summaryrefslogtreecommitdiff
path: root/mm
AgeCommit message (Collapse)Author
2015-03-26mm: cma: fix CMA aligned offset calculationDanesh Petigara
commit 850fc430f47aad52092deaaeb32b99f97f0e6aca upstream. The CMA aligned offset calculation is incorrect for non-zero order_per_bit values. For example, if cma->order_per_bit=1, cma->base_pfn= 0x2f800000 and align_order=12, the function returns a value of 0x17c00 instead of 0x400. This patch fixes the CMA aligned offset calculation. The previous calculation was wrong and would return too-large values for the offset, so that when cma_alloc looks for free pages in the bitmap with the requested alignment > order_per_bit, it starts too far into the bitmap and so CMA allocations will fail despite there actually being plenty of free pages remaining. It will also probably have the wrong alignment. With this change, we will get the correct offset into the bitmap. One affected user is powerpc KVM, which has kvm_cma->order_per_bit set to KVM_CMA_CHUNK_ORDER - PAGE_SHIFT, or 18 - 12 = 6. [gregory.0xf0@gmail.com: changelog additions] Signed-off-by: Danesh Petigara <dpetigara@broadcom.com> Reviewed-by: Gregory Fong <gregory.0xf0@gmail.com> Acked-by: Michal Nazarewicz <mina86@mina86.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2015-03-18vmstat: do not use deferrable delayed work for vmstat_updateMichal Hocko
commit ba4877b9ca51f80b5d30f304a46762f0509e1635 upstream. Vinayak Menon has reported that an excessive number of tasks was throttled in the direct reclaim inside too_many_isolated() because NR_ISOLATED_FILE was relatively high compared to NR_INACTIVE_FILE. However it turned out that the real number of NR_ISOLATED_FILE was 0 and the per-cpu vm_stat_diff wasn't transferred into the global counter. vmstat_work which is responsible for the sync is defined as deferrable delayed work which means that the defined timeout doesn't wake up an idle CPU. A CPU might stay in an idle state for a long time and general effort is to keep such a CPU in this state as long as possible which might lead to all sorts of troubles for vmstat consumers as can be seen with the excessive direct reclaim throttling. This patch basically reverts 39bf6270f524 ("VM statistics: Make timer deferrable") but it shouldn't cause any problems for idle CPUs because only CPUs with an active per-cpu drift are woken up since 7cc36bbddde5 ("vmstat: on-demand vmstat workers v8") and CPUs which are idle for a longer time shouldn't have per-cpu drift. Fixes: 39bf6270f524 (VM statistics: Make timer deferrable) Signed-off-by: Michal Hocko <mhocko@suse.cz> Reported-by: Vinayak Menon <vinmenon@codeaurora.org> Acked-by: Christoph Lameter <cl@linux.com> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: Vladimir Davydov <vdavydov@parallels.com> Cc: Mel Gorman <mgorman@suse.de> Cc: Minchan Kim <minchan@kernel.org> Cc: David Rientjes <rientjes@google.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2015-03-18mm: page_alloc: revert inadvertent !__GFP_FS retry behavior changeJohannes Weiner
commit cc87317726f851531ae8422e0c2d3d6e2d7b1955 upstream. Historically, !__GFP_FS allocations were not allowed to invoke the OOM killer once reclaim had failed, but nevertheless kept looping in the allocator. Commit 9879de7373fc ("mm: page_alloc: embed OOM killing naturally into allocation slowpath"), which should have been a simple cleanup patch, accidentally changed the behavior to aborting the allocation at that point. This creates problems with filesystem callers (?) that currently rely on the allocator waiting for other tasks to intervene. Revert the behavior as it shouldn't have been changed as part of a cleanup patch. Fixes: 9879de7373fc ("mm: page_alloc: embed OOM killing naturally into allocation slowpath") Signed-off-by: Johannes Weiner <hannes@cmpxchg.org> Acked-by: Michal Hocko <mhocko@suse.cz> Reported-by: Tetsuo Handa <penguin-kernel@I-love.SAKURA.ne.jp> Cc: Theodore Ts'o <tytso@mit.edu> Cc: Dave Chinner <david@fromorbit.com> Acked-by: David Rientjes <rientjes@google.com> Cc: Oleg Nesterov <oleg@redhat.com> Cc: Mel Gorman <mgorman@suse.de> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2015-03-18mm/nommu: fix memory leakJoonsoo Kim
commit da616534ed7f6e8ffaab699258b55c8d78d0b4ea upstream. Maxime reported the following memory leak regression due to commit dbc8358c7237 ("mm/nommu: use alloc_pages_exact() rather than its own implementation"). On v3.19, I am facing a memory leak. Each time I run a command one page is lost. Here an example with busybox's free command: / # free total used free shared buffers cached Mem: 7928 1972 5956 0 0 492 -/+ buffers/cache: 1480 6448 / # free total used free shared buffers cached Mem: 7928 1976 5952 0 0 492 -/+ buffers/cache: 1484 6444 / # free total used free shared buffers cached Mem: 7928 1980 5948 0 0 492 -/+ buffers/cache: 1488 6440 / # free total used free shared buffers cached Mem: 7928 1984 5944 0 0 492 -/+ buffers/cache: 1492 6436 / # free total used free shared buffers cached Mem: 7928 1988 5940 0 0 492 -/+ buffers/cache: 1496 6432 At some point, the system fails to sastisfy 256KB allocations: free: page allocation failure: order:6, mode:0xd0 CPU: 0 PID: 67 Comm: free Not tainted 3.19.0-05389-gacf2cf1-dirty #64 Hardware name: STM32 (Device Tree Support) show_stack+0xb/0xc warn_alloc_failed+0x97/0xbc __alloc_pages_nodemask+0x295/0x35c __get_free_pages+0xb/0x24 alloc_pages_exact+0x19/0x24 do_mmap_pgoff+0x423/0x658 vm_mmap_pgoff+0x3f/0x4e load_flat_file+0x20d/0x4f8 load_flat_binary+0x3f/0x26c search_binary_handler+0x51/0xe4 do_execveat_common+0x271/0x35c do_execve+0x19/0x1c ret_fast_syscall+0x1/0x4a Mem-info: Normal per-cpu: CPU 0: hi: 0, btch: 1 usd: 0 active_anon:0 inactive_anon:0 isolated_anon:0 active_file:0 inactive_file:0 isolated_file:0 unevictable:123 dirty:0 writeback:0 unstable:0 free:1515 slab_reclaimable:17 slab_unreclaimable:139 mapped:0 shmem:0 pagetables:0 bounce:0 free_cma:0 Normal free:6060kB min:352kB low:440kB high:528kB active_anon:0kB inactive_anon:0kB active_file:0kB inactive_file:0kB unevictable:492kB isolated(anon):0ks lowmem_reserve[]: 0 0 Normal: 23*4kB (U) 22*8kB (U) 24*16kB (U) 23*32kB (U) 23*64kB (U) 23*128kB (U) 1*256kB (U) 0*512kB 0*1024kB 0*2048kB 0*4096kB = 6060kB 123 total pagecache pages 2048 pages of RAM 1538 free pages 66 reserved pages 109 slab pages -46 pages shared 0 pages swap cached nommu: Allocation of length 221184 from process 67 (free) failed Normal per-cpu: CPU 0: hi: 0, btch: 1 usd: 0 active_anon:0 inactive_anon:0 isolated_anon:0 active_file:0 inactive_file:0 isolated_file:0 unevictable:123 dirty:0 writeback:0 unstable:0 free:1515 slab_reclaimable:17 slab_unreclaimable:139 mapped:0 shmem:0 pagetables:0 bounce:0 free_cma:0 Normal free:6060kB min:352kB low:440kB high:528kB active_anon:0kB inactive_anon:0kB active_file:0kB inactive_file:0kB unevictable:492kB isolated(anon):0ks lowmem_reserve[]: 0 0 Normal: 23*4kB (U) 22*8kB (U) 24*16kB (U) 23*32kB (U) 23*64kB (U) 23*128kB (U) 1*256kB (U) 0*512kB 0*1024kB 0*2048kB 0*4096kB = 6060kB 123 total pagecache pages Unable to allocate RAM for process text/data, errno 12 SEGV This problem happens because we allocate ordered page through __get_free_pages() in do_mmap_private() in some cases and we try to free individual pages rather than ordered page in free_page_series(). In this case, freeing pages whose refcount is not 0 won't be freed to the page allocator so memory leak happens. To fix the problem, this patch changes __get_free_pages() to alloc_pages_exact() since alloc_pages_exact() returns physically-contiguous pages but each pages are refcounted. Fixes: dbc8358c7237 ("mm/nommu: use alloc_pages_exact() rather than its own implementation"). Reported-by: Maxime Coquelin <mcoquelin.stm32@gmail.com> Tested-by: Maxime Coquelin <mcoquelin.stm32@gmail.com> Signed-off-by: Joonsoo Kim <iamjoonsoo.kim@lge.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2015-03-18mm: fix negative nr_isolated countsHugh Dickins
commit ff59909a077b3c51c168cb658601c6b63136a347 upstream. The vmstat interfaces are good at hiding negative counts (at least when CONFIG_SMP); but if you peer behind the curtain, you find that nr_isolated_anon and nr_isolated_file soon go negative, and grow ever more negative: so they can absorb larger and larger numbers of isolated pages, yet still appear to be zero. I'm happy to avoid a congestion_wait() when too_many_isolated() myself; but I guess it's there for a good reason, in which case we ought to get too_many_isolated() working again. The imbalance comes from isolate_migratepages()'s ISOLATE_ABORT case: putback_movable_pages() decrements the NR_ISOLATED counts, but we forgot to call acct_isolated() to increment them. It is possible that the bug whcih this patch fixes could cause OOM kills when the system still has a lot of reclaimable page cache. Fixes: edc2ca612496 ("mm, compaction: move pageblock checks up from isolate_migratepages_range()") Signed-off-by: Hugh Dickins <hughd@google.com> Acked-by: Vlastimil Babka <vbabka@suse.cz> Acked-by: Joonsoo Kim <iamjoonsoo.kim@lge.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2015-03-18mm: hwpoison: drop lru_add_drain_all() in __soft_offline_page()Naoya Horiguchi
