Age | Commit message (Collapse) | Author |
|
NOTE: ZVC are *not* the lightweight event counters. ZVCs are reliable whereas
event counters do not need to be.
Zone based VM statistics are necessary to be able to determine what the state
of memory in one zone is. In a NUMA system this can be helpful for local
reclaim and other memory optimizations that may be able to shift VM load in
order to get more balanced memory use.
It is also useful to know how the computing load affects the memory
allocations on various zones. This patchset allows the retrieval of that data
from userspace.
The patchset introduces a framework for counters that is a cross between the
existing page_stats --which are simply global counters split per cpu-- and the
approach of deferred incremental updates implemented for nr_pagecache.
Small per cpu 8 bit counters are added to struct zone. If the counter exceeds
certain thresholds then the counters are accumulated in an array of
atomic_long in the zone and in a global array that sums up all zone values.
The small 8 bit counters are next to the per cpu page pointers and so they
will be in high in the cpu cache when pages are allocated and freed.
Access to VM counter information for a zone and for the whole machine is then
possible by simply indexing an array (Thanks to Nick Piggin for pointing out
that approach). The access to the total number of pages of various types does
no longer require the summing up of all per cpu counters.
Benefits of this patchset right now:
- Ability for UP and SMP configuration to determine how memory
is balanced between the DMA, NORMAL and HIGHMEM zones.
- loops over all processors are avoided in writeback and
reclaim paths. We can avoid caching the writeback information
because the needed information is directly accessible.
- Special handling for nr_pagecache removed.
- zone_reclaim_interval vanishes since VM stats can now determine
when it is worth to do local reclaim.
- Fast inline per node page state determination.
- Accurate counters in /sys/devices/system/node/node*/meminfo. Current
counters are counting simply which processor allocated a page somewhere
and guestimate based on that. So the counters were not useful to show
the actual distribution of page use on a specific zone.
- The swap_prefetch patch requires per node statistics in order to
figure out when processors of a node can prefetch. This patch provides
some of the needed numbers.
- Detailed VM counters available in more /proc and /sys status files.
References to earlier discussions:
V1 http://marc.theaimsgroup.com/?l=linux-kernel&m=113511649910826&w=2
V2 http://marc.theaimsgroup.com/?l=linux-kernel&m=114980851924230&w=2
V3 http://marc.theaimsgroup.com/?l=linux-kernel&m=115014697910351&w=2
V4 http://marc.theaimsgroup.com/?l=linux-kernel&m=115024767318740&w=2
Performance tests with AIM7 did not show any regressions. Seems to be a tad
faster even. Tested on ia64/NUMA. Builds fine on i386, SMP / UP. Includes
fixes for s390/arm/uml arch code.
This patch:
Move counter code from page_alloc.c/page-flags.h to vmstat.c/h.
Create vmstat.c/vmstat.h by separating the counter code and the proc
functions.
Move the vm_stat_text array before zoneinfo_show.
[akpm@osdl.org: s390 build fix]
[akpm@osdl.org: HOTPLUG_CPU build fix]
Signed-off-by: Christoph Lameter <clameter@sgi.com>
Cc: Heiko Carstens <heiko.carstens@de.ibm.com>
Cc: Martin Schwidefsky <schwidefsky@de.ibm.com>
Cc: Trond Myklebust <trond.myklebust@fys.uio.no>
Signed-off-by: Andrew Morton <akpm@osdl.org>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
|
|
Helper functions for for_each_online_pgdat/for_each_zone look too big to be
inlined. Speed of these helper macro itself is not very important. (inner
loops are tend to do more work than this)
This patch make helper function to be out-of-lined.
inline out-of-line
.text 005c0680 005bf6a0
005c0680 - 005bf6a0 = FE0 = 4Kbytes.
Signed-off-by: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
Signed-off-by: Andrew Morton <akpm@osdl.org>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
|
|
Centralize the page migration functions in anticipation of additional
tinkering. Creates a new file mm/migrate.c
1. Extract buffer_migrate_page() from fs/buffer.c
2. Extract central migration code from vmscan.c
3. Extract some components from mempolicy.c
4. Export pageout() and remove_from_swap() from vmscan.c
5. Make it possible to configure NUMA systems without page migration
and non-NUMA systems with page migration.
I had to so some #ifdeffing in mempolicy.c that may need a cleanup.
Signed-off-by: Christoph Lameter <clameter@sgi.com>
Signed-off-by: Andrew Morton <akpm@osdl.org>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
|
|
configurable replacement for slab allocator
This adds a CONFIG_SLAB option under CONFIG_EMBEDDED. When CONFIG_SLAB is
disabled, the kernel falls back to using the 'SLOB' allocator.
SLOB is a traditional K&R/UNIX allocator with a SLAB emulation layer,
similar to the original Linux kmalloc allocator that SLAB replaced. It's
signicantly smaller code and is more memory efficient. But like all
similar allocators, it scales poorly and suffers from fragmentation more
than SLAB, so it's only appropriate for small systems.
It's been tested extensively in the Linux-tiny tree. I've also
stress-tested it with make -j 8 compiles on a 3G SMP+PREEMPT box (not
recommended).
