summaryrefslogtreecommitdiff
path: root/mm/vmscan.c
AgeCommit message (Collapse)Author
2012-01-06Merge branch 'driver-core-next' into Linux 3.2Greg Kroah-Hartman
This resolves the conflict in the arch/arm/mach-s3c64xx/s3c6400.c file, and it fixes the build error in the arch/x86/kernel/microcode_core.c file, that the merge did not catch. The microcode_core.c patch was provided by Stephen Rothwell <sfr@canb.auug.org.au> who was invaluable in the merge issues involved with the large sysdev removal process in the driver-core tree. Signed-off-by: Greg Kroah-Hartman <gregkh@suse.de>
2011-12-21convert 'memory' sysdev_class to a regular subsystemKay Sievers
This moves the 'memory sysdev_class' over to a regular 'memory' subsystem and converts the devices to regular devices. The sysdev drivers are implemented as subsystem interfaces now. After all sysdev classes are ported to regular driver core entities, the sysdev implementation will be entirely removed from the kernel. Signed-off-by: Kay Sievers <kay.sievers@vrfy.org> Signed-off-by: Greg Kroah-Hartman <gregkh@suse.de>
2011-12-09vmscan: use atomic-long for shrinker batchingKonstantin Khlebnikov
Use atomic-long operations instead of looping around cmpxchg(). [akpm@linux-foundation.org: massage atomic.h inclusions] Signed-off-by: Konstantin Khlebnikov <khlebnikov@openvz.org> Cc: Dave Chinner <david@fromorbit.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2011-12-09vmscan: fix initial shrinker size handlingKonstantin Khlebnikov
A shrinker function can return -1, means that it cannot do anything without a risk of deadlock. For example prune_super() does this if it cannot grab a superblock refrence, even if nr_to_scan=0. Currently we interpret this -1 as a ULONG_MAX size shrinker and evaluate `total_scan' according to this. So the next time around this shrinker can cause really big pressure. Let's skip such shrinkers instead. Also make total_scan signed, otherwise the check (total_scan < 0) below never works. Signed-off-by: Konstantin Khlebnikov <khlebnikov@openvz.org> Cc: Dave Chinner <david@fromorbit.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2011-11-06Merge branch 'writeback-for-linus' of ↵Linus Torvalds
git://git.kernel.org/pub/scm/linux/kernel/git/wfg/linux * 'writeback-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/wfg/linux: writeback: Add a 'reason' to wb_writeback_work writeback: send work item to queue_io, move_expired_inodes writeback: trace event balance_dirty_pages writeback: trace event bdi_dirty_ratelimit writeback: fix ppc compile warnings on do_div(long long, unsigned long) writeback: per-bdi background threshold writeback: dirty position control - bdi reserve area writeback: control dirty pause time writeback: limit max dirty pause time writeback: IO-less balance_dirty_pages() writeback: per task dirty rate limit writeback: stabilize bdi->dirty_ratelimit writeback: dirty rate control writeback: add bg_threshold parameter to __bdi_update_bandwidth() writeback: dirty position control writeback: account per-bdi accumulated dirtied pages
2011-11-02memcg: skip scanning active lists based on individual sizeJohannes Weiner
Reclaim decides to skip scanning an active list when the corresponding inactive list is above a certain size in comparison to leave the assumed working set alone while there are still enough reclaim candidates around. The memcg implementation of comparing those lists instead reports whether the whole memcg is low on the requested type of inactive pages, considering all nodes and zones. This can lead to an oversized active list not being scanned because of the state of the other lists in the memcg, as well as an active list being scanned while its corresponding inactive list has enough pages. Not only is this wrong, it's also a scalability hazard, because the global memory state over all nodes and zones has to be gathered for each memcg and zone scanned. Make these calculations purely based on the size of the two LRU lists that are actually affected by the outcome of the decision. Signed-off-by: Johannes Weiner <jweiner@redhat.com> Reviewed-by: Rik van Riel <riel@redhat.com> Cc: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com> Acked-by: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com> Cc: Daisuke Nishimura <nishimura@mxp.nes.nec.co.jp> Cc: Balbir Singh <bsingharora@gmail.com> Reviewed-by: Minchan Kim <minchan.kim@gmail.com> Reviewed-by: Ying Han <yinghan@google.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2011-10-31vmscan: abort reclaim/compaction if compaction can proceedMel Gorman
If compaction can proceed, shrink_zones() stops doing any work but its callers still call shrink_slab() which raises the priority and potentially sleeps. This is unnecessary and wasteful so this patch aborts direct reclaim/compaction entirely if compaction can proceed. Signed-off-by: Mel Gorman <mgorman@suse.de> Acked-by: Rik van Riel <riel@redhat.com> Reviewed-by: Minchan Kim <minchan.kim@gmail.com> Acked-by: Johannes Weiner <jweiner@redhat.com> Cc: Josh Boyer <jwboyer@redhat.com> Cc: Andrea Arcangeli <aarcange@redhat.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2011-10-31vmscan: limit direct reclaim for higher order allocationsRik van Riel
When suffering from memory fragmentation due to unfreeable pages, THP page faults will repeatedly try to compact memory. Due to the unfreeable pages, compaction fails. Needless to say, at that point page reclaim also fails to create free contiguous 2MB areas. However, that doesn't stop the current code from trying, over and over again, and freeing a minimum of 4MB (2UL << sc->order pages) at every single invocation. This resulted in my 12GB system having 2-3GB free memory, a corresponding amount of used swap and very sluggish response times. This can be avoided by having the direct reclaim code not reclaim from zones that already have plenty of free memory available for compaction. If compaction still fails due to unmovable memory, doing additional reclaim will only hurt the system, not help. [jweiner@redhat.com: change comment to explain the order check] Signed-off-by: Rik van Riel <riel@redhat.com> Acked-by: Johannes Weiner <jweiner@redhat.com> Acked-by: Mel Gorman <mgorman@suse.de> Cc: Andrea Arcangeli <aarcange@redhat.com> Reviewed-by: Minchan Kim <minchan.kim@gmail.com> Signed-off-by: Johannes Weiner <jweiner@redhat.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2011-10-31vmscan: add barrier to prevent evictable page in unevictable listMinchan Kim
When a race between putback_lru_page() and shmem_lock with lock=0 happens, progrom execution order is as follows, but clear_bit in processor #1 could be reordered right before spin_unlock of processor #1. Then, the page would be stranded on the unevictable list. spin_lock SetPageLRU spin_unlock clear_bit(AS_UNEVICTABLE) spin_lock if PageLRU() if !test_bit(AS_UNEVICTABLE) move evictable list smp_mb if !test_bit(AS_UNEVICTABLE) move evictable list spin_unlock But, pagevec_lookup() in scan_mapping_unevictable_pages() has rcu_read_[un]lock() so it could protect reordering before reaching test_bit(AS_UNEVICTABLE) on processor #1 so this problem never happens. But it's a unexpected side effect and we should solve this problem properly. This patch adds a barrier after mapping_clear_unevictable. I didn't meet this problem but just found during review. Signed-off-by: Minchan Kim <minchan.kim@gmail.com> Acked-by: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com> Cc: Mel Gorman <mel@csn.ul.ie> Cc: Rik van Riel <riel@redhat.com> Cc: Lee Schermerhorn <lee.schermerhorn@hp.com> Acked-by: Johannes Weiner <jweiner@redhat.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2011-10-31mm: disable user interface to manually rescue unevictable pagesJohannes Weiner
At one point, anonymous pages were supposed to go on the unevictable list when no swap space was configured, and the idea was to manually rescue those pages after adding swap and making them evictable again. But nowadays, swap-backed pages on the anon LRU list are not scanned without available swap space anyway, so there is no point in moving them to a separate list anymore. The manual rescue could also be used in case pages were stranded on the unevictable list due to race conditions. But the code has been around for a while now and newly discovered bugs should be properly reported and dealt with instead of relying on such a manual fixup. In addition to the lack of a usecase, the sysfs interface to rescue pages from a specific NUMA node has been broken since its introduction, so it's unlikely that anybody ever relied on that. This patch removes the functionality behind the sysctl and the node-interface and emits a one-time warning when somebody tries to access either of them. Signed-off-by: Johannes Weiner <jweiner@redhat.com> Reported-by: Kautuk Consul <consul.kautuk@gmail.com> Reviewed-by: Minchan Kim <minchan.kim@gmail.com> Acked-by: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2011-10-31vmscan.c: fix invalid strict_strtoul() check in write_scan_unevictable_node()Kautuk Consul
