summaryrefslogtreecommitdiff
path: root/mm/vmscan.c
AgeCommit message (Collapse)Author
2012-03-24Fix potential endless loop in kswapd when compaction is not enabledRik van Riel
We should only test compaction_suitable if the kernel is built with CONFIG_COMPACTION, otherwise the stub compaction_suitable function will always return COMPACT_SKIPPED and send kswapd into an infinite loop. Reported-by: Anton Blanchard <anton@samba.org> Signed-off-by: Rik van Riel <riel@redhat.com> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2012-03-23mm: fix testorder interaction between two kswapd patchesHugh Dickins
Adjusting cc715d99e529 "mm: vmscan: forcibly scan highmem if there are too many buffer_heads pinning highmem" for -stable reveals that it was slightly wrong once on top of fe2c2a106663 "vmscan: reclaim at order 0 when compaction is enabled", which specifically adds testorder for the zone_watermark_ok_safe() test. Signed-off-by: Hugh Dickins <hughd@google.com> Acked-by: Mel Gorman <mel@csn.ul.ie> Acked-by: Rik van Riel <riel@redhat.com> Cc: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2012-03-21mm: forbid lumpy-reclaim in shrink_active_list()Konstantin Khlebnikov
Reset the reclaim mode in shrink_active_list() to RECLAIM_MODE_SINGLE | RECLAIM_MODE_ASYNC. (sync/async sign is used only in shrink_page_list and does not affect shrink_active_list) Currenly shrink_active_list() sometimes works in lumpy-reclaim mode, if RECLAIM_MODE_LUMPYRECLAIM is left over from an earlier shrink_inactive_list(). Meanwhile, in age_active_anon() sc->reclaim_mode is totally zero. So the current behavior is too complex and confusing, and this looks like bug. In general, shrink_active_list() populates the inactive list for the next shrink_inactive_list(). Lumpy shring_inactive_list() isolates pages around the chosen one from both the active and inactive lists. So, there is no reason for lumpy isolation in shrink_active_list(). See also: https://lkml.org/lkml/2012/3/15/583 Signed-off-by: Konstantin Khlebnikov <khlebnikov@openvz.org> Proposed-by: Hugh Dickins <hughd@google.com> Acked-by: Johannes Weiner <hannes@cmpxchg.org> Cc: Rik van Riel <riel@redhat.com> Cc: Minchan Kim <minchan@kernel.org> Cc: Mel Gorman <mgorman@suse.de> Cc: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2012-03-21cpuset: mm: reduce large amounts of memory barrier related damage v3Mel Gorman
Commit c0ff7453bb5c ("cpuset,mm: fix no node to alloc memory when changing cpuset's mems") wins a super prize for the largest number of memory barriers entered into fast paths for one commit. [get|put]_mems_allowed is incredibly heavy with pairs of full memory barriers inserted into a number of hot paths. This was detected while investigating at large page allocator slowdown introduced some time after 2.6.32. The largest portion of this overhead was shown by oprofile to be at an mfence introduced by this commit into the page allocator hot path. For extra style points, the commit introduced the use of yield() in an implementation of what looks like a spinning mutex. This patch replaces the full memory barriers on both read and write sides with a sequence counter with just read barriers on the fast path side. This is much cheaper on some architectures, including x86. The main bulk of the patch is the retry logic if the nodemask changes in a manner that can cause a false failure. While updating the nodemask, a check is made to see if a false failure is a risk. If it is, the sequence number gets bumped and parallel allocators will briefly stall while the nodemask update takes place. In a page fault test microbenchmark, oprofile samples from __alloc_pages_nodemask went from 4.53% of all samples to 1.15%. The actual results were 3.3.0-rc3 3.3.0-rc3 rc3-vanilla nobarrier-v2r1 Clients 1 UserTime 0.07 ( 0.00%) 0.08 (-14.19%) Clients 2 UserTime 0.07 ( 0.00%) 0.07 ( 2.72%) Clients 4 UserTime 0.08 ( 0.00%) 0.07 ( 3.29%) Clients 1 SysTime 0.70 ( 0.00%) 0.65 ( 6.65%) Clients 2 SysTime 0.85 ( 0.00%) 0.82 ( 3.65%) Clients 4 SysTime 1.41 ( 0.00%) 1.41 ( 0.32%) Clients 1 WallTime 0.77 ( 0.00%) 0.74 ( 4.19%) Clients 2 WallTime 0.47 ( 0.00%) 0.45 ( 3.73%) Clients 4 WallTime 0.38 ( 0.00%) 0.37 ( 1.58%) Clients 1 Flt/sec/cpu 497620.28 ( 0.00%) 520294.53 ( 4.56%) Clients 2 Flt/sec/cpu 414639.05 ( 0.00%) 429882.01 ( 3.68%) Clients 4 Flt/sec/cpu 257959.16 ( 0.00%) 258761.48 ( 0.31%) Clients 1 Flt/sec 495161.39 ( 0.00%) 517292.87 ( 4.47%) Clients 2 Flt/sec 820325.95 ( 0.00%) 850289.77 ( 3.65%) Clients 4 Flt/sec 1020068.93 ( 0.00%) 1022674.06 ( 0.26%) MMTests Statistics: duration Sys Time Running Test (seconds) 135.68 132.17 User+Sys Time Running Test (seconds) 164.2 160.13 Total Elapsed Time (seconds) 123.46 120.87 The overall improvement is small but the System CPU time is much improved and roughly in correlation to what oprofile reported (these performance figures are without profiling so skew is expected). The actual number of page faults is noticeably improved. For benchmarks like kernel builds, the overall benefit is marginal but the system CPU time is slightly reduced. To test the actual bug the commit fixed I opened two terminals. The first ran within a cpuset and continually ran a small program that faulted 100M of anonymous data. In a second window, the nodemask of the cpuset was continually randomised in a loop. Without the commit, the program would fail every so often (usually within 10 seconds) and obviously with the commit everything worked fine. With this patch applied, it also worked fine so the fix should be functionally equivalent. Signed-off-by: Mel Gorman <mgorman@suse.de> Cc: Miao Xie <miaox@cn.fujitsu.com> Cc: David Rientjes <rientjes@google.com> Cc: Peter Zijlstra <a.p.zijlstra@chello.nl> Cc: Christoph Lameter <cl@linux.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2012-03-21mm/vmscan.c: fix spelling errorCopot Alexandru
s/noticable/noticeable/ Signed-off-by: Copot Alexandru <alex.mihai.c@gmail.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2012-03-21vmscan: handle isolated pages with lru lock releasedHillf Danton
When shrinking inactive lru list, isolated pages are queued on locally private list, so the lock-hold time could be reduced if pages are counted without lock protection. To achieve that, firstly updating reclaim stat is delayed until the putback stage, after reacquiring the lru lock. Secondly, operations related to vm and zone stats are now proteced with preemption disabled as they are per-cpu operations. Signed-off-by: Hillf Danton <dhillf@gmail.com> Acked-by: Hugh Dickins <hughd@google.com> Reviewed-by: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2012-03-21mm: vmscan: forcibly scan highmem if there are too many buffer_heads pinning ↵Mel Gorman
