summaryrefslogtreecommitdiff
path: root/mm
AgeCommit message (Collapse)Author
2017-06-28mm: fix new crash in unmapped_area_topdown()Hugh Dickins
[ Upstream commit f4cb767d76cf7ee72f97dd76f6cfa6c76a5edc89 ] Trinity gets kernel BUG at mm/mmap.c:1963! in about 3 minutes of mmap testing. That's the VM_BUG_ON(gap_end < gap_start) at the end of unmapped_area_topdown(). Linus points out how MAP_FIXED (which does not have to respect our stack guard gap intentions) could result in gap_end below gap_start there. Fix that, and the similar case in its alternative, unmapped_area(). Cc: stable@vger.kernel.org Fixes: 1be7107fbe18 ("mm: larger stack guard gap, between vmas") Reported-by: Dave Jones <davej@codemonkey.org.uk> Debugged-by: Linus Torvalds <torvalds@linux-foundation.org> Signed-off-by: Hugh Dickins <hughd@google.com> Acked-by: Michal Hocko <mhocko@suse.com> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> Signed-off-by: Sasha Levin <alexander.levin@verizon.com>
2017-06-28mm: larger stack guard gap, between vmasSasha Levin
[ Upstream commit 1be7107fbe18eed3e319a6c3e83c78254b693acb ] Stack guard page is a useful feature to reduce a risk of stack smashing into a different mapping. We have been using a single page gap which is sufficient to prevent having stack adjacent to a different mapping. But this seems to be insufficient in the light of the stack usage in userspace. E.g. glibc uses as large as 64kB alloca() in many commonly used functions. Others use constructs liks gid_t buffer[NGROUPS_MAX] which is 256kB or stack strings with MAX_ARG_STRLEN. This will become especially dangerous for suid binaries and the default no limit for the stack size limit because those applications can be tricked to consume a large portion of the stack and a single glibc call could jump over the guard page. These attacks are not theoretical, unfortunatelly. Make those attacks less probable by increasing the stack guard gap to 1MB (on systems with 4k pages; but make it depend on the page size because systems with larger base pages might cap stack allocations in the PAGE_SIZE units) which should cover larger alloca() and VLA stack allocations. It is obviously not a full fix because the problem is somehow inherent, but it should reduce attack space a lot. One could argue that the gap size should be configurable from userspace, but that can be done later when somebody finds that the new 1MB is wrong for some special case applications. For now, add a kernel command line option (stack_guard_gap) to specify the stack gap size (in page units). Implementation wise, first delete all the old code for stack guard page: because although we could get away with accounting one extra page in a stack vma, accounting a larger gap can break userspace - case in point, a program run with "ulimit -S -v 20000" failed when the 1MB gap was counted for RLIMIT_AS; similar problems could come with RLIMIT_MLOCK and strict non-overcommit mode. Instead of keeping gap inside the stack vma, maintain the stack guard gap as a gap between vmas: using vm_start_gap() in place of vm_start (or vm_end_gap() in place of vm_end if VM_GROWSUP) in just those few places which need to respect the gap - mainly arch_get_unmapped_area(), and and the vma tree's subtree_gap support for that. Original-patch-by: Oleg Nesterov <oleg@redhat.com> Original-patch-by: Michal Hocko <mhocko@suse.com> Signed-off-by: Hugh Dickins <hughd@google.com> Acked-by: Michal Hocko <mhocko@suse.com> Tested-by: Helge Deller <deller@gmx.de> # parisc Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> Signed-off-by: Sasha Levin <alexander.levin@verizon.com>
2017-06-25swap: cond_resched in swap_cgroup_prepare()Yu Zhao
[ Upstream commit ef70762948dde012146926720b70e79736336764 ] I saw need_resched() warnings when swapping on large swapfile (TBs) because continuously allocating many pages in swap_cgroup_prepare() took too long. We already cond_resched when freeing page in swap_cgroup_swapoff(). Do the same for the page allocation. Link: http://lkml.kernel.org/r/20170604200109.17606-1-yuzhao@google.com Signed-off-by: Yu Zhao <yuzhao@google.com> Acked-by: Michal Hocko <mhocko@suse.com> Acked-by: Vladimir Davydov <vdavydov.dev@gmail.com> Cc: <stable@vger.kernel.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> Signed-off-by: Sasha Levin <alexander.levin@verizon.com>
2017-06-25mm/memory-failure.c: use compound_head() flags for huge pagesJames Morse
[ Upstream commit 7258ae5c5a2ce2f5969e8b18b881be40ab55433d ] memory_failure() chooses a recovery action function based on the page flags. For huge pages it uses the tail page flags which don't have anything interesting set, resulting in: > Memory failure: 0x9be3b4: Unknown page state > Memory failure: 0x9be3b4: recovery action for unknown page: Failed Instead, save a copy of the head page's flags if this is a huge page, this means if there are no relevant flags for this tail page, we use the head pages flags instead. This results in the me_huge_page() recovery action being called: > Memory failure: 0x9b7969: recovery action for huge page: Delayed For hugepages that have not yet been allocated, this allows the hugepage to be dequeued. Fixes: 524fca1e7356 ("HWPOISON: fix misjudgement of page_action() for errors on mlocked pages") Link: http://lkml.kernel.org/r/20170524130204.21845-1-james.morse@arm.com Signed-off-by: James Morse <james.morse@arm.com> Tested-by: Punit Agrawal <punit.agrawal@arm.com> Acked-by: Punit Agrawal <punit.agrawal@arm.com> Acked-by: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com> Cc: <stable@vger.kernel.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> Signed-off-by: Sasha Levin <alexander.levin@verizon.com>
2017-06-25kasan: respect /proc/sys/kernel/traceoff_on_warningPeter Zijlstra
[ Upstream commit 4f40c6e5627ea73b4e7c615c59631f38cc880885 ] After much waiting I finally reproduced a KASAN issue, only to find my trace-buffer empty of useful information because it got spooled out :/ Make kasan_report honour the /proc/sys/kernel/traceoff_on_warning interface. Link: http://lkml.kernel.org/r/20170125164106.3514-1-aryabinin@virtuozzo.com Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> Signed-off-by: Andrey Ryabinin <aryabinin@virtuozzo.com> Acked-by: Alexander Potapenko <glider@google.com> Cc: Dmitry Vyukov <dvyukov@google.com> Cc: Steven Rostedt <rostedt@goodmis.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> Signed-off-by: Sasha Levin <alexander.levin@verizon.com>
2017-06-25mm/migrate: fix refcount handling when !hugepage_migration_supported()Punit Agrawal
[ Upstream commit 30809f559a0d348c2dfd7ab05e9a451e2384962e ] On failing to migrate a page, soft_offline_huge_page() performs the necessary update to the hugepage ref-count. But when !hugepage_migration_supported() , unmap_and_move_hugepage() also decrements the page ref-count for the hugepage. The combined behaviour leaves the ref-count in an inconsistent state. This leads to soft lockups when running the overcommitted hugepage test from mce-tests suite. Soft offlining pfn 0x83ed600 at process virtual address 0x400000000000 soft offline: 0x83ed600: migration failed 1, type 1fffc00000008008 (uptodate|head) INFO: rcu_preempt detected stalls on CPUs/tasks: Tasks blocked on level-0 rcu_node (CPUs 0-7): P2715 (detected by 7, t=5254 jiffies, g=963, c=962, q=321) thugetlb_overco R running task 0 2715 2685 0x00000008 Call trace: dump_backtrace+0x0/0x268 show_stack+0x24/0x30 sched_show_task+0x134/0x180 rcu_print_detail_task_stall_rnp+0x54/0x7c rcu_check_callbacks+0xa74/0xb08 update_process_times+0x34/0x60 tick_sched_handle.isra.7+0x38/0x70 tick_sched_timer+0x4c/0x98 __hrtimer_run_queues+0xc0/0x300 hrtimer_interrupt+0xac/0x228 arch_timer_handler_phys+0x3c/0x50 handle_percpu_devid_irq+0x8c/0x290 generic_handle_irq+0x34/0x50 __handle_domain_irq+0x68/0xc0 gic_handle_irq+0x5c/0xb0 Address this by changing the putback_active_hugepage() in soft_offline_huge_page() to putback_movable_pages(). This only triggers on systems that enable memory failure handling (ARCH_SUPPORTS_MEMORY_FAILURE) but not hugepage migration (!ARCH_ENABLE_HUGEPAGE_MIGRATION). I imagine this wasn't triggered as there aren't many systems running this configuration. [akpm@linux-foundation.org: remove dead comment, per Naoya] Link: http://lkml.kernel.org/r/20170525135146.32011-1-punit.agrawal@arm.com Reported-by: Manoj Iyer <manoj.iyer@canonical.com> Tested-by: Manoj Iyer <manoj.iyer@canonical.com> Suggested-by: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com> Signed-off-by: Punit Agrawal <punit.agrawal@arm.com> Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com> Cc: Wanpeng Li <wanpeng.li@hotmail.com> Cc: Christoph Lameter <cl@linux.com> Cc: Mel Gorman <mgorman@techsingularity.net> Cc: <stable@vger.kernel.org> [3.14+] Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> Signed-off-by: Sasha Levin <alexander.levin@verizon.com>
2017-06-13mm/huge_memory.c: respect FOLL_FORCE/FOLL_COW for thpKeno Fischer