write_scan_unevictable_node() checks the value req returned by strict_strtoul() and returns 1 if req is 0. However, when strict_strtoul() returns 0, it means successful conversion of buf to unsigned long. Due to this, the function was not proceeding to scan the zones for unevictable pages even though we write a valid value to the scan_unevictable_pages sys file. Change this check slightly to check for invalid value in buf as well as 0 value stored in res after successful conversion via strict_strtoul. In both cases, we do not perform the scanning of this node's zones. Signed-off-by: Kautuk Consul <consul.kautuk@gmail.com> Reviewed-by: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com> Cc: Johannes Weiner <jweiner@redhat.com> Cc: Lee Schermerhorn <lee.schermerhorn@hp.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2011-10-31kswapd: assign new_order and new_classzone_idx after wakeup in sleepingAlex,Shi
There 2 places to read pgdat in kswapd. One is return from a successful balance, another is waked up from kswapd sleeping. The new_order and new_classzone_idx represent the balance input order and classzone_idx. But current new_order and new_classzone_idx are not assigned after kswapd_try_to_sleep(), that will cause a bug in the following scenario. 1: after a successful balance, kswapd goes to sleep, and new_order = 0; new_classzone_idx = __MAX_NR_ZONES - 1; 2: kswapd waked up with order = 3 and classzone_idx = ZONE_NORMAL 3: in the balance_pgdat() running, a new balance wakeup happened with order = 5, and classzone_idx = ZONE_NORMAL 4: the first wakeup(order = 3) finished successufly, return order = 3 but, the new_order is still 0, so, this balancing will be treated as a failed balance. And then the second tighter balancing will be missed. So, to avoid the above problem, the new_order and new_classzone_idx need to be assigned for later successful comparison. Signed-off-by: Alex Shi <alex.shi@intel.com> Acked-by: Mel Gorman <mgorman@suse.de> Reviewed-by: Minchan Kim <minchan.kim@gmail.com> Tested-by: Pádraig Brady <P@draigBrady.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2011-10-31kswapd: avoid unnecessary rebalance after an unsuccessful balancingAlex,Shi
In commit 215ddd66 ("mm: vmscan: only read new_classzone_idx from pgdat when reclaiming successfully") , Mel Gorman said kswapd is better to sleep after a unsuccessful balancing if there is tighter reclaim request pending in the balancing. But in the following scenario, kswapd do something that is not matched our expectation. The patch fixes this issue. 1, Read pgdat request A (classzone_idx, order = 3) 2, balance_pgdat() 3, During pgdat, a new pgdat request B (classzone_idx, order = 5) is placed 4, balance_pgdat() returns but failed since returned order = 0 5, pgdat of request A assigned to balance_pgdat(), and do balancing again. While the expectation behavior of kswapd should try to sleep. Signed-off-by: Alex Shi <alex.shi@intel.com> Reviewed-by: Tim Chen <tim.c.chen@linux.intel.com> Acked-by: Mel Gorman <mgorman@suse.de> Tested-by: Pádraig Brady <P@draigBrady.com> Cc: Rik van Riel <riel@redhat.com> Cc: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2011-10-31vmscan: count pages into balanced for zone with good watermarkShaohua Li
It's possible a zone watermark is ok when entering the balance_pgdat() loop, while the zone is within the requested classzone_idx. Count pages from this zone into `balanced'. In this way, we can skip shrinking zones too much for high order allocation. Signed-off-by: Shaohua Li <shaohua.li@intel.com> Acked-by: Mel Gorman <mgorman@suse.de> Reviewed-by: Minchan Kim <minchan.kim@gmail.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2011-10-31mm: vmscan: immediately reclaim end-of-LRU dirty pages when writeback completesMel Gorman
When direct reclaim encounters a dirty page, it gets recycled around the LRU for another cycle. This patch marks the page PageReclaim similar to deactivate_page() so that the page gets reclaimed almost immediately after the page gets cleaned. This is to avoid reclaiming clean pages that are younger than a dirty page encountered at the end of the LRU that might have been something like a use-once page. Signed-off-by: Mel Gorman <mgorman@suse.de> Acked-by: Johannes Weiner <jweiner@redhat.com> Cc: Dave Chinner <david@fromorbit.com> Cc: Christoph Hellwig <hch@infradead.org> Cc: Wu Fengguang <fengguang.wu@intel.com> Cc: Jan Kara <jack@suse.cz> Cc: Minchan Kim <minchan.kim@gmail.com> Cc: Rik van Riel <riel@redhat.com> Cc: Mel Gorman <mgorman@suse.de> Cc: Alex Elder <aelder@sgi.com> Cc: Theodore Ts'o <tytso@mit.edu> Cc: Chris Mason <chris.mason@oracle.com> Cc: Dave Hansen <dave@linux.vnet.ibm.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2011-10-31mm: vmscan: throttle reclaim if encountering too many dirty pages under ↵Mel Gorman
writeback Workloads that are allocating frequently and writing files place a large number of dirty pages on the LRU. With use-once logic, it is possible for them to reach the end of the LRU quickly requiring the reclaimer to scan more to find clean pages. Ordinarily, processes that are dirtying memory will get throttled by dirty balancing but this is a global heuristic and does not take into account that LRUs are maintained on a per-zone basis. This can lead to a situation whereby reclaim is scanning heavily, skipping over a large number of pages under writeback and recycling them around the LRU consuming CPU. This patch checks how many of the number of pages isolated from the LRU were dirty and under writeback. If a percentage of them under writeback, the process will be throttled if a backing device or the zone is congested. Note that this applies whether it is anonymous or file-backed pages that are under writeback meaning that swapping is potentially throttled. This is intentional due to the fact if the swap device is congested, scanning more pages and dispatching more IO is not going to help matters. The percentage that must be in writeback depends on the priority. At default priority, all of them must be dirty. At DEF_PRIORITY-1, 50% of them must be, DEF_PRIORITY-2, 25% etc. i.e. as pressure increases the greater the likelihood the process will get throttled to allow the flusher threads to make some progress. Signed-off-by: Mel Gorman <mgorman@suse.de> Reviewed-by: Minchan Kim <minchan.kim@gmail.com> Acked-by: Johannes Weiner <jweiner@redhat.com> Cc: Dave Chinner <david@fromorbit.com> Cc: Christoph Hellwig <hch@infradead.org> Cc: Wu Fengguang <fengguang.wu@intel.com> Cc: Jan Kara <jack@suse.cz> Cc: Rik van Riel <riel@redhat.com> Cc: Mel Gorman <mgorman@suse.de> Cc: Alex Elder <aelder@sgi.com> Cc: Theodore Ts'o <tytso@mit.edu> Cc: Chris Mason <chris.mason@oracle.com> Cc: Dave Hansen <dave@linux.vnet.ibm.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2011-10-31mm: vmscan: do not writeback filesystem pages in kswapd except in high priorityMel Gorman
It is preferable that no dirty pages are dispatched for cleaning from the page reclaim path. At normal priorities, this patch prevents kswapd writing pages. However, page reclaim does have a requirement that pages be freed in a particular zone. If it is failing to make sufficient progress (reclaiming < SWAP_CLUSTER_MAX at any priority priority), the priority is raised to scan more pages. A priority of DEF_PRIORITY - 3 is considered to be the point where kswapd is getting into trouble reclaiming pages. If this priority is reached, kswapd will dispatch pages for writing. Signed-off-by: Mel Gorman <mgorman@suse.de> Reviewed-by: Minchan Kim <minchan.kim@gmail.com> Cc: Dave Chinner <david@fromorbit.com> Cc: Christoph Hellwig <hch@infradead.org> Cc: Johannes Weiner <jweiner@redhat.com> Cc: Wu Fengguang <fengguang.wu@intel.com> Cc: Jan Kara <jack@suse.cz> Cc: Rik van Riel <riel@redhat.com> Cc: Mel Gorman <mgorman@suse.de> Cc: Alex Elder <aelder@sgi.com> Cc: Theodore Ts'o <tytso@mit.edu> Cc: Chris Mason <chris.mason@oracle.com> Cc: Dave Hansen <dave@linux.vnet.ibm.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2011-10-31mm: vmscan: remove dead code related to lumpy reclaim waiting on pages under ↵Mel Gorman