highmem Stuart Foster reported on bugzilla that copying large amounts of data from NTFS caused an OOM kill on 32-bit X86 with 16G of memory. Andrew Morton correctly identified that the problem was NTFS was using 512 blocks meaning each page had 8 buffer_heads in low memory pinning it. In the past, direct reclaim used to scan highmem even if the allocating process did not specify __GFP_HIGHMEM but not any more. kswapd no longer will reclaim from zones that are above the high watermark. The intention in both cases was to minimise unnecessary reclaim. The downside is on machines with large amounts of highmem that lowmem can be fully consumed by buffer_heads with nothing trying to free them. The following patch is based on a suggestion by Andrew Morton to extend the buffer_heads_over_limit case to force kswapd and direct reclaim to scan the highmem zone regardless of the allocation request or watermarks. Addresses https://bugzilla.kernel.org/show_bug.cgi?id=42578 [hughd@google.com: move buffer_heads_over_limit check up] [akpm@linux-foundation.org: buffer_heads_over_limit is unlikely] Reported-by: Stuart Foster <smf.linux@ntlworld.com> Tested-by: Stuart Foster <smf.linux@ntlworld.com> Signed-off-by: Mel Gorman <mgorman@suse.de> Signed-off-by: Hugh Dickins <hughd@google.com> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: Rik van Riel <riel@redhat.com> Cc: Christoph Lameter <cl@linux.com> Cc: stable <stable@vger.kernel.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2012-03-21vmscan: only defer compaction for failed order and higherRik van Riel
Currently a failed order-9 (transparent hugepage) compaction can lead to memory compaction being temporarily disabled for a memory zone. Even if we only need compaction for an order 2 allocation, eg. for jumbo frames networking. The fix is relatively straightforward: keep track of the highest order at which compaction is succeeding, and only defer compaction for orders at which compaction is failing. Signed-off-by: Rik van Riel <riel@redhat.com> Cc: Andrea Arcangeli <aarcange@redhat.com> Acked-by: Mel Gorman <mel@csn.ul.ie> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: Minchan Kim <minchan.kim@gmail.com> Cc: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com> Cc: Hillf Danton <dhillf@gmail.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2012-03-21vmscan: kswapd carefully call compactionRik van Riel
With CONFIG_COMPACTION enabled, kswapd does not try to free contiguous free pages, even when it is woken for a higher order request. This could be bad for eg. jumbo frame network allocations, which are done from interrupt context and cannot compact memory themselves. Higher than before allocation failure rates in the network receive path have been observed in kernels with compaction enabled. Teach kswapd to defragment the memory zones in a node, but only if required and compaction is not deferred in a zone. [akpm@linux-foundation.org: reduce scope of zones_need_compaction] Signed-off-by: Rik van Riel <riel@redhat.com> Acked-by: Mel Gorman <mel@csn.ul.ie> Cc: Andrea Arcangeli <aarcange@redhat.com> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: Minchan Kim <minchan.kim@gmail.com> Cc: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com> Cc: Hillf Danton <dhillf@gmail.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2012-03-21vmscan: reclaim at order 0 when compaction is enabledRik van Riel
When built with CONFIG_COMPACTION, kswapd should not try to free contiguous pages, because it is not trying hard enough to have a real chance at being successful, but still disrupts the LRU enough to break other things. Do not do higher order page isolation unless we really are in lumpy reclaim mode. Stop reclaiming pages once we have enough free pages that compaction can deal with things, and we hit the normal order 0 watermarks used by kswapd. Also remove a line of code that increments balanced right before exiting the function. Signed-off-by: Rik van Riel <riel@redhat.com> Cc: Andrea Arcangeli <aarcange@redhat.com> Acked-by: Mel Gorman <mel@csn.ul.ie> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: Minchan Kim <minchan.kim@gmail.com> Cc: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com> Cc: Hillf Danton <dhillf@gmail.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2012-03-21mm: vmscan: fix misused nr_reclaimed in shrink_mem_cgroup_zone()Hillf Danton
The value of nr_reclaimed is the number of pages reclaimed in the current round of the loop, whereas nr_to_reclaim should be compared with the number of pages reclaimed in all rounds. In each round of the loop, reclaimed pages are cut off from the reclaim goal, and the loop stops once the goal achieved. Signed-off-by: Hillf Danton <dhillf@gmail.com> Cc: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com> Cc: Mel Gorman <mgorman@suse.de> Cc: Rik van Riel <riel@redhat.com> Cc: Hugh Dickins <hughd@google.com> Cc: Michal Hocko <mhocko@suse.cz> Cc: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2012-03-21mm/vmscan.c: cleanup with s/reclaim_mode/isolate_mode/Hillf Danton
With tons of reclaim_mode (defined as one field of struct scan_control) already in the file, it is clearer to rename the local reclaim_mode when setting up the isolation mode. Signed-off-by: Hillf Danton <dhillf@gmail.com> Acked-by: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com> Acked-by: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com> Reviewed-by: Rik van Riel <riel@redhat.com> Cc: David Rientjes <rientjes@google.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2012-01-23SHM_UNLOCK: fix Unevictable pages stranded after swapHugh Dickins