commit 9ab3b598d2dfbdb0153ffa7e4b1456bbff59a25d upstream. A race condition starts to be visible in recent mmotm, where a PG_hwpoison flag is set on a migration source page *before* it's back in buddy page poo= l. This is problematic because no page flag is supposed to be set when freeing (see __free_one_page().) So the user-visible effect of this race is that it could trigger the BUG_ON() when soft-offlining is called. The root cause is that we call lru_add_drain_all() to make sure that the page is in buddy, but that doesn't work because this function just schedule= s a work item and doesn't wait its completion. drain_all_pages() does drainin= g directly, so simply dropping lru_add_drain_all() solves this problem. Fixes: f15bdfa802bf ("mm/memory-failure.c: fix memory leak in successful soft offlining") Signed-off-by: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com> Cc: Andi Kleen <andi@firstfloor.org> Cc: Tony Luck <tony.luck@intel.com> Cc: Chen Gong <gong.chen@linux.intel.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2015-03-18mm/memory.c: actually remap enough memoryGrazvydas Ignotas
commit 9cb12d7b4ccaa976f97ce0c5fd0f1b6a83bc2a75 upstream. For whatever reason, generic_access_phys() only remaps one page, but actually allows to access arbitrary size. It's quite easy to trigger large reads, like printing out large structure with gdb, which leads to a crash. Fix it by remapping correct size. Fixes: 28b2ee20c7cb ("access_process_vm device memory infrastructure") Signed-off-by: Grazvydas Ignotas <notasas@gmail.com> Cc: Rik van Riel <riel@redhat.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2015-03-18mm/compaction: fix wrong order check in compact_finished()Joonsoo Kim
commit 372549c2a3778fd3df445819811c944ad54609ca upstream. What we want to check here is whether there is highorder freepage in buddy list of other migratetype in order to steal it without fragmentation. But, current code just checks cc->order which means allocation request order. So, this is wrong. Without this fix, non-movable synchronous compaction below pageblock order would not stopped until compaction is complete, because migratetype of most pageblocks are movable and high order freepage made by compaction is usually on movable type buddy list. There is some report related to this bug. See below link. http://www.spinics.net/lists/linux-mm/msg81666.html Although the issued system still has load spike comes from compaction, this makes that system completely stable and responsive according to his report. stress-highalloc test in mmtests with non movable order 7 allocation doesn't show any notable difference in allocation success rate, but, it shows more compaction success rate. Compaction success rate (Compaction success * 100 / Compaction stalls, %) 18.47 : 28.94 Fixes: 1fb3f8ca0e92 ("mm: compaction: capture a suitable high-order page immediately when it is made available") Signed-off-by: Joonsoo Kim <iamjoonsoo.kim@lge.com> Acked-by: Vlastimil Babka <vbabka@suse.cz> Reviewed-by: Zhang Yanfei <zhangyanfei@cn.fujitsu.com> Cc: Mel Gorman <mgorman@suse.de> Cc: David Rientjes <rientjes@google.com> Cc: Rik van Riel <riel@redhat.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2015-03-18mm/nommu.c: fix arithmetic overflow in __vm_enough_memory()Roman Gushchin
commit 8138a67a5557ffea3a21dfd6f037842d4e748513 upstream. I noticed that "allowed" can easily overflow by falling below 0, because (total_vm / 32) can be larger than "allowed". The problem occurs in OVERCOMMIT_NONE mode. In this case, a huge allocation can success and overcommit the system (despite OVERCOMMIT_NONE mode). All subsequent allocations will fall (system-wide), so system become unusable. The problem was masked out by commit c9b1d0981fcc ("mm: limit growth of 3% hardcoded other user reserve"), but it's easy to reproduce it on older kernels: 1) set overcommit_memory sysctl to 2 2) mmap() large file multiple times (with VM_SHARED flag) 3) try to malloc() large amount of memory It also can be reproduced on newer kernels, but miss-configured sysctl_user_reserve_kbytes is required. Fix this issue by switching to signed arithmetic here. Signed-off-by: Roman Gushchin <klamm@yandex-team.ru> Cc: Andrew Shewmaker <agshew@gmail.com> Cc: Rik van Riel <riel@redhat.com> Cc: Konstantin Khlebnikov <khlebnikov@yandex-team.ru> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2015-03-18mm/mmap.c: fix arithmetic overflow in __vm_enough_memory()Roman Gushchin
commit 5703b087dc8eaf47bfb399d6cf512d471beff405 upstream. I noticed, that "allowed" can easily overflow by falling below 0, because (total_vm / 32) can be larger than "allowed". The problem occurs in OVERCOMMIT_NONE mode. In this case, a huge allocation can success and overcommit the system (despite OVERCOMMIT_NONE mode). All subsequent allocations will fall (system-wide), so system become unusable. The problem was masked out by commit c9b1d0981fcc ("mm: limit growth of 3% hardcoded other user reserve"), but it's easy to reproduce it on older kernels: 1) set overcommit_memory sysctl to 2 2) mmap() large file multiple times (with VM_SHARED flag) 3) try to malloc() large amount of memory It also can be reproduced on newer kernels, but miss-configured sysctl_user_reserve_kbytes is required. Fix this issue by switching to signed arithmetic here. [akpm@linux-foundation.org: use min_t] Signed-off-by: Roman Gushchin <klamm@yandex-team.ru> Cc: Andrew Shewmaker <agshew@gmail.com> Cc: Rik van Riel <riel@redhat.com> Cc: Konstantin Khlebnikov <khlebnikov@yandex-team.ru> Reviewed-by: Michal Hocko <mhocko@suse.cz> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2015-03-18mm: when stealing freepages, also take pages created by splitting buddy pageVlastimil Babka
commit 99592d598eca62bdbbf62b59941c189176dfc614 upstream. When studying page stealing, I noticed some weird looking decisions in try_to_steal_freepages(). The first I assume is a bug (Patch 1), the following two patches were driven by evaluation. Testing was done with stress-highalloc of mmtests, using the mm_page_alloc_extfrag tracepoint and postprocessing to get counts of how often page stealing occurs for individual migratetypes, and what migratetypes are used for fallbacks. Arguably, the worst case of page stealing is when UNMOVABLE allocation steals from MOVABLE pageblock. RECLAIMABLE allocation stealing from MOVABLE allocation is also not ideal, so the goal is to minimize these two cases. The evaluation of v2 wasn't always clear win and Joonsoo questioned the results. Here I used different baseline which includes RFC compaction improvements from [1]. I found that the compaction improvements reduce variability of stress-highalloc, so there's less noise in the data. First, let's look at stress-highalloc configured to do sync compaction, and how these patches reduce page stealing events during the test. First column is after fresh reboot, other two are reiterations of test without reboot. That was all accumulater over 5 re-iterations (so the benchmark was run 5x3 times with 5 fresh restarts). Baseline: 3.19-rc4 3.19-rc4 3.19-rc4 5-nothp-1 5-nothp-2 5-nothp-3 Page alloc extfrag event 10264225 8702233 10244125 Extfrag fragmenting 10263271 8701552 10243473 Extfrag fragmenting for unmovable 13595 17616 15960 Extfrag fragmenting unmovable placed with movable 7989 12193 8447 Extfrag fragmenting for reclaimable 658 1840 1817 Extfrag fragmenting reclaimable placed with movable 558 1677 1679 Extfrag fragmenting for movable 10249018 8682096 10225696 With Patch 1: 3.19-rc4 3.19-rc4 3.19-rc4 6-nothp-1 6-nothp-2 6-nothp-3 Page alloc extfrag event 11834954 9877523 9774860 Extfrag fragmenting 11833993 9876880 9774245 Extfrag fragmenting for unmovable 7342 16129 11712 Extfrag fragmenting unmovable placed with movable 4191 10547 6270 Extfrag fragmenting for reclaimable 373 1130 923 Extfrag fragmenting reclaimable placed with movable 302 906 738 Extfrag fragmenting for movable 11826278 9859621 9761610 With Patch 2: 3.19-rc4 3.19-rc4 3.19-rc4 7-nothp-1 7-nothp-2 7-nothp-3 Page alloc extfrag event 4725990 3668793 3807436 Extfrag fragmenting 4725104 3668252 