writeback Lumpy reclaim worked with two passes - the first which queued pages for IO and the second which waited on writeback. As direct reclaim can no longer write pages there is some dead code. This patch removes it but direct reclaim will continue to wait on pages under writeback while in synchronous reclaim mode. Signed-off-by: Mel Gorman <mgorman@suse.de> Cc: Dave Chinner <david@fromorbit.com> Cc: Christoph Hellwig <hch@infradead.org> Cc: Johannes Weiner <jweiner@redhat.com> Cc: Wu Fengguang <fengguang.wu@intel.com> Cc: Jan Kara <jack@suse.cz> Cc: Minchan Kim <minchan.kim@gmail.com> Cc: Rik van Riel <riel@redhat.com> Cc: Mel Gorman <mgorman@suse.de> Cc: Alex Elder <aelder@sgi.com> Cc: Theodore Ts'o <tytso@mit.edu> Cc: Chris Mason <chris.mason@oracle.com> Cc: Dave Hansen <dave@linux.vnet.ibm.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2011-10-31mm: vmscan: do not writeback filesystem pages in direct reclaimMel Gorman
Testing from the XFS folk revealed that there is still too much I/O from the end of the LRU in kswapd. Previously it was considered acceptable by VM people for a small number of pages to be written back from reclaim with testing generally showing about 0.3% of pages reclaimed were written back (higher if memory was low). That writing back a small number of pages is ok has been heavily disputed for quite some time and Dave Chinner explained it well; It doesn't have to be a very high number to be a problem. IO is orders of magnitude slower than the CPU time it takes to flush a page, so the cost of making a bad flush decision is very high. And single page writeback from the LRU is almost always a bad flush decision. To complicate matters, filesystems respond very differently to requests from reclaim according to Christoph Hellwig; xfs tries to write it back if the requester is kswapd ext4 ignores the request if it's a delayed allocation btrfs ignores the request As a result, each filesystem has different performance characteristics when under memory pressure and there are many pages being dirtied. In some cases, the request is ignored entirely so the VM cannot depend on the IO being dispatched. The objective of this series is to reduce writing of filesystem-backed pages from reclaim, play nicely with writeback that is already in progress and throttle reclaim appropriately when writeback pages are encountered. The assumption is that the flushers will always write pages faster than if reclaim issues the IO. A secondary goal is to avoid the problem whereby direct reclaim splices two potentially deep call stacks together. There is a potential new problem as reclaim has less control over how long before a page in a particularly zone or container is cleaned and direct reclaimers depend on kswapd or flusher threads to do the necessary work. However, as filesystems sometimes ignore direct reclaim requests already, it is not expected to be a serious issue. Patch 1 disables writeback of filesystem pages from direct reclaim entirely. Anonymous pages are still written. Patch 2 removes dead code in lumpy reclaim as it is no longer able to synchronously write pages. This hurts lumpy reclaim but there is an expectation that compaction is used for hugepage allocations these days and lumpy reclaim's days are numbered. Patches 3-4 add warnings to XFS and ext4 if called from direct reclaim. With patch 1, this "never happens" and is intended to catch regressions in this logic in the future. Patch 5 disables writeback of filesystem pages from kswapd unless the priority is raised to the point where kswapd is considered to be in trouble. Patch 6 throttles reclaimers if too many dirty pages are being encountered and the zones or backing devices are congested. Patch 7 invalidates dirty pages found at the end of the LRU so they are reclaimed quickly after being written back rather than waiting for a reclaimer to find them I consider this series to be orthogonal to the writeback work but it is worth noting that the writeback work affects the viability of patch 8 in particular. I tested this on ext4 and xfs using fs_mark, a simple writeback test based on dd and a micro benchmark that does a streaming write to a large mapping (exercises use-once LRU logic) followed by streaming writes to a mix of anonymous and file-backed mappings. The command line for fs_mark when botted with 512M looked something like ./fs_mark -d /tmp/fsmark-2676 -D 100 -N 150 -n 150 -L 25 -t 1 -S0 -s 10485760 The number of files was adjusted depending on the amount of available memory so that the files created was about 3xRAM. For multiple threads, the -d switch is specified multiple times. The test machine is x86-64 with an older generation of AMD processor with 4 cores. The underlying storage was 4 disks configured as RAID-0 as this was the best configuration of storage I had available. Swap is on a separate disk. Dirty ratio was tuned to 40% instead of the default of 20%. Testing was run with and without monitors to both verify that the patches were operating as expected and that any performance gain was real and not due to interference from monitors. Here is a summary of results based on testing XFS. 512M1P-xfs Files/s mean 32.69 ( 0.00%) 34.44 ( 5.08%) 512M1P-xfs Elapsed Time fsmark 51.41 48.29 512M1P-xfs Elapsed Time simple-wb 114.09 108.61 512M1P-xfs Elapsed Time mmap-strm 113.46 109.34 512M1P-xfs Kswapd efficiency fsmark 62% 63% 512M1P-xfs Kswapd efficiency simple-wb 56% 61% 512M1P-xfs Kswapd efficiency mmap-strm 44% 42% 512M-xfs Files/s mean 30.78 ( 0.00%) 35.94 (14.36%) 512M-xfs Elapsed Time fsmark 56.08 48.90 512M-xfs Elapsed Time simple-wb 112.22 98.13 512M-xfs Elapsed Time mmap-strm 219.15 196.67 512M-xfs Kswapd efficiency fsmark 54% 56% 512M-xfs Kswapd efficiency simple-wb 54% 55% 512M-xfs Kswapd efficiency mmap-strm 45% 44% 512M-4X-xfs Files/s mean 30.31 ( 0.00%) 33.33 ( 9.06%) 512M-4X-xfs Elapsed Time fsmark 63.26 55.88 512M-4X-xfs Elapsed Time simple-wb 100.90 90.25 512M-4X-xfs Elapsed Time mmap-strm 261.73 255.38 512M-4X-xfs Kswapd efficiency fsmark 49% 50% 512M-4X-xfs Kswapd efficiency simple-wb 54% 56% 512M-4X-xfs Kswapd efficiency mmap-strm 37% 36% 512M-16X-xfs Files/s mean 60.89 ( 0.00%) 65.22 ( 6.64%) 512M-16X-xfs Elapsed Time fsmark 67.47 58.25 512M-16X-xfs Elapsed Time simple-wb 103.22 90.89 512M-16X-xfs Elapsed Time mmap-strm 237.09 198.82 512M-16X-xfs Kswapd efficiency fsmark 45% 46% 512M-16X-xfs Kswapd efficiency simple-wb 53% 55% 512M-16X-xfs Kswapd efficiency mmap-strm 33% 33% Up until 512-4X, the FSmark improvements were statistically significant. For the 4X and 16X tests the results were within standard deviations but just barely. The time to completion for all tests is improved which is an important result. In general, kswapd efficiency is not affected by skipping dirty pages. 1024M1P-xfs Files/s mean 39.09 ( 0.00%) 41.15 ( 5.01%) 1024M1P-xfs Elapsed Time fsmark 84.14 80.41 1024M1P-xfs Elapsed Time simple-wb 210.77 184.78 1024M1P-xfs Elapsed Time mmap-strm 162.00 160.34 1024M1P-xfs Kswapd efficiency fsmark 69% 75% 1024M1P-xfs Kswapd efficiency simple-wb 71% 77% 1024M1P-xfs Kswapd efficiency mmap-strm 43% 44% 1024M-xfs Files/s mean 35.45 ( 0.00%) 37.00 ( 4.19%) 1024M-xfs Elapsed Time fsmark 94.59 91.00 1024M-xfs Elapsed Time simple-wb 229.84 195.08 1024M-xfs Elapsed Time mmap-strm 405.38 440.29 1024M-xfs Kswapd efficiency fsmark 79% 71% 1024M-xfs Kswapd efficiency simple-wb 74% 74% 1024M-xfs Kswapd efficiency mmap-strm 39% 42% 1024M-4X-xfs Files/s mean 32.63 ( 0.00%) 35.05 ( 6.90%) 1024M-4X-xfs Elapsed Time fsmark 103.33 97.74 1024M-4X-xfs Elapsed Time simple-wb 204.48 178.57 1024M-4X-xfs Elapsed Time mmap-strm 528.38 511.88 1024M-4X-xfs Kswapd efficiency fsmark 81% 70% 1024M-4X-xfs Kswapd efficiency simple-wb 73% 72% 1024M-4X-xfs Kswapd efficiency mmap-strm 39% 38% 1024M-16X-xfs Files/s mean 42.65 ( 0.00%) 42.97 ( 0.74%) 1024M-16X-xfs Elapsed Time fsmark 103.11 99.11 1024M-16X-xfs Elapsed Time simple-wb 200.83 178.24 1024M-16X-xfs Elapsed Time mmap-strm 397.35 459.82 1024M-16X-xfs Kswapd efficiency fsmark 84% 69% 1024M-16X-xfs Kswapd efficiency simple-wb 74% 73% 1024M-16X-xfs Kswapd efficiency mmap-strm 39% 40% All FSMark tests up to 16X had statistically significant improvements. For the most part, tests are completing faster with the exception of the streaming writes to a mixture of anonymous and file-backed mappings which were slower in two cases In the cases where the mmap-strm tests were slower, there was more swapping due to dirty pages being skipped. The number of additional pages swapped is almost identical to the fewer number of pages written from reclaim. In other words, roughly the same number of pages were reclaimed but swapping was slower. As the test is a bit unrealistic and stresses memory heavily, the small shift is acceptable. 