summaryrefslogtreecommitdiff
path: root/mm
AgeCommit message (Collapse)Author
2014-01-21mm, show_mem: remove SHOW_MEM_FILTER_PAGE_COUNTMel Gorman
Commit 4b59e6c47309 ("mm, show_mem: suppress page counts in non-blockable contexts") introduced SHOW_MEM_FILTER_PAGE_COUNT to suppress PFN walks on large memory machines. Commit c78e93630d15 ("mm: do not walk all of system memory during show_mem") avoided a PFN walk in the generic show_mem helper which removes the requirement for SHOW_MEM_FILTER_PAGE_COUNT in that case. This patch removes PFN walkers from the arch-specific implementations that report on a per-node or per-zone granularity. ARM and unicore32 still do a PFN walk as they report memory usage on each bank which is a much finer granularity where the debugging information may still be of use. As the remaining arches doing PFN walks have relatively small amounts of memory, this patch simply removes SHOW_MEM_FILTER_PAGE_COUNT. [akpm@linux-foundation.org: fix parisc] Signed-off-by: Mel Gorman <mgorman@suse.de> Acked-by: David Rientjes <rientjes@google.com> Cc: Tony Luck <tony.luck@intel.com> Cc: Russell King <linux@arm.linux.org.uk> Cc: James Bottomley <jejb@parisc-linux.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2014-01-21mm/vmalloc: interchage the implementation of vmalloc_to_{pfn,page}Jianyu Zhan
Currently we are implementing vmalloc_to_pfn() as a wrapper around vmalloc_to_page(), which is implemented as follow: 1. walks the page talbes to generates the corresponding pfn, 2. then converts the pfn to struct page, 3. returns it. And vmalloc_to_pfn() re-wraps vmalloc_to_page() to get the pfn. This seems too circuitous, so this patch reverses the way: implement vmalloc_to_page() as a wrapper around vmalloc_to_pfn(). This makes vmalloc_to_pfn() and vmalloc_to_page() slightly more efficient. No functional change. Signed-off-by: Jianyu Zhan <nasa4836@gmail.com> Cc: Vladimir Murzin <murzin.v@gmail.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2014-01-21mm/hugetlb.c: call MMU notifiers when copying a hugetlb page rangeAndreas Sandberg
When copy_hugetlb_page_range() is called to copy a range of hugetlb mappings, the secondary MMUs are not notified if there is a protection downgrade, which breaks COW semantics in KVM. This patch adds the necessary MMU notifier calls. Signed-off-by: Andreas Sandberg <andreas@sandberg.pp.se> Acked-by: Steve Capper <steve.capper@linaro.org> Acked-by: Marc Zyngier <marc.zyngier@arm.com> Cc: Mel Gorman <mgorman@suse.de> Cc: Rik van Riel <riel@redhat.com> Cc: Hugh Dickins <hughd@google.com> Cc: Andrea Arcangeli <aarcange@redhat.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2014-01-21mm, memory-failure: fix typo in me_pagecache_dirty()Zhi Yong Wu
[akpm@linux-foundation.org: s/cache/pagecache/] Signed-off-by: Zhi Yong Wu <wuzhy@linux.vnet.ibm.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2014-01-21mm: create a separate slab for page->ptl allocationKirill A. Shutemov
If DEBUG_SPINLOCK and DEBUG_LOCK_ALLOC are enabled spinlock_t on x86_64 is 72 bytes. For page->ptl they will be allocated from kmalloc-96 slab, so we loose 24 on each. An average system can easily allocate few tens thousands of page->ptl and overhead is significant. Let's create a separate slab for page->ptl allocation to solve this. To make sure that it really works this time, some numbers from my test machine (just booted, no load): Before: # grep '^\(kmalloc-96\|page->ptl\)' /proc/slabinfo kmalloc-96 31987 32190 128 30 1 : tunables 120 60 8 : slabdata 1073 1073 92 After: # grep '^\(kmalloc-96\|page->ptl\)' /proc/slabinfo page->ptl 27516 28143 72 53 1 : tunables 120 60 8 : slabdata 531 531 9 kmalloc-96 3853 5280 128 30 1 : tunables 120 60 8 : slabdata 176 176 0 Note that the patch is useful not only for debug case, but also for PREEMPT_RT, where spinlock_t is always bloated. Signed-off-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2014-01-21mm: get rid of unnecessary pageblock scanning in setup_zone_migrate_reserveYasuaki Ishimatsu
Yasuaki Ishimatsu reported memory hot-add spent more than 5 _hours_ on 9TB memory machine since onlining memory sections is too slow. And we found out setup_zone_migrate_reserve spent >90% of the time. The problem is, setup_zone_migrate_reserve scans all pageblocks unconditionally, but it is only necessary if the number of reserved block was reduced (i.e. memory hot remove). Moreover, maximum MIGRATE_RESERVE per zone is currently 2. It means that the number of reserved pageblocks is almost always unchanged. This patch adds zone->nr_migrate_reserve_block to maintain the number of MIGRATE_RESERVE pageblocks and it reduces the overhead of setup_zone_migrate_reserve dramatically. The following table shows time of onlining a memory section. Amount of memory | 128GB | 192GB | 256GB| --------------------------------------------- linux-3.12 | 23.9 | 31.4 | 44.5 | This patch | 8.3 | 8.3 | 8.6 | Mel's proposal patch | 10.9 | 19.2 | 31.3 | --------------------------------------------- (millisecond) 128GB : 4 nodes and each node has 32GB of memory 192GB : 6 nodes and each node has 32GB of memory 256GB : 8 nodes and each node has 32GB of memory (*1) Mel proposed his idea by the following threads. https://lkml.org/lkml/2013/10/30/272 [akpm@linux-foundation.org: tweak comment] Signed-off-by: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com> Signed-off-by: Yasuaki Ishimatsu <isimatu.yasuaki@jp.fujitsu.com> Reported-by: Yasuaki Ishimatsu <isimatu.yasuaki@jp.fujitsu.com> Tested-by: Yasuaki Ishimatsu <isimatu.yasuaki@jp.fujitsu.com> Cc: Mel Gorman <mgorman@suse.de> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2014-01-21mm: thp: __get_page_tail_foll() can use get_huge_page_tail()Oleg Nesterov
Cleanup. Change __get_page_tail_foll() to use get_huge_page_tail() to avoid the code duplication. Signed-off-by: Oleg Nesterov <oleg@redhat.com> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: Dave Jones <davej@redhat.com> Cc: Darren Hart <dvhart@linux.intel.com> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Mel Gorman <mgorman@suse.de> Acked-by: Andrea Arcangeli <aarcange@redhat.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2014-01-21mm/hugetlb.c: defer PageHeadHuge() symbol exportAndrea Arcangeli