Here's a comparison for otherwise identical builds, showing SLOB saving
nearly half a megabyte of RAM:
$ size vmlinux*
text data bss dec hex filename
3336372 529360 190812 4056544 3de5e0 vmlinux-slab
3323208 527948 190684 4041840 3dac70 vmlinux-slob
$ size mm/{slab,slob}.o
text data bss dec hex filename
13221 752 48 14021 36c5 mm/slab.o
1896 52 8 1956 7a4 mm/slob.o
/proc/meminfo:
SLAB SLOB delta
MemTotal: 27964 kB 27980 kB +16 kB
MemFree: 24596 kB 25092 kB +496 kB
Buffers: 36 kB 36 kB 0 kB
Cached: 1188 kB 1188 kB 0 kB
SwapCached: 0 kB 0 kB 0 kB
Active: 608 kB 600 kB -8 kB
Inactive: 808 kB 812 kB +4 kB
HighTotal: 0 kB 0 kB 0 kB
HighFree: 0 kB 0 kB 0 kB
LowTotal: 27964 kB 27980 kB +16 kB
LowFree: 24596 kB 25092 kB +496 kB
SwapTotal: 0 kB 0 kB 0 kB
SwapFree: 0 kB 0 kB 0 kB
Dirty: 4 kB 12 kB +8 kB
Writeback: 0 kB 0 kB 0 kB
Mapped: 560 kB 556 kB -4 kB
Slab: 1756 kB 0 kB -1756 kB
CommitLimit: 13980 kB 13988 kB +8 kB
Committed_AS: 4208 kB 4208 kB 0 kB
PageTables: 28 kB 28 kB 0 kB
VmallocTotal: 1007312 kB 1007312 kB 0 kB
VmallocUsed: 48 kB 48 kB 0 kB
VmallocChunk: 1007264 kB 1007264 kB 0 kB
(this work has been sponsored in part by CELF)
From: Ingo Molnar <mingo@elte.hu>
Fix 32-bitness bugs in mm/slob.c.
Signed-off-by: Matt Mackall <mpm@selenic.com>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
Signed-off-by: Andrew Morton <akpm@osdl.org>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
|
|
Add mm/util.c for functions common between SLAB and SLOB.
Signed-off-by: Matt Mackall <mpm@selenic.com>
Signed-off-by: Andrew Morton <akpm@osdl.org>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
|
|
This adds generic memory add/remove and supporting functions for memory
hotplug into a new file as well as a memory hotplug kernel config option.
Individual architecture patches will follow.
For now, disable memory hotplug when swsusp is enabled. There's a lot of
churn there right now. We'll fix it up properly once it calms down.
Signed-off-by: Matt Tolentino <matthew.e.tolentino@intel.com>
Signed-off-by: Dave Hansen <haveblue@us.ibm.com>
Signed-off-by: Andrew Morton <akpm@osdl.org>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
|
|
- generic_file* file operations do no longer have a xip/non-xip split
- filemap_xip.c implements a new set of fops that require get_xip_page
aop to work proper. all new fops are exported GPL-only (don't like to
see whatever code use those except GPL modules)
- __xip_unmap now uses page_check_address, which is no longer static
in rmap.c, and defined in linux/rmap.h
- mm/filemap.h is now much more clean, plainly having just Linus'
inline funcs moved here from filemap.c
- fix includes in filemap_xip to make it build cleanly on i386
Signed-off-by: Carsten Otte <cotte@de.ibm.com>
Signed-off-by: Andrew Morton <akpm@osdl.org>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
|
|
Sparsemem abstracts the use of discontiguous mem_maps[]. This kind of
mem_map[] is needed by discontiguous memory machines (like in the old
CONFIG_DISCONTIGMEM case) as well as memory hotplug systems. Sparsemem
replaces DISCONTIGMEM when enabled, and it is hoped that it can eventually
become a complete replacement.
A significant advantage over DISCONTIGMEM is that it's completely separated
from CONFIG_NUMA. When producing this patch, it became apparent in that NUMA
and DISCONTIG are often confused.
Another advantage is that sparse doesn't require each NUMA node's ranges to be
contiguous. It can handle overlapping ranges between nodes with no problems,
where DISCONTIGMEM currently throws away that memory.
Sparsemem uses an array to provide different pfn_to_page() translations for
each SECTION_SIZE area of physical memory. This is what allows the mem_map[]
to be chopped up.
In order to do quick pfn_to_page() operations, the section number of the page
is encoded in page->flags. Part of the sparsemem infrastructure enables
sharing of these bits more dynamically (at compile-time) between the
page_zone() and sparsemem operations. However, on 32-bit architectures, the
number of bits is quite limited, and may require growing the size of the
page->flags type in certain conditions. Several things might force this to
occur: a decrease in the SECTION_SIZE (if you want to hotplug smaller areas of
memory), an increase in the physical address space, or an increase in the
number of used page->flags.
One thing to note is that, once sparsemem is present, the NUMA node
information no longer needs to be stored in the page->flags. It might provide
speed increases on certain platforms and will be stored there if there is
room. But, if out of room, an alternate (theoretically slower) mechanism is
used.
This patch introduces CONFIG_FLATMEM. It is used in almost all cases where
there used to be an #ifndef DISCONTIG, because SPARSEMEM and DISCONTIGMEM
often have to compile out the same areas of code.
Signed-off-by: Andy Whitcroft <apw@shadowen.org>
Signed-off-by: Dave Hansen <haveblue@us.ibm.com>
Signed-off-by: Martin Bligh <mbligh@aracnet.com>
Signed-off-by: Adrian Bunk <bunk@stusta.de>
Signed-off-by: Yasunori Goto <y-goto@jp.fujitsu.com>
Signed-off-by: Bob Picco <bob.picco@hp.com>
Signed-off-by: Andrew Morton <akpm@osdl.org>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
|
|
Initial git repository build. I'm not bothering with the full history,
even though we have it. We can create a separate "historical" git
archive of that later if we want to, and in the meantime it's about
3.2GB when imported into git - space that would just make the early
git days unnecessarily complicated, when we don't have a lot of good
infrastructure for it.
Let it rip!
|