4608M1P-xfs Files/s mean 29.75 ( 0.00%) 30.96 ( 3.91%) 4608M1P-xfs Elapsed Time fsmark 512.01 492.15 4608M1P-xfs Elapsed Time simple-wb 618.18 566.24 4608M1P-xfs Elapsed Time mmap-strm 488.05 465.07 4608M1P-xfs Kswapd efficiency fsmark 93% 86% 4608M1P-xfs Kswapd efficiency simple-wb 88% 84% 4608M1P-xfs Kswapd efficiency mmap-strm 46% 45% 4608M-xfs Files/s mean 27.60 ( 0.00%) 28.85 ( 4.33%) 4608M-xfs Elapsed Time fsmark 555.96 532.34 4608M-xfs Elapsed Time simple-wb 659.72 571.85 4608M-xfs Elapsed Time mmap-strm 1082.57 1146.38 4608M-xfs Kswapd efficiency fsmark 89% 91% 4608M-xfs Kswapd efficiency simple-wb 88% 82% 4608M-xfs Kswapd efficiency mmap-strm 48% 46% 4608M-4X-xfs Files/s mean 26.00 ( 0.00%) 27.47 ( 5.35%) 4608M-4X-xfs Elapsed Time fsmark 592.91 564.00 4608M-4X-xfs Elapsed Time simple-wb 616.65 575.07 4608M-4X-xfs Elapsed Time mmap-strm 1773.02 1631.53 4608M-4X-xfs Kswapd efficiency fsmark 90% 94% 4608M-4X-xfs Kswapd efficiency simple-wb 87% 82% 4608M-4X-xfs Kswapd efficiency mmap-strm 43% 43% 4608M-16X-xfs Files/s mean 26.07 ( 0.00%) 26.42 ( 1.32%) 4608M-16X-xfs Elapsed Time fsmark 602.69 585.78 4608M-16X-xfs Elapsed Time simple-wb 606.60 573.81 4608M-16X-xfs Elapsed Time mmap-strm 1549.75 1441.86 4608M-16X-xfs Kswapd efficiency fsmark 98% 98% 4608M-16X-xfs Kswapd efficiency simple-wb 88% 82% 4608M-16X-xfs Kswapd efficiency mmap-strm 44% 42% Unlike the other tests, the fsmark results are not statistically significant but the min and max times are both improved and for the most part, tests completed faster. There are other indications that this is an improvement as well. For example, in the vast majority of cases, there were fewer pages scanned by direct reclaim implying in many cases that stalls due to direct reclaim are reduced. KSwapd is scanning more due to skipping dirty pages which is unfortunate but the CPU usage is still acceptable In an earlier set of tests, I used blktrace and in almost all cases throughput throughout the entire test was higher. However, I ended up discarding those results as recording blktrace data was too heavy for my liking. On a laptop, I plugged in a USB stick and ran a similar tests of tests using it as backing storage. A desktop environment was running and for the entire duration of the tests, firefox and gnome terminal were launching and exiting to vaguely simulate a user. 1024M-xfs Files/s mean 0.41 ( 0.00%) 0.44 ( 6.82%) 1024M-xfs Elapsed Time fsmark 2053.52 1641.03 1024M-xfs Elapsed Time simple-wb 1229.53 768.05 1024M-xfs Elapsed Time mmap-strm 4126.44 4597.03 1024M-xfs Kswapd efficiency fsmark 84% 85% 1024M-xfs Kswapd efficiency simple-wb 92% 81% 1024M-xfs Kswapd efficiency mmap-strm 60% 51% 1024M-xfs Avg wait ms fsmark 5404.53 4473.87 1024M-xfs Avg wait ms simple-wb 2541.35 1453.54 1024M-xfs Avg wait ms mmap-strm 3400.25 3852.53 The mmap-strm results were hurt because firefox launching had a tendency to push the test out of memory. On the postive side, firefox launched marginally faster with the patches applied. Time to completion for many tests was faster but more importantly - the "Avg wait" time as measured by iostat was far lower implying the system would be more responsive. It was also the case that "Avg wait ms" on the root filesystem was lower. I tested it manually and while the system felt slightly more responsive while copying data to a USB stick, it was marginal enough that it could be my imagination. This patch: do not writeback filesystem pages in direct reclaim. When kswapd is failing to keep zones above the min watermark, a process will enter direct reclaim in the same manner kswapd does. If a dirty page is encountered during the scan, this page is written to backing storage using mapping->writepage. This causes two problems. First, it can result in very deep call stacks, particularly if the target storage or filesystem are complex. Some filesystems ignore write requests from direct reclaim as a result. The second is that a single-page flush is inefficient in terms of IO. While there is an expectation that the elevator will merge requests, this does not always happen. Quoting Christoph Hellwig; The elevator has a relatively small window it can operate on, and can never fix up a bad large scale writeback pattern. This patch prevents direct reclaim writing back filesystem pages by checking if current is kswapd. Anonymous pages are still written to swap as there is not the equivalent of a flusher thread for anonymous pages. If the dirty pages cannot be written back, they are placed back on the LRU lists. There is now a direct dependency on dirty page balancing to prevent too many pages in the system being dirtied which would prevent reclaim making forward progress. Signed-off-by: Mel Gorman <mgorman@suse.de> Reviewed-by: Minchan Kim <minchan.kim@gmail.com> Cc: Dave Chinner <david@fromorbit.com> Cc: Christoph Hellwig <hch@infradead.org> Cc: Johannes Weiner <jweiner@redhat.com> Cc: Wu Fengguang <fengguang.wu@intel.com> Cc: Jan Kara <jack@suse.cz> Cc: Rik van Riel <riel@redhat.com> Cc: Mel Gorman <mgorman@suse.de> Cc: Alex Elder <aelder@sgi.com> Cc: Theodore Ts'o <tytso@mit.edu> Cc: Chris Mason <chris.mason@oracle.com> Cc: Dave Hansen <dave@linux.vnet.ibm.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2011-10-31mm: vmscan: drop nr_force_scan[] from get_scan_countJohannes Weiner
The nr_force_scan[] tuple holds the effective scan numbers for anon and file pages in case the situation called for a forced scan and the regularly calculated scan numbers turned out zero. However, the effective scan number can always be assumed to be SWAP_CLUSTER_MAX right before the division into anon and file. The numerators and denominator are properly set up for all cases, be it force scan for just file, just anon, or both, to do the right thing. Signed-off-by: Johannes Weiner <jweiner@redhat.com> Reviewed-by: Minchan Kim <minchan.kim@gmail.com> Acked-by: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com> Reviewed-by: Michal Hocko <mhocko@suse.cz> Cc: Ying Han <yinghan@google.com> Cc: Balbir Singh <bsingharora@gmail.com> Cc: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com> Cc: Daisuke Nishimura <nishimura@mxp.nes.nec.co.jp> Acked-by: Mel Gorman <mel@csn.ul.ie> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2011-10-31vmscan: add block plug for page reclaimShaohua Li
per-task block plug can reduce block queue lock contention and increase request merge. Currently page reclaim doesn't support it. I originally thought page reclaim doesn't need it, because kswapd thread count is limited and file cache write is done at flusher mostly. When I test a workload with heavy swap in a 4-node machine, each CPU is doing direct page reclaim and swap. This causes block queue lock contention. In my test, without below patch, the CPU utilization is about 2% ~ 7%. With the patch, the CPU utilization is about 1% ~ 3%. Disk throughput isn't changed. This should improve normal kswapd write and file cache write too (increase request merge for example), but might not be so obvious as I explain above. Signed-off-by: Shaohua Li <shaohua.li@intel.com> Cc: Jens Axboe <axboe@kernel.dk> Cc: Minchan Kim <minchan.kim@gmail.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2011-10-31mm: zone_reclaim: make isolate_lru_page() filter-awareMinchan Kim
In __zone_reclaim case, we don't want to shrink mapped page. Nonetheless, we have isolated mapped page and re-add it into LRU's head. It's unnecessary CPU overhead and makes LRU churning. Of course, when we isolate the page, the page might be mapped but when we try to migrate the page, the page would be not mapped. So it could be migrated. But race is rare and although it happens, it's no big deal. Signed-off-by: Minchan Kim <minchan.kim@gmail.com> Acked-by: Johannes Weiner <hannes@cmpxchg.org> Reviewed-by: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com> Reviewed-by: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com> Reviewed-by: Michal Hocko <mhocko@suse.cz> Cc: Mel Gorman <mgorman@suse.de> Cc: Rik van Riel <riel@redhat.com> Cc: Andrea Arcangeli <aarcange@redhat.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2011-10-31mm: compaction: make isolate_lru_page() filter-awareMinchan Kim