Commit cc39c6a9bbde ("mm: account skipped entries to avoid looping in find_get_pages") correctly fixed an infinite loop; but left a problem that find_get_pages() on shmem would return 0 (appearing to callers to mean end of tree) when it meets a run of nr_pages swap entries. The only uses of find_get_pages() on shmem are via pagevec_lookup(), called from invalidate_mapping_pages(), and from shmctl SHM_UNLOCK's scan_mapping_unevictable_pages(). The first is already commented, and not worth worrying about; but the second can leave pages on the Unevictable list after an unusual sequence of swapping and locking. Fix that by using shmem_find_get_pages_and_swap() (then ignoring the swap) instead of pagevec_lookup(). But I don't want to contaminate vmscan.c with shmem internals, nor shmem.c with LRU locking. So move scan_mapping_unevictable_pages() into shmem.c, renaming it shmem_unlock_mapping(); and rename check_move_unevictable_page() to check_move_unevictable_pages(), looping down an array of pages, oftentimes under the same lock. Leave out the "rotate unevictable list" block: that's a leftover from when this was used for /proc/sys/vm/scan_unevictable_pages, whose flawed handling involved looking at pages at tail of LRU. Was there significance to the sequence first ClearPageUnevictable, then test page_evictable, then SetPageUnevictable here? I think not, we're under LRU lock, and have no barriers between those. Signed-off-by: Hugh Dickins <hughd@google.com> Reviewed-by: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com> Cc: Minchan Kim <minchan.kim@gmail.com> Cc: Rik van Riel <riel@redhat.com> Cc: Shaohua Li <shaohua.li@intel.com> Cc: Eric Dumazet <eric.dumazet@gmail.com> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: Michel Lespinasse <walken@google.com> Cc: <stable@vger.kernel.org> [back to 3.1 but will need respins] Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2012-01-23SHM_UNLOCK: fix long unpreemptible sectionHugh Dickins
scan_mapping_unevictable_pages() is used to make SysV SHM_LOCKed pages evictable again once the shared memory is unlocked. It does this with pagevec_lookup()s across the whole object (which might occupy most of memory), and takes 300ms to unlock 7GB here. A cond_resched() every PAGEVEC_SIZE pages would be good. However, KOSAKI-san points out that this is called under shmem.c's info->lock, and it's also under shm.c's shm_lock(), both spinlocks. There is no strong reason for that: we need to take these pages off the unevictable list soonish, but those locks are not required for it. So move the call to scan_mapping_unevictable_pages() from shmem.c's unlock handling up to shm.c's unlock handling. Remove the recently added barrier, not needed now we have spin_unlock() before the scan. Use get_file(), with subsequent fput(), to make sure we have a reference to mapping throughout scan_mapping_unevictable_pages(): that's something that was previously guaranteed by the shm_lock(). Remove shmctl's lru_add_drain_all(): we don't fault in pages at SHM_LOCK time, and we lazily discover them to be Unevictable later, so it serves no purpose for SHM_LOCK; and serves no purpose for SHM_UNLOCK, since pages still on pagevec are not marked Unevictable. The original code avoided redundant rescans by checking VM_LOCKED flag at its level: now avoid them by checking shp's SHM_LOCKED. The original code called scan_mapping_unevictable_pages() on a locked area at shm_destroy() time: perhaps we once had accounting cross-checks which required that, but not now, so skip the overhead and just let inode eviction deal with them. Put check_move_unevictable_page() and scan_mapping_unevictable_pages() under CONFIG_SHMEM (with stub for the TINY case when ramfs is used), more as comment than to save space; comment them used for SHM_UNLOCK. Signed-off-by: Hugh Dickins <hughd@google.com> Reviewed-by: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com> Cc: Minchan Kim <minchan.kim@gmail.com> Cc: Rik van Riel <riel@redhat.com> Cc: Shaohua Li <shaohua.li@intel.com> Cc: Eric Dumazet <eric.dumazet@gmail.com> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: Michel Lespinasse <walken@google.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2012-01-12mm: rearrange putback_inactive_pagesHugh Dickins
There is sometimes confusion between the global putback_lru_pages() in migrate.c and the static putback_lru_pages() in vmscan.c: rename the latter putback_inactive_pages(): it helps shrink_inactive_list() rather as move_active_pages_to_lru() helps shrink_active_list(). Remove unused scan_control arg from putback_inactive_pages() and from update_isolated_counts(). Move clear_active_flags() inside update_isolated_counts(). Move NR_ISOLATED accounting up into shrink_inactive_list() itself, so the balance is clearer. Do the spin_lock_irq() before calling putback_inactive_pages() and spin_unlock_irq() after return from it, so that it better matches update_isolated_counts() and move_active_pages_to_lru(). Signed-off-by: Hugh Dickins <hughd@google.com> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: KOSAKI Motohiro <kosaki.motohiro@gmail.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2012-01-12mm: remove isolate_pages()Hugh Dickins
The isolate_pages() level in vmscan.c offers little but indirection: merge it into isolate_lru_pages() as the compiler does, and use the names nr_to_scan and nr_scanned in each case. Signed-off-by: Hugh Dickins <hughd@google.com> Reviewed-by: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2012-01-12mm: enum lru_list lruHugh Dickins
Mostly we use "enum lru_list lru": change those few "l"s to "lru"s. Signed-off-by: Hugh Dickins <hughd@google.com> Reviewed-by: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2012-01-12mm: take pagevecs off reclaim stackHugh Dickins
Replace pagevecs in putback_lru_pages() and move_active_pages_to_lru() by lists of pages_to_free: then apply Konstantin Khlebnikov's free_hot_cold_page_list() to them instead of pagevec_release(). Which simplifies the flow (no need to drop and retake lock whenever pagevec fills up) and reduces stale addresses in stack backtraces (which often showed through the pagevecs); but more importantly, removes another 120 bytes from the deepest stacks in page reclaim. Although I've not recently seen an actual stack overflow here with a vanilla kernel, move_active_pages_to_lru() has often featured in deep backtraces. However, free_hot_cold_page_list() does not handle compound pages (nor need it: a Transparent HugePage would have been split by the time it reaches the call in shrink_page_list()), but it is possible for putback_lru_pages() or move_active_pages_to_lru() to be left holding the last reference on a THP, so must exclude the unlikely compound case before putting on pages_to_free. Remove pagevec_strip(), its work now done in move_active_pages_to_lru(). The pagevec in scan_mapping_unevictable_pages() remains in mm/vmscan.c, but that is never on the reclaim path, and cannot be replaced by a list. Signed-off-by: Hugh Dickins <hughd@google.com> Reviewed-by: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com> Reviewed-by: Konstantin Khlebnikov <khlebnikov@openvz.org> Cc: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com> Cc: Mel Gorman <mel@csn.ul.ie> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2012-01-12mm: vmscan: check if reclaim should really abort even if compaction_ready() ↵Mel Gorman