No actual need of it. So keep it internal. Signed-off-by: Andrea Arcangeli <aarcange@redhat.com> Cc: Khalid Aziz <khalid.aziz@oracle.com> Cc: Pravin Shelar <pshelar@nicira.com> Cc: Greg Kroah-Hartman <gregkh@linuxfoundation.org> Cc: Ben Hutchings <bhutchings@solarflare.com> Cc: Christoph Lameter <cl@linux.com> Cc: Johannes Weiner <jweiner@redhat.com> Cc: Mel Gorman <mgorman@suse.de> Cc: Rik van Riel <riel@redhat.com> Cc: Andi Kleen <andi@firstfloor.org> Cc: Minchan Kim <minchan@kernel.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2014-01-21mm/swap.c: reorganize put_compound_page()Andrew Morton
Tweak it so save a tab stop, make code layout slightly less nutty. Signed-off-by: Andrea Arcangeli <aarcange@redhat.com> Cc: Khalid Aziz <khalid.aziz@oracle.com> Cc: Pravin Shelar <pshelar@nicira.com> Cc: Greg Kroah-Hartman <gregkh@linuxfoundation.org> Cc: Ben Hutchings <bhutchings@solarflare.com> Cc: Christoph Lameter <cl@linux.com> Cc: Johannes Weiner <jweiner@redhat.com> Cc: Mel Gorman <mgorman@suse.de> Cc: Rik van Riel <riel@redhat.com> Cc: Andi Kleen <andi@firstfloor.org> Cc: Minchan Kim <minchan@kernel.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2014-01-21mm/hugetlb.c: simplify PageHeadHuge() and PageHuge()Andrew Morton
Signed-off-by: Andrea Arcangeli <aarcange@redhat.com> Cc: Khalid Aziz <khalid.aziz@oracle.com> Cc: Pravin Shelar <pshelar@nicira.com> Cc: Greg Kroah-Hartman <gregkh@linuxfoundation.org> Cc: Ben Hutchings <bhutchings@solarflare.com> Cc: Christoph Lameter <cl@linux.com> Cc: Johannes Weiner <jweiner@redhat.com> Cc: Mel Gorman <mgorman@suse.de> Cc: Rik van Riel <riel@redhat.com> Cc: Andi Kleen <andi@firstfloor.org> Cc: Minchan Kim <minchan@kernel.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2014-01-21mm: hugetlbfs: use __compound_tail_refcounted in __get_page_tail tooAndrea Arcangeli
Also remove hugetlb.h which isn't needed anymore as PageHeadHuge is handled in mm.h. Signed-off-by: Andrea Arcangeli <aarcange@redhat.com> Cc: Khalid Aziz <khalid.aziz@oracle.com> Cc: Pravin Shelar <pshelar@nicira.com> Cc: Greg Kroah-Hartman <gregkh@linuxfoundation.org> Cc: Ben Hutchings <bhutchings@solarflare.com> Cc: Christoph Lameter <cl@linux.com> Cc: Johannes Weiner <jweiner@redhat.com> Cc: Mel Gorman <mgorman@suse.de> Cc: Rik van Riel <riel@redhat.com> Cc: Andi Kleen <andi@firstfloor.org> Cc: Minchan Kim <minchan@kernel.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2014-01-21mm: tail page refcounting optimization for slab and hugetlbfsAndrea Arcangeli
This skips the _mapcount mangling for slab and hugetlbfs pages. The main trouble in doing this is to guarantee that PageSlab and PageHeadHuge remains constant for all get_page/put_page run on the tail of slab or hugetlbfs compound pages. Otherwise if they're set during get_page but not set during put_page, the _mapcount of the tail page would underflow. PageHeadHuge will remain true until the compound page is released and enters the buddy allocator so it won't risk to change even if the tail page is the last reference left on the page. PG_slab instead is cleared before the slab frees the head page with put_page, so if the tail pin is released after the slab freed the page, we would have a problem. But in the slab case the tail pin cannot be the last reference left on the page. This is because the slab code is free to reuse the compound page after a kfree/kmem_cache_free without having to check if there's any tail pin left. In turn all tail pins must be always released while the head is still pinned by the slab code and so we know PG_slab will be still set too. Signed-off-by: Andrea Arcangeli <aarcange@redhat.com> Reviewed-by: Khalid Aziz <khalid.aziz@oracle.com> Cc: Pravin Shelar <pshelar@nicira.com> Cc: Greg Kroah-Hartman <gregkh@linuxfoundation.org> Cc: Ben Hutchings <bhutchings@solarflare.com> Cc: Christoph Lameter <cl@linux.com> Cc: Johannes Weiner <jweiner@redhat.com> Cc: Mel Gorman <mgorman@suse.de> Cc: Rik van Riel <riel@redhat.com> Cc: Andi Kleen <andi@firstfloor.org> Cc: Minchan Kim <minchan@kernel.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2014-01-21mm: hugetlbfs: move the put/get_page slab and hugetlbfs optimization in a ↵Andrea Arcangeli
faster path We don't actually need a reference on the head page in the slab and hugetlbfs paths, as long as we add a smp_rmb() which should be faster than get_page_unless_zero. [akpm@linux-foundation.org: fix typo in comment] Signed-off-by: Andrea Arcangeli <aarcange@redhat.com> Cc: Khalid Aziz <khalid.aziz@oracle.com> Cc: Pravin Shelar <pshelar@nicira.com> Cc: Greg Kroah-Hartman <gregkh@linuxfoundation.org> Cc: Ben Hutchings <bhutchings@solarflare.com> Cc: Christoph Lameter <cl@linux.com> Cc: Johannes Weiner <jweiner@redhat.com> Cc: Mel Gorman <mgorman@suse.de> Cc: Rik van Riel <riel@redhat.com> Cc: Andi Kleen <andi@firstfloor.org> Cc: Minchan Kim <minchan@kernel.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2014-01-21mm: hugetlb: use get_page_foll() in follow_hugetlb_page()Andrea Arcangeli
get_page_foll() is more optimal and is always safe to use under the PT lock. More so for hugetlbfs as there's no risk of race conditions with split_huge_page regardless of the PT lock. Signed-off-by: Andrea Arcangeli <aarcange@redhat.com> Tested-by: Khalid Aziz <khalid.aziz@oracle.com> Cc: Pravin Shelar <pshelar@nicira.com> Cc: Greg Kroah-Hartman <gregkh@linuxfoundation.org> Cc: Ben Hutchings <bhutchings@solarflare.com> Cc: Christoph Lameter <cl@linux.com> Cc: Johannes Weiner <jweiner@redhat.com> Cc: Mel Gorman <mgorman@suse.de> Cc: Rik van Riel <riel@redhat.com> Cc: Andi Kleen <andi@firstfloor.org> Cc: Minchan Kim <minchan@kernel.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2014-01-21dma-debug: introduce debug_dma_assert_idle()Dan Williams
