summaryrefslogtreecommitdiff
path: root/mm/shmem.c
AgeCommit message (Collapse)Author
2009-04-01shmem: writepage directly to swapHugh Dickins
Synopsis: if shmem_writepage calls swap_writepage directly, most shmem swap loads benefit, and a catastrophic interaction between SLUB and some flash storage is avoided. shmem_writepage() has always been peculiar in making no attempt to write: it has just transferred a shmem page from file cache to swap cache, then let that page make its way around the LRU again before being written and freed. The idea was that people use tmpfs because they want those pages to stay in RAM; so although we give it an overflow to swap, we should resist writing too soon, giving those pages a second chance before they can be reclaimed. That was always questionable, and I've toyed with this patch for years; but never had a clear justification to depart from the original design. It became more questionable in 2.6.28, when the split LRU patches classed shmem and tmpfs pages as SwapBacked rather than as file_cache: that in itself gives them more resistance to reclaim than normal file pages. I prepared this patch for 2.6.29, but the merge window arrived before I'd completed gathering statistics to justify sending it in. Then while comparing SLQB against SLUB, running SLUB on a laptop I'd habitually used with SLAB, I found SLUB to run my tmpfs kbuild swapping tests five times slower than SLAB or SLQB - other machines slower too, but nowhere near so bad. Simpler "cp -a" swapping tests showed the same. slub_max_order=0 brings sanity to all, but heavy swapping is too far from normal to justify such a tuning. The crucial factor on that laptop turns out to be that I'm using an SD card for swap. What happens is this: By default, SLUB uses order-2 pages for shmem_inode_cache (and many other fs inodes), so creating tmpfs files under memory pressure brings lumpy reclaim into play. One subpage of the order is chosen from the bottom of the LRU as usual, then the other three picked out from their random positions on the LRUs. In a tmpfs load, many of these pages will be ones which already passed through shmem_writepage, so already have swap allocated. And though their offsets on swap were probably allocated sequentially, now that the pages are picked off at random, their swap offsets are scattered. But the flash storage on the SD card is very sensitive to having its writes merged: once swap is written at scattered offsets, performance falls apart. Rotating disk seeks increase too, but less disastrously. So: stop giving shmem/tmpfs pages a second pass around the LRU, write them out to swap as soon as their swap has been allocated. It's surely possible to devise an artificial load which runs faster the old way, one whose sizing is such that the tmpfs pages on their second pass are the ones that are wanted again, and other pages not. But I've not yet found such a load: on all machines, under the loads I've tried, immediate swap_writepage speeds up shmem swapping: especially when using the SLUB allocator (and more effectively than slub_max_order=0), but also with the others; and it also reduces the variance between runs. How much faster varies widely: a factor of five is rare, 5% is common. One load which might have suffered: imagine a swapping shmem load in a limited mem_cgroup on a machine with plenty of memory. Before 2.6.29 the swapcache was not charged, and such a load would have run quickest with the shmem swapcache never written to swap. But now swapcache is charged, so even this load benefits from shmem_writepage directly to swap. Apologies for the #ifndef CONFIG_SWAP swap_writepage() stub in swap.h: it's silly because that will never get called; but refactoring shmem.c sensibly according to CONFIG_SWAP will be a separate task. Signed-off-by: Hugh Dickins <hugh@veritas.com> Acked-by: Pekka Enberg <penberg@cs.helsinki.fi> Acked-by: Rik van Riel <riel@redhat.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2009-03-24Merge branch 'master' into nextJames Morris
2009-02-25shmem: fix shared anonymous accountingHugh Dickins
Each time I exit Firefox, /proc/meminfo's Committed_AS goes down almost 400 kB: OVERCOMMIT_NEVER would be allowing overcommits it should prohibit. Commit fc8744adc870a8d4366908221508bb113d8b72ee "Stop playing silly games with the VM_ACCOUNT flag" changed shmem_file_setup() to set the shmem file's VM_ACCOUNT flag according to VM_NORESERVE not being set in the vma flags; but did so only _after_ the shmem_acct_size(flags, size) call which is expected to pre-account a shared anonymous object. It's all clearer if we switch shmem.c over to use VM_NORESERVE throughout in place of !VM_ACCOUNT. But I very nearly sent in a patch which mistakenly removed the accounting from tmpfs files: shmem_get_inode()'s memset was good for not setting VM_ACCOUNT, but now it needs to set VM_NORESERVE. Rather than setting that by default, then perhaps clearing it again in shmem_file_setup(), let's pass it as a flag to shmem_get_inode(): that allows us to remove the #ifdef CONFIG_SHMEM from shmem_file_setup(). Signed-off-by: Hugh Dickins <hugh@veritas.com> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2009-02-11integrity: shmem zero fixMimi Zohar
Based on comments from Mike Frysinger and Randy Dunlap: (http://lkml.org/lkml/2009/2/9/262) - moved ima.h include before CONFIG_SHMEM test to fix compiler error on Blackfin: mm/shmem.c: In function 'shmem_zero_setup': mm/shmem.c:2670: error: implicit declaration of function 'ima_shm_check' - added 'struct linux_binprm' in ima.h to fix compiler warning on Blackfin: In file included from mm/shmem.c:32: include/linux/ima.h:25: warning: 'struct linux_binprm' declared inside parameter list include/linux/ima.h:25: warning: its scope is only this definition or declaration, which is probably not what you want - moved fs.h include within _LINUX_IMA_H definition Signed-off-by: Mimi Zohar <zohar@us.ibm.com> Signed-off-by: Mike Frysinger <vapier@gentoo.org> Signed-off-by: James Morris <jmorris@namei.org>
2009-02-06Merge branch 'master' into nextJames Morris
Conflicts: fs/namei.c Manually merged per: diff --cc fs/namei.c index 734f2b5,bbc15c2..0000000 --- a/fs/namei.c +++ b/fs/namei.c @@@ -860,9 -848,8 +849,10 @@@ static int __link_path_walk(const char nd->flags |= LOOKUP_CONTINUE; err = exec_permission_lite(inode); if (err == -EAGAIN) - err = vfs_permission(nd, MAY_EXEC); + err = inode_permission(nd->path.dentry->d_inode, + MAY_EXEC); + if (!err) + err = ima_path_check(&nd->path, MAY_EXEC); if (err) break; @@@ -1525,14 -1506,9 +1509,14 @@@ int may_open(struct path *path, int acc flag &= ~O_TRUNC; } - error = vfs_permission(nd, acc_mode); + error = inode_permission(inode, acc_mode); if (error) return error; + - error = ima_path_check(&nd->path, ++ error = ima_path_check(path, + acc_mode & (MAY_READ | MAY_WRITE | MAY_EXEC)); + if (error) + return error; /* * An append-only file must be opened in append mode for writing. */ Signed-off-by: James Morris <jmorris@namei.org>
2009-02-06Integrity: IMA file free imbalanceMimi Zohar
The number of calls to ima_path_check()/ima_file_free() should be balanced. An extra call to fput(), indicates the file could have been accessed without first being measured. Although f_count is incremented/decremented in places other than fget/fput, like fget_light/fput_light and get_file, the current task must already hold a file refcnt. The call to __fput() is delayed until the refcnt becomes 0, resulting in ima_file_free() flagging any changes. - add hook to increment opencount for IPC shared memory(SYSV), shmat files, and /dev/zero - moved NULL iint test in opencount_get() Signed-off-by: Mimi Zohar <zohar@us.ibm.com> Acked-by: Serge Hallyn <serue@us.ibm.com> Signed-off-by: James Morris <jmorris@namei.org>