is true for one zone If compaction can proceed for a given zone, shrink_zones() does not reclaim any more pages from it. After commit [e0c2327: vmscan: abort reclaim/compaction if compaction can proceed], do_try_to_free_pages() tries to finish as soon as possible once one zone can compact. This was intended to prevent slabs being shrunk unnecessarily but there are side-effects. One is that a small zone that is ready for compaction will abort reclaim even if the chances of successfully allocating a THP from that zone is small. It also means that reclaim can return too early even though sc->nr_to_reclaim pages were not reclaimed. This partially reverts the commit until it is proven that slabs are really being shrunk unnecessarily but preserves the check to return 1 to avoid OOM if reclaim was aborted prematurely. [aarcange@redhat.com: This patch replaces a revert from Andrea] Signed-off-by: Mel Gorman <mgorman@suse.de> Reviewed-by: Rik van Riel <riel@redhat.com> Cc: Andrea Arcangeli <aarcange@redhat.com> Cc: Minchan Kim <minchan.kim@gmail.com> Cc: Dave Jones <davej@redhat.com> Cc: Jan Kara <jack@suse.cz> Cc: Andy Isaacson <adi@hexapodia.org> Cc: Nai Xia <nai.xia@gmail.com> Cc: Johannes Weiner <jweiner@redhat.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2012-01-12mm: vmscan: when reclaiming for compaction, ensure there are sufficient free ↵Mel Gorman
pages available In commit e0887c19 ("vmscan: limit direct reclaim for higher order allocations"), Rik noted that reclaim was too aggressive when THP was enabled. In his initial patch he used the number of free pages to decide if reclaim should abort for compaction. My feedback was that reclaim and compaction should be using the same logic when deciding if reclaim should be aborted. Unfortunately, this had the effect of reducing THP success rates when the workload included something like streaming reads that continually allocated pages. The window during which compaction could run and return a THP was too small. This patch combines Rik's two patches together. compaction_suitable() is still used to decide if reclaim should be aborted to allow compaction is used. However, it will also ensure that there is a reasonable buffer of free pages available. This improves upon the THP allocation success rates but bounds the number of pages that are freed for compaction. Signed-off-by: Mel Gorman <mgorman@suse.de> Reviewed-by: Rik van Riel<riel@redhat.com> Cc: Andrea Arcangeli <aarcange@redhat.com> Cc: Minchan Kim <minchan.kim@gmail.com> Cc: Dave Jones <davej@redhat.com> Cc: Jan Kara <jack@suse.cz> Cc: Andy Isaacson <adi@hexapodia.org> Cc: Nai Xia <nai.xia@gmail.com> Cc: Johannes Weiner <jweiner@redhat.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2012-01-12mm: compaction: make isolate_lru_page() filter-aware againMel Gorman
Commit 39deaf85 ("mm: compaction: make isolate_lru_page() filter-aware") noted that compaction does not migrate dirty or writeback pages and that is was meaningless to pick the page and re-add it to the LRU list. This had to be partially reverted because some dirty pages can be migrated by compaction without blocking. This patch updates "mm: compaction: make isolate_lru_page" by skipping over pages that migration has no possibility of migrating to minimise LRU disruption. Signed-off-by: Mel Gorman <mgorman@suse.de> Reviewed-by: Rik van Riel<riel@redhat.com> Cc: Andrea Arcangeli <aarcange@redhat.com> Reviewed-by: Minchan Kim <minchan@kernel.org> Cc: Dave Jones <davej@redhat.com> Cc: Jan Kara <jack@suse.cz> Cc: Andy Isaacson <adi@hexapodia.org> Cc: Nai Xia <nai.xia@gmail.com> Cc: Johannes Weiner <jweiner@redhat.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2012-01-12mm: vmscan: do not OOM if aborting reclaim to start compactionMel Gorman
During direct reclaim it is possible that reclaim will be aborted so that compaction can be attempted to satisfy a high-order allocation. If this decision is made before any pages are reclaimed, it is possible that 0 is returned to the page allocator potentially triggering an OOM. This has not been observed but it is a possibility so this patch addresses it. Signed-off-by: Mel Gorman <mgorman@suse.de> Reviewed-by: Rik van Riel <riel@redhat.com> Cc: Andrea Arcangeli <aarcange@redhat.com> Cc: Minchan Kim <minchan.kim@gmail.com> Cc: Dave Jones <davej@redhat.com> Cc: Jan Kara <jack@suse.cz> Cc: Andy Isaacson <adi@hexapodia.org> Cc: Nai Xia <nai.xia@gmail.com> Cc: Johannes Weiner <jweiner@redhat.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2012-01-12mm: vmscan: check if we isolated a compound page during lumpy scanAndrea Arcangeli
Properly take into account if we isolated a compound page during the lumpy scan in reclaim and skip over the tail pages when encountered. This corrects the values given to the tracepoint for number of lumpy pages isolated and will avoid breaking the loop early if compound pages smaller than the requested allocation size are requested. [mgorman@suse.de: Updated changelog] Signed-off-by: Andrea Arcangeli <aarcange@redhat.com> Signed-off-by: Mel Gorman <mgorman@suse.de> Reviewed-by: Minchan Kim <minchan.kim@gmail.com> Reviewed-by: Rik van Riel <riel@redhat.com> Cc: Dave Jones <davej@redhat.com> Cc: Jan Kara <jack@suse.cz> Cc: Andy Isaacson <adi@hexapodia.org> Cc: Nai Xia <nai.xia@gmail.com> Cc: Johannes Weiner <jweiner@redhat.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2012-01-12vmscan/trace: Add 'file' info to trace_mm_vmscan_lru_isolate()Tao Ma