Record actively mapped pages and provide an api for asserting a given page is dma inactive before execution proceeds. Placing debug_dma_assert_idle() in cow_user_page() flagged the violation of the dma-api in the NET_DMA implementation (see commit 77873803363c "net_dma: mark broken"). The implementation includes the capability to count, in a limited way, repeat mappings of the same page that occur without an intervening unmap. This 'overlap' counter is limited to the few bits of tag space in a radix tree. This mechanism is added to mitigate false negative cases where, for example, a page is dma mapped twice and debug_dma_assert_idle() is called after the page is un-mapped once. Signed-off-by: Dan Williams <dan.j.williams@intel.com> Cc: Joerg Roedel <joro@8bytes.org> Cc: Vinod Koul <vinod.koul@intel.com> Cc: Russell King <rmk+kernel@arm.linux.org.uk> Cc: James Bottomley <JBottomley@Parallels.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2014-01-15mm: fix crash when using XFS on loopbackMikulas Patocka
Commit 8456a648cf44 ("slab: use struct page for slab management") causes a crash in the LVM2 testsuite on PA-RISC (the crashing test is fsadm.sh). The testsuite doesn't crash on 3.12, crashes on 3.13-rc1 and later. Bad Address (null pointer deref?): Code=15 regs=000000413edd89a0 (Addr=000006202224647d) CPU: 3 PID: 24008 Comm: loop0 Not tainted 3.13.0-rc6 #5 task: 00000001bf3c0048 ti: 000000413edd8000 task.ti: 000000413edd8000 YZrvWESTHLNXBCVMcbcbcbcbOGFRQPDI PSW: 00001000000001101111100100001110 Not tainted r00-03 000000ff0806f90e 00000000405c8de0 000000004013e6c0 000000413edd83f0 r04-07 00000000405a95e0 0000000000000200 00000001414735f0 00000001bf349e40 r08-11 0000000010fe3d10 0000000000000001 00000040829c7778 000000413efd9000 r12-15 0000000000000000 000000004060d800 0000000010fe3000 0000000010fe3000 r16-19 000000413edd82a0 00000041078ddbc0 0000000000000010 0000000000000001 r20-23 0008f3d0d83a8000 0000000000000000 00000040829c7778 0000000000000080 r24-27 00000001bf349e40 00000001bf349e40 202d66202224640d 00000000405a95e0 r28-31 202d662022246465 000000413edd88f0 000000413edd89a0 0000000000000001 sr00-03 000000000532c000 0000000000000000 0000000000000000 000000000532c000 sr04-07 0000000000000000 0000000000000000 0000000000000000 0000000000000000 IASQ: 0000000000000000 0000000000000000 IAOQ: 00000000401fe42c 00000000401fe430 IIR: 539c0030 ISR: 00000000202d6000 IOR: 000006202224647d CPU: 3 CR30: 000000413edd8000 CR31: 0000000000000000 ORIG_R28: 00000000405a95e0 IAOQ[0]: vma_interval_tree_iter_first+0x14/0x48 IAOQ[1]: vma_interval_tree_iter_first+0x18/0x48 RP(r2): flush_dcache_page+0x128/0x388 Backtrace: flush_dcache_page+0x128/0x388 lo_splice_actor+0x90/0x148 [loop] splice_from_pipe_feed+0xc0/0x1d0 __splice_from_pipe+0xac/0xc0 lo_direct_splice_actor+0x1c/0x70 [loop] splice_direct_to_actor+0xec/0x228 lo_receive+0xe4/0x298 [loop] loop_thread+0x478/0x640 [loop] kthread+0x134/0x168 end_fault_vector+0x20/0x28 xfs_setsize_buftarg+0x0/0x90 [xfs] Kernel panic - not syncing: Bad Address (null pointer deref?) Commit 8456a648cf44 changes the page structure so that the slab subsystem reuses the page->mapping field. The crash happens in the following way: * XFS allocates some memory from slab and issues a bio to read data into it. * the bio is sent to the loopback device. * lo_receive creates an actor and calls splice_direct_to_actor. * lo_splice_actor copies data to the target page. * lo_splice_actor calls flush_dcache_page because the page may be mapped by userspace. In that case we need to flush the kernel cache. * flush_dcache_page asks for the list of userspace mappings, however that page->mapping field is reused by the slab subsystem for a different purpose. This causes the crash. Note that other architectures without coherent caches (sparc, arm, mips) also call page_mapping from flush_dcache_page, so they may crash in the same way. This patch fixes this bug by testing if the page is a slab page in page_mapping and returning NULL if it is. The patch also fixes VM_BUG_ON(PageSlab(page)) that could happen in earlier kernels in the same scenario on architectures without cache coherence when CONFIG_DEBUG_VM is enabled - so it should be backported to stable kernels. In the old kernels, the function page_mapping is placed in include/linux/mm.h, so you should modify the patch accordingly when backporting it. Signed-off-by: Mikulas Patocka <mpatocka@redhat.com> Cc: John David Anglin <dave.anglin@bell.net>] Cc: Andi Kleen <ak@linux.intel.com> Cc: Christoph Lameter <cl@linux.com> Acked-by: Pekka Enberg <penberg@kernel.org> Reviewed-by: Joonsoo Kim <iamjoonsoo.kim@lge.com> Cc: Helge Deller <deller@gmx.de> Cc: <stable@vger.kernel.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2014-01-12thp: fix copy_page_rep GPF by testing is_huge_zero_pmd once onlyHugh Dickins
We see General Protection Fault on RSI in copy_page_rep: that RSI is what you get from a NULL struct page pointer. RIP: 0010:[<ffffffff81154955>] [<ffffffff81154955>] copy_page_rep+0x5/0x10 RSP: 0000:ffff880136e15c00 EFLAGS: 00010286 RAX: ffff880000000000 RBX: ffff880136e14000 RCX: 0000000000000200 RDX: 6db6db6db6db6db7 RSI: db73880000000000 RDI: ffff880dd0c00000 RBP: ffff880136e15c18 R08: 0000000000000200 R09: 000000000005987c R10: 000000000005987c R11: 0000000000000200 R12: 0000000000000001 R13: ffffea00305aa000 R14: 0000000000000000 R15: 0000000000000000 FS: 00007f195752f700(0000) GS:ffff880c7fc20000(0000) knlGS:0000000000000000 CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033 CR2: 0000000093010000 CR3: 00000001458e1000 CR4: 00000000000027e0 Call Trace: copy_user_huge_page+0x93/0xab do_huge_pmd_wp_page+0x710/0x815 handle_mm_fault+0x15d8/0x1d70 __do_page_fault+0x14d/0x840 do_page_fault+0x2f/0x90 page_fault+0x22/0x30 do_huge_pmd_wp_page() tests is_huge_zero_pmd(orig_pmd) four times: but since shrink_huge_zero_page() can free the huge_zero_page, and we have no hold of our own on it here (except where the fourth test holds page_table_lock and has checked pmd_same), it's possible for it to answer yes the first time, but no to the second or third test. Change all those last three to tests for NULL page. (Note: this is not the same issue as trinity's DEBUG_PAGEALLOC BUG in copy_page_rep with RSI: ffff88009c422000, reported by Sasha Levin in https://lkml.org/lkml/2013/3/29/103. I believe that one is due to the source page being split, and a tail page freed, while copy is in progress; and not a problem without DEBUG_PAGEALLOC, since the pmd_same check will prevent a miscopy from being made visible.) Fixes: 97ae17497e99 ("thp: implement refcounting for huge zero page") Signed-off-by: Hugh Dickins <hughd@google.com> Cc: stable@vger.kernel.org # v3.10 v3.11 v3.12 Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2014-01-02mm/memory-failure.c: transfer page count from head page to tail page after ↵Naoya Horiguchi