2009-01-31Stop playing silly games with the VM_ACCOUNT flagLinus Torvalds
The mmap_region() code would temporarily set the VM_ACCOUNT flag for anonymous shared mappings just to inform shmem_zero_setup() that it should enable accounting for the resulting shm object. It would then clear the flag after calling ->mmap (for the /dev/zero case) or doing shmem_zero_setup() (for the MAP_ANON case). This just resulted in vma merge issues, but also made for just unnecessary confusion. Use the already-existing VM_NORESERVE flag for this instead, and let shmem_{zero|file}_setup() just figure it out from that. This also happens to make it obvious that the new DRI2 GEM layer uses a non-reserving backing store for its object allocation - which is quite possibly not intentional. But since I didn't want to change semantics in this patch, I left it alone, and just updated the caller to use the new flag semantics. Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2009-01-08memcg: fix shmem's swap accountingKAMEZAWA Hiroyuki
Now, you can see following even when swap accounting is enabled. 1. Create Group 01, and 02. 2. allocate a "file" on tmpfs by a task under 01. 3. swap out the "file" (by memory pressure) 4. Read "file" from a task in group 02. 5. the charge of "file" is moved to group 02. This is not ideal behavior. This is because SwapCache which was loaded by read-ahead is not taken into account.. This is a patch to fix shmem's swapcache behavior. - remove mem_cgroup_cache_charge_swapin(). - Add SwapCache handler routine to mem_cgroup_cache_charge(). By this, shmem's file cache is charged at add_to_page_cache() with GFP_NOWAIT. - pass the page of swapcache to shrink_mem_cgroup. Signed-off-by: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com> Cc: Daisuke Nishimura <nishimura@mxp.nes.nec.co.jp> Cc: Balbir Singh <balbir@in.ibm.com> Cc: Paul Menage <menage@google.com> Cc: Li Zefan <lizf@cn.fujitsu.com> Cc: Hugh Dickins <hugh@veritas.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2009-01-08memcg: revert gfp mask fixKAMEZAWA Hiroyuki
My patch, memcg-fix-gfp_mask-of-callers-of-charge.patch changed gfp_mask of callers of charge to be GFP_HIGHUSER_MOVABLE for showing what will happen at memory reclaim. But in recent discussion, it's NACKed because it sounds ugly. This patch is for reverting it and add some clean up to gfp_mask of callers of charge. No behavior change but need review before generating HUNK in deep queue. This patch also adds explanation to meaning of gfp_mask passed to charge functions in memcontrol.h. Signed-off-by: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com> Cc: Balbir Singh <balbir@in.ibm.com> Cc: Daisuke Nishimura <nishimura@mxp.nes.nec.co.jp> Cc: Hugh Dickins <hugh@veritas.com> Cc: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2009-01-08memcg: handle swap cachesKAMEZAWA Hiroyuki
SwapCache support for memory resource controller (memcg) Before mem+swap controller, memcg itself should handle SwapCache in proper way. This is cut-out from it. In current memcg, SwapCache is just leaked and the user can create tons of SwapCache. This is a leak of account and should be handled. SwapCache accounting is done as following. charge (anon) - charged when it's mapped. (because of readahead, charge at add_to_swap_cache() is not sane) uncharge (anon) - uncharged when it's dropped from swapcache and fully unmapped. means it's not uncharged at unmap. Note: delete from swap cache at swap-in is done after rmap information is established. charge (shmem) - charged at swap-in. this prevents charge at add_to_page_cache(). uncharge (shmem) - uncharged when it's dropped from swapcache and not on shmem's radix-tree. at migration, check against 'old page' is modified to handle shmem. Comparing to the old version discussed (and caused troubles), we have advantages of - PCG_USED bit. - simple migrating handling. So, situation is much easier than several months ago, maybe. [hugh@veritas.com: memcg: handle swap caches build fix] Reviewed-by: Daisuke Nishimura <nishimura@mxp.nes.nec.co.jp> Tested-by: Daisuke Nishimura <nishimura@mxp.nes.nec.co.jp> Signed-off-by: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com> Cc: Hugh Dickins <hugh@veritas.com> Cc: Li Zefan <lizf@cn.fujitsu.com> Cc: Balbir Singh <balbir@in.ibm.com> Cc: Pavel Emelyanov <xemul@openvz.org> Signed-off-by: Hugh Dickins <hugh@veritas.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2009-01-08memcg: fix gfp_mask of callers of chargeKAMEZAWA Hiroyuki
Fix misuse of gfp_kernel. Now, most of callers of mem_cgroup_charge_xxx functions uses GFP_KERNEL. I think that this is from the fact that page_cgroup *was* dynamically allocated. But now, we allocate all page_cgroup at boot. And mem_cgroup_try_to_free_pages() reclaim memory from GFP_HIGHUSER_MOVABLE + specified GFP_RECLAIM_MASK. * This is because we just want to reduce memory usage. "Where we should reclaim from ?" is not a problem in memcg. This patch modifies gfp masks to be GFP_HIGUSER_MOVABLE if possible. Note: This patch is not for fixing behavior but for showing sane information in source code. Signed-off-by: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com> Reviewed-by: Daisuke Nishimura <nishimura@mxp.nes.nec.co.jp> Cc: Balbir Singh <balbir@in.ibm.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2009-01-06shmem: unify regular and tiny shmemMatt Mackall
tiny-shmem shares most of its 130 lines of code with shmem and tends to break when particular bits of shmem get modified. Unifying saves code and makes keeping these two in sync much easier. before: 14367 392 24 14783 39bf mm/shmem.o 396 72 8 476 1dc mm/tiny-shmem.o after: 14367 392 24 14783 39bf mm/shmem.o 412 72 8 492 1ec mm/shmem.o tiny Signed-off-by: Matt Mackall <mpm@selenic.com> Acked-by: Hugh Dickins <hugh@veritas.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2009-01-06mm: don't mark_page_accessed in shmem_faultHugh Dickins
Following "mm: don't mark_page_accessed in fault path", which now places a mark_page_accessed() in zap_pte_range(), we should remove the mark_page_accessed() from shmem_fault(). Signed-off-by: Hugh Dickins <hugh@veritas.com> Cc: Nick Piggin <npiggin@suse.de> Cc: Johannes Weiner <hannes@saeurebad.de> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2008-11-14CRED: Wrap task credential accesses in the core kernelDavid Howells
Wrap access to task credentials so that they can be separated more easily from the task_struct during the introduction of COW creds. Change most current->(|e|s|fs)[ug]id to current_(|e|s|fs)[ug]id(). Change some task->e?[ug]id to task_e?[ug]id(). In some places it makes more sense to use RCU directly rather than a convenient wrapper; these will be addressed by later patches. Signed-off-by: David Howells <dhowells@redhat.com> Reviewed-by: James Morris <jmorris@namei.org> Acked-by: Serge Hallyn <serue@us.ibm.com> Cc: Al Viro <viro@zeniv.linux.org.uk> Cc: linux-audit@redhat.com Cc: containers@lists.linux-foundation.org Cc: linux-mm@kvack.org Signed-off-by: James Morris <jmorris@namei.org>
2008-10-30nfsd: fix vm overcommit crashAlan Cox