3806898 Extfrag fragmenting for unmovable 6678 7974 7281 Extfrag fragmenting unmovable placed with movable 2051 3829 4017 Extfrag fragmenting for reclaimable 429 1208 1278 Extfrag fragmenting reclaimable placed with movable 369 976 1034 Extfrag fragmenting for movable 4717997 3659070 3798339 With Patch 3: 3.19-rc4 3.19-rc4 3.19-rc4 8-nothp-1 8-nothp-2 8-nothp-3 Page alloc extfrag event 5016183 4700142 3850633 Extfrag fragmenting 5015325 4699613 3850072 Extfrag fragmenting for unmovable 1312 3154 3088 Extfrag fragmenting unmovable placed with movable 1115 2777 2714 Extfrag fragmenting for reclaimable 437 1193 1097 Extfrag fragmenting reclaimable placed with movable 330 969 879 Extfrag fragmenting for movable 5013576 4695266 3845887 In v2 we've seen apparent regression with Patch 1 for unmovable events, this is now gone, suggesting it was indeed noise. Here, each patch improves the situation for unmovable events. Reclaimable is improved by patch 1 and then either the same modulo noise, or perhaps sligtly worse - a small price for unmovable improvements, IMHO. The number of movable allocations falling back to other migratetypes is most noisy, but it's reduced to half at Patch 2 nevertheless. These are least critical as compaction can move them around. If we look at success rates, the patches don't affect them, that didn't change. Baseline: 3.19-rc4 3.19-rc4 3.19-rc4 5-nothp-1 5-nothp-2 5-nothp-3 Success 1 Min 49.00 ( 0.00%) 42.00 ( 14.29%) 41.00 ( 16.33%) Success 1 Mean 51.00 ( 0.00%) 45.00 ( 11.76%) 42.60 ( 16.47%) Success 1 Max 55.00 ( 0.00%) 51.00 ( 7.27%) 46.00 ( 16.36%) Success 2 Min 53.00 ( 0.00%) 47.00 ( 11.32%) 44.00 ( 16.98%) Success 2 Mean 59.60 ( 0.00%) 50.80 ( 14.77%) 48.20 ( 19.13%) Success 2 Max 64.00 ( 0.00%) 56.00 ( 12.50%) 52.00 ( 18.75%) Success 3 Min 84.00 ( 0.00%) 82.00 ( 2.38%) 78.00 ( 7.14%) Success 3 Mean 85.60 ( 0.00%) 82.80 ( 3.27%) 79.40 ( 7.24%) Success 3 Max 86.00 ( 0.00%) 83.00 ( 3.49%) 80.00 ( 6.98%) Patch 1: 3.19-rc4 3.19-rc4 3.19-rc4 6-nothp-1 6-nothp-2 6-nothp-3 Success 1 Min 49.00 ( 0.00%) 44.00 ( 10.20%) 44.00 ( 10.20%) Success 1 Mean 51.80 ( 0.00%) 46.00 ( 11.20%) 45.80 ( 11.58%) Success 1 Max 54.00 ( 0.00%) 49.00 ( 9.26%) 49.00 ( 9.26%) Success 2 Min 58.00 ( 0.00%) 49.00 ( 15.52%) 48.00 ( 17.24%) Success 2 Mean 60.40 ( 0.00%) 51.80 ( 14.24%) 50.80 ( 15.89%) Success 2 Max 63.00 ( 0.00%) 54.00 ( 14.29%) 55.00 ( 12.70%) Success 3 Min 84.00 ( 0.00%) 81.00 ( 3.57%) 79.00 ( 5.95%) Success 3 Mean 85.00 ( 0.00%) 81.60 ( 4.00%) 79.80 ( 6.12%) Success 3 Max 86.00 ( 0.00%) 82.00 ( 4.65%) 82.00 ( 4.65%) Patch 2: 3.19-rc4 3.19-rc4 3.19-rc4 7-nothp-1 7-nothp-2 7-nothp-3 Success 1 Min 50.00 ( 0.00%) 44.00 ( 12.00%) 39.00 ( 22.00%) Success 1 Mean 52.80 ( 0.00%) 45.60 ( 13.64%) 42.40 ( 19.70%) Success 1 Max 55.00 ( 0.00%) 46.00 ( 16.36%) 47.00 ( 14.55%) Success 2 Min 52.00 ( 0.00%) 48.00 ( 7.69%) 45.00 ( 13.46%) Success 2 Mean 53.40 ( 0.00%) 49.80 ( 6.74%) 48.80 ( 8.61%) Success 2 Max 57.00 ( 0.00%) 52.00 ( 8.77%) 52.00 ( 8.77%) Success 3 Min 84.00 ( 0.00%) 81.00 ( 3.57%) 79.00 ( 5.95%) Success 3 Mean 85.00 ( 0.00%) 82.40 ( 3.06%) 79.60 ( 6.35%) Success 3 Max 86.00 ( 0.00%) 83.00 ( 3.49%) 80.00 ( 6.98%) Patch 3: 3.19-rc4 3.19-rc4 3.19-rc4 8-nothp-1 8-nothp-2 8-nothp-3 Success 1 Min 46.00 ( 0.00%) 44.00 ( 4.35%) 42.00 ( 8.70%) Success 1 Mean 50.20 ( 0.00%) 45.60 ( 9.16%) 44.00 ( 12.35%) Success 1 Max 52.00 ( 0.00%) 47.00 ( 9.62%) 47.00 ( 9.62%) Success 2 Min 53.00 ( 0.00%) 49.00 ( 7.55%) 48.00 ( 9.43%) Success 2 Mean 55.80 ( 0.00%) 50.60 ( 9.32%) 49.00 ( 12.19%) Success 2 Max 59.00 ( 0.00%) 52.00 ( 11.86%) 51.00 ( 13.56%) Success 3 Min 84.00 ( 0.00%) 80.00 ( 4.76%) 79.00 ( 5.95%) Success 3 Mean 85.40 ( 0.00%) 81.60 ( 4.45%) 80.40 ( 5.85%) Success 3 Max 87.00 ( 0.00%) 83.00 ( 4.60%) 82.00 ( 5.75%) While there's no improvement here, I consider reduced fragmentation events to be worth on its own. Patch 2 also seems to reduce scanning for free pages, and migrations in compaction, suggesting it has somewhat less work to do: Patch 1: Compaction stalls 4153 3959 3978 Compaction success 1523 1441 1446 Compaction failures 2630 2517 2531 Page migrate success 4600827 4943120 5104348 Page migrate failure 19763 16656 17806 Compaction pages isolated 9597640 10305617 10653541 Compaction migrate scanned 77828948 86533283 87137064 Compaction free scanned 517758295 521312840 521462251 Compaction cost 5503 5932 6110 Patch 2: Compaction stalls 3800 3450 3518 Compaction success 1421 1316 1317 Compaction failures 2379 2134 2201 Page migrate success 4160421 4502708 4752148 Page migrate failure 19705 14340 14911 Compaction pages isolated 8731983 9382374 9910043 Compaction migrate scanned 98362797 96349194 98609686 Compaction free scanned 496512560 469502017 480442545 Compaction cost 5173 5526 5811 As with v2, /proc/pagetypeinfo appears unaffected with respect to numbers of unmovable and reclaimable pageblocks. Configuring the benchmark to allocate like THP page fault (i.e. no sync compaction) gives much noisier results for iterations 2 and 3 after reboot. This is not so surprising given how [1] offers lower improvements in this scenario due to less restarts after deferred compaction which would change compaction pivot. Baseline: 3.19-rc4 3.19-rc4 3.19-rc4 5-thp-1 5-thp-2 5-thp-3 Page alloc extfrag event 8148965 6227815 6646741 Extfrag fragmenting 8147872 6227130 6646117 Extfrag fragmenting for unmovable 10324 12942 15975 Extfrag fragmenting unmovable placed with movable 5972 8495 10907 Extfrag fragmenting for reclaimable 601 1707 2210 Extfrag fragmenting reclaimable placed with movable 520 1570 2000 Extfrag fragmenting for movable 8136947 6212481 6627932 Patch 1: 3.19-rc4 3.19-rc4 3.19-rc4 6-thp-1 6-thp-2 6-thp-3 Page alloc extfrag event 8345457 7574471 7020419 Extfrag fragmenting 8343546 7573777 7019718 Extfrag fragmenting for unmovable 10256 18535 30716 Extfrag fragmenting unmovable placed with movable 6893 11726 22181 Extfrag fragmenting for reclaimable 465 1208 1023 Extfrag fragmenting reclaimable placed with movable 353 996 843 Extfrag fragmenting for movable 8332825 7554034 6987979 Patch 2: 3.19-rc4 3.19-rc4 3.19-rc4 7-thp-1 7-thp-2 7-thp-3 Page alloc extfrag event 3512847 3020756 2891625 Extfrag fragmenting 3511940 3020185 2891059 Extfrag fragmenting for unmovable 9017 6892 6191 Extfrag fragmenting unmovable placed with movable 1524 3053 2435 Extfrag fragmenting for reclaimable 445 1081 1160 Extfrag fragmenting reclaimable placed with movable 375 918 986 Extfrag fragmenting for movable 3502478 3012212 2883708 Patch 3: 3.19-rc4 3.19-rc4 3.19-rc4 8-thp-1 8-thp-2 8-thp-3 Page alloc extfrag event 3181699 3082881 2674164 Extfrag fragmenting 3180812 3082303 2673611 Extfrag fragmenting for unmovable 1201 4031 4040 Extfrag fragmenting unmovable placed with movable 974 3611 3645 Extfrag fragmenting for reclaimable 478 1165 1294 Extfrag fragmenting reclaimable placed with movable 387 985 1030 Extfrag fragmenting for movable 3179133 3077107 2668277 The improvements for first iteration are clear, the rest is much noisier and can appear like regression for Patch 1. Anyway, patch 2 rectifies it. Allocation success rates are again unaffected so there's no point in making this e-mail any longer. [1] http://marc.info/?l=linux-mm&m=142166196321125&w=2 This patch (of 3): When __rmqueue_fallback() is called to allocate a page of order X, it will find a page of order Y >= X of a fallback migratetype, which is different from the desired migratetype. With the help of try_to_steal_freepages(), it may change the migratetype (to the desired one) also of: 1) all currently free pages in the pageblock containing the fallback page 2) the fallback pageblock itself 3) buddy pages created by splitting the fallback page (when Y > X) These decisions take the order Y into account, as well as the desired migratetype, with the goal of preventing multiple fallback allocations that could e.g. distribute UNMOVABLE allocations among multiple pageblocks. Originally, decision for 1) has implied the decision for 3). Commit 47118af076f6 ("mm: mmzone: MIGRATE_CMA migration type added") changed that (probably unintentionally) so that the buddy pages in case 3) are always changed to the desired migratetype, except for CMA pageblocks. Commit fef903efcf0c ("mm/page_allo.c: restructure free-page stealing code and fix a bug") did some refactoring and added a comment that the case of 3) is intended. Commit 0cbef29a7821 ("mm: __rmqueue_fallback() should respect pageblock type") removed the comment and tried to restore the original behavior where 1) implies 3), but due to the previous refactoring, the result is instead that only 2) implies 3) - and the conditions