split thp Memory failures on thp tail pages cause kernel panic like below: mce: [Hardware Error]: Machine check events logged MCE exception done on CPU 7 BUG: unable to handle kernel NULL pointer dereference at 0000000000000058 IP: [<ffffffff811b7cd1>] dequeue_hwpoisoned_huge_page+0x131/0x1e0 PGD bae42067 PUD ba47d067 PMD 0 Oops: 0000 [#1] SMP ... CPU: 7 PID: 128 Comm: kworker/7:2 Tainted: G M O 3.13.0-rc4-131217-1558-00003-g83b7df08e462 #25 ... Call Trace: me_huge_page+0x3e/0x50 memory_failure+0x4bb/0xc20 mce_process_work+0x3e/0x70 process_one_work+0x171/0x420 worker_thread+0x11b/0x3a0 ? manage_workers.isra.25+0x2b0/0x2b0 kthread+0xe4/0x100 ? kthread_create_on_node+0x190/0x190 ret_from_fork+0x7c/0xb0 ? kthread_create_on_node+0x190/0x190 ... RIP dequeue_hwpoisoned_huge_page+0x131/0x1e0 CR2: 0000000000000058 The reasoning of this problem is shown below: - when we have a memory error on a thp tail page, the memory error handler grabs a refcount of the head page to keep the thp under us. - Before unmapping the error page from processes, we split the thp, where page refcounts of both of head/tail pages don't change. - Then we call try_to_unmap() over the error page (which was a tail page before). We didn't pin the error page to handle the memory error, this error page is freed and removed from LRU list. - We never have the error page on LRU list, so the first page state check returns "unknown page," then we move to the second check with the saved page flag. - The saved page flag have PG_tail set, so the second page state check returns "hugepage." - We call me_huge_page() for freed error page, then we hit the above panic. The root cause is that we didn't move refcount from the head page to the tail page after split thp. So this patch suggests to do this. This panic was introduced by commit 524fca1e73 ("HWPOISON: fix misjudgement of page_action() for errors on mlocked pages"). Note that we did have the same refcount problem before this commit, but it was just ignored because we had only first page state check which returned "unknown page." The commit changed the refcount problem from "doesn't work" to "kernel panic." Signed-off-by: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com> Reviewed-by: Wanpeng Li <liwanp@linux.vnet.ibm.com> Cc: Andi Kleen <andi@firstfloor.org> Cc: <stable@vger.kernel.org> [3.9+] Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2014-01-02mm: remove bogus warning in copy_huge_pmd()Mel Gorman
Sasha Levin reported the following warning being triggered WARNING: CPU: 28 PID: 35287 at mm/huge_memory.c:887 copy_huge_pmd+0x145/ 0x3a0() Call Trace: copy_huge_pmd+0x145/0x3a0 copy_page_range+0x3f2/0x560 dup_mmap+0x2c9/0x3d0 dup_mm+0xad/0x150 copy_process+0xa68/0x12e0 do_fork+0x96/0x270 SyS_clone+0x16/0x20 stub_clone+0x69/0x90 This warning was introduced by "mm: numa: Avoid unnecessary disruption of NUMA hinting during migration" for paranoia reasons but the warning is bogus. I was thinking of parallel races between NUMA hinting faults and forks but this warning would also be triggered by a parallel reclaim splitting a THP during a fork. Remote the bogus warning. Signed-off-by: Mel Gorman <mgorman@suse.de> Reported-by: Sasha Levin <sasha.levin@oracle.com> Cc: Alex Thorlton <athorlton@sgi.com> Cc: Rik van Riel <riel@redhat.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2014-01-02memcg: fix memcg_size() calculationVladimir Davydov
The mem_cgroup structure contains nr_node_ids pointers to mem_cgroup_per_node objects, not the objects themselves. Signed-off-by: Vladimir Davydov <vdavydov@parallels.com> Acked-by: Michal Hocko <mhocko@suse.cz> Cc: Glauber Costa <glommer@openvz.org> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: Balbir Singh <bsingharora@gmail.com> Cc: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2014-01-02mm: fix use-after-free in sys_remap_file_pagesRik van Riel
remap_file_pages calls mmap_region, which may merge the VMA with other existing VMAs, and free "vma". This can lead to a use-after-free bug. Avoid the bug by remembering vm_flags before calling mmap_region, and not trying to dereference vma later. Signed-off-by: Rik van Riel <riel@redhat.com> Reported-by: Dmitry Vyukov <dvyukov@google.com> Cc: PaX Team <pageexec@freemail.hu> Cc: Kees Cook <keescook@chromium.org> Cc: Michel Lespinasse <walken@google.com> Cc: Cyrill Gorcunov <gorcunov@openvz.org> Cc: Hugh Dickins <hughd@google.com> Cc: <stable@vger.kernel.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2014-01-02mm: munlock: fix deadlock in __munlock_pagevec()Vlastimil Babka
Commit 7225522bb429 ("mm: munlock: batch non-THP page isolation and munlock+putback using pagevec" introduced __munlock_pagevec() to speed up munlock by holding lru_lock over multiple isolated pages. Pages that fail to be isolated are put_page()d immediately, also within the lock. This can lead to deadlock when __munlock_pagevec() becomes the holder of the last page pin and put_page() leads to __page_cache_release() which also locks lru_lock. The deadlock has been observed by Sasha Levin using trinity. This patch avoids the deadlock by deferring put_page() operations until lru_lock is released. Another pagevec (which is also used by later phases of the function is reused to gather the pages for put_page() operation. Signed-off-by: Vlastimil Babka <vbabka@suse.cz> Reported-by: Sasha Levin <sasha.levin@oracle.com> Cc: Michel Lespinasse <walken@google.com> Cc: Andrea Arcangeli <aarcange@redhat.com> Cc: Rik van Riel <riel@redhat.com> Cc: Mel Gorman <mgorman@suse.de> Cc: Hugh Dickins <hughd@google.com> Cc: <stable@vger.kernel.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2014-01-02mm: munlock: fix a bug where THP tail page is encounteredVlastimil Babka