Junjiro R. Okajima reported a problem where knfsd crashes if you are using it to export shmemfs objects and run strict overcommit. In this situation the current->mm based modifier to the overcommit goes through a NULL pointer. We could simply check for NULL and skip the modifier but we've caught other real bugs in the past from mm being NULL here - cases where we did need a valid mm set up (eg the exec bug about a year ago). To preserve the checks and get the logic we want shuffle the checking around and add a new helper to the vm_ security wrappers Also fix a current->mm reference in nommu that should use the passed mm [akpm@linux-foundation.org: coding-style fixes] [akpm@linux-foundation.org: fix build] Reported-by: Junjiro R. Okajima <hooanon05@yahoo.co.jp> Acked-by: James Morris <jmorris@namei.org> Signed-off-by: Alan Cox <alan@redhat.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2008-10-20SHM_LOCKED pages are unevictableLee Schermerhorn
Shmem segments locked into memory via shmctl(SHM_LOCKED) should not be kept on the normal LRU, since scanning them is a waste of time and might throw off kswapd's balancing algorithms. Place them on the unevictable LRU list instead. Use the AS_UNEVICTABLE flag to mark address_space of SHM_LOCKed shared memory regions as unevictable. Then these pages will be culled off the normal LRU lists during vmscan. Add new wrapper function to clear the mapping's unevictable state when/if shared memory segment is munlocked. Add 'scan_mapping_unevictable_page()' to mm/vmscan.c to scan all pages in the shmem segment's mapping [struct address_space] for evictability now that they're no longer locked. If so, move them to the appropriate zone lru list. Changes depend on [CONFIG_]UNEVICTABLE_LRU. [kosaki.motohiro@jp.fujitsu.com: revert shm change] Signed-off-by: Lee Schermerhorn <lee.schermerhorn@hp.com> Signed-off-by: Rik van Riel <riel@redhat.com> Signed-off-by: Kosaki Motohiro <kosaki.motohiro@jp.fujitsu.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2008-10-20vmscan: split LRU lists into anon & file setsRik van Riel
Split the LRU lists in two, one set for pages that are backed by real file systems ("file") and one for pages that are backed by memory and swap ("anon"). The latter includes tmpfs. The advantage of doing this is that the VM will not have to scan over lots of anonymous pages (which we generally do not want to swap out), just to find the page cache pages that it should evict. This patch has the infrastructure and a basic policy to balance how much we scan the anon lists and how much we scan the file lists. The big policy changes are in separate patches. [lee.schermerhorn@hp.com: collect lru meminfo statistics from correct offset] [kosaki.motohiro@jp.fujitsu.com: prevent incorrect oom under split_lru] [kosaki.motohiro@jp.fujitsu.com: fix pagevec_move_tail() doesn't treat unevictable page] [hugh@veritas.com: memcg swapbacked pages active] [hugh@veritas.com: splitlru: BDI_CAP_SWAP_BACKED] [akpm@linux-foundation.org: fix /proc/vmstat units] [nishimura@mxp.nes.nec.co.jp: memcg: fix handling of shmem migration] [kosaki.motohiro@jp.fujitsu.com: adjust Quicklists field of /proc/meminfo] [kosaki.motohiro@jp.fujitsu.com: fix style issue of get_scan_ratio()] Signed-off-by: Rik van Riel <riel@redhat.com> Signed-off-by: Lee Schermerhorn <Lee.Schermerhorn@hp.com> Signed-off-by: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com> Signed-off-by: Hugh Dickins <hugh@veritas.com> Signed-off-by: Daisuke Nishimura <nishimura@mxp.nes.nec.co.jp> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2008-10-20define page_file_cache() functionRik van Riel
Define page_file_cache() function to answer the question: is page backed by a file? Originally part of Rik van Riel's split-lru patch. Extracted to make available for other, independent reclaim patches. Moved inline function to linux/mm_inline.h where it will be needed by subsequent "split LRU" and "noreclaim" patches. Unfortunately this needs to use a page flag, since the PG_swapbacked state needs to be preserved all the way to the point where the page is last removed from the LRU. Trying to derive the status from other info in the page resulted in wrong VM statistics in earlier split VM patchsets. The total number of page flags in use on a 32 bit machine after this patch is 19. [akpm@linux-foundation.org: fix up out-of-order merge fallout] [hugh@veritas.com: splitlru: shmem_getpage SetPageSwapBacked sooner[ Signed-off-by: Rik van Riel <riel@redhat.com> Signed-off-by: Lee Schermerhorn <lee.schermerhorn@hp.com> Signed-off-by: MinChan Kim <minchan.kim@gmail.com> Signed-off-by: Hugh Dickins <hugh@veritas.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2008-10-18Export shmem_file_setup for DRM-GEMKeith Packard
GEM needs to create shmem files to back buffer objects. Though currently creation of files for objects could have been driven from userland, the modesetting work will require allocation of buffer objects before userland is running, for boot-time message display. Signed-off-by: Eric Anholt <eric@anholt.net> Cc: Nick Piggin <npiggin@suse.de> Signed-off-by: Dave Airlie <airlied@redhat.com>
2008-10-13integrity: special fs magicMimi Zohar
Discussion on the mailing list questioned the use of these magic values in userspace, concluding these values are already exported to userspace via statfs and their correct/incorrect usage is left up to the userspace application. - Move special fs magic number definitions to magic.h - Add magic.h include Signed-off-by: Mimi Zohar <zohar@us.ibm.com> Reviewed-by: James Morris <jmorris@namei.org> Signed-off-by: James Morris <jmorris@namei.org>
2008-08-04mm: rename page trylockNick Piggin
Converting page lock to new locking bitops requires a change of page flag operation naming, so we might as well convert it to something nicer (!TestSetPageLocked_Lock => trylock_page, SetPageLocked => set_page_locked). This also facilitates lockdeping of page lock. Signed-off-by: Nick Piggin <npiggin@suse.de> Acked-by: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com> Acked-by: Peter Zijlstra <peterz@infradead.org> Acked-by: Andrew Morton <akpm@linux-foundation.org> Acked-by: Benjamin Herrenschmidt <benh@kernel.crashing.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2008-07-28tmpfs: fix kernel BUG in shmem_delete_inodeHugh Dickins
SuSE's insserve initscript ordering program hits kernel BUG at mm/shmem.c:814 on 2.6.26. It's using posix_fadvise on directories, and the shmem_readpage method added in 2.6.23 is letting POSIX_FADV_WILLNEED allocate useless pages to a tmpfs directory, incrementing i_blocks count but never decrementing it. Fix this by assigning shmem_aops (pointing to readpage and writepage and set_page_dirty) only when it's needed, on a regular file or a long symlink. Many thanks to Kel for outstanding bugreport and steps to reproduce it. Reported-by: Kel Modderman <kel@otaku42.de> Tested-by: Kel Modderman <kel@otaku42.de> Signed-off-by: Hugh Dickins <hugh@veritas.com> Cc: <stable@kernel.org> [2.6.25.x, 2.6.26.x] Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2008-07-26SL*B: drop kmem cache argument from constructorAlexey Dobriyan
Kmem cache passed to constructor is only needed for constructors that are themselves multiplexeres. Nobody uses this "feature", nor does anybody uses passed kmem cache in non-trivial way, so pass only pointer to object. Non-trivial places are: arch/powerpc/mm/init_64.c arch/powerpc/mm/hugetlbpage.c This is flag day, yes. Signed-off-by: Alexey Dobriyan <adobriyan@gmail.com> Acked-by: Pekka Enberg <penberg@cs.helsinki.fi> Acked-by: Christoph Lameter <cl@linux-foundation.org> Cc: Jon Tollefson <kniht@linux.vnet.ibm.com> Cc: Nick Piggin <nickpiggin@yahoo.com.au> Cc: Matt Mackall <mpm@selenic.com> [akpm@linux-foundation.org: fix arch/powerpc/mm/hugetlbpage.c] [akpm@linux-foundation.org: fix mm/slab.c] [akpm@linux-foundation.org: fix ubifs] Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2008-07-26mm: speculative page referencesNick Piggin