[ Upstream commit 8310d48b125d19fcd9521d83b8293e63eb1646aa ] In commit 19be0eaffa3a ("mm: remove gup_flags FOLL_WRITE games from __get_user_pages()"), the mm code was changed from unsetting FOLL_WRITE after a COW was resolved to setting the (newly introduced) FOLL_COW instead. Simultaneously, the check in gup.c was updated to still allow writes with FOLL_FORCE set if FOLL_COW had also been set. However, a similar check in huge_memory.c was forgotten. As a result, remote memory writes to ro regions of memory backed by transparent huge pages cause an infinite loop in the kernel (handle_mm_fault sets FOLL_COW and returns 0 causing a retry, but follow_trans_huge_pmd bails out immidiately because `(flags & FOLL_WRITE) && !pmd_write(*pmd)` is true. While in this state the process is stil SIGKILLable, but little else works (e.g. no ptrace attach, no other signals). This is easily reproduced with the following code (assuming thp are set to always): #include <assert.h> #include <fcntl.h> #include <stdint.h> #include <stdio.h> #include <string.h> #include <sys/mman.h> #include <sys/stat.h> #include <sys/types.h> #include <sys/wait.h> #include <unistd.h> #define TEST_SIZE 5 * 1024 * 1024 int main(void) { int status; pid_t child; int fd = open("/proc/self/mem", O_RDWR); void *addr = mmap(NULL, TEST_SIZE, PROT_READ, MAP_ANONYMOUS | MAP_PRIVATE, 0, 0); assert(addr != MAP_FAILED); pid_t parent_pid = getpid(); if ((child = fork()) == 0) { void *addr2 = mmap(NULL, TEST_SIZE, PROT_READ | PROT_WRITE, MAP_ANONYMOUS | MAP_PRIVATE, 0, 0); assert(addr2 != MAP_FAILED); memset(addr2, 'a', TEST_SIZE); pwrite(fd, addr2, TEST_SIZE, (uintptr_t)addr); return 0; } assert(child == waitpid(child, &status, 0)); assert(WIFEXITED(status) && WEXITSTATUS(status) == 0); return 0; } Fix this by updating follow_trans_huge_pmd in huge_memory.c analogously to the update in gup.c in the original commit. The same pattern exists in follow_devmap_pmd. However, we should not be able to reach that check with FOLL_COW set, so add WARN_ONCE to make sure we notice if we ever do. [akpm@linux-foundation.org: coding-style fixes] Link: http://lkml.kernel.org/r/20170106015025.GA38411@juliacomputing.com Signed-off-by: Keno Fischer <keno@juliacomputing.com> Acked-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com> Cc: Greg Thelen <gthelen@google.com> Cc: Nicholas Piggin <npiggin@gmail.com> Cc: Willy Tarreau <w@1wt.eu> Cc: Oleg Nesterov <oleg@redhat.com> Cc: Kees Cook <keescook@chromium.org> Cc: Andy Lutomirski <luto@kernel.org> Cc: Michal Hocko <mhocko@suse.com> Cc: Hugh Dickins <hughd@google.com> Cc: <stable@vger.kernel.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> Signed-off-by: Sasha Levin <alexander.levin@verizon.com>
2017-06-13mm/mempolicy.c: fix error handling in set_mempolicy and mbind.Chris Salls
[ Upstream commit cf01fb9985e8deb25ccf0ea54d916b8871ae0e62 ] In the case that compat_get_bitmap fails we do not want to copy the bitmap to the user as it will contain uninitialized stack data and leak sensitive data. Signed-off-by: Chris Salls <salls@cs.ucsb.edu> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> Signed-off-by: Sasha Levin <alexander.levin@verizon.com>
2017-06-08mlock: fix mlock count can not decrease in race conditionYisheng Xie
[ Upstream commit 70feee0e1ef331b22cc51f383d532a0d043fbdcc ] Kefeng reported that when running the follow test, the mlock count in meminfo will increase permanently: [1] testcase linux:~ # cat test_mlockal grep Mlocked /proc/meminfo for j in `seq 0 10` do for i in `seq 4 15` do ./p_mlockall >> log & done sleep 0.2 done # wait some time to let mlock counter decrease and 5s may not enough sleep 5 grep Mlocked /proc/meminfo linux:~ # cat p_mlockall.c #include <sys/mman.h> #include <stdlib.h> #include <stdio.h> #define SPACE_LEN 4096 int main(int argc, char ** argv) { int ret; void *adr = malloc(SPACE_LEN); if (!adr) return -1; ret = mlockall(MCL_CURRENT | MCL_FUTURE); printf("mlcokall ret = %d\n", ret); ret = munlockall(); printf("munlcokall ret = %d\n", ret); free(adr); return 0; } In __munlock_pagevec() we should decrement NR_MLOCK for each page where we clear the PageMlocked flag. Commit 1ebb7cc6a583 ("mm: munlock: batch NR_MLOCK zone state updates") has introduced a bug where we don't decrement NR_MLOCK for pages where we clear the flag, but fail to isolate them from the lru list (e.g. when the pages are on some other cpu's percpu pagevec). Since PageMlocked stays cleared, the NR_MLOCK accounting gets permanently disrupted by this. Fix it by counting the number of page whose PageMlock flag is cleared. Fixes: 1ebb7cc6a583 (" mm: munlock: batch NR_MLOCK zone state updates") Link: http://lkml.kernel.org/r/1495678405-54569-1-git-send-email-xieyisheng1@huawei.com Signed-off-by: Yisheng Xie <xieyisheng1@huawei.com> Reported-by: Kefeng Wang <wangkefeng.wang@huawei.com> Tested-by: Kefeng Wang <wangkefeng.wang@huawei.com> Cc: Vlastimil Babka <vbabka@suse.cz> Cc: Joern Engel <joern@logfs.org> Cc: Mel Gorman <mgorman@suse.de> Cc: Michel Lespinasse <walken@google.com> Cc: Hugh Dickins <hughd@google.com> Cc: Rik van Riel <riel@redhat.com> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: Michal Hocko <mhocko@suse.cz> Cc: Xishi Qiu <qiuxishi@huawei.com> Cc: zhongjiang <zhongjiang@huawei.com> Cc: Hanjun Guo <guohanjun@huawei.com> Cc: <stable@vger.kernel.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> Signed-off-by: Sasha Levin <alexander.levin@verizon.com>
2017-06-08mm/memory-failure: introduce get_hwpoison_page() for consistent refcount ↵Naoya Horiguchi
handling [ Upstream commit ead07f6a867b5b1b41cf703735e8b39094987a7d ] memory_failure() can run in 2 different mode (specified by MF_COUNT_INCREASED) in page refcount perspective. When MF_COUNT_INCREASED is set, memory_failure() assumes that the caller takes a refcount of the target page. And if cleared, memory_failure() takes it in it's own. In current code, however, refcounting is done differently in each caller. For example, madvise_hwpoison() uses get_user_pages_fast() and hwpoison_inject() uses get_page_unless_zero(). So this inconsistent refcounting causes refcount failure especially for thp tail pages. Typical user visible effects are like memory leak or VM_BUG_ON_PAGE(!page_count(page)) in isolate_lru_page(). To fix this refcounting issue, this patch introduces get_hwpoison_page() to handle thp tail pages in the same manner for each caller of hwpoison code. memory_failure() might fail to split thp and in such case it returns without completing page isolation. This is not good because PageHWPoison on the thp is still set and there's no easy way to unpoison such thps. So this patch try to roll back any action to the thp in "non anonymous thp" case and "thp split failed" case, expecting an MCE(SRAR) generated by later access afterward will properly free such thps. [akpm@linux-foundation.org: fix CONFIG_HWPOISON_INJECT=m] Signed-off-by: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com> Cc: Andi Kleen <andi@firstfloor.org> Cc: Tony Luck <tony.luck@intel.com> Cc: "Kirill A. Shutemov" <kirill@shutemov.name> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> Signed-off-by: Sasha Levin <alexander.levin@verizon.com>
2017-06-08mm/memory-failure: split thp earlier in memory error handlingNaoya Horiguchi
[ Upstream commit 415c64c1453aa2bbcc7e30a38f8894d0894cb8ab ] memory_failure() doesn't handle thp itself at this time and need to split it before doing isolation. Currently thp is split in the middle of hwpoison_user_mappings(), but there're corner cases where memory_failure() wrongly tries to handle thp without splitting. 1) "non anonymous" thp, which is not a normal operating mode of thp, but a memory error could hit a thp before anon_vma is initialized. In such case, split_huge_page() fails and me_huge_page() (intended for hugetlb) is called for thp, which triggers BUG_ON in page_hstate(). 2) !PageLRU case, where hwpoison_user_mappings() returns with SWAP_SUCCESS and the result is the same as case 1. memory_failure() can't avoid splitting, so let's split it more earlier, which also reduces code which are prepared for both of normal page and thp. Signed-off-by: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com> Cc: Andi Kleen <andi@firstfloor.org> Cc: Tony Luck <tony.luck@intel.com> Cc: "Kirill A. Shutemov" <kirill@shutemov.name> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> Signed-off-by: Sasha Levin <alexander.levin@verizon.com>
2017-06-08slub/memcg: cure the brainless abuse of sysfs attributesThomas Gleixner
[ Upstream commit 478fe3037b2278d276d4cd9cd0ab06c4cb2e9b32 ] memcg_propagate_slab_attrs() abuses the sysfs attribute file functions to propagate settings from the root kmem_cache to a newly created kmem_cache. It does that with: attr->show(root, buf); attr->store(new, buf, strlen(bug); Aside of being a lazy and absurd hackery this is broken because it does not check the return value of the show() function. Some of the show() functions return 0 w/o touching the buffer. That means in such a case the store function is called with the stale content of the previous show(). That causes nonsense like invoking kmem_cache_shrink() on a newly created kmem_cache. In the worst case it would cause handing in an uninitialized buffer. This should be rewritten proper by adding a propagate() callback to those slub_attributes which must be propagated and avoid that insane conversion to and from ASCII, but that's too large for a hot fix. Check at least the return value of the show() function, so calling store() with stale content is prevented. Steven said: "It can cause a deadlock with get_online_cpus() that has been uncovered by recent cpu hotplug and lockdep changes that Thomas and Peter have been doing. Possible unsafe locking scenario: CPU0 CPU1 ---- ---- lock(cpu_hotplug.lock); lock(slab_mutex); lock(cpu_hotplug.lock); lock(slab_mutex); *** DEADLOCK ***" Link: http://lkml.kernel.org/r/alpine.DEB.2.20.1705201244540.2255@nanos Signed-off-by: Thomas Gleixner <tglx@linutronix.de> Reported-by: Steven Rostedt <rostedt@goodmis.org> Acked-by: David Rientjes <rientjes@google.com> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: Michal Hocko <mhocko@kernel.org> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Christoph Lameter <cl@linux.com> Cc: Pekka Enberg <penberg@kernel.org> Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com> Cc: Christoph Hellwig <hch@infradead.org> Cc: <stable@vger.kernel.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> Signed-off-by: Sasha Levin <alexander.levin@verizon.com>