Since commit ff6a6da60b89 ("mm: accelerate munlock() treatment of THP pages") munlock skips tail pages of a munlocked THP page. However, when the head page already has PageMlocked unset, it will not skip the tail pages. Commit 7225522bb429 ("mm: munlock: batch non-THP page isolation and munlock+putback using pagevec") has added a PageTransHuge() check which contains VM_BUG_ON(PageTail(page)). Sasha Levin found this triggered using trinity, on the first tail page of a THP page without PageMlocked flag. This patch fixes the issue by skipping tail pages also in the case when PageMlocked flag is unset. There is still a possibility of race with THP page split between clearing PageMlocked and determining how many pages to skip. The race might result in former tail pages not being skipped, which is however no longer a bug, as during the skip the PageTail flags are cleared. However this race also affects correctness of NR_MLOCK accounting, which is to be fixed in a separate patch. Signed-off-by: Vlastimil Babka <vbabka@suse.cz> Reported-by: Sasha Levin <sasha.levin@oracle.com> Cc: Michel Lespinasse <walken@google.com> Cc: Andrea Arcangeli <aarcange@redhat.com> Cc: Rik van Riel <riel@redhat.com> Cc: Mel Gorman <mgorman@suse.de> Cc: Hugh Dickins <hughd@google.com> Cc: Bob Liu <bob.liu@oracle.com> Cc: <stable@vger.kernel.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2013-12-21aio/migratepages: make aio migrate pages saneBenjamin LaHaise
The arbitrary restriction on page counts offered by the core migrate_page_move_mapping() code results in rather suspicious looking fiddling with page reference counts in the aio_migratepage() operation. To fix this, make migrate_page_move_mapping() take an extra_count parameter that allows aio to tell the code about its own reference count on the page being migrated. While cleaning up aio_migratepage(), make it validate that the old page being passed in is actually what aio_migratepage() expects to prevent misbehaviour in the case of races. Signed-off-by: Benjamin LaHaise <bcrl@kvack.org>
2013-12-20mm: fix build of split ptlock codeOlof Johansson
Commit 597d795a2a78 ('mm: do not allocate page->ptl dynamically, if spinlock_t fits to long') restructures some allocators that are compiled even if USE_SPLIT_PTLOCKS arn't used. It results in compilation failure: mm/memory.c:4282:6: error: 'struct page' has no member named 'ptl' mm/memory.c:4288:12: error: 'struct page' has no member named 'ptl' Add in the missing ifdef. Fixes: 597d795a2a78 ('mm: do not allocate page->ptl dynamically, if spinlock_t fits to long') Signed-off-by: Olof Johansson <olof@lixom.net> Cc: Kirill A. Shutemov <kirill.shutemov@linux.intel.com> Cc: Hugh Dickins <hughd@google.com> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2013-12-20mm: do not allocate page->ptl dynamically, if spinlock_t fits to longKirill A. Shutemov
In struct page we have enough space to fit long-size page->ptl there, but we use dynamically-allocated page->ptl if size(spinlock_t) is larger than sizeof(int). It hurts 64-bit architectures with CONFIG_GENERIC_LOCKBREAK, where sizeof(spinlock_t) == 8, but it easily fits into struct page. Signed-off-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com> Acked-by: Hugh Dickins <hughd@google.com> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2013-12-20mm: page_alloc: revert NUMA aspect of fair allocation policyJohannes Weiner
Commit 81c0a2bb515f ("mm: page_alloc: fair zone allocator policy") meant to bring aging fairness among zones in system, but it was overzealous and badly regressed basic workloads on NUMA systems. Due to the way kswapd and page allocator interacts, we still want to make sure that all zones in any given node are used equally for all allocations to maximize memory utilization and prevent thrashing on the highest zone in the node. While the same principle applies to NUMA nodes - memory utilization is obviously improved by spreading allocations throughout all nodes - remote references can be costly and so many workloads prefer locality over memory utilization. The original change assumed that zone_reclaim_mode would be a good enough predictor for that, but it turned out to be as indicative as a coin flip. Revert the NUMA aspect of the fairness until we can find a proper way to make it configurable and agree on a sane default. Signed-off-by: Johannes Weiner <hannes@cmpxchg.org> Reviewed-by: Michal Hocko <mhocko@suse.cz> Signed-off-by: Mel Gorman <mgorman@suse.de> Cc: <stable@kernel.org> # 3.12 Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2013-12-20Revert "mm: page_alloc: exclude unreclaimable allocations from zone fairness ↵Mel Gorman
policy" This reverts commit 73f038b863df. The NUMA behaviour of this patch is less than ideal. An alternative approch is to interleave allocations only within local zones which is implemented in the next patch. Cc: stable@vger.kernel.org Signed-off-by: Mel Gorman <mgorman@suse.de> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2013-12-18mm/hugetlb: check for pte NULL pointer in __page_check_address()Jianguo Wu
In __page_check_address(), if address's pud is not present, huge_pte_offset() will return NULL, we should check the return value. Signed-off-by: Jianguo Wu <wujianguo@huawei.com> Cc: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com> Cc: Mel Gorman <mgorman@suse.de> Cc: qiuxishi <qiuxishi@huawei.com> Cc: Hanjun Guo <guohanjun@huawei.com> Acked-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2013-12-18mm/mempolicy: fix !vma in new_vma_page()Wanpeng Li