In async mode, compaction doesn't migrate dirty or writeback pages. So, it's meaningless to pick the page and re-add it to lru list. Of course, when we isolate the page in compaction, the page might be dirty or writeback but when we try to migrate the page, the page would be not dirty, writeback. So it could be migrated. But it's very unlikely as isolate and migration cycle is much faster than writeout. So, this patch helps cpu overhead and prevent unnecessary LRU churning. Signed-off-by: Minchan Kim <minchan.kim@gmail.com> Acked-by: Johannes Weiner <hannes@cmpxchg.org> Reviewed-by: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com> Reviewed-by: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com> Acked-by: Mel Gorman <mgorman@suse.de> Acked-by: Rik van Riel <riel@redhat.com> Reviewed-by: Michal Hocko <mhocko@suse.cz> Cc: Andrea Arcangeli <aarcange@redhat.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2011-10-31mm: change isolate mode from #define to bitwise typeMinchan Kim
Change ISOLATE_XXX macro with bitwise isolate_mode_t type. Normally, macro isn't recommended as it's type-unsafe and making debugging harder as symbol cannot be passed throught to the debugger. Quote from Johannes " Hmm, it would probably be cleaner to fully convert the isolation mode into independent flags. INACTIVE, ACTIVE, BOTH is currently a tri-state among flags, which is a bit ugly." This patch moves isolate mode from swap.h to mmzone.h by memcontrol.h Signed-off-by: Minchan Kim <minchan.kim@gmail.com> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com> Cc: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com> Cc: Mel Gorman <mgorman@suse.de> Cc: Rik van Riel <riel@redhat.com> Cc: Michal Hocko <mhocko@suse.cz> Cc: Andrea Arcangeli <aarcange@redhat.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2011-10-31writeback: Add a 'reason' to wb_writeback_workCurt Wohlgemuth
This creates a new 'reason' field in a wb_writeback_work structure, which unambiguously identifies who initiates writeback activity. A 'wb_reason' enumeration has been added to writeback.h, to enumerate the possible reasons. The 'writeback_work_class' and tracepoint event class and 'writeback_queue_io' tracepoints are updated to include the symbolic 'reason' in all trace events. And the 'writeback_inodes_sbXXX' family of routines has had a wb_stats parameter added to them, so callers can specify why writeback is being started. Acked-by: Jan Kara <jack@suse.cz> Signed-off-by: Curt Wohlgemuth <curtw@google.com> Signed-off-by: Wu Fengguang <fengguang.wu@intel.com>
2011-09-15Merge branch 'master' into for-nextJiri Kosina
Fast-forward merge with Linus to be able to merge patches based on more recent version of the tree.
2011-09-14memcg: Revert "memcg: add memory.vmscan_stat"Johannes Weiner
Revert the post-3.0 commit 82f9d486e59f5 ("memcg: add memory.vmscan_stat"). The implementation of per-memcg reclaim statistics violates how memcg hierarchies usually behave: hierarchically. The reclaim statistics are accounted to child memcgs and the parent hitting the limit, but not to hierarchy levels in between. Usually, hierarchical statistics are perfectly recursive, with each level representing the sum of itself and all its children. Since this exports statistics to userspace, this may lead to confusion and problems with changing things after the release, so revert it now, we can try again later. Signed-off-by: Johannes Weiner <jweiner@redhat.com> Acked-by: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com> Cc: Daisuke Nishimura <nishimura@mxp.nes.nec.co.jp> Cc: Michal Hocko <mhocko@suse.cz> Cc: Ying Han <yinghan@google.com> Cc: Balbir Singh <bsingharora@gmail.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2011-09-14mm: vmscan: fix force-scanning small targets without swapJohannes Weiner
Without swap, anonymous pages are not scanned. As such, they should not count when considering force-scanning a small target if there is no swap. Otherwise, targets are not force-scanned even when their effective scan number is zero and the other conditions--kswapd/memcg--apply. This fixes 246e87a93934 ("memcg: fix get_scan_count() for small targets"). [akpm@linux-foundation.org: fix comment] Signed-off-by: Johannes Weiner <jweiner@redhat.com> Acked-by: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com> Reviewed-by: Michal Hocko <mhocko@suse.cz> Cc: Ying Han <yinghan@google.com> Cc: Balbir Singh <bsingharora@gmail.com> Cc: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com> Cc: Daisuke Nishimura <nishimura@mxp.nes.nec.co.jp> Acked-by: Mel Gorman <mel@csn.ul.ie> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2011-08-25vmscan: clear ZONE_CONGESTED for zone with good watermarkShaohua Li
ZONE_CONGESTED is only cleared in kswapd, but pages can be freed in any task. It's possible ZONE_CONGESTED isn't cleared in some cases: 1. the zone is already balanced just entering balance_pgdat() for order-0 because concurrent tasks free memory. In this case, later check will skip the zone as it's balanced so the flag isn't cleared. 2. high order balance fallbacks to order-0. quote from Mel: At the end of balance_pgdat(), kswapd uses the following logic; If reclaiming at high order { for each zone { if all_unreclaimable skip if watermark is not met order = 0 loop again /* watermark is met */ clear congested } } i.e. it clears ZONE_CONGESTED if it the zone is balanced. if not, it restarts balancing at order-0. However, if the higher zones are balanced for order-0, kswapd will miss clearing ZONE_CONGESTED as that only happens after a zone is shrunk. This can mean that wait_iff_congested() stalls unnecessarily. This patch makes kswapd clear ZONE_CONGESTED during its initial highmem->dma scan for zones that are already balanced. Signed-off-by: Shaohua Li <shaohua.li@intel.com> Acked-by: Mel Gorman <mgorman@suse.de> Reviewed-by: Minchan Kim <minchan.kim@gmail.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2011-08-25mm: fix a vmscan warningShaohua Li
I get the below warning: BUG: using smp_processor_id() in preemptible [00000000] code: bash/746 caller is native_sched_clock+0x37/0x6e Pid: 746, comm: bash Tainted: G W 3.0.0+ #254 Call Trace: [<ffffffff813435c6>] debug_smp_processor_id+0xc2/0xdc [<ffffffff8104158d>] native_sched_clock+0x37/0x6e [<ffffffff81116219>] try_to_free_mem_cgroup_pages+0x7d/0x270 [<ffffffff8114f1f8>] mem_cgroup_force_empty+0x24b/0x27a [<ffffffff8114ff21>] ? sys_close+0x38/0x138 [<ffffffff8114ff21>] ? sys_close+0x38/0x138 [<ffffffff8114f257>] mem_cgroup_force_empty_write+0x17/0x19 [<ffffffff810c72fb>] cgroup_file_write+0xa8/0xba [<ffffffff811522d2>] vfs_write+0xb3/0x138 [<ffffffff8115241a>] sys_write+0x4a/0x71 [<ffffffff8114ffd9>] ? sys_close+0xf0/0x138 [<ffffffff8176deab>] system_call_fastpath+0x16/0x1b sched_clock() can't be used with preempt enabled. And we don't need fast approach to get clock here, so let's use ktime API. Signed-off-by: Shaohua Li <shaohua.li@intel.com> Acked-by: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com> Tested-by: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2011-08-24mm/vmscan.c: fix a typo in a comment "relaimed" to "reclaimed"Justin P. Mattock
Signed-off-by: Justin P. Mattock <justinmattock@gmail.com> Signed-off-by: Jiri Kosina <jkosina@suse.cz>
2011-07-26memcg: add memory.vmscan_statKAMEZAWA Hiroyuki
