Signed-off-by: Thomas Gleixner <tglx@linutronix.de> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2014-06-07timer: Prevent overflow in apply_slackJiri Bohac
commit 98a01e779f3c66b0b11cd7e64d531c0e41c95762 upstream. On architectures with sizeof(int) < sizeof (long), the computation of mask inside apply_slack() can be undefined if the computed bit is > 32. E.g. with: expires = 0xffffe6f5 and slack = 25, we get: expires_limit = 0x20000000e bit = 33 mask = (1 << 33) - 1 /* undefined */ On x86, mask becomes 1 and and the slack is not applied properly. On s390, mask is -1, expires is set to 0 and the timer fires immediately. Use 1UL << bit to solve that issue. Suggested-by: Deborah Townsend <dstownse@us.ibm.com> Signed-off-by: Jiri Bohac <jbohac@suse.cz> Link: http://lkml.kernel.org/r/20140418152310.GA13654@midget.suse.cz Signed-off-by: Thomas Gleixner <tglx@linutronix.de> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2014-06-07ftrace/module: Hardcode ftrace_module_init() call into load_module()Steven Rostedt (Red Hat)
commit a949ae560a511fe4e3adf48fa44fefded93e5c2b upstream. A race exists between module loading and enabling of function tracer. CPU 1 CPU 2 ----- ----- load_module() module->state = MODULE_STATE_COMING register_ftrace_function() mutex_lock(&ftrace_lock); ftrace_startup() update_ftrace_function(); ftrace_arch_code_modify_prepare() set_all_module_text_rw(); <enables-ftrace> ftrace_arch_code_modify_post_process() set_all_module_text_ro(); [ here all module text is set to RO, including the module that is loading!! ] blocking_notifier_call_chain(MODULE_STATE_COMING); ftrace_init_module() [ tries to modify code, but it's RO, and fails! ftrace_bug() is called] When this race happens, ftrace_bug() will produces a nasty warning and all of the function tracing features will be disabled until reboot. The simple solution is to treate module load the same way the core kernel is treated at boot. To hardcode the ftrace function modification of converting calls to mcount into nops. This is done in init/main.c there's no reason it could not be done in load_module(). This gives a better control of the changes and doesn't tie the state of the module to its notifiers as much. Ftrace is special, it needs to be treated as such. The reason this would work, is that the ftrace_module_init() would be called while the module is in MODULE_STATE_UNFORMED, which is ignored by the set_all_module_text_ro() call. Link: http://lkml.kernel.org/r/1395637826-3312-1-git-send-email-indou.takao@jp.fujitsu.com Reported-by: Takao Indoh <indou.takao@jp.fujitsu.com> Acked-by: Rusty Russell <rusty@rustcorp.com.au> Signed-off-by: Steven Rostedt <rostedt@goodmis.org> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2014-06-07futex: Prevent attaching to kernel threadsThomas Gleixner
commit f0d71b3dcb8332f7971b5f2363632573e6d9486a upstream. We happily allow userspace to declare a random kernel thread to be the owner of a user space PI futex. Found while analysing the fallout of Dave Jones syscall fuzzer. We also should validate the thread group for private futexes and find some fast way to validate whether the "alleged" owner has RW access on the file which backs the SHM, but that's a separate issue. Signed-off-by: Thomas Gleixner <tglx@linutronix.de> Cc: Dave Jones <davej@redhat.com> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Darren Hart <darren@dvhart.com> Cc: Davidlohr Bueso <davidlohr@hp.com> Cc: Steven Rostedt <rostedt@goodmis.org> Cc: Clark Williams <williams@redhat.com> Cc: Paul McKenney <paulmck@linux.vnet.ibm.com> Cc: Lai Jiangshan <laijs@cn.fujitsu.com> Cc: Roland McGrath <roland@hack.frob.com> Cc: Carlos ODonell <carlos@redhat.com> Cc: Jakub Jelinek <jakub@redhat.com> Cc: Michael Kerrisk <mtk.manpages@gmail.com> Cc: Sebastian Andrzej Siewior <bigeasy@linutronix.de> Link: http://lkml.kernel.org/r/20140512201701.194824402@linutronix.de Signed-off-by: Thomas Gleixner <tglx@linutronix.de> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2014-06-07futex: Add another early deadlock detection checkThomas Gleixner