If we can be sure that elevating the page_count on a pagecache page will pin it, we can speculatively run this operation, and subsequently check to see if we hit the right page rather than relying on holding a lock or otherwise pinning a reference to the page. This can be done if get_page/put_page behaves consistently throughout the whole tree (ie. if we "get" the page after it has been used for something else, we must be able to free it with a put_page). Actually, there is a period where the count behaves differently: when the page is free or if it is a constituent page of a compound page. We need an atomic_inc_not_zero operation to ensure we don't try to grab the page in either case. This patch introduces the core locking protocol to the pagecache (ie. adds page_cache_get_speculative, and tweaks some update-side code to make it work). Thanks to Hugh for pointing out an improvement to the algorithm setting page_count to zero when we have control of all references, in order to hold off speculative getters. [kamezawa.hiroyu@jp.fujitsu.com: fix migration_entry_wait()] [hugh@veritas.com: fix add_to_page_cache] [akpm@linux-foundation.org: repair a comment] Signed-off-by: Nick Piggin <npiggin@suse.de> Cc: Jeff Garzik <jeff@garzik.org> Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org> Cc: Paul Mackerras <paulus@samba.org> Cc: Hugh Dickins <hugh@veritas.com> Cc: "Paul E. McKenney" <paulmck@us.ibm.com> Reviewed-by: Peter Zijlstra <a.p.zijlstra@chello.nl> Signed-off-by: Daisuke Nishimura <nishimura@mxp.nes.nec.co.jp> Signed-off-by: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com> Signed-off-by: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com> Signed-off-by: Hugh Dickins <hugh@veritas.com> Acked-by: Nick Piggin <npiggin@suse.de> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2008-07-25memcg: helper function for relcaim from shmem.KAMEZAWA Hiroyuki
A new call, mem_cgroup_shrink_usage() is added for shmem handling and relacing non-standard usage of mem_cgroup_charge/uncharge. Now, shmem calls mem_cgroup_charge() just for reclaim some pages from mem_cgroup. In general, shmem is used by some process group and not for global resource (like file caches). So, it's reasonable to reclaim pages from mem_cgroup where shmem is mainly used. [hugh@veritas.com: shmem_getpage release page sooner] [hugh@veritas.com: mem_cgroup_shrink_usage css_put] Signed-off-by: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com> Cc: Balbir Singh <balbir@in.ibm.com> Cc: "Eric W. Biederman" <ebiederm@xmission.com> Cc: Pavel Emelyanov <xemul@openvz.org> Cc: Li Zefan <lizf@cn.fujitsu.com> Cc: YAMAMOTO Takashi <yamamoto@valinux.co.jp> Cc: Paul Menage <menage@google.com> Cc: David Rientjes <rientjes@google.com> Signed-off-by: Hugh Dickins <hugh@veritas.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2008-07-25memcg: remove refcnt from page_cgroupKAMEZAWA Hiroyuki
memcg: performance improvements Patch Description 1/5 ... remove refcnt fron page_cgroup patch (shmem handling is fixed) 2/5 ... swapcache handling patch 3/5 ... add helper function for shmem's memory reclaim patch 4/5 ... optimize by likely/unlikely ppatch 5/5 ... remove redundunt check patch (shmem handling is fixed.) Unix bench result. == 2.6.26-rc2-mm1 + memory resource controller Execl Throughput 2915.4 lps (29.6 secs, 3 samples) C Compiler Throughput 1019.3 lpm (60.0 secs, 3 samples) Shell Scripts (1 concurrent) 5796.0 lpm (60.0 secs, 3 samples) Shell Scripts (8 concurrent) 1097.7 lpm (60.0 secs, 3 samples) Shell Scripts (16 concurrent) 565.3 lpm (60.0 secs, 3 samples) File Read 1024 bufsize 2000 maxblocks 1022128.0 KBps (30.0 secs, 3 samples) File Write 1024 bufsize 2000 maxblocks 544057.0 KBps (30.0 secs, 3 samples) File Copy 1024 bufsize 2000 maxblocks 346481.0 KBps (30.0 secs, 3 samples) File Read 256 bufsize 500 maxblocks 319325.0 KBps (30.0 secs, 3 samples) File Write 256 bufsize 500 maxblocks 148788.0 KBps (30.0 secs, 3 samples) File Copy 256 bufsize 500 maxblocks 99051.0 KBps (30.0 secs, 3 samples) File Read 4096 bufsize 8000 maxblocks 2058917.0 KBps (30.0 secs, 3 samples) File Write 4096 bufsize 8000 maxblocks 1606109.0 KBps (30.0 secs, 3 samples) File Copy 4096 bufsize 8000 maxblocks 854789.0 KBps (30.0 secs, 3 samples) Dc: sqrt(2) to 99 decimal places 126145.2 lpm (30.0 secs, 3 samples) INDEX VALUES TEST BASELINE RESULT INDEX Execl Throughput 43.0 2915.4 678.0 File Copy 1024 bufsize 2000 maxblocks 3960.0 346481.0 875.0 File Copy 256 bufsize 500 maxblocks 1655.0 99051.0 598.5 File Copy 4096 bufsize 8000 maxblocks 5800.0 854789.0 1473.8 Shell Scripts (8 concurrent) 6.0 1097.7 1829.5 ========= FINAL SCORE 991.3 == 2.6.26-rc2-mm1 + this set == Execl Throughput 3012.9 lps (29.9 secs, 3 samples) C Compiler Throughput 981.0 lpm (60.0 secs, 3 samples) Shell Scripts (1 concurrent) 5872.0 lpm (60.0 secs, 3 samples) Shell Scripts (8 concurrent) 1120.3 lpm (60.0 secs, 3 samples) Shell Scripts (16 concurrent) 578.0 lpm (60.0 secs, 3 samples) File Read 1024 bufsize 2000 maxblocks 1003993.0 KBps (30.0 secs, 3 samples) File Write 1024 bufsize 2000 maxblocks 550452.0 KBps (30.0 secs, 3 samples) File Copy 1024 bufsize 2000 maxblocks 347159.0 KBps (30.0 secs, 3 samples) File Read 256 bufsize 500 maxblocks 314644.0 KBps (30.0 secs, 3 samples) File Write 256 bufsize 500 maxblocks 151852.0 KBps (30.0 secs, 3 samples) File Copy 256 bufsize 500 maxblocks 101000.0 KBps (30.0 secs, 3 samples) File Read 4096 bufsize 8000 maxblocks 2033256.0 KBps (30.0 secs, 3 samples) File Write 4096 bufsize 8000 maxblocks 1611814.0 KBps (30.0 secs, 3 samples) File Copy 4096 bufsize 8000 maxblocks 847979.0 KBps (30.0 secs, 3 samples) Dc: sqrt(2) to 99 decimal places 128148.7 lpm (30.0 secs, 3 samples) INDEX VALUES TEST BASELINE RESULT INDEX Execl Throughput 43.0 3012.9 700.7 File Copy 1024 bufsize 2000 maxblocks 3960.0 347159.0 876.7 File Copy 256 bufsize 500 maxblocks 1655.0 101000.0 610.3 File Copy 4096 bufsize 8000 maxblocks 5800.0 847979.0 1462.0 Shell Scripts (8 concurrent) 6.0 1120.3 1867.2 ========= FINAL SCORE 1004.6 This patch: Remove refcnt from page_cgroup(). After this, * A page is charged only when !page_mapped() && no page_cgroup is assigned. * Anon page is newly mapped. * File page is added to mapping->tree. * A page is uncharged only when * Anon page is fully unmapped. * File page is removed from LRU. There is no change in behavior from user's view. This patch also removes unnecessary calls in rmap.c which was used only for refcnt mangement. [akpm@linux-foundation.org: fix warning] [hugh@veritas.com: fix shmem_unuse_inode charging] Signed-off-by: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com> Cc: Balbir Singh <balbir@in.ibm.com> Cc: "Eric W. Biederman" <ebiederm@xmission.com> Cc: Pavel Emelyanov <xemul@openvz.org> Cc: Li Zefan <lizf@cn.fujitsu.com> Cc: Hugh Dickins <hugh@veritas.com> Cc: YAMAMOTO Takashi <yamamoto@valinux.co.jp> Cc: Paul Menage <menage@google.com> Cc: David Rientjes <rientjes@google.com> Signed-off-by: Hugh Dickins <hugh@veritas.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2008-07-24tmpfs: support aioHugh Dickins