The commit log of 0ae5e89c60c9 ("memcg: count the soft_limit reclaim in...") says it adds scanning stats to memory.stat file. But it doesn't because we considered we needed to make a concensus for such new APIs. This patch is a trial to add memory.scan_stat. This shows - the number of scanned pages(total, anon, file) - the number of rotated pages(total, anon, file) - the number of freed pages(total, anon, file) - the number of elaplsed time (including sleep/pause time) for both of direct/soft reclaim. The biggest difference with oringinal Ying's one is that this file can be reset by some write, as # echo 0 ...../memory.scan_stat Example of output is here. This is a result after make -j 6 kernel under 300M limit. [kamezawa@bluextal ~]$ cat /cgroup/memory/A/memory.scan_stat [kamezawa@bluextal ~]$ cat /cgroup/memory/A/memory.vmscan_stat scanned_pages_by_limit 9471864 scanned_anon_pages_by_limit 6640629 scanned_file_pages_by_limit 2831235 rotated_pages_by_limit 4243974 rotated_anon_pages_by_limit 3971968 rotated_file_pages_by_limit 272006 freed_pages_by_limit 2318492 freed_anon_pages_by_limit 962052 freed_file_pages_by_limit 1356440 elapsed_ns_by_limit 351386416101 scanned_pages_by_system 0 scanned_anon_pages_by_system 0 scanned_file_pages_by_system 0 rotated_pages_by_system 0 rotated_anon_pages_by_system 0 rotated_file_pages_by_system 0 freed_pages_by_system 0 freed_anon_pages_by_system 0 freed_file_pages_by_system 0 elapsed_ns_by_system 0 scanned_pages_by_limit_under_hierarchy 9471864 scanned_anon_pages_by_limit_under_hierarchy 6640629 scanned_file_pages_by_limit_under_hierarchy 2831235 rotated_pages_by_limit_under_hierarchy 4243974 rotated_anon_pages_by_limit_under_hierarchy 3971968 rotated_file_pages_by_limit_under_hierarchy 272006 freed_pages_by_limit_under_hierarchy 2318492 freed_anon_pages_by_limit_under_hierarchy 962052 freed_file_pages_by_limit_under_hierarchy 1356440 elapsed_ns_by_limit_under_hierarchy 351386416101 scanned_pages_by_system_under_hierarchy 0 scanned_anon_pages_by_system_under_hierarchy 0 scanned_file_pages_by_system_under_hierarchy 0 rotated_pages_by_system_under_hierarchy 0 rotated_anon_pages_by_system_under_hierarchy 0 rotated_file_pages_by_system_under_hierarchy 0 freed_pages_by_system_under_hierarchy 0 freed_anon_pages_by_system_under_hierarchy 0 freed_file_pages_by_system_under_hierarchy 0 elapsed_ns_by_system_under_hierarchy 0 total_xxxx is for hierarchy management. This will be useful for further memcg developments and need to be developped before we do some complicated rework on LRU/softlimit management. This patch adds a new struct memcg_scanrecord into scan_control struct. sc->nr_scanned at el is not designed for exporting information. For example, nr_scanned is reset frequentrly and incremented +2 at scanning mapped pages. To avoid complexity, I added a new param in scan_control which is for exporting scanning score. Signed-off-by: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com> Cc: Daisuke Nishimura <nishimura@mxp.nes.nec.co.jp> Cc: Michal Hocko <mhocko@suse.cz> Cc: Ying Han <yinghan@google.com> Cc: Andrew Bresticker <abrestic@google.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2011-07-26memcg: fix vmscan count in small memcgsKAMEZAWA Hiroyuki
Commit 246e87a93934 ("memcg: fix get_scan_count() for small targets") fixes the memcg/kswapd behavior against small targets and prevent vmscan priority too high. But the implementation is too naive and adds another problem to small memcg. It always force scan to 32 pages of file/anon and doesn't handle swappiness and other rotate_info. It makes vmscan to scan anon LRU regardless of swappiness and make reclaim bad. This patch fixes it by adjusting scanning count with regard to swappiness at el. At a test "cat 1G file under 300M limit." (swappiness=20) before patch scanned_pages_by_limit 360919 scanned_anon_pages_by_limit 180469 scanned_file_pages_by_limit 180450 rotated_pages_by_limit 31 rotated_anon_pages_by_limit 25 rotated_file_pages_by_limit 6 freed_pages_by_limit 180458 freed_anon_pages_by_limit 19 freed_file_pages_by_limit 180439 elapsed_ns_by_limit 429758872 after patch scanned_pages_by_limit 180674 scanned_anon_pages_by_limit 24 scanned_file_pages_by_limit 180650 rotated_pages_by_limit 35 rotated_anon_pages_by_limit 24 rotated_file_pages_by_limit 11 freed_pages_by_limit 180634 freed_anon_pages_by_limit 0 freed_file_pages_by_limit 180634 elapsed_ns_by_limit 367119089 scanned_pages_by_system 0 the numbers of scanning anon are decreased(as expected), and elapsed time reduced. By this patch, small memcgs will work better. (*) Because the amount of file-cache is much bigger than anon, recalaim_stat's rotate-scan counter make scanning files more. Signed-off-by: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com> Cc: Daisuke Nishimura <nishimura@mxp.nes.nec.co.jp> Cc: Michal Hocko <mhocko@suse.cz> Cc: Ying Han <yinghan@google.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2011-07-26memcg: consolidate memory cgroup lru stat functionsKAMEZAWA Hiroyuki
In mm/memcontrol.c, there are many lru stat functions as.. mem_cgroup_zone_nr_lru_pages mem_cgroup_node_nr_file_lru_pages mem_cgroup_nr_file_lru_pages mem_cgroup_node_nr_anon_lru_pages mem_cgroup_nr_anon_lru_pages mem_cgroup_node_nr_unevictable_lru_pages mem_cgroup_nr_unevictable_lru_pages mem_cgroup_node_nr_lru_pages mem_cgroup_nr_lru_pages mem_cgroup_get_local_zonestat Some of them are under #ifdef MAX_NUMNODES >1 and others are not. This seems bad. This patch consolidates all functions into mem_cgroup_zone_nr_lru_pages() mem_cgroup_node_nr_lru_pages() mem_cgroup_nr_lru_pages() For these functions, "which LRU?" information is passed by a mask. example: mem_cgroup_nr_lru_pages(mem, BIT(LRU_ACTIVE_ANON)) And I added some macro as ALL_LRU, ALL_LRU_FILE, ALL_LRU_ANON. example: mem_cgroup_nr_lru_pages(mem, ALL_LRU) BTW, considering layout of NUMA memory placement of counters, this patch seems to be better. Now, when we gather all LRU information, we scan in following orer for_each_lru -> for_each_node -> for_each_zone. This means we'll touch cache lines in different node in turn. After patch, we'll scan for_each_node -> for_each_zone -> for_each_lru(mask) Then, we'll gather information in the same cacheline at once. [akpm@linux-foundation.org: fix warnigns, build error] Signed-off-by: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com> Cc: Daisuke Nishimura <nishimura@mxp.nes.nec.co.jp> Cc: Balbir Singh <bsingharora@gmail.com> Cc: Michal Hocko <mhocko@suse.cz> Cc: Ying Han <yinghan@google.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2011-07-26memcg: export memory cgroup's swappiness with mem_cgroup_swappiness()KAMEZAWA Hiroyuki
Each memory cgroup has a 'swappiness' value which can be accessed by get_swappiness(memcg). The major user is try_to_free_mem_cgroup_pages() and swappiness is passed by argument. It's propagated by scan_control. get_swappiness() is a static function but some planned updates will need to get swappiness from files other than memcontrol.c This patch exports get_swappiness() as mem_cgroup_swappiness(). With this, we can remove the argument of swapiness from try_to_free... and drop swappiness from scan_control. only memcg uses it. Signed-off-by: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com> Cc: Daisuke Nishimura <nishimura@mxp.nes.nec.co.jp> Cc: Balbir Singh <bsingharora@gmail.com> Cc: Michal Hocko <mhocko@suse.cz> Cc: Ying Han <yinghan@google.com> Cc: Shaohua Li <shaohua.li@intel.com> Cc: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2011-07-20vmscan: add customisable shrinker batch sizeDave Chinner
For shrinkers that have their own cond_resched* calls, having shrink_slab break the work down into small batches is not paticularly efficient. Add a custom batchsize field to the struct shrinker so that shrinkers can use a larger batch size if they desire. A value of zero (uninitialised) means "use the default", so behaviour is unchanged by this patch. Signed-off-by: Dave Chinner <dchinner@redhat.com> Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
2011-07-20vmscan: reduce wind up shrinker->nr when shrinker can't do workDave Chinner
When a shrinker returns -1 to shrink_slab() to indicate it cannot do any work given the current memory reclaim requirements, it adds the entire total_scan count to shrinker->nr. The idea ehind this is that whenteh shrinker is next called and can do work, it will do the work of the previously aborted shrinker call as well. However, if a filesystem is doing lots of allocation with GFP_NOFS set, then we get many, many more aborts from the shrinkers than we do successful calls. The result is that shrinker->nr winds up to it's maximum permissible value (twice the current cache size) and then when the next shrinker call that can do work is issued, it has enough scan count built up to free the entire cache twice over. This manifests itself in the cache going from full to empty in a matter of seconds, even when only a small part of the cache is needed to be emptied to free sufficient memory. Under metadata intensive workloads on ext4 and XFS, I'm seeing the VFS caches increase memory consumption up to 75% of memory (no page cache pressure) over a period of 30-60s, and then the shrinker empties them down to zero in the space of 2-3s. This cycle repeats over and over again, with the shrinker completely trashing the inode and dentry caches every minute or so the workload continues. This behaviour was made obvious by the shrink_slab tracepoints added earlier in the series, and made worse by the patch that corrected the concurrent accounting of shrinker->nr. To avoid this problem, stop repeated small increments of the total scan value from winding shrinker->nr up to a value that can cause the entire cache to be freed. We still need to allow it to wind up, so use the delta as the "large scan" threshold check - if the delta is more than a quarter of the entire cache size, then it is a large scan and allowed to cause lots of windup because we are clearly needing to free lots of memory. If it isn't a large scan then limit the total scan to half the size of the cache so that windup never increases to consume the whole cache. Reducing the total scan limit further does not allow enough wind-up to maintain the current levels of performance, whilst a higher threshold does not prevent the windup from freeing the entire cache under sustained workloads. Signed-off-by: Dave Chinner <dchinner@redhat.com> Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