In trace_mm_vmscan_lru_isolate(), we don't output 'file' information to the trace event and it is a bit inconvenient for the user to get the real information(like pasted below). mm_vmscan_lru_isolate: isolate_mode=2 order=0 nr_requested=32 nr_scanned=32 nr_taken=32 contig_taken=0 contig_dirty=0 contig_failed=0 'active' can be obtained by analyzing mode(Thanks go to Minchan and Mel), So this patch adds 'file' to the trace event and it now looks like: mm_vmscan_lru_isolate: isolate_mode=2 order=0 nr_requested=32 nr_scanned=32 nr_taken=32 contig_taken=0 contig_dirty=0 contig_failed=0 file=0 Signed-off-by: Tao Ma <boyu.mt@taobao.com> Acked-by: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com> Reviewed-by: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com> Cc: Mel Gorman <mel@csn.ul.ie> Reviewed-by: Minchan Kim <minchan@kernel.org> Cc: Rik van Riel <riel@redhat.com> Cc: Johannes Weiner <hannes@cmpxchg.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2012-01-12mm: unify remaining mem_cont, mem, etc. variable names to memcgJohannes Weiner
Signed-off-by: Johannes Weiner <jweiner@redhat.com> Acked-by: David Rientjes <rientjes@google.com> Acked-by: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com> Acked-by: Michal Hocko <mhocko@suse.cz> Cc: Balbir Singh <bsingharora@gmail.com> Cc: Hugh Dickins <hughd@google.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2012-01-12mm: make per-memcg LRU lists exclusiveJohannes Weiner
Now that all code that operated on global per-zone LRU lists is converted to operate on per-memory cgroup LRU lists instead, there is no reason to keep the double-LRU scheme around any longer. The pc->lru member is removed and page->lru is linked directly to the per-memory cgroup LRU lists, which removes two pointers from a descriptor that exists for every page frame in the system. Signed-off-by: Johannes Weiner <jweiner@redhat.com> Signed-off-by: Hugh Dickins <hughd@google.com> Signed-off-by: Ying Han <yinghan@google.com> Reviewed-by: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com> Reviewed-by: Michal Hocko <mhocko@suse.cz> Reviewed-by: Kirill A. Shutemov <kirill@shutemov.name> Cc: Daisuke Nishimura <nishimura@mxp.nes.nec.co.jp> Cc: Balbir Singh <bsingharora@gmail.com> Cc: Greg Thelen <gthelen@google.com> Cc: Michel Lespinasse <walken@google.com> Cc: Rik van Riel <riel@redhat.com> Cc: Minchan Kim <minchan.kim@gmail.com> Cc: Christoph Hellwig <hch@infradead.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2012-01-12mm: collect LRU list heads into struct lruvecJohannes Weiner
Having a unified structure with a LRU list set for both global zones and per-memcg zones allows to keep that code simple which deals with LRU lists and does not care about the container itself. Once the per-memcg LRU lists directly link struct pages, the isolation function and all other list manipulations are shared between the memcg case and the global LRU case. Signed-off-by: Johannes Weiner <jweiner@redhat.com> Reviewed-by: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com> Reviewed-by: Michal Hocko <mhocko@suse.cz> Reviewed-by: Kirill A. Shutemov <kirill@shutemov.name> Cc: Daisuke Nishimura <nishimura@mxp.nes.nec.co.jp> Cc: Balbir Singh <bsingharora@gmail.com> Cc: Ying Han <yinghan@google.com> Cc: Greg Thelen <gthelen@google.com> Cc: Michel Lespinasse <walken@google.com> Cc: Rik van Riel <riel@redhat.com> Cc: Minchan Kim <minchan.kim@gmail.com> Cc: Christoph Hellwig <hch@infradead.org> Cc: Hugh Dickins <hughd@google.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2012-01-12mm: vmscan: convert global reclaim to per-memcg LRU listsJohannes Weiner
The global per-zone LRU lists are about to go away on memcg-enabled kernels, global reclaim must be able to find its pages on the per-memcg LRU lists. Since the LRU pages of a zone are distributed over all existing memory cgroups, a scan target for a zone is complete when all memory cgroups are scanned for their proportional share of a zone's memory. The forced scanning of small scan targets from kswapd is limited to zones marked unreclaimable, otherwise kswapd can quickly overreclaim by force-scanning the LRU lists of multiple memory cgroups. Signed-off-by: Johannes Weiner <jweiner@redhat.com> Reviewed-by: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com> Reviewed-by: Michal Hocko <mhocko@suse.cz> Reviewed-by: Kirill A. Shutemov <kirill@shutemov.name> Cc: Daisuke Nishimura <nishimura@mxp.nes.nec.co.jp> Cc: Balbir Singh <bsingharora@gmail.com> Cc: Ying Han <yinghan@google.com> Cc: Greg Thelen <gthelen@google.com> Cc: Michel Lespinasse <walken@google.com> Cc: Rik van Riel <riel@redhat.com> Cc: Minchan Kim <minchan.kim@gmail.com> Cc: Christoph Hellwig <hch@infradead.org> Cc: Hugh Dickins <hughd@google.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2012-01-12mm: move memcg hierarchy reclaim to generic reclaim codeJohannes Weiner
Memory cgroup limit reclaim and traditional global pressure reclaim will soon share the same code to reclaim from a hierarchical tree of memory cgroups. In preparation of this, move the two right next to each other in shrink_zone(). The mem_cgroup_hierarchical_reclaim() polymath is split into a soft limit reclaim function, which still does hierarchy walking on its own, and a limit (shrinking) reclaim function, which relies on generic reclaim code to walk the hierarchy. Signed-off-by: Johannes Weiner <jweiner@redhat.com> Reviewed-by: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com> Reviewed-by: Michal Hocko <mhocko@suse.cz> Reviewed-by: Kirill A. Shutemov <kirill@shutemov.name> Cc: Daisuke Nishimura <nishimura@mxp.nes.nec.co.jp> Cc: Balbir Singh <bsingharora@gmail.com> Cc: Ying Han <yinghan@google.com> Cc: Greg Thelen <gthelen@google.com> Cc: Michel Lespinasse <walken@google.com> Cc: Rik van Riel <riel@redhat.com> Cc: Minchan Kim <minchan.kim@gmail.com> Cc: Christoph Hellwig <hch@infradead.org> Cc: Hugh Dickins <hughd@google.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2012-01-12mm: vmscan: distinguish between memcg triggering reclaim and memcg being scannedJohannes Weiner
Memory cgroup hierarchies are currently handled completely outside of the traditional reclaim code, which is invoked with a single memory cgroup as an argument for the whole call stack. Subsequent patches will switch this code to do hierarchical reclaim, so there needs to be a distinction between a) the memory cgroup that is triggering reclaim due to hitting its limit and b) the memory cgroup that is being scanned as a child of a). This patch introduces a struct mem_cgroup_zone that contains the combination of the memory cgroup and the zone being scanned, which is then passed down the stack instead of the zone argument. [akpm@linux-foundation.org: coding-style fixes] Signed-off-by: Johannes Weiner <jweiner@redhat.com> Reviewed-by: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com> Reviewed-by: Michal Hocko <mhocko@suse.cz> Reviewed-by: Kirill A. Shutemov <kirill@shutemov.name> Cc: Daisuke Nishimura <nishimura@mxp.nes.nec.co.jp> Cc: Balbir Singh <bsingharora@gmail.com> Cc: Ying Han <yinghan@google.com> Cc: Greg Thelen <gthelen@google.com> Cc: Michel Lespinasse <walken@google.com> Cc: Rik van Riel <riel@redhat.com> Cc: Minchan Kim <minchan.kim@gmail.com> Cc: Christoph Hellwig <hch@infradead.org> Cc: Hugh Dickins <hughd@google.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2012-01-12mm: vmscan: distinguish global reclaim from global LRU scanningJohannes Weiner