We have a request for tmpfs to support the AIO interface: easily done, no more than replacing the old shmem_file_read by shmem_file_aio_read, cribbed from generic_file_aio_read. (In 2.6.25 its write side was already changed to use generic_file_aio_write.) Incorporate cleanups from Andrew Morton and Harvey Harrison. Tests out fine with LTP's ltp-aiodio.sh, given hacks (not included) to support O_DIRECT. tmpfs cannot honestly support O_DIRECT: its cache-avoiding-IO nature is at odds with direct IO-avoiding-cache. Signed-off-by: Hugh Dickins <hugh@veritas.com> Tested-by: Lawrence Greenfield <leg@google.com> Cc: Christoph Rohland <hans-christoph.rohland@sap.com> Cc: Badari Pulavarty <pbadari@us.ibm.com> Cc: Zach Brown <zach.brown@oracle.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2008-04-30mm: bdi: add separate writeback accounting capabilityMiklos Szeredi
Add a new BDI capability flag: BDI_CAP_NO_ACCT_WB. If this flag is set, then don't update the per-bdi writeback stats from test_set_page_writeback() and test_clear_page_writeback(). Misc cleanups: - convert bdi_cap_writeback_dirty() and friends to static inline functions - create a flag that includes all three dirty/writeback related flags, since almst all users will want to have them toghether Signed-off-by: Miklos Szeredi <mszeredi@suse.cz> Cc: Peter Zijlstra <a.p.zijlstra@chello.nl> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2008-04-28mempolicy: use struct mempolicy pointer in shmem_sb_infoLee Schermerhorn
This patch replaces the mempolicy mode, mode_flags, and nodemask in the shmem_sb_info struct with a struct mempolicy pointer, initialized to NULL. This removes dependency on the details of mempolicy from shmem.c and hugetlbfs inode.c and simplifies the interfaces. mpol_parse_str() in mempolicy.c is changed to return, via a pointer to a pointer arg, a struct mempolicy pointer on success. For MPOL_DEFAULT, the returned pointer is NULL. Further, mpol_parse_str() now takes a 'no_context' argument that causes the input nodemask to be stored in the w.user_nodemask of the created mempolicy for use when the mempolicy is installed in a tmpfs inode shared policy tree. At that time, any cpuset contextualization is applied to the original input nodemask. This preserves the previous behavior where the input nodemask was stored in the superblock. We can think of the returned mempolicy as "context free". Because mpol_parse_str() is now calling mpol_new(), we can remove from mpol_to_str() the semantic checks that mpol_new() already performs. Add 'no_context' parameter to mpol_to_str() to specify that it should format the nodemask in w.user_nodemask for 'bind' and 'interleave' policies. Change mpol_shared_policy_init() to take a pointer to a "context free" struct mempolicy and to create a new, "contextualized" mempolicy using the mode, mode_flags and user_nodemask from the input mempolicy. Note: we know that the mempolicy passed to mpol_to_str() or mpol_shared_policy_init() from a tmpfs superblock is "context free". This is currently the only instance thereof. However, if we found more uses for this concept, and introduced any ambiguity as to whether a mempolicy was context free or not, we could add another internal mode flag to identify context free mempolicies. Then, we could remove the 'no_context' argument from mpol_to_str(). Added shmem_get_sbmpol() to return a reference counted superblock mempolicy, if one exists, to pass to mpol_shared_policy_init(). We must add the reference under the sb stat_lock to prevent races with replacement of the mpol by remount. This reference is removed in mpol_shared_policy_init(). [akpm@linux-foundation.org: build fix] [akpm@linux-foundation.org: another build fix] [akpm@linux-foundation.org: yet another build fix] Signed-off-by: Lee Schermerhorn <lee.schermerhorn@hp.com> Cc: Christoph Lameter <clameter@sgi.com> Cc: David Rientjes <rientjes@google.com> Cc: Mel Gorman <mel@csn.ul.ie> Cc: Andi Kleen <ak@suse.de> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2008-04-28mempolicy: rework shmem mpol parsing and displayLee Schermerhorn
mm/shmem.c currently contains functions to parse and display memory policy strings for the tmpfs 'mpol' mount option. Move this to mm/mempolicy.c with the rest of the mempolicy support. With subsequent patches, we'll be able to remove knowledge of the details [mode, flags, policy, ...] completely from shmem.c 1) replace shmem_parse_mpol() in mm/shmem.c with mpol_parse_str() in mm/mempolicy.c. Rework to use the policy_types[] array [used by mpol_to_str()] to look up mode by name. 2) use mpol_to_str() to format policy for shmem_show_mpol(). mpol_to_str() expects a pointer to a struct mempolicy, so temporarily construct one. This will be replaced with a reference to a struct mempolicy in the tmpfs superblock in a subsequent patch. NOTE 1: I changed mpol_to_str() to use a colon ':' rather than an equal sign '=' as the nodemask delimiter to match mpol_parse_str() and the tmpfs/shmem mpol mount option formatting that now uses mpol_to_str(). This is a user visible change to numa_maps, but then the addition of the mode flags already changed the display. It makes sense to me to have the mounts and numa_maps display the policy in the same format. However, if anyone objects strongly, I can pass the desired nodemask delimeter as an arg to mpol_to_str(). Note 2: Like show_numa_map(), I don't check the return code from mpol_to_str(). I do use a longer buffer than the one provided by show_numa_map(), which seems to have sufficed so far. Signed-off-by: Lee Schermerhorn <lee.schermerhorn@hp.com> Cc: Christoph Lameter <clameter@sgi.com> Cc: David Rientjes <rientjes@google.com> Cc: Mel Gorman <mel@csn.ul.ie> Cc: Andi Kleen <ak@suse.de> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2008-04-28mempolicy: rework mempolicy Reference Counting [yet again]Lee Schermerhorn
After further discussion with Christoph Lameter, it has become clear that my earlier attempts to clean up the mempolicy reference counting were a bit of overkill in some areas, resulting in superflous ref/unref in what are usually fast paths. In other areas, further inspection reveals that I botched the unref for interleave policies. A separate patch, suitable for upstream/stable trees, fixes up the known errors in the previous attempt to fix reference counting. This patch reworks the memory policy referencing counting and, one hopes, simplifies the code. Maybe I'll get it right this time. See the update to the numa_memory_policy.txt document for a discussion of memory policy reference counting that motivates this patch. Summary: Lookup of mempolicy, based on (vma, address) need only add a reference for shared policy, and we need only unref the policy when finished for shared policies. So, this patch backs out all of the unneeded extra reference counting added by my previous attempt. It then unrefs only shared policies when we're finished with them, using the mpol_cond_put() [conditional put] helper function introduced by this patch. Note that shmem_swapin() calls read_swap_cache_async() with a dummy vma containing just the policy. read_swap_cache_async() can call alloc_page_vma() multiple times, so we can't let alloc_page_vma() unref the shared policy in this case. To avoid this, we make a copy of any non-null shared policy and remove the MPOL_F_SHARED flag from the copy. This copy occurs before reading a page [or multiple pages] from swap, so the overhead should not be an issue here. I introduced a new static inline function "mpol_cond_copy()" to copy the shared policy to an on-stack policy and remove the flags that would require a conditional free. The current implementation of mpol_cond_copy() assumes that the struct mempolicy contains no pointers to dynamically allocated structures that must be duplicated or reference counted during copy. Signed-off-by: Lee Schermerhorn <lee.schermerhorn@hp.com> Cc: Christoph Lameter <clameter@sgi.com> Cc: David Rientjes <rientjes@google.com> Cc: Mel Gorman <mel@csn.ul.ie> Cc: Andi Kleen <ak@suse.de> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2008-04-28mempolicy: rename mpol_free to mpol_putLee Schermerhorn