for 2) are less frequently met than conditions for 1). This may increase fragmentation in situations where the code decides to steal all free pages from the pageblock (case 1)), but then gives back the buddy pages produced by splitting. This patch restores the original intended logic where 1) implies 3). During testing with stress-highalloc from mmtests, this has shown to decrease the number of events where UNMOVABLE and RECLAIMABLE allocations steal from MOVABLE pageblocks, which can lead to permanent fragmentation. In some cases it has increased the number of events when MOVABLE allocations steal from UNMOVABLE or RECLAIMABLE pageblocks, but these are fixable by sync compaction and thus less harmful. Note that evaluation has shown that the behavior introduced by 47118af076f6 for buddy pages in case 3) is actually even better than the original logic, so the following patch will introduce it properly once again. For stable backports of this patch it makes thus sense to only fix versions containing 0cbef29a7821. [iamjoonsoo.kim@lge.com: tracepoint fix] Signed-off-by: Vlastimil Babka <vbabka@suse.cz> Acked-by: Mel Gorman <mgorman@suse.de> Cc: Zhang Yanfei <zhangyanfei@cn.fujitsu.com> Acked-by: Minchan Kim <minchan@kernel.org> Cc: David Rientjes <rientjes@google.com> Cc: Rik van Riel <riel@redhat.com> Cc: "Aneesh Kumar K.V" <aneesh.kumar@linux.vnet.ibm.com> Cc: "Kirill A. Shutemov" <kirill.shutemov@linux.intel.com> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com> Cc: Michal Hocko <mhocko@suse.cz> Cc: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2015-03-18mm/hugetlb: add migration entry check in __unmap_hugepage_rangeNaoya Horiguchi
commit 9fbc1f635fd0bd28cb32550211bf095753ac637a upstream. If __unmap_hugepage_range() tries to unmap the address range over which hugepage migration is on the way, we get the wrong page because pte_page() doesn't work for migration entries. This patch simply clears the pte for migration entries as we do for hwpoison entries. Fixes: 290408d4a2 ("hugetlb: hugepage migration core") Signed-off-by: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com> Cc: Hugh Dickins <hughd@google.com> Cc: James Hogan <james.hogan@imgtec.com> Cc: David Rientjes <rientjes@google.com> Cc: Mel Gorman <mel@csn.ul.ie> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: Michal Hocko <mhocko@suse.cz> Cc: Rik van Riel <riel@redhat.com> Cc: Andrea Arcangeli <aarcange@redhat.com> Cc: Luiz Capitulino <lcapitulino@redhat.com> Cc: Nishanth Aravamudan <nacc@linux.vnet.ibm.com> Cc: Lee Schermerhorn <lee.schermerhorn@hp.com> Cc: Steve Capper <steve.capper@linaro.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2015-03-18mm/hugetlb: add migration/hwpoisoned entry check in hugetlb_change_protectionNaoya Horiguchi
commit a8bda28d87c38c6aa93de28ba5d30cc18e865a11 upstream. There is a race condition between hugepage migration and change_protection(), where hugetlb_change_protection() doesn't care about migration entries and wrongly overwrites them. That causes unexpected results like kernel crash. HWPoison entries also can cause the same problem. This patch adds is_hugetlb_entry_(migration|hwpoisoned) check in this function to do proper actions. Fixes: 290408d4a2 ("hugetlb: hugepage migration core") Signed-off-by: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com> Cc: Hugh Dickins <hughd@google.com> Cc: James Hogan <james.hogan@imgtec.com> Cc: David Rientjes <rientjes@google.com> Cc: Mel Gorman <mel@csn.ul.ie> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: Michal Hocko <mhocko@suse.cz> Cc: Rik van Riel <riel@redhat.com> Cc: Andrea Arcangeli <aarcange@redhat.com> Cc: Luiz Capitulino <lcapitulino@redhat.com> Cc: Nishanth Aravamudan <nacc@linux.vnet.ibm.com> Cc: Lee Schermerhorn <lee.schermerhorn@hp.com> Cc: Steve Capper <steve.capper@linaro.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2015-03-18mm/hugetlb: fix getting refcount 0 page in hugetlb_fault()Naoya Horiguchi
commit 0f792cf949a0be506c2aa8bfac0605746b146dda upstream. When running the test which causes the race as shown in the previous patch, we can hit the BUG "get_page() on refcount 0 page" in hugetlb_fault(). This race happens when pte turns into migration entry just after the first check of is_hugetlb_entry_migration() in hugetlb_fault() passed with false. To fix this, we need to check pte_present() again after huge_ptep_get(). This patch also reorders taking ptl and doing pte_page(), because pte_page() should be done in ptl. Due to this reordering, we need use trylock_page() in page != pagecache_page case to respect locking order. Fixes: 66aebce747ea ("hugetlb: fix race condition in hugetlb_fault()") Signed-off-by: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com> Cc: Hugh Dickins <hughd@google.com> Cc: James Hogan <james.hogan@imgtec.com> Cc: David Rientjes <rientjes@google.com> Cc: Mel Gorman <mel@csn.ul.ie> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: Michal Hocko <mhocko@suse.cz> Cc: Rik van Riel <riel@redhat.com> Cc: Andrea Arcangeli <aarcange@redhat.com> Cc: Luiz Capitulino <lcapitulino@redhat.com> Cc: Nishanth Aravamudan <nacc@linux.vnet.ibm.com> Cc: Lee Schermerhorn <lee.schermerhorn@hp.com> Cc: Steve Capper <steve.capper@linaro.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2015-03-06mm/gup: Replace ACCESS_ONCE with READ_ONCEChristian Borntraeger
commit 38c5ce936a0862a6ce2c8d1c72689a3aba301425 upstream. ACCESS_ONCE does not work reliably on non-scalar types. For example gcc 4.6 and 4.7 might remove the volatile tag for such accesses during the SRA (scalar replacement of aggregates) step (https://gcc.gnu.org/bugzilla/show_bug.cgi?id=58145) Fixup gup_pmd_range. Signed-off-by: Christian Borntraeger <borntraeger@de.ibm.com> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2015-03-06mm/hugetlb: pmd_huge() returns true for non-present hugepageNaoya Horiguchi
commit cbef8478bee55775ac312a574aad48af7bb9cf9f upstream. Migrating hugepages and hwpoisoned hugepages are considered as non-present hugepages, and they are referenced via migration entries and hwpoison entries in their page table slots. This behavior causes race condition because pmd_huge() doesn't tell non-huge pages from migrating/hwpoisoned hugepages. follow_page_mask() is one example where the kernel would call follow_page_pte() for such hugepage while this function is supposed to handle only normal pages. To avoid this, this patch makes pmd_huge() return true when pmd_none() is true *and* pmd_present() is false. We don't have to worry about mixing up non-present pmd entry with normal pmd (pointing to leaf level pte entry) because pmd_present() is true in normal pmd. The same race condition could happen in (x86-specific) gup_pmd_range(), where this patch simply adds pmd_present() check instead of pmd_huge(). This is because gup_pmd_range() is fast path. If we have non-present hugepage in this function, we will go into gup_huge_pmd(), then return 0 at flag mask check, and finally fall back to the slow path. Fixes: 290408d4a2 ("hugetlb: hugepage migration core") Signed-off-by: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com> Cc: Hugh Dickins <hughd@google.com> Cc: James Hogan <james.hogan@imgtec.com> Cc: David Rientjes <rientjes@google.com> Cc: Mel Gorman <mel@csn.ul.ie> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: Michal Hocko <mhocko@suse.cz> Cc: Rik van Riel <riel@redhat.com> Cc: Andrea Arcangeli <aarcange@redhat.com> Cc: Luiz Capitulino <lcapitulino@redhat.com> Cc: Nishanth Aravamudan <nacc@linux.vnet.ibm.com> Cc: Lee Schermerhorn <lee.schermerhorn@hp.com> Cc: Steve Capper <steve.capper@linaro.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2015-02-05memcg, shmem: fix shmem migration to use lrucareMichal Hocko
It has been reported that 965GM might trigger VM_BUG_ON_PAGE(!lrucare && PageLRU(oldpage), oldpage) in mem_cgroup_migrate when shmem wants to replace a swap cache page because of shmem_should_replace_page (the page is allocated from an inappropriate zone). shmem_replace_page expects that the oldpage is not on LRU list and calls mem_cgroup_migrate without lrucare. This is obviously incorrect because swapcache pages might be on the LRU list (e.g. swapin readahead page). Fix this by enabling lrucare for the migration in shmem_replace_page. Also clarify that lrucare should be used even if one of the pages might be on LRU list. The BUG_ON will trigger only when CONFIG_DEBUG_VM is enabled but even without that the migration code might leave the old page on an inappropriate memcg' LRU which is not that critical because the page would get removed with its last reference but it is still confusing. Fixes: 0a31bc97c80c ("mm: memcontrol: rewrite uncharge API") Signed-off-by: Michal Hocko <mhocko@suse.cz> Reported-by: Chris Wilson <chris@chris-wilson.co.uk> Reported-by: Dave Airlie <airlied@gmail.com> Acked-by: Hugh Dickins <hughd@google.com> Acked-by: Johannes Weiner <hannes@cmpxchg.org> Cc: <stable@vger.kernel.org> [3.17+] Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2015-02-05mm: export "high_memory" symbol on !MMUArnd Bergmann