2017-05-17mm, hugetlb: use pte_present() instead of pmd_present() in follow_huge_pmd()Naoya Horiguchi
[ Upstream commit c9d398fa237882ea07167e23bcfc5e6847066518 ] I found the race condition which triggers the following bug when move_pages() and soft offline are called on a single hugetlb page concurrently. Soft offlining page 0x119400 at 0x700000000000 BUG: unable to handle kernel paging request at ffffea0011943820 IP: follow_huge_pmd+0x143/0x190 PGD 7ffd2067 PUD 7ffd1067 PMD 0 [61163.582052] Oops: 0000 [#1] SMP Modules linked in: binfmt_misc ppdev virtio_balloon parport_pc pcspkr i2c_piix4 parport i2c_core acpi_cpufreq ip_tables xfs libcrc32c ata_generic pata_acpi virtio_blk 8139too crc32c_intel ata_piix serio_raw libata virtio_pci 8139cp virtio_ring virtio mii floppy dm_mirror dm_region_hash dm_log dm_mod [last unloaded: cap_check] CPU: 0 PID: 22573 Comm: iterate_numa_mo Tainted: P OE 4.11.0-rc2-mm1+ #2 Hardware name: Red Hat KVM, BIOS 0.5.1 01/01/2011 RIP: 0010:follow_huge_pmd+0x143/0x190 RSP: 0018:ffffc90004bdbcd0 EFLAGS: 00010202 RAX: 0000000465003e80 RBX: ffffea0004e34d30 RCX: 00003ffffffff000 RDX: 0000000011943800 RSI: 0000000000080001 RDI: 0000000465003e80 RBP: ffffc90004bdbd18 R08: 0000000000000000 R09: ffff880138d34000 R10: ffffea0004650000 R11: 0000000000c363b0 R12: ffffea0011943800 R13: ffff8801b8d34000 R14: ffffea0000000000 R15: 000077ff80000000 FS: 00007fc977710740(0000) GS:ffff88007dc00000(0000) knlGS:0000000000000000 CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033 CR2: ffffea0011943820 CR3: 000000007a746000 CR4: 00000000001406f0 Call Trace: follow_page_mask+0x270/0x550 SYSC_move_pages+0x4ea/0x8f0 SyS_move_pages+0xe/0x10 do_syscall_64+0x67/0x180 entry_SYSCALL64_slow_path+0x25/0x25 RIP: 0033:0x7fc976e03949 RSP: 002b:00007ffe72221d88 EFLAGS: 00000246 ORIG_RAX: 0000000000000117 RAX: ffffffffffffffda RBX: 0000000000000000 RCX: 00007fc976e03949 RDX: 0000000000c22390 RSI: 0000000000001400 RDI: 0000000000005827 RBP: 00007ffe72221e00 R08: 0000000000c2c3a0 R09: 0000000000000004 R10: 0000000000c363b0 R11: 0000000000000246 R12: 0000000000400650 R13: 00007ffe72221ee0 R14: 0000000000000000 R15: 0000000000000000 Code: 81 e4 ff ff 1f 00 48 21 c2 49 c1 ec 0c 48 c1 ea 0c 4c 01 e2 49 bc 00 00 00 00 00 ea ff ff 48 c1 e2 06 49 01 d4 f6 45 bc 04 74 90 <49> 8b 7c 24 20 40 f6 c7 01 75 2b 4c 89 e7 8b 47 1c 85 c0 7e 2a RIP: follow_huge_pmd+0x143/0x190 RSP: ffffc90004bdbcd0 CR2: ffffea0011943820 ---[ end trace e4f81353a2d23232 ]--- Kernel panic - not syncing: Fatal exception Kernel Offset: disabled This bug is triggered when pmd_present() returns true for non-present hugetlb, so fixing the present check in follow_huge_pmd() prevents it. Using pmd_present() to determine present/non-present for hugetlb is not correct, because pmd_present() checks multiple bits (not only _PAGE_PRESENT) for historical reason and it can misjudge hugetlb state. Fixes: e66f17ff7177 ("mm/hugetlb: take page table lock in follow_huge_pmd()") Link: http://lkml.kernel.org/r/1490149898-20231-1-git-send-email-n-horiguchi@ah.jp.nec.com Signed-off-by: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com> Acked-by: Hillf Danton <hillf.zj@alibaba-inc.com> Cc: Hugh Dickins <hughd@google.com> Cc: Michal Hocko <mhocko@kernel.org> Cc: "Kirill A. Shutemov" <kirill.shutemov@linux.intel.com> Cc: Mike Kravetz <mike.kravetz@oracle.com> Cc: Christian Borntraeger <borntraeger@de.ibm.com> Cc: Gerald Schaefer <gerald.schaefer@de.ibm.com> Cc: <stable@vger.kernel.org> [4.0+] Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> Signed-off-by: Sasha Levin <alexander.levin@verizon.com>
2017-05-17percpu: acquire pcpu_lock when updating pcpu_nr_empty_pop_pagesTahsin Erdogan
[ Upstream commit 320661b08dd6f1746d5c7ab4eb435ec64b97cd45 ] Update to pcpu_nr_empty_pop_pages in pcpu_alloc() is currently done without holding pcpu_lock. This can lead to bad updates to the variable. Add missing lock calls. Fixes: b539b87fed37 ("percpu: implmeent pcpu_nr_empty_pop_pages and chunk->nr_populated") Signed-off-by: Tahsin Erdogan <tahsin@google.com> Signed-off-by: Tejun Heo <tj@kernel.org> Cc: stable@vger.kernel.org # v3.18+ Signed-off-by: Sasha Levin <alexander.levin@verizon.com>
2017-05-17mm: do not access page->mapping directly on page_endioMinchan Kim
[ Upstream commit dd8416c47715cf324c9a16f13273f9fda87acfed ] With rw_page, page_endio is used for completing IO on a page and it propagates write error to the address space if the IO fails. The problem is it accesses page->mapping directly which might be okay for file-backed pages but it shouldn't for anonymous page. Otherwise, it can corrupt one of field from anon_vma under us and system goes panic randomly. swap_writepage bdev_writepage ops->rw_page I encountered the BUG during developing new zram feature and it was really hard to figure it out because it made random crash, somtime mmap_sem lockdep, sometime other places where places never related to zram/zsmalloc, and not reproducible with some configuration. When I consider how that bug is subtle and people do fast-swap test with brd, it's worth to add stable mark, I think. Fixes: dd6bd0d9c7db ("swap: use bdev_read_page() / bdev_write_page()") Signed-off-by: Minchan Kim <minchan@kernel.org> Acked-by: Michal Hocko <mhocko@suse.com> Cc: Matthew Wilcox <willy@infradead.org> Cc: <stable@vger.kernel.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> Signed-off-by: Sasha Levin <alexander.levin@verizon.com>
2017-05-17mm: vmpressure: fix sending wrong events on underflowVinayak Menon
[ Upstream commit e1587a4945408faa58d0485002c110eb2454740c ] At the end of a window period, if the reclaimed pages is greater than scanned, an unsigned underflow can result in a huge pressure value and thus a critical event. Reclaimed pages is found to go higher than scanned because of the addition of reclaimed slab pages to reclaimed in shrink_node without a corresponding increment to scanned pages. Minchan Kim mentioned that this can also happen in the case of a THP page where the scanned is 1 and reclaimed could be 512. Link: http://lkml.kernel.org/r/1486641577-11685-1-git-send-email-vinmenon@codeaurora.org Signed-off-by: Vinayak Menon <vinmenon@codeaurora.org> Acked-by: Minchan Kim <minchan@kernel.org> Acked-by: Michal Hocko <mhocko@suse.com> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: Mel Gorman <mgorman@techsingularity.net> Cc: Vlastimil Babka <vbabka@suse.cz> Cc: Rik van Riel <riel@redhat.com> Cc: Vladimir Davydov <vdavydov.dev@gmail.com> Cc: Anton Vorontsov <anton.vorontsov@linaro.org> Cc: Shiraz Hashim <shashim@codeaurora.org> Cc: <stable@vger.kernel.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> Signed-off-by: Sasha Levin <alexander.levin@verizon.com>
2017-05-17mm/page_alloc: fix nodes for reclaim in fast pathGavin Shan
[ Upstream commit e02dc017c3032dcdce1b993af0db135462e1b4b7 ] When @node_reclaim_node isn't 0, the page allocator tries to reclaim pages if the amount of free memory in the zones are below the low watermark. On Power platform, none of NUMA nodes are scanned for page reclaim because no nodes match the condition in zone_allows_reclaim(). On Power platform, RECLAIM_DISTANCE is set to 10 which is the distance of Node-A to Node-A. So the preferred node even won't be scanned for page reclaim. __alloc_pages_nodemask() get_page_from_freelist() zone_allows_reclaim() Anton proposed the test code as below: # cat alloc.c : int main(int argc, char *argv[]) { void *p; unsigned long size; unsigned long start, end; start = time(NULL); size = strtoul(argv[1], NULL, 0); printf("To allocate %ldGB memory\n", size); size <<= 30; p = malloc(size); assert(p); memset(p, 0, size); end = time(NULL); printf("Used time: %ld seconds\n", end - start); sleep(3600); return 0; } The system I use for testing has two NUMA nodes. Both have 128GB memory. In below scnario, the page caches on node#0 should be reclaimed when it encounters pressure to accommodate request of allocation. # echo 2 > /proc/sys/vm/zone_reclaim_mode; \ sync; \ echo 3 > /proc/sys/vm/drop_caches; \ # taskset -c 0 cat file.32G > /dev/null; \ grep FilePages /sys/devices/system/node/node0/meminfo Node 0 FilePages: 33619712 kB # taskset -c 0 ./alloc 128 # grep FilePages /sys/devices/system/node/node0/meminfo Node 0 FilePages: 33619840 kB # grep MemFree /sys/devices/system/node/node0/meminfo Node 0 MemFree: 186816 kB With the patch applied, the pagecache on node-0 is reclaimed when its free memory is running out. It's the expected behaviour. # echo 2 > /proc/sys/vm/zone_reclaim_mode; \ sync; \ echo 3 > /proc/sys/vm/drop_caches # taskset -c 0 cat file.32G > /dev/null; \ grep FilePages /sys/devices/system/node/node0/meminfo Node 0 FilePages: 33605568 kB # taskset -c 0 ./alloc 128 # grep FilePages /sys/devices/system/node/node0/meminfo Node 0 FilePages: 1379520 kB # grep MemFree /sys/devices/system/node/node0/meminfo Node 0 MemFree: 317120 kB Fixes: 5f7a75acdb24 ("mm: page_alloc: do not cache reclaim distances") Link: http://lkml.kernel.org/r/1486532455-29613-1-git-send-email-gwshan@linux.vnet.ibm.com Signed-off-by: Gavin Shan <gwshan@linux.vnet.ibm.com> Acked-by: Mel Gorman <mgorman@suse.de> Acked-by: Michal Hocko <mhocko@suse.com> Cc: Anton Blanchard <anton@samba.org> Cc: Michael Ellerman <mpe@ellerman.id.au> Cc: <stable@vger.kernel.org> [3.16+] Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> Signed-off-by: Sasha Levin <alexander.levin@verizon.com>