The traditional zone reclaim code is scanning the per-zone LRU lists during direct reclaim and kswapd, and the per-zone per-memory cgroup LRU lists when reclaiming on behalf of a memory cgroup limit. Subsequent patches will convert the traditional reclaim code to reclaim exclusively from the per-memory cgroup LRU lists. As a result, using the predicate for which LRU list is scanned will no longer be appropriate to tell global reclaim from limit reclaim. This patch adds a global_reclaim() predicate to tell direct/kswapd reclaim from memory cgroup limit reclaim and substitutes it in all places where currently scanning_global_lru() is used for that. Signed-off-by: Johannes Weiner <jweiner@redhat.com> Reviewed-by: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com> Reviewed-by: Michal Hocko <mhocko@suse.cz> Reviewed-by: Kirill A. Shutemov <kirill@shutemov.name> Cc: Daisuke Nishimura <nishimura@mxp.nes.nec.co.jp> Cc: Balbir Singh <bsingharora@gmail.com> Cc: Ying Han <yinghan@google.com> Cc: Greg Thelen <gthelen@google.com> Cc: Michel Lespinasse <walken@google.com> Cc: Rik van Riel <riel@redhat.com> Cc: Minchan Kim <minchan.kim@gmail.com> Cc: Christoph Hellwig <hch@infradead.org> Cc: Hugh Dickins <hughd@google.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2012-01-10mm: vmscan: fix typo in isolating lru pagesHillf Danton
It is not the tag page but the cursor page that we should process, and it looks a typo. Signed-off-by: Hillf Danton <dhillf@gmail.com> Cc: Michal Hocko <mhocko@suse.cz> Cc: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com> Cc: Andrea Arcangeli <aarcange@redhat.com> Cc: David Rientjes <rientjes@google.com> Cc: Hugh Dickins <hughd@google.com> Acked-by: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2012-01-10mm: test PageSwapBacked in lumpy reclaimHugh Dickins
Lumpy reclaim does well to stop at a PageAnon when there's no swap, but better is to stop at any PageSwapBacked, which includes shmem/tmpfs too. Signed-off-by: Hugh Dickins <hughd@google.com> Reviewed-by: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com> Reviewed-by: Minchan Kim <minchan@kernel.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2012-01-10mm/vmscan.c: consider swap space when deciding whether to continue reclaimMinchan Kim
It's pointless to continue reclaiming when we have no swap space and lots of anon pages in the inactive list. Without this patch, it is possible when swap is disabled to continue trying to reclaim when there are only anonymous pages in the system even though that will not make any progress. Signed-off-by: Minchan Kim <minchan@kernel.org> Cc: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com> Acked-by: Mel Gorman <mgorman@suse.de> Reviewed-by: Rik van Riel <riel@redhat.com> Cc: Johannes Weiner <jweiner@redhat.com> Cc: Andrea Arcangeli <aarcange@redhat.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2012-01-10vmscan: add task name to warn_scan_unevictable() messagesKOSAKI Motohiro
If we need to know a usecase, caller program name is critical important. Show it. Signed-off-by: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com> Acked-by: Johannes Weiner <hannes@cmpxchg.org> David Rientjes <rientjes@google.com> Reviewed-by: Minchan Kim <minchan.kim@gmail.com> Reviewed-by: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2012-01-10mm: add free_hot_cold_page_list() helperKonstantin Khlebnikov
This patch adds helper free_hot_cold_page_list() to free list of 0-order pages. It frees pages directly from list without temporary page-vector. It also calls trace_mm_pagevec_free() to simulate pagevec_free() behaviour. bloat-o-meter: add/remove: 1/1 grow/shrink: 1/3 up/down: 267/-295 (-28) function old new delta free_hot_cold_page_list - 264 +264 get_page_from_freelist 2129 2132 +3 __pagevec_free 243 239 -4 split_free_page 380 373 -7 release_pages 606 510 -96 free_page_list 188 - -188 Signed-off-by: Konstantin Khlebnikov <khlebnikov@openvz.org> Cc: Mel Gorman <mel@csn.ul.ie> Cc: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com> Acked-by: Minchan Kim <minchan.kim@gmail.com> Acked-by: Hugh Dickins <hughd@google.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2012-01-10vmscan: activate executable pages after first usageKonstantin Khlebnikov
Logic added in commit 8cab4754d24a0 ("vmscan: make mapped executable pages the first class citizen") was noticeably weakened in commit 645747462435d84 ("vmscan: detect mapped file pages used only once"). Currently these pages can become "first class citizens" only after second usage. After this patch page_check_references() will activate they after first usage, and executable code gets yet better chance to stay in memory. Signed-off-by: Konstantin Khlebnikov <khlebnikov@openvz.org> Cc: Pekka Enberg <penberg@kernel.org> Cc: Minchan Kim <minchan.kim@gmail.com> Cc: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com> Cc: Wu Fengguang <fengguang.wu@intel.com> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: Nick Piggin <npiggin@kernel.dk> Cc: Mel Gorman <mel@csn.ul.ie> Cc: Shaohua Li <shaohua.li@intel.com> Cc: Rik van Riel <riel@redhat.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2012-01-10vmscan: promote shared file mapped pagesKonstantin Khlebnikov