The symbol 'high_memory' is provided on both MMU- and NOMMU-kernels, but only one of them is exported, which leads to module build errors in drivers that work fine built-in: ERROR: "high_memory" [drivers/net/virtio_net.ko] undefined! ERROR: "high_memory" [drivers/net/ppp/ppp_mppe.ko] undefined! ERROR: "high_memory" [drivers/mtd/nand/nand.ko] undefined! ERROR: "high_memory" [crypto/tcrypt.ko] undefined! ERROR: "high_memory" [crypto/cts.ko] undefined! This exports the symbol to get these to work on NOMMU as well. Signed-off-by: Arnd Bergmann <arnd@arndb.de> Cc: Kirill A. Shutemov <kirill.shutemov@linux.intel.com> Acked-by: Greg Ungerer <gerg@uclinux.org> Acked-by: David Rientjes <rientjes@google.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2015-02-05mm: pagewalk: call pte_hole() for VM_PFNMAP during walk_page_rangeShiraz Hashim
walk_page_range() silently skips vma having VM_PFNMAP set, which leads to undesirable behaviour at client end (who called walk_page_range). Userspace applications get the wrong data, so the effect is like just confusing users (if the applications just display the data) or sometimes killing the processes (if the applications do something with misunderstanding virtual addresses due to the wrong data.) For example for pagemap_read, when no callbacks are called against VM_PFNMAP vma, pagemap_read may prepare pagemap data for next virtual address range at wrong index. Eventually userspace may get wrong pagemap data for a task. Corresponding to a VM_PFNMAP marked vma region, kernel may report mappings from subsequent vma regions. User space in turn may account more pages (than really are) to the task. In my case I was using procmem, procrack (Android utility) which uses pagemap interface to account RSS pages of a task. Due to this bug it was giving a wrong picture for vmas (with VM_PFNMAP set). Fixes: a9ff785e4437 ("mm/pagewalk.c: walk_page_range should avoid VM_PFNMAP areas") Signed-off-by: Shiraz Hashim <shashim@codeaurora.org> Acked-by: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com> Cc: <stable@vger.kernel.org> [3.10+] Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2015-01-29vm: make stack guard page errors return VM_FAULT_SIGSEGV rather than SIGBUSLinus Torvalds
The stack guard page error case has long incorrectly caused a SIGBUS rather than a SIGSEGV, but nobody actually noticed until commit fee7e49d4514 ("mm: propagate error from stack expansion even for guard page") because that error case was never actually triggered in any normal situations. Now that we actually report the error, people noticed the wrong signal that resulted. So far, only the test suite of libsigsegv seems to have actually cared, but there are real applications that use libsigsegv, so let's not wait for any of those to break. Reported-and-tested-by: Takashi Iwai <tiwai@suse.de> Tested-by: Jan Engelhardt <jengelh@inai.de> Acked-by: Heiko Carstens <heiko.carstens@de.ibm.com> # "s390 still compiles and boots" Cc: linux-arch@vger.kernel.org Cc: stable@vger.kernel.org Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2015-01-29vm: add VM_FAULT_SIGSEGV handling supportLinus Torvalds
The core VM already knows about VM_FAULT_SIGBUS, but cannot return a "you should SIGSEGV" error, because the SIGSEGV case was generally handled by the caller - usually the architecture fault handler. That results in lots of duplication - all the architecture fault handlers end up doing very similar "look up vma, check permissions, do retries etc" - but it generally works. However, there are cases where the VM actually wants to SIGSEGV, and applications _expect_ SIGSEGV. In particular, when accessing the stack guard page, libsigsegv expects a SIGSEGV. And it usually got one, because the stack growth is handled by that duplicated architecture fault handler. However, when the generic VM layer started propagating the error return from the stack expansion in commit fee7e49d4514 ("mm: propagate error from stack expansion even for guard page"), that now exposed the existing VM_FAULT_SIGBUS result to user space. And user space really expected SIGSEGV, not SIGBUS. To fix that case, we need to add a VM_FAULT_SIGSEGV, and teach all those duplicate architecture fault handlers about it. They all already have the code to handle SIGSEGV, so it's about just tying that new return value to the existing code, but it's all a bit annoying. This is the mindless minimal patch to do this. A more extensive patch would be to try to gather up the mostly shared fault handling logic into one generic helper routine, and long-term we really should do that cleanup. Just from this patch, you can generally see that most architectures just copied (directly or indirectly) the old x86 way of doing things, but in the meantime that original x86 model has been improved to hold the VM semaphore for shorter times etc and to handle VM_FAULT_RETRY and other "newer" things, so it would be a good idea to bring all those improvements to the generic case and teach other architectures about them too. Reported-and-tested-by: Takashi Iwai <tiwai@suse.de> Tested-by: Jan Engelhardt <jengelh@inai.de> Acked-by: Heiko Carstens <heiko.carstens@de.ibm.com> # "s390 still compiles and boots" Cc: linux-arch@vger.kernel.org Cc: stable@vger.kernel.org Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2015-01-26mm/vmscan: fix highidx argument typeMichael S. Tsirkin
for_each_zone_zonelist_nodemask wants an enum zone_type argument, but is passed gfp_t: mm/vmscan.c:2658:9: expected int enum zone_type [signed] highest_zoneidx mm/vmscan.c:2658:9: got restricted gfp_t [usertype] gfp_mask mm/vmscan.c:2658:9: warning: incorrect type in argument 2 (different base types) mm/vmscan.c:2658:9: expected int enum zone_type [signed] highest_zoneidx mm/vmscan.c:2658:9: got restricted gfp_t [usertype] gfp_mask convert argument to the correct type. Signed-off-by: Michael S. Tsirkin <mst@redhat.com> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: Vladimir Davydov <vdavydov@parallels.com> Cc: Rik van Riel <riel@redhat.com> Cc: Michal Hocko <mhocko@suse.cz> Cc: Mel Gorman <mgorman@suse.de> Cc: Vlastimil Babka <vbabka@suse.cz> Cc: Suleiman Souhlal <suleiman@google.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2015-01-26memcg: remove extra newlines from memcg oom kill logGreg Thelen
Commit e61734c55c24 ("cgroup: remove cgroup->name") added two extra newlines to memcg oom kill log messages. This makes dmesg hard to read and parse. The issue affects 3.15+. Example: Task in /t <<< extra #1 killed as a result of limit of /t <<< extra #2 memory: usage 102400kB, limit 102400kB, failcnt 274712 Remove the extra newlines from memcg oom kill messages, so the messages look like: Task in /t killed as a result of limit of /t memory: usage 102400kB, limit 102400kB, failcnt 240649 Fixes: e61734c55c24 ("cgroup: remove cgroup->name") Signed-off-by: Greg Thelen <gthelen@google.com> Acked-by: Michal Hocko <mhocko@suse.cz> Acked-by: Johannes Weiner <hannes@cmpxchg.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2015-01-26mm: page_alloc: embed OOM killing naturally into allocation slowpathJohannes Weiner
The OOM killing invocation does a lot of duplicative checks against the task's allocation context. Rework it to take advantage of the existing checks in the allocator slowpath. The OOM killer is invoked when the allocator is unable to reclaim any pages but the allocation has to keep looping. Instead of having a check for __GFP_NORETRY hidden in oom_gfp_allowed(), just move the OOM invocation to the true branch of should_alloc_retry(). The __GFP_FS check from oom_gfp_allowed() can then be moved into the OOM avoidance branch in __alloc_pages_may_oom(), along with the PF_DUMPCORE test. __alloc_pages_may_oom() can then signal to the caller whether the OOM killer was invoked, instead of requiring it to duplicate the order and high_zoneidx checks to guess this when deciding whether to continue. Signed-off-by: Johannes Weiner <hannes@cmpxchg.org> Acked-by: Michal Hocko <mhocko@suse.cz> Cc: David Rientjes <rientjes@google.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2015-01-13mm: mmu_gather: use tlb->end != 0 only for TLB invalidationWill Deacon