2017-03-06mm, fs: check for fatal signals in do_generic_file_read()Michal Hocko
[ Upstream commit 5abf186a30a89d5b9c18a6bf93a2c192c9fd52f6 ] do_generic_file_read() can be told to perform a large request from userspace. If the system is under OOM and the reading task is the OOM victim then it has an access to memory reserves and finishing the full request can lead to the full memory depletion which is dangerous. Make sure we rather go with a short read and allow the killed task to terminate. Link: http://lkml.kernel.org/r/20170201092706.9966-3-mhocko@kernel.org Signed-off-by: Michal Hocko <mhocko@suse.com> Reviewed-by: Christoph Hellwig <hch@lst.de> Cc: Tetsuo Handa <penguin-kernel@I-love.SAKURA.ne.jp> Cc: Al Viro <viro@zeniv.linux.org.uk> Cc: <stable@vger.kernel.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> Signed-off-by: Sasha Levin <alexander.levin@verizon.com>
2017-03-06mm/mempolicy.c: do not put mempolicy before using its nodemaskVlastimil Babka
[ Upstream commit d51e9894d27492783fc6d1b489070b4ba66ce969 ] Since commit be97a41b291e ("mm/mempolicy.c: merge alloc_hugepage_vma to alloc_pages_vma") alloc_pages_vma() can potentially free a mempolicy by mpol_cond_put() before accessing the embedded nodemask by __alloc_pages_nodemask(). The commit log says it's so "we can use a single exit path within the function" but that's clearly wrong. We can still do that when doing mpol_cond_put() after the allocation attempt. Make sure the mempolicy is not freed prematurely, otherwise __alloc_pages_nodemask() can end up using a bogus nodemask, which could lead e.g. to premature OOM. Fixes: be97a41b291e ("mm/mempolicy.c: merge alloc_hugepage_vma to alloc_pages_vma") Link: http://lkml.kernel.org/r/20170118141124.8345-1-vbabka@suse.cz Signed-off-by: Vlastimil Babka <vbabka@suse.cz> Acked-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com> Acked-by: Michal Hocko <mhocko@suse.com> Acked-by: David Rientjes <rientjes@google.com> Cc: Aneesh Kumar K.V <aneesh.kumar@linux.vnet.ibm.com> Cc: Andrea Arcangeli <aarcange@redhat.com> Cc: <stable@vger.kernel.org> [4.0+] Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> Signed-off-by: Sasha Levin <alexander.levin@verizon.com>
2017-03-06mm/hugetlb.c: fix reservation race when freeing surplus pagesMike Kravetz
[ Upstream commit e5bbc8a6c992901058bc09e2ce01d16c111ff047 ] return_unused_surplus_pages() decrements the global reservation count, and frees any unused surplus pages that were backing the reservation. Commit 7848a4bf51b3 ("mm/hugetlb.c: add cond_resched_lock() in return_unused_surplus_pages()") added a call to cond_resched_lock in the loop freeing the pages. As a result, the hugetlb_lock could be dropped, and someone else could use the pages that will be freed in subsequent iterations of the loop. This could result in inconsistent global hugetlb page state, application api failures (such as mmap) failures or application crashes. When dropping the lock in return_unused_surplus_pages, make sure that the global reservation count (resv_huge_pages) remains sufficiently large to prevent someone else from claiming pages about to be freed. Analyzed by Paul Cassella. Fixes: 7848a4bf51b3 ("mm/hugetlb.c: add cond_resched_lock() in return_unused_surplus_pages()") Link: http://lkml.kernel.org/r/1483991767-6879-1-git-send-email-mike.kravetz@oracle.com Signed-off-by: Mike Kravetz <mike.kravetz@oracle.com> Reported-by: Paul Cassella <cassella@cray.com> Suggested-by: Michal Hocko <mhocko@kernel.org> Cc: Masayoshi Mizuma <m.mizuma@jp.fujitsu.com> Cc: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com> Cc: Aneesh Kumar <aneesh.kumar@linux.vnet.ibm.com> Cc: Hillf Danton <hillf.zj@alibaba-inc.com> Cc: <stable@vger.kernel.org> [3.15+] Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> Signed-off-by: Sasha Levin <alexander.levin@verizon.com>
2017-01-12mm/vmscan.c: set correct defer count for shrinkerShaohua Li
[ Upstream commit 5f33a0803bbd781de916f5c7448cbbbbc763d911 ] Our system uses significantly more slab memory with memcg enabled with the latest kernel. With 3.10 kernel, slab uses 2G memory, while with 4.6 kernel, 6G memory is used. The shrinker has problem. Let's see we have two memcg for one shrinker. In do_shrink_slab: 1. Check cg1. nr_deferred = 0, assume total_scan = 700. batch size is 1024, then no memory is freed. nr_deferred = 700 2. Check cg2. nr_deferred = 700. Assume freeable = 20, then total_scan = 10 or 40. Let's assume it's 10. No memory is freed. nr_deferred = 10. The deferred share of cg1 is lost in this case. kswapd will free no memory even run above steps again and again. The fix makes sure one memcg's deferred share isn't lost. Link: http://lkml.kernel.org/r/2414be961b5d25892060315fbb56bb19d81d0c07.1476227351.git.shli@fb.com Signed-off-by: Shaohua Li <shli@fb.com> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: Michal Hocko <mhocko@kernel.org> Cc: Vladimir Davydov <vdavydov@parallels.com> Cc: <stable@vger.kernel.org> [4.0+] Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> Signed-off-by: Sasha Levin <alexander.levin@verizon.com>
2016-12-23fs: Give dentry to inode_change_ok() instead of inodeJan Kara
[ Upstream commit 31051c85b5e2aaaf6315f74c72a732673632a905 ] inode_change_ok() will be resposible for clearing capabilities and IMA extended attributes and as such will need dentry. Give it as an argument to inode_change_ok() instead of an inode. Also rename inode_change_ok() to setattr_prepare() to better relect that it does also some modifications in addition to checks. References: CVE-2015-1350 Reviewed-by: Christoph Hellwig <hch@lst.de> Signed-off-by: Jan Kara <jack@suse.cz> Signed-off-by: Philipp Hahn <hahn@univention.de> Signed-off-by: Sasha Levin <alexander.levin@verizon.com>
2016-12-21mm,ksm: fix endless looping in allocating memory when ksm enablezhong jiang
[ Upstream commit 5b398e416e880159fe55eefd93c6588fa072cd66 ] I hit the following hung task when runing a OOM LTP test case with 4.1 kernel. Call trace: [<ffffffc000086a88>] __switch_to+0x74/0x8c [<ffffffc000a1bae0>] __schedule+0x23c/0x7bc [<ffffffc000a1c09c>] schedule+0x3c/0x94 [<ffffffc000a1eb84>] rwsem_down_write_failed+0x214/0x350 [<ffffffc000a1e32c>] down_write+0x64/0x80 [<ffffffc00021f794>] __ksm_exit+0x90/0x19c [<ffffffc0000be650>] mmput+0x118/0x11c [<ffffffc0000c3ec4>] do_exit+0x2dc/0xa74 [<ffffffc0000c46f8>] do_group_exit+0x4c/0xe4 [<ffffffc0000d0f34>] get_signal+0x444/0x5e0 [<ffffffc000089fcc>] do_signal+0x1d8/0x450 [<ffffffc00008a35c>] do_notify_resume+0x70/0x78 The oom victim cannot terminate because it needs to take mmap_sem for write while the lock is held by ksmd for read which loops in the page allocator ksm_do_scan scan_get_next_rmap_item down_read get_next_rmap_item alloc_rmap_item #ksmd will loop permanently. There is no way forward because the oom victim cannot release any memory in 4.1 based kernel. Since 4.6 we have the oom reaper which would solve this problem because it would release the memory asynchronously. Nevertheless we can relax alloc_rmap_item requirements and use __GFP_NORETRY because the allocation failure is acceptable as ksm_do_scan would just retry later after the lock got dropped. Such a patch would be also easy to backport to older stable kernels which do not have oom_reaper. While we are at it add GFP_NOWARN so the admin doesn't have to be alarmed by the allocation failure. Link: http://lkml.kernel.org/r/1474165570-44398-1-git-send-email-zhongjiang@huawei.com Signed-off-by: zhong jiang <zhongjiang@huawei.com> Suggested-by: Hugh Dickins <hughd@google.com> Suggested-by: Michal Hocko <mhocko@suse.cz> Acked-by: Michal Hocko <mhocko@suse.com> Acked-by: Hugh Dickins <hughd@google.com> Cc: <stable@vger.kernel.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> Signed-off-by: Sasha Levin <alexander.levin@verizon.com>
2016-11-23mm/list_lru.c: avoid error-path NULL pointer derefAlexander Polakov
[ Upstream commit 1bc11d70b5db7c6bb1414b283d7f09b1fe1ac0d0 ] As described in https://bugzilla.kernel.org/show_bug.cgi?id=177821: After some analysis it seems to be that the problem is in alloc_super(). In case list_lru_init_memcg() fails it goes into destroy_super(), which calls list_lru_destroy(). And in list_lru_init() we see that in case memcg_init_list_lru() fails, lru->node is freed, but not set NULL, which then leads list_lru_destroy() to believe it is initialized and call memcg_destroy_list_lru(). memcg_destroy_list_lru() in turn can access lru->node[i].memcg_lrus, which is NULL. [akpm@linux-foundation.org: add comment] Signed-off-by: Alexander Polakov <apolyakov@beget.ru> Acked-by: Vladimir Davydov <vdavydov.dev@gmail.com> Cc: Al Viro <viro@zeniv.linux.org.uk> Cc: <stable@vger.kernel.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> Signed-off-by: Sasha Levin <alexander.levin@verizon.com>
2016-10-23mm: remove gup_flags FOLL_WRITE games from __get_user_pages()Linus Torvalds