This is a change that was requested some time ago by Mel Gorman. Makes sense to me, so here it is. Note: I retain the name "mpol_free_shared_policy()" because it actually does free the shared_policy, which is NOT a reference counted object. However, ... The mempolicy object[s] referenced by the shared_policy are reference counted, so mpol_put() is used to release the reference held by the shared_policy. The mempolicy might not be freed at this time, because some task attached to the shared object associated with the shared policy may be in the process of allocating a page based on the mempolicy. In that case, the task performing the allocation will hold a reference on the mempolicy, obtained via mpol_shared_policy_lookup(). The mempolicy will be freed when all tasks holding such a reference have called mpol_put() for the mempolicy. Signed-off-by: Lee Schermerhorn <lee.schermerhorn@hp.com> Cc: Christoph Lameter <clameter@sgi.com> Cc: David Rientjes <rientjes@google.com> Cc: Mel Gorman <mel@csn.ul.ie> Cc: Andi Kleen <ak@suse.de> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2008-04-28mempolicy: fix parsing of tmpfs mpol mount optionLee Schermerhorn
Parsing of new mode flags in the tmpfs mpol mount option is slightly broken: Setting a valid flag works OK: #mount -o remount,mpol=bind=static:1-2 /dev/shm #mount ... tmpfs on /dev/shm type tmpfs (rw,mpol=bind=static:1-2) ... However, we can't remove them or change them, once we've set a valid flag: #mount -o remount,mpol=bind:1-2 /dev/shm #mount ... tmpfs on /dev/shm type tmpfs (rw,mpol=bind:1-2) ... It SAYS it removed it, but that's just a copy of the input string. If we now try to set it to a different flag, we get: #mount -o remount,mpol=bind=relative:1-2 /dev/shm mount: /dev/shm not mounted already, or bad option And on the console, we see: tmpfs: Bad value 'bind' for mount option 'mpol' ^ lost remainder of string Furthermore, bogus flags are accepted with out error. Granted, they are a no-op: #mount -o remount,mpol=interleave=foo:0-3 /dev/shm #mount ... tmpfs on /dev/shm type tmpfs (rw,mpol=interleave=foo:0-3) Again, that's just a copy of the input string shown by the mount command. This patch fixes the behavior by pre-zeroing the flags so that only one of the mutually exclusive flags can be set at one time. It also reports an error when an unrecognized flag is specified. The check for both flags being set is removed because it can't happen with this implementation. If we ever want to support multiple non-exclusive flags, this area will need rework and we will need to check that any mutually exclusive flags aren't specified. Signed-off-by: Lee Schermerhorn <lee.schermerhorn@hp.com> Cc: David Rientjes <rientjes@google.com> Cc: Paul Jackson <pj@sgi.com> Cc: Christoph Lameter <clameter@sgi.com> Cc: Andi Kleen <ak@suse.de> Cc: Eric Whitney <eric.whitney@hp.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2008-04-28mempolicy: add MPOL_F_RELATIVE_NODES flagDavid Rientjes
Adds another optional mode flag, MPOL_F_RELATIVE_NODES, that specifies nodemasks passed via set_mempolicy() or mbind() should be considered relative to the current task's mems_allowed. When the mempolicy is created, the passed nodemask is folded and mapped onto the current task's mems_allowed. For example, consider a task using set_mempolicy() to pass MPOL_INTERLEAVE | MPOL_F_RELATIVE_NODES with a nodemask of 1-3. If current's mems_allowed is 4-7, the effected nodemask is 5-7 (the second, third, and fourth node of mems_allowed). If the same task is attached to a cpuset, the mempolicy nodemask is rebound each time the mems are changed. Some possible rebinds and results are: mems result 1-3 1-3 1-7 2-4 1,5-6 1,5-6 1,5-7 5-7 Likewise, the zonelist built for MPOL_BIND acts on the set of zones assigned to the resultant nodemask from the relative remap. In the MPOL_PREFERRED case, the preferred node is remapped from the currently effected nodemask to the relative nodemask. This mempolicy mode flag was conceived of by Paul Jackson <pj@sgi.com>. Cc: Paul Jackson <pj@sgi.com> Cc: Christoph Lameter <clameter@sgi.com> Cc: Lee Schermerhorn <Lee.Schermerhorn@hp.com> Cc: Andi Kleen <ak@suse.de> Signed-off-by: David Rientjes <rientjes@google.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2008-04-28mempolicy: add MPOL_F_STATIC_NODES flagDavid Rientjes
Add an optional mempolicy mode flag, MPOL_F_STATIC_NODES, that suppresses the node remap when the policy is rebound. Adds another member to struct mempolicy, nodemask_t user_nodemask, as part of a union with cpuset_mems_allowed: struct mempolicy { ... union { nodemask_t cpuset_mems_allowed; nodemask_t user_nodemask; } w; } that stores the the nodemask that the user passed when he or she created the mempolicy via set_mempolicy() or mbind(). When using MPOL_F_STATIC_NODES, which is passed with any mempolicy mode, the user's passed nodemask intersected with the VMA or task's allowed nodes is always used when determining the preferred node, setting the MPOL_BIND zonelist, or creating the interleave nodemask. This happens whenever the policy is rebound, including when a task's cpuset assignment changes or the cpuset's mems are changed. This creates an interesting side-effect in that it allows the mempolicy "intent" to lie dormant and uneffected until it has access to the node(s) that it desires. For example, if you currently ask for an interleaved policy over a set of nodes that you do not have access to, the mempolicy is not created and the task continues to use the previous policy. With this change, however, it is possible to create the same mempolicy; it is only effected when access to nodes in the nodemask is acquired. It is also possible to mount tmpfs with the static nodemask behavior when specifying a node or nodemask. To do this, simply add "=static" immediately following the mempolicy mode at mount time: mount -o remount mpol=interleave=static:1-3 Also removes mpol_check_policy() and folds its logic into mpol_new() since it is now obsoleted. The unused vma_mpol_equal() is also removed. Cc: Paul Jackson <pj@sgi.com> Cc: Christoph Lameter <clameter@sgi.com> Cc: Lee Schermerhorn <Lee.Schermerhorn@hp.com> Cc: Andi Kleen <ak@suse.de> Signed-off-by: David Rientjes <rientjes@google.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2008-04-28mempolicy: support optional mode flagsDavid Rientjes