BUG_ON(!vma) assumption is introduced by commit 0bf598d863e3 ("mbind: add BUG_ON(!vma) in new_vma_page()"), however, even if address = __vma_address(page, vma); and vma->start < address < vma->end page_address_in_vma() may still return -EFAULT because of many other conditions in it. As a result the while loop in new_vma_page() may end with vma=NULL. This patch revert the commit and also fix the potential dereference NULL pointer reported by Dan. http://marc.info/?l=linux-mm&m=137689530323257&w=2 kernel BUG at mm/mempolicy.c:1204! invalid opcode: 0000 [#1] PREEMPT SMP DEBUG_PAGEALLOC CPU: 3 PID: 7056 Comm: trinity-child3 Not tainted 3.13.0-rc3+ #2 task: ffff8801ca5295d0 ti: ffff88005ab20000 task.ti: ffff88005ab20000 RIP: new_vma_page+0x70/0x90 RSP: 0000:ffff88005ab21db0 EFLAGS: 00010246 RAX: fffffffffffffff2 RBX: 0000000000000000 RCX: 0000000000000000 RDX: 0000000008040075 RSI: ffff8801c3d74600 RDI: ffffea00079a8b80 RBP: ffff88005ab21dc8 R08: 0000000000000004 R09: 0000000000000000 R10: 0000000000000000 R11: 0000000000000000 R12: fffffffffffffff2 R13: ffffea00079a8b80 R14: 0000000000400000 R15: 0000000000400000 FS: 00007ff49c6f4740(0000) GS:ffff880244e00000(0000) knlGS:0000000000000000 CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033 CR2: 00007ff49c68f994 CR3: 000000005a205000 CR4: 00000000001407e0 DR0: 0000000000000000 DR1: 0000000000000000 DR2: 0000000000000000 DR3: 0000000000000000 DR6: 00000000fffe0ff0 DR7: 0000000000000400 Stack: ffffea00079a8b80 ffffea00079a8bc0 ffffea00079a8ba0 ffff88005ab21e50 ffffffff811adc7a 0000000000000000 ffff8801ca5295d0 0000000464e224f8 0000000000000000 0000000000000002 0000000000000000 ffff88020ce75c00 Call Trace: migrate_pages+0x12a/0x850 SYSC_mbind+0x513/0x6a0 SyS_mbind+0xe/0x10 ia32_do_call+0x13/0x13 Code: 85 c0 75 2f 4c 89 e1 48 89 da 31 f6 bf da 00 02 00 65 44 8b 04 25 08 f7 1c 00 e8 ec fd ff ff 5b 41 5c 41 5d 5d c3 0f 1f 44 00 00 <0f> 0b 66 0f 1f 44 00 00 4c 89 e6 48 89 df ba 01 00 00 00 e8 48 RIP [<ffffffff8119f200>] new_vma_page+0x70/0x90 RSP <ffff88005ab21db0> Signed-off-by: Wanpeng Li <liwanp@linux.vnet.ibm.com> Reported-by: Dave Jones <davej@redhat.com> Reported-by: Sasha Levin <sasha.levin@oracle.com> Reviewed-by: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com> Reviewed-by: Bob Liu <bob.liu@oracle.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2013-12-18mm/memory-failure.c: recheck PageHuge() after hugetlb page migrate successfullyJianguo Wu
After a successful hugetlb page migration by soft offline, the source page will either be freed into hugepage_freelists or buddy(over-commit page). If page is in buddy, page_hstate(page) will be NULL. It will hit a NULL pointer dereference in dequeue_hwpoisoned_huge_page(). BUG: unable to handle kernel NULL pointer dereference at 0000000000000058 IP: [<ffffffff81163761>] dequeue_hwpoisoned_huge_page+0x131/0x1d0 PGD c23762067 PUD c24be2067 PMD 0 Oops: 0000 [#1] SMP So check PageHuge(page) after call migrate_pages() successfully. Signed-off-by: Jianguo Wu <wujianguo@huawei.com> Tested-by: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com> Reviewed-by: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com> Cc: <stable@vger.kernel.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2013-12-18mm/compaction: respect ignore_skip_hint in update_pageblock_skipJoonsoo Kim
update_pageblock_skip() only fits to compaction which tries to isolate by pageblock unit. If isolate_migratepages_range() is called by CMA, it try to isolate regardless of pageblock unit and it don't reference get_pageblock_skip() by ignore_skip_hint. We should also respect it on update_pageblock_skip() to prevent from setting the wrong information. Signed-off-by: Joonsoo Kim <iamjoonsoo.kim@lge.com> Acked-by: Vlastimil Babka <vbabka@suse.cz> Reviewed-by: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com> Reviewed-by: Wanpeng Li <liwanp@linux.vnet.ibm.com> Cc: Christoph Lameter <cl@linux.com> Cc: Rafael Aquini <aquini@redhat.com> Cc: Vlastimil Babka <vbabka@suse.cz> Cc: Wanpeng Li <liwanp@linux.vnet.ibm.com> Cc: Mel Gorman <mgorman@suse.de> Cc: Rik van Riel <riel@redhat.com> Cc: Zhang Yanfei <zhangyanfei@cn.fujitsu.com> Cc: <stable@vger.kernel.org> [3.7+] Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2013-12-18mm/mempolicy: correct putback method for isolate pages if failedJoonsoo Kim
queue_pages_range() isolates hugetlbfs pages and putback_lru_pages() can't handle these. We should change it to putback_movable_pages(). Naoya said that it is worth going into stable, because it can break in-use hugepage list. Signed-off-by: Joonsoo Kim <iamjoonsoo.kim@lge.com> Acked-by: Rafael Aquini <aquini@redhat.com> Reviewed-by: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com> Reviewed-by: Wanpeng Li <liwanp@linux.vnet.ibm.com> Cc: Christoph Lameter <cl@linux.com> Cc: Vlastimil Babka <vbabka@suse.cz> Cc: Wanpeng Li <liwanp@linux.vnet.ibm.com> Cc: Mel Gorman <mgorman@suse.de> Cc: Rik van Riel <riel@redhat.com> Cc: Vlastimil Babka <vbabka@suse.cz> Cc: Zhang Yanfei <zhangyanfei@cn.fujitsu.com> Cc: <stable@vger.kernel.org> [3.12.x] Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2013-12-18mm: add missing dependency in KconfigSima Baymani
Eliminate the following (rand)config warning by adding missing PROC_FS dependency: warning: (HWPOISON_INJECT && MEM_SOFT_DIRTY) selects PROC_PAGE_MONITOR which has unmet direct dependencies (PROC_FS && MMU) Signed-off-by: Sima Baymani <sima.baymani@gmail.com> Suggested-by: David Rientjes <rientjes@google.com> Acked-by: David Rientjes <rientjes@google.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2013-12-18mm: page_alloc: exclude unreclaimable allocations from zone fairness policyJohannes Weiner
Dave Hansen noted a regression in a microbenchmark that loops around open() and close() on an 8-node NUMA machine and bisected it down to commit 81c0a2bb515f ("mm: page_alloc: fair zone allocator policy"). That change forces the slab allocations of the file descriptor to spread out to all 8 nodes, causing remote references in the page allocator and slab. The round-robin policy is only there to provide fairness among memory allocations that are reclaimed involuntarily based on pressure in each zone. It does not make sense to apply it to unreclaimable kernel allocations that are freed manually, in this case instantly after the allocation, and incur the remote reference costs twice for no reason. Only round-robin allocations that are usually freed through page reclaim or slab shrinking. Bisected by Dave Hansen. Signed-off-by: Johannes Weiner <hannes@cmpxchg.org> Cc: Dave Hansen <dave.hansen@intel.com> Cc: Mel Gorman <mgorman@suse.de> Reviewed-by: Rik van Riel <riel@redhat.com> Cc: <stable@kernel.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2013-12-18mm: numa: defer TLB flush for THP migration as long as possibleMel Gorman