[ Upstream commit 19be0eaffa3ac7d8eb6784ad9bdbc7d67ed8e619 ] This is an ancient bug that was actually attempted to be fixed once (badly) by me eleven years ago in commit 4ceb5db9757a ("Fix get_user_pages() race for write access") but that was then undone due to problems on s390 by commit f33ea7f404e5 ("fix get_user_pages bug"). In the meantime, the s390 situation has long been fixed, and we can now fix it by checking the pte_dirty() bit properly (and do it better). The s390 dirty bit was implemented in abf09bed3cce ("s390/mm: implement software dirty bits") which made it into v3.9. Earlier kernels will have to look at the page state itself. Also, the VM has become more scalable, and what used a purely theoretical race back then has become easier to trigger. To fix it, we introduce a new internal FOLL_COW flag to mark the "yes, we already did a COW" rather than play racy games with FOLL_WRITE that is very fundamental, and then use the pte dirty flag to validate that the FOLL_COW flag is still valid. Reported-and-tested-by: Phil "not Paul" Oester <kernel@linuxace.com> Acked-by: Hugh Dickins <hughd@google.com> Reviewed-by: Michal Hocko <mhocko@suse.com> Cc: Andy Lutomirski <luto@kernel.org> Cc: Kees Cook <keescook@chromium.org> Cc: Oleg Nesterov <oleg@redhat.com> Cc: Willy Tarreau <w@1wt.eu> Cc: Nick Piggin <npiggin@gmail.com> Cc: Greg Thelen <gthelen@google.com> Cc: stable@vger.kernel.org Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> Signed-off-by: Sasha Levin <alexander.levin@verizon.com>
2016-08-19mm/hugetlb: avoid soft lockup in set_max_huge_pages()Jia He
[ Upstream commit 649920c6ab93429b94bc7c1aa7c0e8395351be32 ] In powerpc servers with large memory(32TB), we watched several soft lockups for hugepage under stress tests. The call traces are as follows: 1. get_page_from_freelist+0x2d8/0xd50 __alloc_pages_nodemask+0x180/0xc20 alloc_fresh_huge_page+0xb0/0x190 set_max_huge_pages+0x164/0x3b0 2. prep_new_huge_page+0x5c/0x100 alloc_fresh_huge_page+0xc8/0x190 set_max_huge_pages+0x164/0x3b0 This patch fixes such soft lockups. It is safe to call cond_resched() there because it is out of spin_lock/unlock section. Link: http://lkml.kernel.org/r/1469674442-14848-1-git-send-email-hejianet@gmail.com Signed-off-by: Jia He <hejianet@gmail.com> Reviewed-by: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com> Acked-by: Michal Hocko <mhocko@suse.com> Acked-by: Dave Hansen <dave.hansen@linux.intel.com> Cc: Mike Kravetz <mike.kravetz@oracle.com> Cc: "Kirill A. Shutemov" <kirill.shutemov@linux.intel.com> Cc: Paul Gortmaker <paul.gortmaker@windriver.com> Cc: <stable@vger.kernel.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> Signed-off-by: Sasha Levin <alexander.levin@verizon.com>
2016-08-06mm, compaction: prevent VM_BUG_ON when terminating freeing scannerDavid Rientjes
[ Upstream commit a46cbf3bc53b6a93fb84a5ffb288c354fa807954 ] It's possible to isolate some freepages in a pageblock and then fail split_free_page() due to the low watermark check. In this case, we hit VM_BUG_ON() because the freeing scanner terminated early without a contended lock or enough freepages. This should never have been a VM_BUG_ON() since it's not a fatal condition. It should have been a VM_WARN_ON() at best, or even handled gracefully. Regardless, we need to terminate anytime the full pageblock scan was not done. The logic belongs in isolate_freepages_block(), so handle its state gracefully by terminating the pageblock loop and making a note to restart at the same pageblock next time since it was not possible to complete the scan this time. [rientjes@google.com: don't rescan pages in a pageblock] Link: http://lkml.kernel.org/r/alpine.DEB.2.10.1607111244150.83138@chino.kir.corp.google.com Link: http://lkml.kernel.org/r/alpine.DEB.2.10.1606291436300.145590@chino.kir.corp.google.com Signed-off-by: David Rientjes <rientjes@google.com> Reported-by: Minchan Kim <minchan@kernel.org> Tested-by: Minchan Kim <minchan@kernel.org> Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com> Cc: Hugh Dickins <hughd@google.com> Cc: Mel Gorman <mgorman@techsingularity.net> Cc: Vlastimil Babka <vbabka@suse.cz> Cc: <stable@vger.kernel.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> Signed-off-by: Sasha Levin <alexander.levin@verizon.com>
2016-08-06mm, compaction: simplify handling restart position in free pages scannerVlastimil Babka
[ Upstream commit f5f61a320bf6275f37fcabf6645b4ac8e683c007 ] Handling the position where compaction free scanner should restart (stored in cc->free_pfn) got more complex with commit e14c720efdd7 ("mm, compaction: remember position within pageblock in free pages scanner"). Currently the position is updated in each loop iteration of isolate_freepages(), although it should be enough to update it only when breaking from the loop. There's also an extra check outside the loop updates the position in case we have met the migration scanner. This can be simplified if we move the test for having isolated enough from the for-loop header next to the test for contention, and determining the restart position only in these cases. We can reuse the isolate_start_pfn variable for this instead of setting cc->free_pfn directly. Outside the loop, we can simply set cc->free_pfn to current value of isolate_start_pfn without any extra check. Also add a VM_BUG_ON to catch possible mistake in the future, in case we later add a new condition that terminates isolate_freepages_block() prematurely without also considering the condition in isolate_freepages(). Signed-off-by: Vlastimil Babka <vbabka@suse.cz> Cc: Minchan Kim <minchan@kernel.org> Acked-by: Mel Gorman <mgorman@suse.de> Acked-by: Joonsoo Kim <iamjoonsoo.kim@lge.com> Cc: Michal Nazarewicz <mina86@mina86.com> Cc: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com> Cc: Christoph Lameter <cl@linux.com> Cc: Rik van Riel <riel@redhat.com> Cc: David Rientjes <rientjes@google.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> Signed-off-by: Sasha Levin <alexander.levin@verizon.com>
2016-07-194.1.28 Fix bad backport of 8f182270dfec "mm/swap.c: flush lru pvecs on ↵Steven Rostedt
compound page arrival" When I pulled in 4.1.28 into my stable 4.1-rt tree and ran the tests, it crashed with a severe OOM killing everything. I then tested 4.1.28 without -rt and it had the same issue. I did a bisect between 4.1.27 and 4.1.28 and found that the bug started at: commit 8f182270dfec "mm/swap.c: flush lru pvecs on compound page arrival" Looking at that patch and what's in mainline, I see that there's a mismatch in one of the hunks: Mainline: @@ -391,9 +391,8 @@ static void __lru_cache_add(struct page *page) struct pagevec *pvec = &get_cpu_var(lru_add_pvec); get_page(page); - if (!pagevec_space(pvec)) + if (!pagevec_add(pvec, page) || PageCompound(page)) __pagevec_lru_add(pvec); - pagevec_add(pvec, page); put_cpu_var(lru_add_pvec); } Stable 4.1.28: @@ -631,9 +631,8 @@ static void __lru_cache_add(struct page *page) struct pagevec *pvec = &get_cpu_var(lru_add_pvec); page_cache_get(page); - if (!pagevec_space(pvec)) + if (!pagevec_space(pvec) || PageCompound(page)) __pagevec_lru_add(pvec); - pagevec_add(pvec, page); put_cpu_var(lru_add_pvec); } Where mainline replace pagevec_space() with pagevec_add, and stable did not. Fixing this makes the OOM go away. Note, 3.18 has the same bug. Signed-off-by: Steven Rostedt <rostedt@goodmis.org> Signed-off-by: Sasha Levin <alexander.levin@verizon.com>
2016-07-12tmpfs: fix regression hang in fallocate undoHugh Dickins
[ Upstream commit 7f556567036cb7f89aabe2f0954b08566b4efb53 ] The well-spotted fallocate undo fix is good in most cases, but not when fallocate failed on the very first page. index 0 then passes lend -1 to shmem_undo_range(), and that has two bad effects: (a) that it will undo every fallocation throughout the file, unrestricted by the current range; but more importantly (b) it can cause the undo to hang, because lend -1 is treated as truncation, which makes it keep on retrying until every page has gone, but those already fully instantiated will never go away. Big thank you to xfstests generic/269 which demonstrates this. Fixes: b9b4bb26af01 ("tmpfs: don't undo fallocate past its last page") Cc: stable@vger.kernel.org Signed-off-by: Hugh Dickins <hughd@google.com> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> Signed-off-by: Sasha Levin <sasha.levin@oracle.com>
2016-07-10mm: update min_free_kbytes from khugepaged after core initializationJason Baron
[ Upstream commit bc22af74f271ef76b2e6f72f3941f91f0da3f5f8 ] Khugepaged attempts to raise min_free_kbytes if its set too low. However, on boot khugepaged sets min_free_kbytes first from subsys_initcall(), and then the mm 'core' over-rides min_free_kbytes after from init_per_zone_wmark_min(), via a module_init() call. Khugepaged used to use a late_initcall() to set min_free_kbytes (such that it occurred after the core initialization), however this was removed when the initialization of min_free_kbytes was integrated into the starting of the khugepaged thread. The fix here is simply to invoke the core initialization using a core_initcall() instead of module_init(), such that the previous initialization ordering is restored. I didn't restore the late_initcall() since start_stop_khugepaged() already sets min_free_kbytes via set_recommended_min_free_kbytes(). This was noticed when we had a number of page allocation failures when moving a workload to a kernel with this new initialization ordering. On an 8GB system this restores min_free_kbytes back to 67584 from 11365 when CONFIG_TRANSPARENT_HUGEPAGE=y is set and either CONFIG_TRANSPARENT_HUGEPAGE_ALWAYS=y or CONFIG_TRANSPARENT_HUGEPAGE_MADVISE=y. Fixes: 79553da293d3 ("thp: cleanup khugepaged startup") Signed-off-by: Jason Baron <jbaron@akamai.com> Acked-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com> Acked-by: David Rientjes <rientjes@google.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> Signed-off-by: Sasha Levin <sasha.levin@oracle.com>