With the evolution of mempolicies, it is necessary to support mempolicy mode flags that specify how the policy shall behave in certain circumstances. The most immediate need for mode flag support is to suppress remapping the nodemask of a policy at the time of rebind. Both the mempolicy mode and flags are passed by the user in the 'int policy' formal of either the set_mempolicy() or mbind() syscall. A new constant, MPOL_MODE_FLAGS, represents the union of legal optional flags that may be passed as part of this int. Mempolicies that include illegal flags as part of their policy are rejected as invalid. An additional member to struct mempolicy is added to support the mode flags: struct mempolicy { ... unsigned short policy; unsigned short flags; } The splitting of the 'int' actual passed by the user is done in sys_set_mempolicy() and sys_mbind() for their respective syscalls. This is done by intersecting the actual with MPOL_MODE_FLAGS, rejecting the syscall of there are additional flags, and storing it in the new 'flags' member of struct mempolicy. The intersection of the actual with ~MPOL_MODE_FLAGS is stored in the 'policy' member of the struct and all current users of pol->policy remain unchanged. The union of the policy mode and optional mode flags is passed back to the user in get_mempolicy(). This combination of mode and flags within the same actual does not break userspace code that relies on get_mempolicy(&policy, ...) and either switch (policy) { case MPOL_BIND: ... case MPOL_INTERLEAVE: ... }; statements or if (policy == MPOL_INTERLEAVE) { ... } statements. Such applications would need to use optional mode flags when calling set_mempolicy() or mbind() for these previously implemented statements to stop working. If an application does start using optional mode flags, it will need to mask the optional flags off the policy in switch and conditional statements that only test mode. An additional member is also added to struct shmem_sb_info to store the optional mode flags. [hugh@veritas.com: shmem mpol: fix build warning] Cc: Paul Jackson <pj@sgi.com> Cc: Christoph Lameter <clameter@sgi.com> Cc: Lee Schermerhorn <Lee.Schermerhorn@hp.com> Cc: Andi Kleen <ak@suse.de> Signed-off-by: David Rientjes <rientjes@google.com> Signed-off-by: Hugh Dickins <hugh@veritas.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2008-04-28mempolicy: convert MPOL constants to enumDavid Rientjes
The mempolicy mode constants, MPOL_DEFAULT, MPOL_PREFERRED, MPOL_BIND, and MPOL_INTERLEAVE, are better declared as part of an enum since they are sequentially numbered and cannot be combined. The policy member of struct mempolicy is also converted from type short to type unsigned short. A negative policy does not have any legitimate meaning, so it is possible to change its type in preparation for adding optional mode flags later. The equivalent member of struct shmem_sb_info is also changed from int to unsigned short. For compatibility, the policy formal to get_mempolicy() remains as a pointer to an int: int get_mempolicy(int *policy, unsigned long *nmask, unsigned long maxnode, unsigned long addr, unsigned long flags); although the only possible values is the range of type unsigned short. Cc: Paul Jackson <pj@sgi.com> Cc: Christoph Lameter <clameter@sgi.com> Cc: Lee Schermerhorn <Lee.Schermerhorn@hp.com> Cc: Andi Kleen <ak@suse.de> Signed-off-by: David Rientjes <rientjes@google.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2008-03-19mm/shmem and tiny-shmem: fix some kernel-docRandy Dunlap
Convert tiny-shmem.c function comments to kernel-doc. Add parameters and convert/fix other kernel-doc in shmem.c. Signed-off-by: Randy Dunlap <randy.dunlap@oracle.com> Cc: Hugh Dickins <hugh@veritas.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2008-03-04memcg: mem_cgroup_charge never NULLHugh Dickins
My memcgroup patch to fix hang with shmem/tmpfs added NULL page handling to mem_cgroup_charge_common. It seemed convenient at the time, but hard to justify now: there's a perfectly appropriate swappage to charge and uncharge instead, this is not on any hot path through shmem_getpage, and no performance hit was observed from the slight extra overhead. So revert that NULL page handling from mem_cgroup_charge_common; and make it clearer by bringing page_cgroup_assign_new_page_cgroup into its body - that was a helper I found more of a hindrance to understanding. Signed-off-by: Hugh Dickins <hugh@veritas.com> Cc: David Rientjes <rientjes@google.com> Acked-by: Balbir Singh <balbir@linux.vnet.ibm.com> Acked-by: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com> Cc: Hirokazu Takahashi <taka@valinux.co.jp> Cc: YAMAMOTO Takashi <yamamoto@valinux.co.jp> Cc: Paul Menage <menage@google.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2008-02-08mount-options-fix-tmpfs-fixAndrew Morton
Documentation/SubmitCheckist, please. Cc: Hugh Dickins <hugh@veritas.com> Cc: Miklos Szeredi <mszeredi@suse.cz> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2008-02-08mount options: fix tmpfsakpm@linux-foundation.org
Add .show_options super operation to tmpfs. Signed-off-by: Hugh Dickins <hugh@veritas.com> Signed-off-by: Miklos Szeredi <mszeredi@suse.cz> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2008-02-07memcgroup: fix hang with shmem/tmpfsHugh Dickins
The memcgroup regime relies upon a cgroup reclaiming pages from itself within add_to_page_cache: which may involve some waiting. Whereas shmem and tmpfs rely upon using add_to_page_cache while holding a spinlock: when it cannot wait. The consequence is that when a cgroup reaches its limit, shmem_getpage just hangs - unless there is outside memory pressure too, neither kswapd nor radix_tree_preload get it out of the retry loop. In most cases we can mem_cgroup_cache_charge the page waitably first, to attach the page_cgroup in advance, so add_to_page_cache will do no more than increment a count; then mem_cgroup_uncharge_page after (in both success and failure cases) to balance the books again. And where there used to be a congestion_wait for kswapd (recently made redundant by radix_tree_preload), use mem_cgroup_cache_charge with NULL page to go through a cycle of allocation and freeing, without accounting to any particular page, and without updating the statistics vector. This brings the cgroup below its limit so the next try usually succeeds. Signed-off-by: Hugh Dickins <hugh@veritas.com> Cc: Balbir Singh <balbir@linux.vnet.ibm.com> Cc: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com> Cc: Mel Gorman <mel@csn.ul.ie> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2008-02-05VFS/Security: Rework inode_getsecurity and callers to return resulting bufferDavid P. Quigley
This patch modifies the interface to inode_getsecurity to have the function return a buffer containing the security blob and its length via parameters instead of relying on the calling function to give it an appropriately sized buffer. Security blobs obtained with this function should be freed using the release_secctx LSM hook. This alleviates the problem of the caller having to guess a length and preallocate a buffer for this function allowing it to be used elsewhere for Labeled NFS. The patch also removed the unused err parameter. The conversion is similar to the one performed by Al Viro for the security_getprocattr hook. Signed-off-by: David P. Quigley <dpquigl@tycho.nsa.gov> Cc: Stephen Smalley <sds@tycho.nsa.gov> Cc: Chris Wright <chrisw@sous-sol.org> Acked-by: James Morris <jmorris@namei.org> Acked-by: Serge Hallyn <serue@us.ibm.com> Cc: Casey Schaufler <casey@schaufler-ca.com> Cc: Al Viro <viro@zeniv.linux.org.uk> Cc: Christoph Hellwig <hch@lst.de> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2008-02-05tmpfs: fix shmem_swaplist racesHugh Dickins