commit 866293ee54227584ffcb4a42f69c1f365974ba7f upstream. Dave Jones trinity syscall fuzzer exposed an issue in the deadlock detection code of rtmutex: http://lkml.kernel.org/r/20140429151655.GA14277@redhat.com That underlying issue has been fixed with a patch to the rtmutex code, but the futex code must not call into rtmutex in that case because - it can detect that issue early - it avoids a different and more complex fixup for backing out If the user space variable got manipulated to 0x80000000 which means no lock holder, but the waiters bit set and an active pi_state in the kernel is found we can figure out the recursive locking issue by looking at the pi_state owner. If that is the current task, then we can safely return -EDEADLK. The check should have been added in commit 59fa62451 (futex: Handle futex_pi OWNER_DIED take over correctly) already, but I did not see the above issue caused by user space manipulation back then. Signed-off-by: Thomas Gleixner <tglx@linutronix.de> Cc: Dave Jones <davej@redhat.com> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Darren Hart <darren@dvhart.com> Cc: Davidlohr Bueso <davidlohr@hp.com> Cc: Steven Rostedt <rostedt@goodmis.org> Cc: Clark Williams <williams@redhat.com> Cc: Paul McKenney <paulmck@linux.vnet.ibm.com> Cc: Lai Jiangshan <laijs@cn.fujitsu.com> Cc: Roland McGrath <roland@hack.frob.com> Cc: Carlos ODonell <carlos@redhat.com> Cc: Jakub Jelinek <jakub@redhat.com> Cc: Michael Kerrisk <mtk.manpages@gmail.com> Cc: Sebastian Andrzej Siewior <bigeasy@linutronix.de> Link: http://lkml.kernel.org/r/20140512201701.097349971@linutronix.de Signed-off-by: Thomas Gleixner <tglx@linutronix.de> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2014-06-07list: introduce list_next_entry() and list_prev_entry()Oleg Nesterov
[ Upstream commit 008208c6b26f21c2648c250a09c55e737c02c5f8 ] Add two trivial helpers list_next_entry() and list_prev_entry(), they can have a lot of users including list.h itself. In fact the 1st one is already defined in events/core.c and bnx2x_sp.c, so the patch simply moves the definition to list.h. Signed-off-by: Oleg Nesterov <oleg@redhat.com> Cc: Eilon Greenstein <eilong@broadcom.com> Cc: Greg Kroah-Hartman <gregkh@linuxfoundation.org> Cc: Peter Zijlstra <a.p.zijlstra@chello.nl> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2014-05-18tracepoint: Do not waste memory on mods with no tracepointsSteven Rostedt (Red Hat)
commit 7dec935a3aa04412cba2cebe1524ae0d34a30c24 upstream. No reason to allocate tp_module structures for modules that have no tracepoints. This just wastes memory. Fixes: b75ef8b44b1c "Tracepoint: Dissociate from module mutex" Acked-by: Mathieu Desnoyers <mathieu.desnoyers@efficios.com> Signed-off-by: Steven Rostedt <rostedt@goodmis.org> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2014-05-18blktrace: fix accounting of partially completed requestsRoman Pen
commit af5040da01ef980670b3741b3e10733ee3e33566 upstream. trace_block_rq_complete does not take into account that request can be partially completed, so we can get the following incorrect output of blkparser: C R 232 + 240 [0] C R 240 + 232 [0] C R 248 + 224 [0] C R 256 + 216 [0] but should be: C R 232 + 8 [0] C R 240 + 8 [0] C R 248 + 8 [0] C R 256 + 8 [0] Also, the whole output summary statistics of completed requests and final throughput will be incorrect. This patch takes into account real completion size of the request and fixes wrong completion accounting. Signed-off-by: Roman Pen <r.peniaev@gmail.com> CC: Steven Rostedt <rostedt@goodmis.org> CC: Frederic Weisbecker <fweisbec@gmail.com> CC: Ingo Molnar <mingo@redhat.com> CC: linux-kernel@vger.kernel.org Signed-off-by: Jens Axboe <axboe@fb.com> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2014-05-06hung_task: check the value of "sysctl_hung_task_timeout_sec"Liu Hua
commit 80df28476505ed4e6701c3448c63c9229a50c655 upstream. As sysctl_hung_task_timeout_sec is unsigned long, when this value is larger then LONG_MAX/HZ, the function schedule_timeout_interruptible in watchdog will return immediately without sleep and with print : schedule_timeout: wrong timeout value ffffffffffffff83 and then the funtion watchdog will call schedule_timeout_interruptible again and again. The screen will be filled with "schedule_timeout: wrong timeout value ffffffffffffff83" This patch does some check and correction in sysctl, to let the function schedule_timeout_interruptible allways get the valid parameter. Signed-off-by: Liu Hua <sdu.liu@huawei.com> Tested-by: Satoru Takeuchi <satoru.takeuchi@gmail.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>