When batching up address ranges for TLB invalidation, we check tlb->end != 0 to indicate that some pages have actually been unmapped. As of commit f045bbb9fa1b ("mmu_gather: fix over-eager tlb_flush_mmu_free() calling"), we use the same check for freeing these pages in order to avoid a performance regression where we call free_pages_and_swap_cache even when no pages are actually queued up. Unfortunately, the range could have been reset (tlb->end = 0) by tlb_end_vma, which has been shown to cause memory leaks on arm64. Furthermore, investigation into these leaks revealed that the fullmm case on task exit no longer invalidates the TLB, by virtue of tlb->end == 0 (in 3.18, need_flush would have been set). This patch resolves the problem by reverting commit f045bbb9fa1b, using instead tlb->local.nr as the predicate for page freeing in tlb_flush_mmu_free and ensuring that tlb->end is initialised to a non-zero value in the fullmm case. Tested-by: Mark Langsdorf <mlangsdo@redhat.com> Tested-by: Dave Hansen <dave@sr71.net> Signed-off-by: Will Deacon <will.deacon@arm.com> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2015-01-11mm: fix corner case in anon_vma endless growing preventionKonstantin Khlebnikov
Fix for BUG_ON(anon_vma->degree) splashes in unlink_anon_vmas() ("kernel BUG at mm/rmap.c:399!") caused by commit 7a3ef208e662 ("mm: prevent endless growth of anon_vma hierarchy") Anon_vma_clone() is usually called for a copy of source vma in destination argument. If source vma has anon_vma it should be already in dst->anon_vma. NULL in dst->anon_vma is used as a sign that it's called from anon_vma_fork(). In this case anon_vma_clone() finds anon_vma for reusing. Vma_adjust() calls it differently and this breaks anon_vma reusing logic: anon_vma_clone() links vma to old anon_vma and updates degree counters but vma_adjust() overrides vma->anon_vma right after that. As a result final unlink_anon_vmas() decrements degree for wrong anon_vma. This patch assigns ->anon_vma before calling anon_vma_clone(). Signed-off-by: Konstantin Khlebnikov <koct9i@gmail.com> Reported-and-tested-by: Chris Clayton <chris2553@googlemail.com> Reported-and-tested-by: Oded Gabbay <oded.gabbay@amd.com> Reported-and-tested-by: Chih-Wei Huang <cwhuang@android-x86.org> Acked-by: Rik van Riel <riel@redhat.com> Acked-by: Vlastimil Babka <vbabka@suse.cz> Cc: Daniel Forrest <dan.forrest@ssec.wisc.edu> Cc: Michal Hocko <mhocko@suse.cz> Cc: stable@vger.kernel.org # to match back-porting of 7a3ef208e662 Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2015-01-11mm: Don't count the stack guard page towards RLIMIT_STACKLinus Torvalds
Commit fee7e49d4514 ("mm: propagate error from stack expansion even for guard page") made sure that we return the error properly for stack growth conditions. It also theorized that counting the guard page towards the stack limit might break something, but also said "Let's see if anybody notices". Somebody did notice. Apparently android-x86 sets the stack limit very close to the limit indeed, and including the guard page in the rlimit check causes the android 'zygote' process problems. So this adds the (fairly trivial) code to make the stack rlimit check be against the actual real stack size, rather than the size of the vma that includes the guard page. Reported-and-tested-by: Chih-Wei Huang <cwhuang@android-x86.org> Cc: Jay Foad <jay.foad@gmail.com> Cc: stable@kernel.org # to match back-porting of fee7e49d4514 Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2015-01-08mm, vmscan: prevent kswapd livelock due to pfmemalloc-throttled process ↵Vlastimil Babka
being killed Charles Shirron and Paul Cassella from Cray Inc have reported kswapd stuck in a busy loop with nothing left to balance, but kswapd_try_to_sleep() failing to sleep. Their analysis found the cause to be a combination of several factors: 1. A process is waiting in throttle_direct_reclaim() on pgdat->pfmemalloc_wait 2. The process has been killed (by OOM in this case), but has not yet been scheduled to remove itself from the waitqueue and die. 3. kswapd checks for throttled processes in prepare_kswapd_sleep(): if (waitqueue_active(&pgdat->pfmemalloc_wait)) { wake_up(&pgdat->pfmemalloc_wait); return false; // kswapd will not go to sleep } However, for a process that was already killed, wake_up() does not remove the process from the waitqueue, since try_to_wake_up() checks its state first and returns false when the process is no longer waiting. 4. kswapd is running on the same CPU as the only CPU that the process is allowed to run on (through cpus_allowed, or possibly single-cpu system). 5. CONFIG_PREEMPT_NONE=y kernel is used. If there's nothing to balance, kswapd encounters no voluntary preemption points and repeatedly fails prepare_kswapd_sleep(), blocking the process from running and removing itself from the waitqueue, which would let kswapd sleep. So, the source of the problem is that we prevent kswapd from going to sleep until there are processes waiting on the pfmemalloc_wait queue, and a process waiting on a queue is guaranteed to be removed from the queue only when it gets scheduled. This was done to make sure that no process is left sleeping on pfmemalloc_wait when kswapd itself goes to sleep. However, it isn't necessary to postpone kswapd sleep until the pfmemalloc_wait queue actually empties. To prevent processes from being left sleeping, it's actually enough to guarantee that all processes waiting on pfmemalloc_wait queue have been woken up by the time we put kswapd to sleep. This patch therefore fixes this issue by substituting 'wake_up' with 'wake_up_all' and removing 'return false' in the code snippet from prepare_kswapd_sleep() above. Note that if any process puts itself in the queue after this waitqueue_active() check, or after the wake up itself, it means that the process will also wake up kswapd - and since we are under prepare_to_wait(), the wake up won't be missed. Also we update the comment prepare_kswapd_sleep() to hopefully more clearly describe the races it is preventing. Fixes: 5515061d22f0 ("mm: throttle direct reclaimers if PF_MEMALLOC reserves are low and swap is backed by network storage") Signed-off-by: Vlastimil Babka <vbabka@suse.cz> Signed-off-by: Vladimir Davydov <vdavydov@parallels.com> Cc: Mel Gorman <mgorman@suse.de> Cc: Johannes Weiner <hannes@cmpxchg.org> Acked-by: Michal Hocko <mhocko@suse.cz> Acked-by: Rik van Riel <riel@redhat.com> Cc: <stable@vger.kernel.org> [3.6+] Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2015-01-08memcg: fix destination cgroup leak on task charges migrationVladimir Davydov
We are supposed to take one css reference per each memory page and per each swap entry accounted to a memory cgroup. However, during task charges migration we take a reference to the destination cgroup twice per each swap entry: first in mem_cgroup_do_precharge()->try_charge() and then in mem_cgroup_move_swap_account(), permanently leaking the destination cgroup. The hunk taking the second reference seems to be a leftover from the pre-00501b531c472 ("mm: memcontrol: rewrite charge API") era. Remove it to fix the leak. Fixes: e8ea14cc6ead (mm: memcontrol: take a css reference for each charged page) Signed-off-by: Vladimir Davydov <vdavydov@parallels.com> Cc: Johannes Weiner <hannes@cmpxchg.org> Acked-by: Michal Hocko <mhocko@suse.cz> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2015-01-08mm: memcontrol: switch soft limit default back to infinityJohannes Weiner
Commit 3e32cb2e0a12 ("mm: memcontrol: lockless page counters") accidentally switched the soft limit default from infinity to zero, which turns all memcgs with even a single page into soft limit excessors and engages soft limit reclaim on all of them during global memory pressure. This makes global reclaim generally more aggressive, but also inverts the meaning of existing soft limit configurations where unset soft limits are usually more generous than set ones. Signed-off-by: Johannes Weiner <hannes@cmpxchg.org> Acked-by: Michal Hocko <mhocko@suse.cz> Acked-by: Vladimir Davydov <vdavydov@parallels.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2015-01-08mm/debug_pagealloc: remove obsolete Kconfig optionsJoonsoo Kim
These are obsolete since commit e30825f1869a ("mm/debug-pagealloc: prepare boottime configurable") was merged. So remove them. [pebolle@tiscali.nl: find obsolete Kconfig options] Signed-off-by: Joonsoo Kim <iamjoonsoo.kim@lge.com> Cc: Paul Bolle <pebolle@tiscali.nl> Cc: Mel Gorman <mgorman@suse.de> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: Minchan Kim <minchan@kernel.org> Cc: Dave Hansen <dave@sr71.net> Cc: Michal Nazarewicz <mina86@mina86.com> Cc: Jungsoo Son <jungsoo.son@lge.com> Acked-by: David Rientjes <rientjes@google.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2015-01-08mm: protect set_page_dirty() from ongoing truncationJohannes Weiner