THP migration can fail for a variety of reasons. Avoid flushing the TLB to deal with THP migration races until the copy is ready to start. Signed-off-by: Mel Gorman <mgorman@suse.de> Reviewed-by: Rik van Riel <riel@redhat.com> Cc: Alex Thorlton <athorlton@sgi.com> Cc: <stable@vger.kernel.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2013-12-18mm: fix TLB flush race between migration, and change_protection_rangeRik van Riel
There are a few subtle races, between change_protection_range (used by mprotect and change_prot_numa) on one side, and NUMA page migration and compaction on the other side. The basic race is that there is a time window between when the PTE gets made non-present (PROT_NONE or NUMA), and the TLB is flushed. During that time, a CPU may continue writing to the page. This is fine most of the time, however compaction or the NUMA migration code may come in, and migrate the page away. When that happens, the CPU may continue writing, through the cached translation, to what is no longer the current memory location of the process. This only affects x86, which has a somewhat optimistic pte_accessible. All other architectures appear to be safe, and will either always flush, or flush whenever there is a valid mapping, even with no permissions (SPARC). The basic race looks like this: CPU A CPU B CPU C load TLB entry make entry PTE/PMD_NUMA fault on entry read/write old page start migrating page change PTE/PMD to new page read/write old page [*] flush TLB reload TLB from new entry read/write new page lose data [*] the old page may belong to a new user at this point! The obvious fix is to flush remote TLB entries, by making sure that pte_accessible aware of the fact that PROT_NONE and PROT_NUMA memory may still be accessible if there is a TLB flush pending for the mm. This should fix both NUMA migration and compaction. [mgorman@suse.de: fix build] Signed-off-by: Rik van Riel <riel@redhat.com> Signed-off-by: Mel Gorman <mgorman@suse.de> Cc: Alex Thorlton <athorlton@sgi.com> Cc: <stable@vger.kernel.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2013-12-18mm: numa: avoid unnecessary disruption of NUMA hinting during migrationMel Gorman
do_huge_pmd_numa_page() handles the case where there is parallel THP migration. However, by the time it is checked the NUMA hinting information has already been disrupted. This patch adds an earlier check with some helpers. Signed-off-by: Mel Gorman <mgorman@suse.de> Reviewed-by: Rik van Riel <riel@redhat.com> Cc: Alex Thorlton <athorlton@sgi.com> Cc: <stable@vger.kernel.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2013-12-18mm: numa: clear numa hinting information on mprotectMel Gorman
On a protection change it is no longer clear if the page should be still accessible. This patch clears the NUMA hinting fault bits on a protection change. Signed-off-by: Mel Gorman <mgorman@suse.de> Reviewed-by: Rik van Riel <riel@redhat.com> Cc: Alex Thorlton <athorlton@sgi.com> Cc: <stable@vger.kernel.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2013-12-18mm: numa: avoid unnecessary work on the failure pathMel Gorman
If a PMD changes during a THP migration then migration aborts but the failure path is doing more work than is necessary. Signed-off-by: Mel Gorman <mgorman@suse.de> Reviewed-by: Rik van Riel <riel@redhat.com> Cc: Alex Thorlton <athorlton@sgi.com> Cc: <stable@vger.kernel.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2013-12-18mm: numa: ensure anon_vma is locked to prevent parallel THP splitsMel Gorman
The anon_vma lock prevents parallel THP splits and any associated complexity that arises when handling splits during THP migration. This patch checks if the lock was successfully acquired and bails from THP migration if it failed for any reason. Signed-off-by: Mel Gorman <mgorman@suse.de> Reviewed-by: Rik van Riel <riel@redhat.com> Cc: Alex Thorlton <athorlton@sgi.com> Cc: <stable@vger.kernel.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2013-12-18mm: numa: do not clear PTE for pte_numa updateMel Gorman
The TLB must be flushed if the PTE is updated but change_pte_range is clearing the PTE while marking PTEs pte_numa without necessarily flushing the TLB if it reinserts the same entry. Without the flush, it's conceivable that two processors have different TLBs for the same virtual address and at the very least it would generate spurious faults. This patch only unmaps the pages in change_pte_range for a full protection change. [riel@redhat.com: write pte_numa pte back to the page tables] Signed-off-by: Mel Gorman <mgorman@suse.de> Signed-off-by: Rik van Riel <riel@redhat.com> Reviewed-by: Rik van Riel <riel@redhat.com> Cc: Alex Thorlton <athorlton@sgi.com> Cc: Chegu Vinod <chegu_vinod@hp.com> Cc: <stable@vger.kernel.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2013-12-18mm: numa: do not clear PMD during PTE update scanMel Gorman
If the PMD is flushed then a parallel fault in handle_mm_fault() will enter the pmd_none and do_huge_pmd_anonymous_page() path where it'll attempt to insert a huge zero page. This is wasteful so the patch avoids clearing the PMD when setting pmd_numa. Signed-off-by: Mel Gorman <mgorman@suse.de> Reviewed-by: Rik van Riel <riel@redhat.com> Cc: Alex Thorlton <athorlton@sgi.com> Cc: <stable@vger.kernel.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2013-12-18mm: clear pmd_numa before invalidatingMel Gorman
On x86, PMD entries are similar to _PAGE_PROTNONE protection and are handled as NUMA hinting faults. The following two page table protection bits are what defines them _PAGE_NUMA:set _PAGE_PRESENT:clear A PMD is considered present if any of the _PAGE_PRESENT, _PAGE_PROTNONE, _PAGE_PSE or _PAGE_NUMA bits are set. If pmdp_invalidate encounters a pmd_numa, it clears the present bit leaving _PAGE_NUMA which will be considered not present by the CPU but present by pmd_present. The existing caller of pmdp_invalidate should handle it but it's an inconsistent state for a PMD. This patch keeps the state consistent when calling pmdp_invalidate. Signed-off-by: Mel Gorman <mgorman@suse.de> Reviewed-by: Rik van Riel <riel@redhat.com> Cc: Alex Thorlton <athorlton@sgi.com> Cc: <stable@vger.kernel.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2013-12-18mm: numa: call MMU notifiers on THP migrationMel Gorman