Intensive swapoff testing shows shmem_unuse spinning on an entry in shmem_swaplist pointing to itself: how does that come about? Days pass... First guess is this: shmem_delete_inode tests list_empty without taking the global mutex (so the swapping case doesn't slow down the common case); but there's an instant in shmem_unuse_inode's list_move_tail when the list entry may appear empty (a rare case, because it's actually moving the head not the the list member). So there's a danger of leaving the inode on the swaplist when it's freed, then reinitialized to point to itself when reused. Fix that by skipping the list_move_tail when it's a no-op, which happens to plug this. But this same spinning then surfaces on another machine. Ah, I'd never suspected it, but shmem_writepage's swaplist manipulation is unsafe: though we still hold page lock, which would hold off inode deletion if the page were in pagecache, it doesn't hold off once it's in swapcache (free_swap_and_cache doesn't wait on locked pages). Hmm: we could put the the inode on swaplist earlier, but then shmem_unuse_inode could never prune unswapped inodes. Fix this with an igrab before dropping info->lock, as in shmem_unuse_inode; though I am a little uneasy about the iput which has to follow - it works, and I see nothing wrong with it, but it is surprising that shmem inode deletion may now occur below shmem_writepage. Revisit this fix later? And while we're looking at these races: the way shmem_unuse tests swapped without holding info->lock looks unsafe, if we've more than one swap area: a racing shmem_writepage on another page of the same inode could be putting it in swapcache, just as we're deciding to remove the inode from swaplist - there's a danger of going on swap without being listed, so a later swapoff would hang, being unable to locate the entry. Move that test and removal down into shmem_unuse_inode, once info->lock is held. Signed-off-by: Hugh Dickins <hugh@veritas.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2008-02-05tmpfs: radix_tree_preloadingHugh Dickins
Nick has observed that shmem.c still uses GFP_ATOMIC when adding to page cache or swap cache, without any radix tree preload: so tending to deplete emergency reserves of memory. GFP_ATOMIC remains appropriate in shmem_writepage's add_to_swap_cache: it's being called under memory pressure, so must not wait for more memory to become available. But shmem_unuse_inode now has a window in which it can and should preload with GFP_KERNEL, and say GFP_NOWAIT instead of GFP_ATOMIC in its add_to_page_cache. shmem_getpage is not so straightforward: its filepage/swappage integrity relies upon exchanging between caches under spinlock, and it would need a lot of restructuring to place the preloads correctly. Instead, follow its pattern of retrying on races: use GFP_NOWAIT instead of GFP_ATOMIC in add_to_page_cache, and begin each circuit of the repeat loop with a sleeping radix_tree_preload, followed immediately by radix_tree_preload_end - that won't guarantee success in the next add_to_page_cache, but doesn't need to. And we can then remove that bothersome congestion_wait: when needed, it'll automatically get done in the course of the radix_tree_preload. Signed-off-by: Hugh Dickins <hugh@veritas.com> Looks-good-to: Nick Piggin <npiggin@suse.de> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2008-02-05tmpfs: open a window in shmem_unuse_inodeHugh Dickins
There are a couple of reasons (patches follow) why it would be good to open a window for sleep in shmem_unuse_inode, between its search for a matching swap entry, and its handling of the entry found. shmem_unuse_inode must then use igrab to hold the inode against deletion in that window, and its corresponding iput might result in deletion: so it had better unlock_page before the iput, and might as well release the page too. Nor is there any need to hold on to shmem_swaplist_mutex once we know we'll leave the loop. So this unwinding moves from try_to_unuse and shmem_unuse into shmem_unuse_inode, in the case when it finds a match. Let try_to_unuse break on error in the shmem_unuse case, as it does in the unuse_mm case: though at this point in the series, no error to break on. Signed-off-by: Hugh Dickins <hugh@veritas.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2008-02-05tmpfs: make shmem_unuse more preemptibleHugh Dickins
shmem_unuse is at present an unbroken search through every swap vector page of every tmpfs file which might be swapped, all under shmem_swaplist_lock. This dates from long ago, when the caller held mmlist_lock over it all too: long gone, but there's never been much pressure for preemptible swapoff. Make it a little more preemptible, replacing shmem_swaplist_lock by shmem_swaplist_mutex, inserting a cond_resched in the main loop, and a cond_resched_lock (on info->lock) at one convenient point in the shmem_unuse_inode loop, where it has no outstanding kmap_atomic. If we're serious about preemptible swapoff, there's much further to go e.g. I'm stupid to let the kmap_atomics of the decreasingly significant HIGHMEM case dictate preemptiblility for other configs. But as in the earlier patch to make swapoff scan ptes preemptibly, my hidden agenda is really towards making memcgroups work, hardly about preemptibility at all. Signed-off-by: Hugh Dickins <hugh@veritas.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2008-02-05tmpfs: allocate on read when stackedHugh Dickins
tmpfs is expected to limit the memory used (unless mounted with nr_blocks=0 or size=0). But if a stacked filesystem such as unionfs gets pages from a sparse tmpfs file by reading holes, and then writes to them, it can easily exceed any such limit at present. So suppress the SGP_READ "don't allocate page" ZERO_PAGE optimization when reading for the kernel (a KERNEL_DS check, ugh, sorry about that). Indeed, pessimistically mark such pages as dirty, so they cannot get reclaimed and unaccounted by mistake. The venerable shmem_recalc_inode code (originally to account for the reclaim of clean pages) suffices to get the accounting right when swappages are dropped in favour of more uptodate filepages. This also fixes the NULL shmem_swp_entry BUG or oops in shmem_writepage, caused by unionfs writing to a very sparse tmpfs file: to minimize memory allocation in swapout, tmpfs requires the swap vector be allocated upfront, which wasn't always happening in this stacked case. Signed-off-by: Hugh Dickins <hugh@veritas.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2008-02-05tmpfs: allow filepage alongside swappageHugh Dickins
tmpfs has long allowed for a fresh filepage to be created in pagecache, just before shmem_getpage gets the chance to match it up with the swappage which already belongs to that offset. But unionfs_writepage now does a find_or_create_page, divorced from shmem_getpage, which leaves conflicting filepage and swappage outstanding indefinitely, when unionfs is over tmpfs. Therefore shmem_writepage (where a page is swizzled from file to swap) must now be on the lookout for existing swap, ready to free it in favour of the more uptodate filepage, instead of BUGging on that clash. And when the add_to_page_cache fails in shmem_unuse_inode, it must defer to an uptodate filepage, otherwise swapoff would hang. Whereas when add_to_page_cache fails in shmem_getpage, it should retry in the same way it already does. Signed-off-by: Hugh Dickins <hugh@veritas.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2008-02-05tmpfs: move swap swizzling into shmemHugh Dickins
move_to_swap_cache and move_from_swap_cache functions (which swizzle a page between tmpfs page cache and swap cache, to avoid page copying) are only used by shmem.c; and our subsequent fix for unionfs needs different treatments in the two instances of move_from_swap_cache. Move them from swap_state.c into their callsites shmem_writepage, shmem_unuse_inode and shmem_getpage, making add_to_swap_cache externally visible. shmem.c likes to say set_page_dirty where swap_state.c liked to say SetPageDirty: respect that diversity, which __set_page_dirty_no_writeback makes moot (and implies we should lose that "shift page from clean_pages to dirty_pages list" comment: it's on neither). Signed-off-by: Hugh Dickins <hugh@veritas.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>