Tejun, while reviewing the code, spotted the following race condition between the dirtying and truncation of a page: __set_page_dirty_nobuffers() __delete_from_page_cache() if (TestSetPageDirty(page)) page->mapping = NULL if (PageDirty()) dec_zone_page_state(page, NR_FILE_DIRTY); dec_bdi_stat(mapping->backing_dev_info, BDI_RECLAIMABLE); if (page->mapping) account_page_dirtied(page) __inc_zone_page_state(page, NR_FILE_DIRTY); __inc_bdi_stat(mapping->backing_dev_info, BDI_RECLAIMABLE); which results in an imbalance of NR_FILE_DIRTY and BDI_RECLAIMABLE. Dirtiers usually lock out truncation, either by holding the page lock directly, or in case of zap_pte_range(), by pinning the mapcount with the page table lock held. The notable exception to this rule, though, is do_wp_page(), for which this race exists. However, do_wp_page() already waits for a locked page to unlock before setting the dirty bit, in order to prevent a race where clear_page_dirty() misses the page bit in the presence of dirty ptes. Upgrade that wait to a fully locked set_page_dirty() to also cover the situation explained above. Afterwards, the code in set_page_dirty() dealing with a truncation race is no longer needed. Remove it. Reported-by: Tejun Heo <tj@kernel.org> Signed-off-by: Johannes Weiner <hannes@cmpxchg.org> Acked-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com> Reviewed-by: Jan Kara <jack@suse.cz> Cc: <stable@vger.kernel.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2015-01-08mm: prevent endless growth of anon_vma hierarchyKonstantin Khlebnikov
Constantly forking task causes unlimited grow of anon_vma chain. Each next child allocates new level of anon_vmas and links vma to all previous levels because pages might be inherited from any level. This patch adds heuristic which decides to reuse existing anon_vma instead of forking new one. It adds counter anon_vma->degree which counts linked vmas and directly descending anon_vmas and reuses anon_vma if counter is lower than two. As a result each anon_vma has either vma or at least two descending anon_vmas. In such trees half of nodes are leafs with alive vmas, thus count of anon_vmas is no more than two times bigger than count of vmas. This heuristic reuses anon_vmas as few as possible because each reuse adds false aliasing among vmas and rmap walker ought to scan more ptes when it searches where page is might be mapped. Link: http://lkml.kernel.org/r/20120816024610.GA5350@evergreen.ssec.wisc.edu Fixes: 5beb49305251 ("mm: change anon_vma linking to fix multi-process server scalability issue") [akpm@linux-foundation.org: fix typo, per Rik] Signed-off-by: Konstantin Khlebnikov <koct9i@gmail.com> Reported-by: Daniel Forrest <dan.forrest@ssec.wisc.edu> Tested-by: Michal Hocko <mhocko@suse.cz> Tested-by: Jerome Marchand <jmarchan@redhat.com> Reviewed-by: Michal Hocko <mhocko@suse.cz> Reviewed-by: Rik van Riel <riel@redhat.com> Cc: <stable@vger.kernel.org> [2.6.34+] Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2015-01-06mm: propagate error from stack expansion even for guard pageLinus Torvalds
Jay Foad reports that the address sanitizer test (asan) sometimes gets confused by a stack pointer that ends up being outside the stack vma that is reported by /proc/maps. This happens due to an interaction between RLIMIT_STACK and the guard page: when we do the guard page check, we ignore the potential error from the stack expansion, which effectively results in a missing guard page, since the expected stack expansion won't have been done. And since /proc/maps explicitly ignores the guard page (commit d7824370e263: "mm: fix up some user-visible effects of the stack guard page"), the stack pointer ends up being outside the reported stack area. This is the minimal patch: it just propagates the error. It also effectively makes the guard page part of the stack limit, which in turn measn that the actual real stack is one page less than the stack limit. Let's see if anybody notices. We could teach acct_stack_growth() to allow an extra page for a grow-up/grow-down stack in the rlimit test, but I don't want to add more complexity if it isn't needed. Reported-and-tested-by: Jay Foad <jay.foad@gmail.com> Cc: stable@vger.kernel.org Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2014-12-29mm: get rid of radix tree gfp mask for pagecache_get_pageMichal Hocko
Commit 2457aec63745 ("mm: non-atomically mark page accessed during page cache allocation where possible") has added a separate parameter for specifying gfp mask for radix tree allocations. Not only this is less than optimal from the API point of view because it is error prone, it is also buggy currently because grab_cache_page_write_begin is using GFP_KERNEL for radix tree and if fgp_flags doesn't contain FGP_NOFS (mostly controlled by fs by AOP_FLAG_NOFS flag) but the mapping_gfp_mask has __GFP_FS cleared then the radix tree allocation wouldn't obey the restriction and might recurse into filesystem and cause deadlocks. This is the case for most filesystems unfortunately because only ext4 and gfs2 are using AOP_FLAG_NOFS. Let's simply remove radix_gfp_mask parameter because the allocation context is same for both page cache and for the radix tree. Just make sure that the radix tree gets only the sane subset of the mask (e.g. do not pass __GFP_WRITE). Long term it is more preferable to convert remaining users of AOP_FLAG_NOFS to use mapping_gfp_mask instead and simplify this interface even further. Reported-by: Dave Chinner <david@fromorbit.com> Signed-off-by: Michal Hocko <mhocko@suse.cz> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2014-12-22Revert "mm/memory.c: share the i_mmap_rwsem"Kirill A. Shutemov
This reverts commit c8475d144abb1e62958cc5ec281d2a9e161c1946. There are several[1][2] of bug reports which points to this commit as potential cause[3]. Let's revert it until we figure out what's going on. [1] https://lkml.org/lkml/2014/11/14/342 [2] https://lkml.org/lkml/2014/12/22/213 [3] https://lkml.org/lkml/2014/12/9/741 Signed-off-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com> Reported-by: Sasha Levin <sasha.levin@oracle.com> Acked-by: Davidlohr Bueso <dave@stgolabs.net> Cc: Hugh Dickins <hughd@google.com> Cc: Oleg Nesterov <oleg@redhat.com> Cc: Peter Zijlstra (Intel) <peterz@infradead.org> Cc: Rik van Riel <riel@redhat.com> Cc: Srikar Dronamraju <srikar@linux.vnet.ibm.com> Cc: Mel Gorman <mgorman@suse.de> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2014-12-20Merge tag 'for-linus' of ↵Linus Torvalds
git://git.kernel.org/pub/scm/linux/kernel/git/borntraeger/linux Pull ACCESS_ONCE cleanup preparation from Christian Borntraeger: "kernel: Provide READ_ONCE and ASSIGN_ONCE As discussed on LKML http://marc.info/?i=54611D86.4040306%40de.ibm.com ACCESS_ONCE might fail with specific compilers for non-scalar accesses. Here is a set of patches to tackle that problem. The first patch introduce READ_ONCE and ASSIGN_ONCE. If the data structure is larger than the machine word size memcpy is used and a warning is emitted. The next patches fix up several in-tree users of ACCESS_ONCE on non-scalar types. This does not yet contain a patch that forces ACCESS_ONCE to work only on scalar types. This is targetted for the next merge window as Linux next already contains new offenders regarding ACCESS_ONCE vs. non-scalar types" * tag 'for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/borntraeger/linux: s390/kvm: REPLACE barrier fixup with READ_ONCE arm/spinlock: Replace ACCESS_ONCE with READ_ONCE arm64/spinlock: Replace ACCESS_ONCE READ_ONCE mips/gup: Replace ACCESS_ONCE with READ_ONCE x86/gup: Replace ACCESS_ONCE with READ_ONCE x86/spinlock: Replace ACCESS_ONCE with READ_ONCE mm: replace ACCESS_ONCE with READ_ONCE or barriers kernel: Provide READ_ONCE and ASSIGN_ONCE
2014-12-19Merge branch 'for-linus' of ↵Linus Torvalds
git://git.kernel.org/pub/scm/linux/kernel/git/viro/vfs Pull vfs pile #3 from Al Viro: "Assorted fixes and patches from the last cycle" * 'for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/viro/vfs: [regression] chunk lost from bd9b51 vfs: make mounts and mountstats honor root dir like mountinfo does vfs: cleanup show_mountinfo init: fix read-write root mount unfuck binfmt_misc.c (broken by commit e6084d4) vm_area_operations: kill ->migrate() new helper: iter_is_iovec() move_extent_per_page(): get rid of unused w_flags lustre: get rid of playing with ->fs btrfs: filp_open() returns ERR_PTR() on failure, not NULL...