MMU notifiers must be called on THP page migration or secondary MMUs will get very confused. Signed-off-by: Mel Gorman <mgorman@suse.de> Reviewed-by: Rik van Riel <riel@redhat.com> Cc: Alex Thorlton <athorlton@sgi.com> Cc: <stable@vger.kernel.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2013-12-18mm: numa: serialise parallel get_user_page against THP migrationMel Gorman
Base pages are unmapped and flushed from cache and TLB during normal page migration and replaced with a migration entry that causes any parallel NUMA hinting fault or gup to block until migration completes. THP does not unmap pages due to a lack of support for migration entries at a PMD level. This allows races with get_user_pages and get_user_pages_fast which commit 3f926ab945b6 ("mm: Close races between THP migration and PMD numa clearing") made worse by introducing a pmd_clear_flush(). This patch forces get_user_page (fast and normal) on a pmd_numa page to go through the slow get_user_page path where it will serialise against THP migration and properly account for the NUMA hinting fault. On the migration side the page table lock is taken for each PTE update. Signed-off-by: Mel Gorman <mgorman@suse.de> Reviewed-by: Rik van Riel <riel@redhat.com> Cc: Alex Thorlton <athorlton@sgi.com> Cc: <stable@vger.kernel.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2013-12-12mm: memcg: do not allow task about to OOM kill to bypass the limitJohannes Weiner
Commit 4942642080ea ("mm: memcg: handle non-error OOM situations more gracefully") allowed tasks that already entered a memcg OOM condition to bypass the memcg limit on subsequent allocation attempts hoping this would expedite finishing the page fault and executing the kill. David Rientjes is worried that this breaks memcg isolation guarantees and since there is no evidence that the bypass actually speeds up fault processing just change it so that these subsequent charge attempts fail outright. The notable exception being __GFP_NOFAIL charges which are required to bypass the limit regardless. Signed-off-by: Johannes Weiner <hannes@cmpxchg.org> Reported-by: David Rientjes <rientjes@google.com> Acked-by: Michal Hocko <mhocko@suse.cz> Acked-bt: David Rientjes <rientjes@google.com> Cc: <stable@kernel.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2013-12-12mm: memcg: fix race condition between memcg teardown and swapinJohannes Weiner
There is a race condition between a memcg being torn down and a swapin triggered from a different memcg of a page that was recorded to belong to the exiting memcg on swapout (with CONFIG_MEMCG_SWAP extension). The result is unreclaimable pages pointing to dead memcgs, which can lead to anything from endless loops in later memcg teardown (the page is charged to all hierarchical parents but is not on any LRU list) or crashes from following the dangling memcg pointer. Memcgs with tasks in them can not be torn down and usually charges don't show up in memcgs without tasks. Swapin with the CONFIG_MEMCG_SWAP extension is the notable exception because it charges the cgroup that was recorded as owner during swapout, which may be empty and in the process of being torn down when a task in another memcg triggers the swapin: teardown: swapin: lookup_swap_cgroup_id() rcu_read_lock() mem_cgroup_lookup() css_tryget() rcu_read_unlock() disable css_tryget() call_rcu() offline_css() reparent_charges() res_counter_charge() (hierarchical!) css_put() css_free() pc->mem_cgroup = dead memcg add page to dead lru Add a final reparenting step into css_free() to make sure any such raced charges are moved out of the memcg before it's finally freed. In the longer term it would be cleaner to have the css_tryget() and the res_counter charge under the same RCU lock section so that the charge reparenting is deferred until the last charge whose tryget succeeded is visible. But this will require more invasive changes that will be harder to evaluate and backport into stable, so better defer them to a separate change set. Signed-off-by: Johannes Weiner <hannes@cmpxchg.org> Acked-by: Michal Hocko <mhocko@suse.cz> Cc: David Rientjes <rientjes@google.com> Cc: <stable@kernel.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2013-12-12thp: move preallocated PTE page table on move_huge_pmd()Kirill A. Shutemov
Andrey Wagin reported crash on VM_BUG_ON() in pgtable_pmd_page_dtor() with fallowing backtrace: free_pgd_range+0x2bf/0x410 free_pgtables+0xce/0x120 unmap_region+0xe0/0x120 do_munmap+0x249/0x360 move_vma+0x144/0x270 SyS_mremap+0x3b9/0x510 system_call_fastpath+0x16/0x1b The crash can be reproduce with this test case: #define _GNU_SOURCE #include <sys/mman.h> #include <stdio.h> #include <unistd.h> #define MB (1024 * 1024UL) #define GB (1024 * MB) int main(int argc, char **argv) { char *p; int i; p = mmap((void *) GB, 10 * MB, PROT_READ | PROT_WRITE, MAP_PRIVATE | MAP_ANONYMOUS | MAP_FIXED, -1, 0); for (i = 0; i < 10 * MB; i += 4096) p[i] = 1; mremap(p, 10 * MB, 10 * MB, MREMAP_FIXED | MREMAP_MAYMOVE, 2 * GB); return 0; } Due to split PMD lock, we now store preallocated PTE tables for THP pages per-PMD table. It means we need to move them to other PMD table if huge PMD moved there. Signed-off-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com> Reported-by: Andrey Vagin <avagin@openvz.org> Tested-by: Andrey Vagin <avagin@openvz.org> Reviewed-by: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2013-12-12mm: memcg: do not declare OOM from __GFP_NOFAIL allocationsJohannes Weiner
Commit 84235de394d9 ("fs: buffer: move allocation failure loop into the allocator") started recognizing __GFP_NOFAIL in memory cgroups but forgot to disable the OOM killer. Any task that does not fail allocation will also not enter the OOM completion path. So don't declare an OOM state in this case or it'll be leaked and the task be able to bypass the limit until the next userspace-triggered page fault cleans up the OOM state. Reported-by: William Dauchy <wdauchy@gmail.com> Signed-off-by: Johannes Weiner <hannes@cmpxchg.org> Acked-by: Michal Hocko <mhocko@suse.cz> Cc: David Rientjes <rientjes@google.com> Cc: <stable@vger.kernel.org> [3.12.x] Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>