2011-07-20vmscan: shrinker->nr updates race and go wrongDave Chinner
shrink_slab() allows shrinkers to be called in parallel so the struct shrinker can be updated concurrently. It does not provide any exclusio for such updates, so we can get the shrinker->nr value increasing or decreasing incorrectly. As a result, when a shrinker repeatedly returns a value of -1 (e.g. a VFS shrinker called w/ GFP_NOFS), the shrinker->nr goes haywire, sometimes updating with the scan count that wasn't used, sometimes losing it altogether. Worse is when a shrinker does work and that update is lost due to racy updates, which means the shrinker will do the work again! Fix this by making the total_scan calculations independent of shrinker->nr, and making the shrinker->nr updates atomic w.r.t. to other updates via cmpxchg loops. Signed-off-by: Dave Chinner <dchinner@redhat.com> Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
2011-07-20vmscan: add shrink_slab tracepointsDave Chinner
It is impossible to understand what the shrinkers are actually doing without instrumenting the code, so add a some tracepoints to allow insight to be gained. Signed-off-by: Dave Chinner <dchinner@redhat.com> Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
2011-07-19vmscan: fix a livelock in kswapdShaohua Li
I'm running a workload which triggers a lot of swap in a machine with 4 nodes. After I kill the workload, I found a kswapd livelock. Sometimes kswapd3 or kswapd2 are keeping running and I can't access filesystem, but most memory is free. This looks like a regression since commit 08951e545918c159 ("mm: vmscan: correct check for kswapd sleeping in sleeping_prematurely"). Node 2 and 3 have only ZONE_NORMAL, but balance_pgdat() will return 0 for classzone_idx. The reason is end_zone in balance_pgdat() is 0 by default, if all zones have watermark ok, end_zone will keep 0. Later sleeping_prematurely() always returns true. Because this is an order 3 wakeup, and if classzone_idx is 0, both balanced_pages and present_pages in pgdat_balanced() are 0. We add a special case here. If a zone has no page, we think it's balanced. This fixes the livelock. Signed-off-by: Shaohua Li <shaohua.li@intel.com> Acked-by: Mel Gorman <mgorman@suse.de> Cc: Minchan Kim <minchan.kim@gmail.com> Cc: <stable@kernel.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2011-07-08mm: vmscan: only read new_classzone_idx from pgdat when reclaiming successfullyMel Gorman
During allocator-intensive workloads, kswapd will be woken frequently causing free memory to oscillate between the high and min watermark. This is expected behaviour. Unfortunately, if the highest zone is small, a problem occurs. When balance_pgdat() returns, it may be at a lower classzone_idx than it started because the highest zone was unreclaimable. Before checking if it should go to sleep though, it checks pgdat->classzone_idx which when there is no other activity will be MAX_NR_ZONES-1. It interprets this as it has been woken up while reclaiming, skips scheduling and reclaims again. As there is no useful reclaim work to do, it enters into a loop of shrinking slab consuming loads of CPU until the highest zone becomes reclaimable for a long period of time. There are two problems here. 1) If the returned classzone or order is lower, it'll continue reclaiming without scheduling. 2) if the highest zone was marked unreclaimable but balance_pgdat() returns immediately at DEF_PRIORITY, the new lower classzone is not communicated back to kswapd() for sleeping. This patch does two things that are related. If the end_zone is unreclaimable, this information is communicated back. Second, if the classzone or order was reduced due to failing to reclaim, new information is not read from pgdat and instead an attempt is made to go to sleep. Due to this, it is also necessary that pgdat->classzone_idx be initialised each time to pgdat->nr_zones - 1 to avoid re-reads being interpreted as wakeups. Signed-off-by: Mel Gorman <mgorman@suse.de> Reported-by: Pádraig Brady <P@draigBrady.com> Tested-by: Pádraig Brady <P@draigBrady.com> Tested-by: Andrew Lutomirski <luto@mit.edu> Acked-by: Rik van Riel <riel@redhat.com> Cc: Minchan Kim <minchan.kim@gmail.com> Cc: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: <stable@kernel.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2011-07-08mm: vmscan: evaluate the watermarks against the correct classzoneMel Gorman
When deciding if kswapd is sleeping prematurely, the classzone is taken into account but this is different to what balance_pgdat() and the allocator are doing. Specifically, the DMA zone will be checked based on the classzone used when waking kswapd which could be for a GFP_KERNEL or GFP_HIGHMEM request. The lowmem reserve limit kicks in, the watermark is not met and kswapd thinks it's sleeping prematurely keeping kswapd awake in error. Signed-off-by: Mel Gorman <mgorman@suse.de> Reported-by: Pádraig Brady <P@draigBrady.com> Tested-by: Pádraig Brady <P@draigBrady.com> Tested-by: Andrew Lutomirski <luto@mit.edu> Acked-by: Rik van Riel <riel@redhat.com> Reviewed-by: Minchan Kim <minchan.kim@gmail.com> Cc: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: <stable@kernel.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2011-07-08mm: vmscan: do not apply pressure to slab if we are not applying pressure to ↵Mel Gorman
zone During allocator-intensive workloads, kswapd will be woken frequently causing free memory to oscillate between the high and min watermark. This is expected behaviour. When kswapd applies pressure to zones during node balancing, it checks if the zone is above a high+balance_gap threshold. If it is, it does not apply pressure but it unconditionally shrinks slab on a global basis which is excessive. In the event kswapd is being kept awake due to a high small unreclaimable zone, it skips zone shrinking but still calls shrink_slab(). Once pressure has been applied, the check for zone being unreclaimable is being made before the check is made if all_unreclaimable should be set. This miss of unreclaimable can cause has_under_min_watermark_zone to be set due to an unreclaimable zone preventing kswapd backing off on congestion_wait(). Signed-off-by: Mel Gorman <mgorman@suse.de> Reported-by: Pádraig Brady <P@draigBrady.com> Tested-by: Pádraig Brady <P@draigBrady.com> Tested-by: Andrew Lutomirski <luto@mit.edu> Acked-by: Rik van Riel <riel@redhat.com> Reviewed-by: Minchan Kim <minchan.kim@gmail.com> Reviewed-by: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: <stable@kernel.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2011-07-08mm: vmscan: correct check for kswapd sleeping in sleeping_prematurelyMel Gorman