2016-07-10mm: fix invalid node in alloc_migrate_target()Xishi Qiu
[ Upstream commit 6f25a14a7053b69917e2ebea0d31dd444cd31fd5 ] It is incorrect to use next_node to find a target node, it will return MAX_NUMNODES or invalid node. This will lead to crash in buddy system allocation. Fixes: c8721bbbdd36 ("mm: memory-hotplug: enable memory hotplug to handle hugepage") Signed-off-by: Xishi Qiu <qiuxishi@huawei.com> Acked-by: Vlastimil Babka <vbabka@suse.cz> Acked-by: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com> Cc: Joonsoo Kim <js1304@gmail.com> Cc: David Rientjes <rientjes@google.com> Cc: "Laura Abbott" <lauraa@codeaurora.org> Cc: Hui Zhu <zhuhui@xiaomi.com> Cc: Wang Xiaoqiang <wangxq10@lzu.edu.cn> Cc: <stable@vger.kernel.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> Signed-off-by: Sasha Levin <sasha.levin@oracle.com>
2016-07-10mm, compaction: abort free scanner if split failsDavid Rientjes
[ Upstream commit a4f04f2c6955aff5e2c08dcb40aca247ff4d7370 ] If the memory compaction free scanner cannot successfully split a free page (only possible due to per-zone low watermark), terminate the free scanner rather than continuing to scan memory needlessly. If the watermark is insufficient for a free page of order <= cc->order, then terminate the scanner since all future splits will also likely fail. This prevents the compaction freeing scanner from scanning all memory on very large zones (very noticeable for zones > 128GB, for instance) when all splits will likely fail while holding zone->lock. compaction_alloc() iterating a 128GB zone has been benchmarked to take over 400ms on some systems whereas any free page isolated and ready to be split ends up failing in split_free_page() because of the low watermark check and thus the iteration continues. The next time compaction occurs, the freeing scanner will likely start at the end of the zone again since no success was made previously and we get the same lengthy iteration until the zone is brought above the low watermark. All thp page faults can take >400ms in such a state without this fix. Link: http://lkml.kernel.org/r/alpine.DEB.2.10.1606211820350.97086@chino.kir.corp.google.com Signed-off-by: David Rientjes <rientjes@google.com> Acked-by: Vlastimil Babka <vbabka@suse.cz> Cc: Minchan Kim <minchan@kernel.org> Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com> Cc: Mel Gorman <mgorman@techsingularity.net> Cc: Hugh Dickins <hughd@google.com> Cc: <stable@vger.kernel.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> Signed-off-by: Sasha Levin <sasha.levin@oracle.com>
2016-07-10mm, compaction: skip compound pages by order in free scannerVlastimil Babka
[ Upstream commit 9fcd6d2e052eef525e94a9ae58dbe7ed4df4f5a7 ] The compaction free scanner is looking for PageBuddy() pages and skipping all others. For large compound pages such as THP or hugetlbfs, we can save a lot of iterations if we skip them at once using their compound_order(). This is generally unsafe and we can read a bogus value of order due to a race, but if we are careful, the only danger is skipping too much. When tested with stress-highalloc from mmtests on 4GB system with 1GB hugetlbfs pages, the vmstat compact_free_scanned count decreased by at least 15%. Signed-off-by: Vlastimil Babka <vbabka@suse.cz> Cc: Minchan Kim <minchan@kernel.org> Cc: Mel Gorman <mgorman@suse.de> Acked-by: Joonsoo Kim <iamjoonsoo.kim@lge.com> Acked-by: Michal Nazarewicz <mina86@mina86.com> Cc: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com> Cc: Christoph Lameter <cl@linux.com> Cc: Rik van Riel <riel@redhat.com> Cc: David Rientjes <rientjes@google.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> Signed-off-by: Sasha Levin <sasha.levin@oracle.com>
2016-07-10mm/swap.c: flush lru pvecs on compound page arrivalLukasz Odzioba
[ Upstream commit 8f182270dfec432e93fae14f9208a6b9af01009f ] Currently we can have compound pages held on per cpu pagevecs, which leads to a lot of memory unavailable for reclaim when needed. In the systems with hundreads of processors it can be GBs of memory. On of the way of reproducing the problem is to not call munmap explicitly on all mapped regions (i.e. after receiving SIGTERM). After that some pages (with THP enabled also huge pages) may end up on lru_add_pvec, example below. void main() { #pragma omp parallel { size_t size = 55 * 1000 * 1000; // smaller than MEM/CPUS void *p = mmap(NULL, size, PROT_READ | PROT_WRITE, MAP_PRIVATE | MAP_ANONYMOUS , -1, 0); if (p != MAP_FAILED) memset(p, 0, size); //munmap(p, size); // uncomment to make the problem go away } } When we run it with THP enabled it will leave significant amount of memory on lru_add_pvec. This memory will be not reclaimed if we hit OOM, so when we run above program in a loop: for i in `seq 100`; do ./a.out; done many processes (95% in my case) will be killed by OOM. The primary point of the LRU add cache is to save the zone lru_lock contention with a hope that more pages will belong to the same zone and so their addition can be batched. The huge page is already a form of batched addition (it will add 512 worth of memory in one go) so skipping the batching seems like a safer option when compared to a potential excess in the caching which can be quite large and much harder to fix because lru_add_drain_all is way to expensive and it is not really clear what would be a good moment to call it. Similarly we can reproduce the problem on lru_deactivate_pvec by adding: madvise(p, size, MADV_FREE); after memset. This patch flushes lru pvecs on compound page arrival making the problem less severe - after applying it kill rate of above example drops to 0%, due to reducing maximum amount of memory held on pvec from 28MB (with THP) to 56kB per CPU. Suggested-by: Michal Hocko <mhocko@suse.com> Link: http://lkml.kernel.org/r/1466180198-18854-1-git-send-email-lukasz.odzioba@intel.com Signed-off-by: Lukasz Odzioba <lukasz.odzioba@intel.com> Acked-by: Michal Hocko <mhocko@suse.com> Cc: Kirill Shutemov <kirill.shutemov@linux.intel.com> Cc: Andrea Arcangeli <aarcange@redhat.com> Cc: Vladimir Davydov <vdavydov@parallels.com> Cc: Ming Li <mingli199x@qq.com> Cc: Minchan Kim <minchan@kernel.org> Cc: <stable@vger.kernel.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> Signed-off-by: Sasha Levin <sasha.levin@oracle.com>
2016-07-10tmpfs: don't undo fallocate past its last pageAnthony Romano
[ Upstream commit b9b4bb26af017dbe930cd4df7f9b2fc3a0497bfe ] When fallocate is interrupted it will undo a range that extends one byte past its range of allocated pages. This can corrupt an in-use page by zeroing out its first byte. Instead, undo using the inclusive byte range. Fixes: 1635f6a74152f1d ("tmpfs: undo fallocation on failure") Link: http://lkml.kernel.org/r/1462713387-16724-1-git-send-email-anthony.romano@coreos.com Signed-off-by: Anthony Romano <anthony.romano@coreos.com> Cc: Vlastimil Babka <vbabka@suse.cz> Cc: Hugh Dickins <hughd@google.com> Cc: Brandon Philips <brandon@ifup.co> Cc: <stable@vger.kernel.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> Signed-off-by: Sasha Levin <sasha.levin@oracle.com>
2016-07-10mm: Export migrate_page_move_mapping and migrate_page_copyRichard Weinberger
[ Upstream commit 1118dce773d84f39ebd51a9fe7261f9169cb056e ] Export these symbols such that UBIFS can implement ->migratepage. Cc: stable@vger.kernel.org Signed-off-by: Richard Weinberger <richard@nod.at> Acked-by: Christoph Hellwig <hch@lst.de> Signed-off-by: Sasha Levin <sasha.levin@oracle.com>
2016-07-10percpu: fix synchronization between synchronous map extension and chunk ↵Tejun Heo
destruction [ Upstream commit 6710e594f71ccaad8101bc64321152af7cd9ea28 ] For non-atomic allocations, pcpu_alloc() can try to extend the area map synchronously after dropping pcpu_lock; however, the extension wasn't synchronized against chunk destruction and the chunk might get freed while extension is in progress. This patch fixes the bug by putting most of non-atomic allocations under pcpu_alloc_mutex to synchronize against pcpu_balance_work which is responsible for async chunk management including destruction. Signed-off-by: Tejun Heo <tj@kernel.org> Reported-and-tested-by: Alexei Starovoitov <alexei.starovoitov@gmail.com> Reported-by: Vlastimil Babka <vbabka@suse.cz> Reported-by: Sasha Levin <sasha.levin@oracle.com> Cc: stable@vger.kernel.org # v3.18+ Fixes: 1a4d76076cda ("percpu: implement asynchronous chunk population") Signed-off-by: Sasha Levin <sasha.levin@oracle.com>
2016-07-10percpu: fix synchronization between chunk->map_extend_work and chunk destructionTejun Heo
[ Upstream commit 4f996e234dad488e5d9ba0858bc1bae12eff82c3 ] Atomic allocations can trigger async map extensions which is serviced by chunk->map_extend_work. pcpu_balance_work which is responsible for destroying idle chunks wasn't synchronizing properly against chunk->map_extend_work and may end up freeing the chunk while the work item is still in flight. This patch fixes the bug by rolling async map extension operations into pcpu_balance_work. Signed-off-by: Tejun Heo <tj@kernel.org> Reported-and-tested-by: Alexei Starovoitov <alexei.starovoitov@gmail.com> Reported-by: Vlastimil Babka <vbabka@suse.cz> Reported-by: Sasha Levin <sasha.levin@oracle.com> Cc: stable@vger.kernel.org # v3.18+ Fixes: 9c824b6a172c ("percpu: make sure chunk->map array has available space") Signed-off-by: Sasha Levin <sasha.levin@oracle.com>