Commit 645747462435 ("vmscan: detect mapped file pages used only once") greatly decreases lifetime of single-used mapped file pages. Unfortunately it also decreases life time of all shared mapped file pages. Because after commit bf3f3bc5e7347 ("mm: don't mark_page_accessed in fault path") page-fault handler does not mark page active or even referenced. Thus page_check_references() activates file page only if it was used twice while it stays in inactive list, meanwhile it activates anon pages after first access. Inactive list can be small enough, this way reclaimer can accidentally throw away any widely used page if it wasn't used twice in short period. After this patch page_check_references() also activate file mapped page at first inactive list scan if this page is already used multiple times via several ptes. I found this while trying to fix degragation in rhel6 (~2.6.32) from rhel5 (~2.6.18). There a complete mess with >100 web/mail/spam/ftp containers, they share all their files but there a lot of anonymous pages: ~500mb shared file mapped memory and 15-20Gb non-shared anonymous memory. In this situation major-pagefaults are very costly, because all containers share the same page. In my load kernel created a disproportionate pressure on the file memory, compared with the anonymous, they equaled only if I raise swappiness up to 150 =) These patches actually wasn't helped a lot in my problem, but I saw noticable (10-20 times) reduce in count and average time of major-pagefault in file-mapped areas. Actually both patches are fixes for commit v2.6.33-5448-g6457474, because it was aimed at one scenario (singly used pages), but it breaks the logic in other scenarios (shared and/or executable pages) Signed-off-by: Konstantin Khlebnikov <khlebnikov@openvz.org> Acked-by: Pekka Enberg <penberg@kernel.org> Acked-by: Minchan Kim <minchan.kim@gmail.com> Reviewed-by: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com> Cc: Wu Fengguang <fengguang.wu@intel.com> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: Nick Piggin <npiggin@kernel.dk> Cc: Mel Gorman <mel@csn.ul.ie> Cc: Shaohua Li <shaohua.li@intel.com> Cc: Rik van Riel <riel@redhat.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2012-01-06Merge branch 'driver-core-next' into Linux 3.2Greg Kroah-Hartman
This resolves the conflict in the arch/arm/mach-s3c64xx/s3c6400.c file, and it fixes the build error in the arch/x86/kernel/microcode_core.c file, that the merge did not catch. The microcode_core.c patch was provided by Stephen Rothwell <sfr@canb.auug.org.au> who was invaluable in the merge issues involved with the large sysdev removal process in the driver-core tree. Signed-off-by: Greg Kroah-Hartman <gregkh@suse.de>
2011-12-21convert 'memory' sysdev_class to a regular subsystemKay Sievers
This moves the 'memory sysdev_class' over to a regular 'memory' subsystem and converts the devices to regular devices. The sysdev drivers are implemented as subsystem interfaces now. After all sysdev classes are ported to regular driver core entities, the sysdev implementation will be entirely removed from the kernel. Signed-off-by: Kay Sievers <kay.sievers@vrfy.org> Signed-off-by: Greg Kroah-Hartman <gregkh@suse.de>
2011-12-09vmscan: use atomic-long for shrinker batchingKonstantin Khlebnikov
Use atomic-long operations instead of looping around cmpxchg(). [akpm@linux-foundation.org: massage atomic.h inclusions] Signed-off-by: Konstantin Khlebnikov <khlebnikov@openvz.org> Cc: Dave Chinner <david@fromorbit.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2011-12-09vmscan: fix initial shrinker size handlingKonstantin Khlebnikov
A shrinker function can return -1, means that it cannot do anything without a risk of deadlock. For example prune_super() does this if it cannot grab a superblock refrence, even if nr_to_scan=0. Currently we interpret this -1 as a ULONG_MAX size shrinker and evaluate `total_scan' according to this. So the next time around this shrinker can cause really big pressure. Let's skip such shrinkers instead. Also make total_scan signed, otherwise the check (total_scan < 0) below never works. Signed-off-by: Konstantin Khlebnikov <khlebnikov@openvz.org> Cc: Dave Chinner <david@fromorbit.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2011-11-06Merge branch 'writeback-for-linus' of ↵Linus Torvalds
git://git.kernel.org/pub/scm/linux/kernel/git/wfg/linux * 'writeback-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/wfg/linux: writeback: Add a 'reason' to wb_writeback_work writeback: send work item to queue_io, move_expired_inodes writeback: trace event balance_dirty_pages writeback: trace event bdi_dirty_ratelimit writeback: fix ppc compile warnings on do_div(long long, unsigned long) writeback: per-bdi background threshold writeback: dirty position control - bdi reserve area writeback: control dirty pause time writeback: limit max dirty pause time writeback: IO-less balance_dirty_pages() writeback: per task dirty rate limit writeback: stabilize bdi->dirty_ratelimit writeback: dirty rate control writeback: add bg_threshold parameter to __bdi_update_bandwidth() writeback: dirty position control writeback: account per-bdi accumulated dirtied pages
2011-11-02memcg: skip scanning active lists based on individual sizeJohannes Weiner
Reclaim decides to skip scanning an active list when the corresponding inactive list is above a certain size in comparison to leave the assumed working set alone while there are still enough reclaim candidates around. The memcg implementation of comparing those lists instead reports whether the whole memcg is low on the requested type of inactive pages, considering all nodes and zones. This can lead to an oversized active list not being scanned because of the state of the other lists in the memcg, as well as an active list being scanned while its corresponding inactive list has enough pages. Not only is this wrong, it's also a scalability hazard, because the global memory state over all nodes and zones has to be gathered for each memcg and zone scanned. Make these calculations purely based on the size of the two LRU lists that are actually affected by the outcome of the decision. Signed-off-by: Johannes Weiner <jweiner@redhat.com> Reviewed-by: Rik van Riel <riel@redhat.com> Cc: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com> Acked-by: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com> Cc: Daisuke Nishimura <nishimura@mxp.nes.nec.co.jp> Cc: Balbir Singh <bsingharora@gmail.com> Reviewed-by: Minchan Kim <minchan.kim@gmail.com> Reviewed-by: Ying Han <yinghan@google.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2011-10-31vmscan: abort reclaim/compaction if compaction can proceedMel Gorman