2014-12-18mm/zsmalloc: adjust order of functionsGanesh Mahendran
Currently functions in zsmalloc.c does not arranged in a readable and reasonable sequence. With the more and more functions added, we may meet below inconvenience. For example: Current functions: void zs_init() { } static void get_maxobj_per_zspage() { } Then I want to add a func_1() which is called from zs_init(), and this new added function func_1() will used get_maxobj_per_zspage() which is defined below zs_init(). void func_1() { get_maxobj_per_zspage() } void zs_init() { func_1() } static void get_maxobj_per_zspage() { } This will cause compiling issue. So we must add a declaration: static void get_maxobj_per_zspage(); before func_1() if we do not put get_maxobj_per_zspage() before func_1(). In addition, puting module_[init|exit] functions at the bottom of the file conforms to our habit. So, this patch ajusts function sequence as: /* helper functions */ ... obj_location_to_handle() ... /* Some exported functions */ ... zs_map_object() zs_unmap_object() zs_malloc() zs_free() zs_init() zs_exit() Signed-off-by: Ganesh Mahendran <opensource.ganesh@gmail.com> Cc: Nitin Gupta <ngupta@vflare.org> Acked-by: Minchan Kim <minchan@kernel.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2014-12-18mm/memory.c:do_shared_fault(): add commentAndrew Morton
Belatedly document the changes in commit f0c6d4d295e4 ("mm: introduce do_shared_fault() and drop do_fault()"). Cc: Andi Kleen <ak@linux.intel.com> Cc: Bob Liu <lliubbo@gmail.com> Cc: Dave Hansen <dave.hansen@linux.intel.com> Cc: "Kirill A. Shutemov" <kirill@shutemov.name> Cc: Matthew Wilcox <matthew.r.wilcox@intel.com> Cc: Mel Gorman <mgorman@suse.de> Cc: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com> Cc: Rik van Riel <riel@redhat.com> Cc: Sasha Levin <sasha.levin@oracle.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2014-12-18mm: cma: split cma-reserved in dmesg logPintu Kumar
When the system boots up, in the dmesg logs we can see the memory statistics along with total reserved as below. Memory: 458840k/458840k available, 65448k reserved, 0K highmem When CMA is enabled, still the total reserved memory remains the same. However, the CMA memory is not considered as reserved. But, when we see /proc/meminfo, the CMA memory is part of free memory. This creates confusion. This patch corrects the problem by properly subtracting the CMA reserved memory from the total reserved memory in dmesg logs. Below is the dmesg snapshot from an arm based device with 512MB RAM and 12MB single CMA region. Before this change: Memory: 458840k/458840k available, 65448k reserved, 0K highmem After this change: Memory: 458840k/458840k available, 53160k reserved, 12288k cma-reserved, 0K highmem Signed-off-by: Pintu Kumar <pintu.k@samsung.com> Signed-off-by: Vishnu Pratap Singh <vishnu.ps@samsung.com> Acked-by: Michal Nazarewicz <mina86@mina86.com> Cc: Rafael Aquini <aquini@redhat.com> Cc: Jerome Marchand <jmarchan@redhat.com> Cc: Marek Szyprowski <m.szyprowski@samsung.com> Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2014-12-18mm/mempolicy.c: remove unnecessary is_valid_nodemask()Zhihui Zhang
When nodes is true, nsc->mask2 has already been filtered by nsc->mask1, which has already factored in node_states[N_MEMORY]. Signed-off-by: Zhihui Zhang <zzhsuny@gmail.com> Cc: Mel Gorman <mel@csn.ul.ie> Cc: Oleg Nesterov <oleg@redhat.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2014-12-18mm: replace ACCESS_ONCE with READ_ONCE or barriersChristian Borntraeger
ACCESS_ONCE does not work reliably on non-scalar types. For example gcc 4.6 and 4.7 might remove the volatile tag for such accesses during the SRA (scalar replacement of aggregates) step (https://gcc.gnu.org/bugzilla/show_bug.cgi?id=58145) Let's change the code to access the page table elements with READ_ONCE that does implicit scalar accesses for the gup code. mm_find_pmd is tricky, because m68k and sparc(32bit) define pmd_t as array of longs. This code requires just that the pmd_present and pmd_trans_huge check are done on the same value, so a barrier is sufficent. A similar case is in handle_pte_fault. On ppc44x the word size is 32 bit, but a pte is 64 bit. A barrier is ok as well. Signed-off-by: Christian Borntraeger <borntraeger@de.ibm.com> Cc: linux-mm@kvack.org Acked-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
2014-12-17mmu_gather: fix over-eager tlb_flush_mmu_free() callingLinus Torvalds
Dave Hansen reports that commit fb7332a9fedf ("mmu_gather: move minimal range calculations into generic code") caused a performance problem: "tlb_finish_mmu() goes up about 9x in the profiles (~0.4%->3.6%) and tlb_flush_mmu_free() takes about 3.1% of CPU time with the patch applied, but does not show up at all on the commit before" and the reason is that Will moved the test for whether we need to flush from tlb_flush_mmu() into tlb_flush_mmu_tlbonly(). But that meant that tlb_flush_mmu_free() basically lost that check. Move it back into tlb_flush_mmu() where it belongs, so that it covers both tlb_flush_mmu_tlbonly() _and_ tlb_flush_mmu_free(). Reported-and-tested-by: Dave Hansen <dave@sr71.net> Acked-by: Will Deacon <will.deacon@arm.com> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2014-12-17vm_area_operations: kill ->migrate()Al Viro
the only instance this method has ever grown was one in kernfs - one that call ->migrate() of another vm_ops if it exists. Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
2014-12-17new helper: iter_is_iovec()Al Viro
Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
2014-12-16Merge branch 'for-3.19' of git://linux-nfs.org/~bfields/linuxLinus Torvalds
Pull nfsd updates from Bruce Fields: "A comparatively quieter cycle for nfsd this time, but still with two larger changes: - RPC server scalability improvements from Jeff Layton (using RCU instead of a spinlock to find idle threads). - server-side NFSv4.2 ALLOCATE/DEALLOCATE support from Anna Schumaker, enabling fallocate on new clients" * 'for-3.19' of git://linux-nfs.org/~bfields/linux: (32 commits) nfsd4: fix xdr4 count of server in fs_location4 nfsd4: fix xdr4 inclusion of escaped char sunrpc/cache: convert to use string_escape_str() sunrpc: only call test_bit once in svc_xprt_received fs: nfsd: Fix signedness bug in compare_blob sunrpc: add some tracepoints around enqueue and dequeue of svc_xprt sunrpc: convert to lockless lookup of queued server threads sunrpc: fix potential races in pool_stats collection sunrpc: add a rcu_head to svc_rqst and use kfree_rcu to free it sunrpc: require svc_create callers to pass in meaningful shutdown routine sunrpc: have svc_wake_up only deal with pool 0 sunrpc: convert sp_task_pending flag to use atomic bitops sunrpc: move rq_cachetype field to better optimize space sunrpc: move rq_splice_ok flag into rq_flags sunrpc: move rq_dropme flag into rq_flags sunrpc: move rq_usedeferral flag to rq_flags sunrpc: move rq_local field to rq_flags sunrpc: add a generic rq_flags field to svc_rqst and move rq_secure to it nfsd: minor off by one checks in __write_versions() sunrpc: release svc_pool_map reference when serv allocation fails ...
2014-12-15Merge branch 'drm-next' of git://people.freedesktop.org/~airlied/linuxLinus Torvalds
Pull drm updates from Dave Airlie: "Highlights: - AMD KFD driver merge This is the AMD HSA interface for exposing a lowlevel interface for GPGPU use. They have an open source userspace built on top of this interface, and the code looks as good as it was going to get out of tree. - Initial atomic modesetting work The need for an atomic modesetting interface to allow userspace to try and send a complete set of modesetting state to the driver has arisen, and been suffering from neglect this past year. No more, the start of the common code and changes for msm driver to use it are in this tree. Ongoing work to get the userspace ioctl finished and the code clean will probably wait until next kernel. - DisplayID 1.3 and tiled monitor exposed to userspace. Tiled monitor property is now exposed for userspace to make use of. - Rockchip drm driver merged. - imx gpu driver moved out of staging Other stuff: - core: panel - MIPI DSI + new panels. expose suggested x/y properties for virtual GPUs - i915: Initial Skylake (SKL) support gen3/4 reset work start of dri1/ums removal infoframe tracking fixes for lots of things. - nouveau: tegra k1 voltage support GM204 modesetting support GT21x memory reclocking work - radeon: CI dpm fixes GPUVM improvements Initial DPM fan control - rcar-du: HDMI support added removed some support for old boards slave encoder driver for Analog Devices adv7511 - exynos: Exynos4415 SoC support - msm: a4xx gpu support atomic helper conversion - tegra: iommu support universal plane support ganged-mode DSI support - sti: HDMI i2c improvements - vmwgfx: some late fixes. - qxl: use suggested x/y properties" * 'drm-next' of git://people.freedesktop.org/~airlied/linux: (969 commits) drm: sti: fix module compilation issue drm/i915: save/restore GMBUS freq across suspend/resume on gen4 drm: sti: correctly cleanup CRTC and planes drm: sti: add HQVDP plane drm: sti: add cursor plane drm: sti: enable auxiliary CRTC drm: sti: fix delay in VTG programming drm: sti: prepare sti_tvout to support auxiliary crtc drm: sti: use drm_crtc_vblank_{on/off} instead of drm_vblank_{on/off} drm: sti: fix hdmi avi infoframe drm: sti: remove event lock while disabling vblank drm: sti: simplify gdp code drm: sti: clear all mixer control drm: sti: remove gpio for HDMI hot plug detection drm: sti: allow to change hdmi ddc i2c adapter drm/doc: Document drm_add_modes_noedid() usage drm/i915: Remove '& 0xffff' from the mask given to WA_REG() drm/i915: Invert the mask and val arguments in wa_add() and WA_REG() drm: Zero out DRM object memory upon cleanup drm/i915/bdw: Fix the write setting up the WIZ hashing mode ...
2014-12-14Merge git://git.kvack.org/~bcrl/aio-nextLinus Torvalds
Pull aio updates from Benjamin LaHaise. * git://git.kvack.org/~bcrl/aio-next: aio: Skip timer for io_getevents if timeout=0 aio: Make it possible to remap aio ring
2014-12-13aio: Make it possible to remap aio ringPavel Emelyanov
There are actually two issues this patch addresses. Let me start with the one I tried to solve in the beginning. So, in the checkpoint-restore project (criu) we try to dump tasks' state and restore one back exactly as it was. One of the tasks' state bits is rings set up with io_setup() call. There's (almost) no problems in dumping them, there's a problem restoring them -- if I dump a task with aio ring originally mapped at address A, I want to restore one back at exactly the same address A. Unfortunately, the io_setup() does not allow for that -- it mmaps the ring at whatever place mm finds appropriate (it calls do_mmap_pgoff() with zero address and without the MAP_FIXED flag). To make restore possible I'm going to mremap() the freshly created ring into the address A (under which it was seen before dump). The problem is that the ring's virtual address is passed back to the user-space as the context ID and this ID is then used as search key by all the other io_foo() calls. Reworking this ID to be just some integer doesn't seem to work, as this value is already used by libaio as a pointer using which this library accesses memory for aio meta-data. So, to make restore work we need to make sure that a) ring is mapped at desired virtual address b) kioctx->user_id matches this value Having said that, the patch makes mremap() on aio region update the kioctx's user_id and mmap_base values. Here appears the 2nd issue I mentioned in the beginning of this mail. If (regardless of the C/R dances I do) someone creates an io context with io_setup(), then mremap()-s the ring and then destroys the context, the kill_ioctx() routine will call munmap() on wrong (old) address. This will result in a) aio ring remaining in memory and b) some other vma get unexpectedly unmapped. What do you think? Signed-off-by: Pavel Emelyanov <xemul@parallels.com> Acked-by: Dmitry Monakhov <dmonakhov@openvz.org> Signed-off-by: Benjamin LaHaise <bcrl@kvack.org>