2016-05-17mm, cma: prevent nr_isolated_* counters from going negativeHugh Dickins
[ Upstream commit 14af4a5e9b26ad251f81c174e8a43f3e179434a5 ] /proc/sys/vm/stat_refresh warns nr_isolated_anon and nr_isolated_file go increasingly negative under compaction: which would add delay when should be none, or no delay when should delay. The bug in compaction was due to a recent mmotm patch, but much older instance of the bug was also noticed in isolate_migratepages_range() which is used for CMA and gigantic hugepage allocations. The bug is caused by putback_movable_pages() in an error path decrementing the isolated counters without them being previously incremented by acct_isolated(). Fix isolate_migratepages_range() by removing the error-path putback, thus reaching acct_isolated() with migratepages still isolated, and leaving putback to caller like most other places do. Fixes: edc2ca612496 ("mm, compaction: move pageblock checks up from isolate_migratepages_range()") [vbabka@suse.cz: expanded the changelog] Signed-off-by: Hugh Dickins <hughd@google.com> Signed-off-by: Vlastimil Babka <vbabka@suse.cz> Acked-by: Joonsoo Kim <iamjoonsoo.kim@lge.com> Cc: Michal Hocko <mhocko@kernel.org> Cc: <stable@vger.kernel.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> Signed-off-by: Sasha Levin <sasha.levin@oracle.com>
2016-05-17mm: check __PG_HWPOISON separately from PAGE_FLAGS_CHECK_AT_*Naoya Horiguchi
[ Upstream commit f4c18e6f7b5bbb5b528b3334115806b0d76f50f9 ] The race condition addressed in commit add05cecef80 ("mm: soft-offline: don't free target page in successful page migration") was not closed completely, because that can happen not only for soft-offline, but also for hard-offline. Consider that a slab page is about to be freed into buddy pool, and then an uncorrected memory error hits the page just after entering __free_one_page(), then VM_BUG_ON_PAGE(page->flags & PAGE_FLAGS_CHECK_AT_PREP) is triggered, despite the fact that it's not necessary because the data on the affected page is not consumed. To solve it, this patch drops __PG_HWPOISON from page flag checks at allocation/free time. I think it's justified because __PG_HWPOISON flags is defined to prevent the page from being reused, and setting it outside the page's alloc-free cycle is a designed behavior (not a bug.) For recent months, I was annoyed about BUG_ON when soft-offlined page remains on lru cache list for a while, which is avoided by calling put_page() instead of putback_lru_page() in page migration's success path. This means that this patch reverts a major change from commit add05cecef80 about the new refcounting rule of soft-offlined pages, so "reuse window" revives. This will be closed by a subsequent patch. Signed-off-by: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com> Cc: Andi Kleen <andi@firstfloor.org> Cc: Dean Nelson <dnelson@redhat.com> Cc: Tony Luck <tony.luck@intel.com> Cc: "Kirill A. Shutemov" <kirill@shutemov.name> Cc: Hugh Dickins <hughd@google.com> Cc: David Rientjes <rientjes@google.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> Signed-off-by: Sasha Levin <sasha.levin@oracle.com>
2016-05-17mm: soft-offline: don't free target page in successful page migrationNaoya Horiguchi
[ Upstream commit add05cecef803f3372c5fc1d2a964171872daf9f ] Stress testing showed that soft offline events for a process iterating "mmap-pagefault-munmap" loop can trigger VM_BUG_ON(PAGE_FLAGS_CHECK_AT_PREP) in __free_one_page(): Soft offlining page 0x70fe1 at 0x70100008d000 Soft offlining page 0x705fb at 0x70300008d000 page:ffffea0001c3f840 count:0 mapcount:0 mapping: (null) index:0x2 flags: 0x1fffff80800000(hwpoison) page dumped because: VM_BUG_ON_PAGE(page->flags & ((1 << 25) - 1)) ------------[ cut here ]------------ kernel BUG at /src/linux-dev/mm/page_alloc.c:585! invalid opcode: 0000 [#1] SMP DEBUG_PAGEALLOC Modules linked in: cfg80211 rfkill crc32c_intel microcode ppdev parport_pc pcspkr serio_raw virtio_balloon parport i2c_piix4 virtio_blk virtio_net ata_generic pata_acpi floppy CPU: 3 PID: 1779 Comm: test_base_madv_ Not tainted 4.0.0-v4.0-150511-1451-00009-g82360a3730e6 #139 RIP: free_pcppages_bulk+0x52a/0x6f0 Call Trace: drain_pages_zone+0x3d/0x50 drain_local_pages+0x1d/0x30 on_each_cpu_mask+0x46/0x80 drain_all_pages+0x14b/0x1e0 soft_offline_page+0x432/0x6e0 SyS_madvise+0x73c/0x780 system_call_fastpath+0x12/0x17 Code: ff 89 45 b4 48 8b 45 c0 48 83 b8 a8 00 00 00 00 0f 85 e3 fb ff ff 0f 1f 00 0f 0b 48 8b 7d 90 48 c7 c6 e8 95 a6 81 e8 e6 32 02 00 <0f> 0b 8b 45 cc 49 89 47 30 41 8b 47 18 83 f8 ff 0f 85 10 ff ff RIP [<ffffffff811a806a>] free_pcppages_bulk+0x52a/0x6f0 RSP <ffff88007a117d28> ---[ end trace 53926436e76d1f35 ]--- When soft offline successfully migrates page, the source page is supposed to be freed. But there is a race condition where a source page looks isolated (i.e. the refcount is 0 and the PageHWPoison is set) but somewhat linked to pcplist. Then another soft offline event calls drain_all_pages() and tries to free such hwpoisoned page, which is forbidden. This odd page state seems to happen due to the race between put_page() in putback_lru_page() and __pagevec_lru_add_fn(). But I don't want to play with tweaking drain code as done in commit 9ab3b598d2df "mm: hwpoison: drop lru_add_drain_all() in __soft_offline_page()", or to change page freeing code for this soft offline's purpose. Instead, let's think about the difference between hard offline and soft offline. There is an interesting difference in how to isolate the in-use page between these, that is, hard offline marks PageHWPoison of the target page at first, and doesn't free it by keeping its refcount 1. OTOH, soft offline tries to free the target page then marks PageHWPoison. This difference might be the source of complexity and result in bugs like the above. So making soft offline isolate with keeping refcount can be a solution for this problem. We can pass to page migration code the "reason" which shows the caller, so let's use this more to avoid calling putback_lru_page() when called from soft offline, which effectively does the isolation for soft offline. With this change, target pages of soft offline never be reused without changing migratetype, so this patch also removes the related code. Signed-off-by: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com> Cc: Andi Kleen <andi@firstfloor.org> Cc: Tony Luck <tony.luck@intel.com> Cc: "Kirill A. Shutemov" <kirill@shutemov.name> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> Signed-off-by: Sasha Levin <sasha.levin@oracle.com>
2016-05-17mm: vmscan: reclaim highmem zone if buffer_heads is over limitMinchan Kim
[ Upstream commit 7bf52fb891b64b8d61caf0b82060adb9db761aec ] We have been reclaimed highmem zone if buffer_heads is over limit but commit 6b4f7799c6a5 ("mm: vmscan: invoke slab shrinkers from shrink_zone()") changed the behavior so it doesn't reclaim highmem zone although buffer_heads is over the limit. This patch restores the logic. Fixes: 6b4f7799c6a5 ("mm: vmscan: invoke slab shrinkers from shrink_zone()") Signed-off-by: Minchan Kim <minchan@kernel.org> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: <stable@vger.kernel.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> Signed-off-by: Sasha Levin <sasha.levin@oracle.com>
2016-05-17mm/huge_memory: replace VM_NO_THP VM_BUG_ON with actual VMA checkKonstantin Khlebnikov
[ Upstream commit 3486b85a29c1741db99d0c522211c82d2b7a56d0 ] Khugepaged detects own VMAs by checking vm_file and vm_ops but this way it cannot distinguish private /dev/zero mappings from other special mappings like /dev/hpet which has no vm_ops and popultes PTEs in mmap. This fixes false-positive VM_BUG_ON and prevents installing THP where they are not expected. Link: http://lkml.kernel.org/r/CACT4Y+ZmuZMV5CjSFOeXviwQdABAgT7T+StKfTqan9YDtgEi5g@mail.gmail.com Fixes: 78f11a255749 ("mm: thp: fix /dev/zero MAP_PRIVATE and vm_flags cleanups") Signed-off-by: Konstantin Khlebnikov <koct9i@gmail.com> Reported-by: Dmitry Vyukov <dvyukov@google.com> Acked-by: Vlastimil Babka <vbabka@suse.cz> Acked-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com> Cc: Dmitry Vyukov <dvyukov@google.com> Cc: Andrea Arcangeli <aarcange@redhat.com> Cc: stable <stable@vger.kernel.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> Signed-off-by: Sasha Levin <sasha.levin@oracle.com>
2016-04-18mm/page_alloc: prevent merging between isolated and other pageblocksVlastimil Babka