If compaction can proceed, shrink_zones() stops doing any work but its callers still call shrink_slab() which raises the priority and potentially sleeps. This is unnecessary and wasteful so this patch aborts direct reclaim/compaction entirely if compaction can proceed. Signed-off-by: Mel Gorman <mgorman@suse.de> Acked-by: Rik van Riel <riel@redhat.com> Reviewed-by: Minchan Kim <minchan.kim@gmail.com> Acked-by: Johannes Weiner <jweiner@redhat.com> Cc: Josh Boyer <jwboyer@redhat.com> Cc: Andrea Arcangeli <aarcange@redhat.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2011-10-31vmscan: limit direct reclaim for higher order allocationsRik van Riel
When suffering from memory fragmentation due to unfreeable pages, THP page faults will repeatedly try to compact memory. Due to the unfreeable pages, compaction fails. Needless to say, at that point page reclaim also fails to create free contiguous 2MB areas. However, that doesn't stop the current code from trying, over and over again, and freeing a minimum of 4MB (2UL << sc->order pages) at every single invocation. This resulted in my 12GB system having 2-3GB free memory, a corresponding amount of used swap and very sluggish response times. This can be avoided by having the direct reclaim code not reclaim from zones that already have plenty of free memory available for compaction. If compaction still fails due to unmovable memory, doing additional reclaim will only hurt the system, not help. [jweiner@redhat.com: change comment to explain the order check] Signed-off-by: Rik van Riel <riel@redhat.com> Acked-by: Johannes Weiner <jweiner@redhat.com> Acked-by: Mel Gorman <mgorman@suse.de> Cc: Andrea Arcangeli <aarcange@redhat.com> Reviewed-by: Minchan Kim <minchan.kim@gmail.com> Signed-off-by: Johannes Weiner <jweiner@redhat.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2011-10-31vmscan: add barrier to prevent evictable page in unevictable listMinchan Kim
When a race between putback_lru_page() and shmem_lock with lock=0 happens, progrom execution order is as follows, but clear_bit in processor #1 could be reordered right before spin_unlock of processor #1. Then, the page would be stranded on the unevictable list. spin_lock SetPageLRU spin_unlock clear_bit(AS_UNEVICTABLE) spin_lock if PageLRU() if !test_bit(AS_UNEVICTABLE) move evictable list smp_mb if !test_bit(AS_UNEVICTABLE) move evictable list spin_unlock But, pagevec_lookup() in scan_mapping_unevictable_pages() has rcu_read_[un]lock() so it could protect reordering before reaching test_bit(AS_UNEVICTABLE) on processor #1 so this problem never happens. But it's a unexpected side effect and we should solve this problem properly. This patch adds a barrier after mapping_clear_unevictable. I didn't meet this problem but just found during review. Signed-off-by: Minchan Kim <minchan.kim@gmail.com> Acked-by: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com> Cc: Mel Gorman <mel@csn.ul.ie> Cc: Rik van Riel <riel@redhat.com> Cc: Lee Schermerhorn <lee.schermerhorn@hp.com> Acked-by: Johannes Weiner <jweiner@redhat.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2011-10-31mm: disable user interface to manually rescue unevictable pagesJohannes Weiner
At one point, anonymous pages were supposed to go on the unevictable list when no swap space was configured, and the idea was to manually rescue those pages after adding swap and making them evictable again. But nowadays, swap-backed pages on the anon LRU list are not scanned without available swap space anyway, so there is no point in moving them to a separate list anymore. The manual rescue could also be used in case pages were stranded on the unevictable list due to race conditions. But the code has been around for a while now and newly discovered bugs should be properly reported and dealt with instead of relying on such a manual fixup. In addition to the lack of a usecase, the sysfs interface to rescue pages from a specific NUMA node has been broken since its introduction, so it's unlikely that anybody ever relied on that. This patch removes the functionality behind the sysctl and the node-interface and emits a one-time warning when somebody tries to access either of them. Signed-off-by: Johannes Weiner <jweiner@redhat.com> Reported-by: Kautuk Consul <consul.kautuk@gmail.com> Reviewed-by: Minchan Kim <minchan.kim@gmail.com> Acked-by: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2011-10-31vmscan.c: fix invalid strict_strtoul() check in write_scan_unevictable_node()Kautuk Consul
write_scan_unevictable_node() checks the value req returned by strict_strtoul() and returns 1 if req is 0. However, when strict_strtoul() returns 0, it means successful conversion of buf to unsigned long. Due to this, the function was not proceeding to scan the zones for unevictable pages even though we write a valid value to the scan_unevictable_pages sys file. Change this check slightly to check for invalid value in buf as well as 0 value stored in res after successful conversion via strict_strtoul. In both cases, we do not perform the scanning of this node's zones. Signed-off-by: Kautuk Consul <consul.kautuk@gmail.com> Reviewed-by: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com> Cc: Johannes Weiner <jweiner@redhat.com> Cc: Lee Schermerhorn <lee.schermerhorn@hp.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2011-10-31kswapd: assign new_order and new_classzone_idx after wakeup in sleepingAlex,Shi
There 2 places to read pgdat in kswapd. One is return from a successful balance, another is waked up from kswapd sleeping. The new_order and new_classzone_idx represent the balance input order and classzone_idx. But current new_order and new_classzone_idx are not assigned after kswapd_try_to_sleep(), that will cause a bug in the following scenario. 1: after a successful balance, kswapd goes to sleep, and new_order = 0; new_classzone_idx = __MAX_NR_ZONES - 1; 2: kswapd waked up with order = 3 and classzone_idx = ZONE_NORMAL 3: in the balance_pgdat() running, a new balance wakeup happened with order = 5, and classzone_idx = ZONE_NORMAL 4: the first wakeup(order = 3) finished successufly, return order = 3 but, the new_order is still 0, so, this balancing will be treated as a failed balance. And then the second tighter balancing will be missed. So, to avoid the above problem, the new_order and new_classzone_idx need to be assigned for later successful comparison. Signed-off-by: Alex Shi <alex.shi@intel.com> Acked-by: Mel Gorman <mgorman@suse.de> Reviewed-by: Minchan Kim <minchan.kim@gmail.com> Tested-by: Pádraig Brady <P@draigBrady.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>