During allocator-intensive workloads, kswapd will be woken frequently causing free memory to oscillate between the high and min watermark. This is expected behaviour. Unfortunately, if the highest zone is small, a problem occurs. This seems to happen most with recent sandybridge laptops but it's probably a co-incidence as some of these laptops just happen to have a small Normal zone. The reproduction case is almost always during copying large files that kswapd pegs at 100% CPU until the file is deleted or cache is dropped. The problem is mostly down to sleeping_prematurely() keeping kswapd awake when the highest zone is small and unreclaimable and compounded by the fact we shrink slabs even when not shrinking zones causing a lot of time to be spent in shrinkers and a lot of memory to be reclaimed. Patch 1 corrects sleeping_prematurely to check the zones matching the classzone_idx instead of all zones. Patch 2 avoids shrinking slab when we are not shrinking a zone. Patch 3 notes that sleeping_prematurely is checking lower zones against a high classzone which is not what allocators or balance_pgdat() is doing leading to an artifical belief that kswapd should be still awake. Patch 4 notes that when balance_pgdat() gives up on a high zone that the decision is not communicated to sleeping_prematurely() This problem affects 2.6.38.8 for certain and is expected to affect 2.6.39 and 3.0-rc4 as well. If accepted, they need to go to -stable to be picked up by distros and this series is against 3.0-rc4. I've cc'd people that reported similar problems recently to see if they still suffer from the problem and if this fixes it. This patch: correct the check for kswapd sleeping in sleeping_prematurely() During allocator-intensive workloads, kswapd will be woken frequently causing free memory to oscillate between the high and min watermark. This is expected behaviour. A problem occurs if the highest zone is small. balance_pgdat() only considers unreclaimable zones when priority is DEF_PRIORITY but sleeping_prematurely considers all zones. It's possible for this sequence to occur 1. kswapd wakes up and enters balance_pgdat() 2. At DEF_PRIORITY, marks highest zone unreclaimable 3. At DEF_PRIORITY-1, ignores highest zone setting end_zone 4. At DEF_PRIORITY-1, calls shrink_slab freeing memory from highest zone, clearing all_unreclaimable. Highest zone is still unbalanced 5. kswapd returns and calls sleeping_prematurely 6. sleeping_prematurely looks at *all* zones, not just the ones being considered by balance_pgdat. The highest small zone has all_unreclaimable cleared but the zone is not balanced. all_zones_ok is false so kswapd stays awake This patch corrects the behaviour of sleeping_prematurely to check the zones balance_pgdat() checked. Signed-off-by: Mel Gorman <mgorman@suse.de> Reported-by: Pádraig Brady <P@draigBrady.com> Tested-by: Pádraig Brady <P@draigBrady.com> Tested-by: Andrew Lutomirski <luto@mit.edu> Acked-by: Rik van Riel <riel@redhat.com> Reviewed-by: Minchan Kim <minchan.kim@gmail.com> Reviewed-by: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: <stable@kernel.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2011-06-27memcg: fix direct softlimit reclaim to be called in limit pathKAMEZAWA Hiroyuki
Commit d149e3b25d7c ("memcg: add the soft_limit reclaim in global direct reclaim") adds a softlimit hook to shrink_zones(). By this, soft limit is called as try_to_free_pages() do_try_to_free_pages() shrink_zones() mem_cgroup_soft_limit_reclaim() Then, direct reclaim is memcg softlimit hint aware, now. But, the memory cgroup's "limit" path can call softlimit shrinker. try_to_free_mem_cgroup_pages() do_try_to_free_pages() shrink_zones() mem_cgroup_soft_limit_reclaim() This will cause a global reclaim when a memcg hits limit. This is bug. soft_limit_reclaim() should be called when scanning_global_lru(sc) == true. And the commit adds a variable "total_scanned" for counting softlimit scanned pages....it's not "total". This patch removes the variable and update sc->nr_scanned instead of it. This will affect shrink_slab()'s scan condition but, global LRU is scanned by softlimit and I think this change makes sense. TODO: avoid too much scanning of a zone when softlimit did enough work. Signed-off-by: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com> Cc: Daisuke Nishimura <nishimura@mxp.nes.nec.co.jp> Cc: Ying Han <yinghan@google.com> Cc: Michal Hocko <mhocko@suse.cz> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2011-06-15mm: vmscan: do not use page_count without a page pinAndrea Arcangeli
It is unsafe to run page_count during the physical pfn scan because compound_head could trip on a dangling pointer when reading page->first_page if the compound page is being freed by another CPU. [mgorman@suse.de: split out patch] Signed-off-by: Andrea Arcangeli <aarcange@redhat.com> Signed-off-by: Mel Gorman <mgorman@suse.de> Reviewed-by: Michal Hocko <mhocko@suse.cz> Reviewed-by: Minchan Kim <minchan.kim@gmail.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2011-06-15vmscan,memcg: memcg aware swap tokenKOSAKI Motohiro
Currently, memcg reclaim can disable swap token even if the swap token mm doesn't belong in its memory cgroup. It's slightly risky. If an admin creates very small mem-cgroup and silly guy runs contentious heavy memory pressure workload, every tasks are going to lose swap token and then system may become unresponsive. That's bad. This patch adds 'memcg' parameter into disable_swap_token(). and if the parameter doesn't match swap token, VM doesn't disable it. [akpm@linux-foundation.org: coding-style fixes] Signed-off-by: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com> Reviewed-by: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com> Reviewed-by: Rik van Riel<riel@redhat.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2011-05-26memcg: rename mem_cgroup_zone_nr_pages() to mem_cgroup_zone_nr_lru_pages()Ying Han
The caller of the function has been renamed to zone_nr_lru_pages(), and this is just fixing up in the memcg code. The current name is easily to be mis-read as zone's total number of pages. Signed-off-by: Ying Han <yinghan@google.com> Acked-by: Johannes Weiner <hannes@cmpxchg.org> Acked-by: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com> Reviewed-by: Minchan Kim <minchan.kim@gmail.com> Cc: Balbir Singh <balbir@in.ibm.com> Cc: Daisuke Nishimura <nishimura@mxp.nes.nec.co.jp> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2011-05-26memcg: fix get_scan_count() for small targetsKAMEZAWA Hiroyuki
During memory reclaim we determine the number of pages to be scanned per zone as (anon + file) >> priority. Assume scan = (anon + file) >> priority. If scan < SWAP_CLUSTER_MAX, the scan will be skipped for this time and priority gets higher. This has some problems. 1. This increases priority as 1 without any scan. To do scan in this priority, amount of pages should be larger than 512M. If pages>>priority < SWAP_CLUSTER_MAX, it's recorded and scan will be batched, later. (But we lose 1 priority.) If memory size is below 16M, pages >> priority is 0 and no scan in DEF_PRIORITY forever. 2. If zone->all_unreclaimabe==true, it's scanned only when priority==0. So, x86's ZONE_DMA will never be recoverred until the user of pages frees memory by itself. 3. With memcg, the limit of memory can be small. When using small memcg, it gets priority < DEF_PRIORITY-2 very easily and need to call wait_iff_congested(). For doing scan before priorty=9, 64MB of memory should be used. Then, this patch tries to scan SWAP_CLUSTER_MAX of pages in force...when 1. the target is enough small. 2. it's kswapd or memcg reclaim. Then we can avoid rapid priority drop and may be able to recover all_unreclaimable in a small zones. And this patch removes nr_saved_scan. This will allow scanning in this priority even when pages >> priority is very small. Signed-off-by: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com> Acked-by: Ying Han <yinghan@google.com> Cc: Balbir Singh <balbir@in.ibm.com> Cc: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com> Cc: Daisuke Nishimura <nishimura@mxp.nes.nec.co.jp> Cc: Mel Gorman <mel@csn.ul.ie> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2011-05-26memcg: reclaim memory from nodes in round-robin orderYing Han
Presently, memory cgroup's direct reclaim frees memory from the current node. But this has some troubles. Usually when a set of threads works in a cooperative way, they tend to operate on the same node. So if they hit limits under memcg they will reclaim memory from themselves, damaging the active working set. For example, assume 2 node system which has Node 0 and Node 1 and a memcg which has 1G limit. After some work, file cache remains and the usages are Node 0: 1M Node 1: 998M. and run an application on Node 0, it will eat its foot before freeing unnecessary file caches. This patch adds round-robin for NUMA and adds equal pressure to each node. When using cpuset's spread memory feature, this will work very well. But yes, a better algorithm is needed. [akpm@linux-foundation.org: comment editing] [kamezawa.hiroyu@jp.fujitsu.com: fix time comparisons] Signed-off-by: Ying Han <yinghan@google.com> Signed-off-by: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com> Cc: Balbir Singh <balbir@in.ibm.com> Cc: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com> Cc: Daisuke Nishimura <nishimura@mxp.nes.nec.co.jp> Cc: Mel Gorman <mel@csn.ul.ie> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>