[ Upstream commit d9dddbf556674bf125ecd925b24e43a5cf2a568a ] Hanjun Guo has reported that a CMA stress test causes broken accounting of CMA and free pages: > Before the test, I got: > -bash-4.3# cat /proc/meminfo | grep Cma > CmaTotal: 204800 kB > CmaFree: 195044 kB > > > After running the test: > -bash-4.3# cat /proc/meminfo | grep Cma > CmaTotal: 204800 kB > CmaFree: 6602584 kB > > So the freed CMA memory is more than total.. > > Also the the MemFree is more than mem total: > > -bash-4.3# cat /proc/meminfo > MemTotal: 16342016 kB > MemFree: 22367268 kB > MemAvailable: 22370528 kB Laura Abbott has confirmed the issue and suspected the freepage accounting rewrite around 3.18/4.0 by Joonsoo Kim. Joonsoo had a theory that this is caused by unexpected merging between MIGRATE_ISOLATE and MIGRATE_CMA pageblocks: > CMA isolates MAX_ORDER aligned blocks, but, during the process, > partialy isolated block exists. If MAX_ORDER is 11 and > pageblock_order is 9, two pageblocks make up MAX_ORDER > aligned block and I can think following scenario because pageblock > (un)isolation would be done one by one. > > (each character means one pageblock. 'C', 'I' means MIGRATE_CMA, > MIGRATE_ISOLATE, respectively. > > CC -> IC -> II (Isolation) > II -> CI -> CC (Un-isolation) > > If some pages are freed at this intermediate state such as IC or CI, > that page could be merged to the other page that is resident on > different type of pageblock and it will cause wrong freepage count. This was supposed to be prevented by CMA operating on MAX_ORDER blocks, but since it doesn't hold the zone->lock between pageblocks, a race window does exist. It's also likely that unexpected merging can occur between MIGRATE_ISOLATE and non-CMA pageblocks. This should be prevented in __free_one_page() since commit 3c605096d315 ("mm/page_alloc: restrict max order of merging on isolated pageblock"). However, we only check the migratetype of the pageblock where buddy merging has been initiated, not the migratetype of the buddy pageblock (or group of pageblocks) which can be MIGRATE_ISOLATE. Joonsoo has suggested checking for buddy migratetype as part of page_is_buddy(), but that would add extra checks in allocator hotpath and bloat-o-meter has shown significant code bloat (the function is inline). This patch reduces the bloat at some expense of more complicated code. The buddy-merging while-loop in __free_one_page() is initially bounded to pageblock_border and without any migratetype checks. The checks are placed outside, bumping the max_order if merging is allowed, and returning to the while-loop with a statement which can't be possibly considered harmful. This fixes the accounting bug and also removes the arguably weird state in the original commit 3c605096d315 where buddies could be left unmerged. Fixes: 3c605096d315 ("mm/page_alloc: restrict max order of merging on isolated pageblock") Link: https://lkml.org/lkml/2016/3/2/280 Signed-off-by: Vlastimil Babka <vbabka@suse.cz> Reported-by: Hanjun Guo <guohanjun@huawei.com> Tested-by: Hanjun Guo <guohanjun@huawei.com> Acked-by: Joonsoo Kim <iamjoonsoo.kim@lge.com> Debugged-by: Laura Abbott <labbott@redhat.com> Debugged-by: Joonsoo Kim <iamjoonsoo.kim@lge.com> Cc: Mel Gorman <mgorman@techsingularity.net> Cc: "Kirill A. Shutemov" <kirill@shutemov.name> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: Minchan Kim <minchan@kernel.org> Cc: Yasuaki Ishimatsu <isimatu.yasuaki@jp.fujitsu.com> Cc: Zhang Yanfei <zhangyanfei@cn.fujitsu.com> Cc: Michal Nazarewicz <mina86@mina86.com> Cc: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com> Cc: "Aneesh Kumar K.V" <aneesh.kumar@linux.vnet.ibm.com> Cc: <stable@vger.kernel.org> [3.18+] Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> Signed-off-by: Sasha Levin <sasha.levin@oracle.com>
2016-04-18mm: use 'unsigned int' for page orderKirill A. Shutemov
[ Upstream commit d00181b96eb86c914cb327d1de974a1b71366e1b ] Let's try to be consistent about data type of page order. [sfr@canb.auug.org.au: fix build (type of pageblock_order)] [hughd@google.com: some configs end up with MAX_ORDER and pageblock_order having different types] Signed-off-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com> Acked-by: Michal Hocko <mhocko@suse.com> Acked-by: Vlastimil Babka <vbabka@suse.cz> Reviewed-by: Andrea Arcangeli <aarcange@redhat.com> Cc: "Paul E. McKenney" <paulmck@linux.vnet.ibm.com> Cc: Andi Kleen <ak@linux.intel.com> Cc: Aneesh Kumar K.V <aneesh.kumar@linux.vnet.ibm.com> Cc: Christoph Lameter <cl@linux.com> Cc: David Rientjes <rientjes@google.com> Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com> Cc: Sergey Senozhatsky <sergey.senozhatsky@gmail.com> Signed-off-by: Stephen Rothwell <sfr@canb.auug.org.au> Signed-off-by: Hugh Dickins <hughd@google.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> Signed-off-by: Sasha Levin <sasha.levin@oracle.com>
2016-04-18mm: page_alloc: pass PFN to __free_pages_bootmemMel Gorman
[ Upstream commit d70ddd7a5d9aa335f9b4b0c3d879e1e70ee1e4e3 ] __free_pages_bootmem prepares a page for release to the buddy allocator and assumes that the struct page is initialised. Parallel initialisation of struct pages defers initialisation and __free_pages_bootmem can be called for struct pages that cannot yet map struct page to PFN. This patch passes PFN to __free_pages_bootmem with no other functional change. Signed-off-by: Mel Gorman <mgorman@suse.de> Tested-by: Nate Zimmer <nzimmer@sgi.com> Tested-by: Waiman Long <waiman.long@hp.com> Tested-by: Daniel J Blueman <daniel@numascale.com> Acked-by: Pekka Enberg <penberg@kernel.org> Cc: Robin Holt <robinmholt@gmail.com> Cc: Nate Zimmer <nzimmer@sgi.com> Cc: Dave Hansen <dave.hansen@intel.com> Cc: Waiman Long <waiman.long@hp.com> Cc: Scott Norton <scott.norton@hp.com> Cc: "Luck, Tony" <tony.luck@intel.com> Cc: Ingo Molnar <mingo@elte.hu> Cc: "H. Peter Anvin" <hpa@zytor.com> Cc: Thomas Gleixner <tglx@linutronix.de> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> Signed-off-by: Sasha Levin <sasha.levin@oracle.com>
2016-04-18mm: memcontrol: reclaim when shrinking memory.high below usageJohannes Weiner
[ Upstream commit 588083bb37a3cea8533c392370a554417c8f29cb ] When setting memory.high below usage, nothing happens until the next charge comes along, and then it will only reclaim its own charge and not the now potentially huge excess of the new memory.high. This can cause groups to stay in excess of their memory.high indefinitely. To fix that, when shrinking memory.high, kick off a reclaim cycle that goes after the delta. Signed-off-by: Johannes Weiner <hannes@cmpxchg.org> Acked-by: Michal Hocko <mhocko@suse.com> Cc: Vladimir Davydov <vdavydov@virtuozzo.com> Cc: <stable@vger.kernel.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> Signed-off-by: Sasha Levin <sasha.levin@oracle.com>
2016-04-11ptrace: use fsuid, fsgid, effective creds for fs access checksJann Horn
[ Upstream commit caaee6234d05a58c5b4d05e7bf766131b810a657 ] By checking the effective credentials instead of the real UID / permitted capabilities, ensure that the calling process actually intended to use its credentials. To ensure that all ptrace checks use the correct caller credentials (e.g. in case out-of-tree code or newly added code omits the PTRACE_MODE_*CREDS flag), use two new flags and require one of them to be set. The problem was that when a privileged task had temporarily dropped its privileges, e.g. by calling setreuid(0, user_uid), with the intent to perform following syscalls with the credentials of a user, it still passed ptrace access checks that the user would not be able to pass. While an attacker should not be able to convince the privileged task to perform a ptrace() syscall, this is a problem because the ptrace access check is reused for things in procfs. In particular, the following somewhat interesting procfs entries only rely on ptrace access checks: /proc/$pid/stat - uses the check for determining whether pointers should be visible, useful for bypassing ASLR /proc/$pid/maps - also useful for bypassing ASLR /proc/$pid/cwd - useful for gaining access to restricted directories that contain files with lax permissions, e.g. in this scenario: lrwxrwxrwx root root /proc/13020/cwd -> /root/foobar drwx------ root root /root drwxr-xr-x root root /root/foobar -rw-r--r-- root root /root/foobar/secret Therefore, on a system where a root-owned mode 6755 binary changes its effective credentials as described and then dumps a user-specified file, this could be used by an attacker to reveal the memory layout of root's processes or reveal the contents of files he is not allowed to access (through /proc/$pid/cwd). [akpm@linux-foundation.org: fix warning] Signed-off-by: Jann Horn <jann@thejh.net> Acked-by: Kees Cook <keescook@chromium.org> Cc: Casey Schaufler <casey@schaufler-ca.com> Cc: Oleg Nesterov <oleg@redhat.com> Cc: Ingo Molnar <mingo@redhat.com> Cc: James Morris <james.l.morris@oracle.com> Cc: "Serge E. Hallyn" <serge.hallyn@ubuntu.com> Cc: Andy Shevchenko <andriy.shevchenko@linux.intel.com> Cc: Andy Lutomirski <luto@kernel.org> Cc: Al Viro <viro@zeniv.linux.org.uk> Cc: "Eric W. Biederman" <ebiederm@xmission.com> Cc: Willy Tarreau <w@1wt.eu> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> Signed-off-by: Sasha Levin <sasha.levin@oracle.com>
2016-03-09mm: numa: quickly fail allocations for NUMA balancing on full nodesMel Gorman
[ Upstream commit 8479eba7781fa9ffb28268840de6facfc12c35a7 ] Commit 4167e9b2cf10 ("mm: remove GFP_THISNODE") removed the GFP_THISNODE flag combination due to confusing semantics. It noted that alloc_misplaced_dst_page() was one such user after changes made by commit e97ca8e5b864 ("mm: fix GFP_THISNODE callers and clarify"). Unfortunately when GFP_THISNODE was removed, users of alloc_misplaced_dst_page() started waking kswapd and entering direct reclaim because the wrong GFP flags are cleared. The consequence is that workloads that used to fit into memory now get reclaimed which is addressed by this patch. The problem can be demonstrated with "mutilate" that exercises memcached which is software dedicated to memory object caching. The configuration uses 80% of memory and is run 3 times for varying numbers of clients. The results on a 4-socket NUMA box are mutilate 4.4.0 4.4.0 vanilla numaswap-v1 Hmean 1 8394.71 ( 0.00%) 8395.32 ( 0.01%) Hmean 4 30024.62 ( 0.00%) 34513.54 ( 14.95%) Hmean 7 32821.08 ( 0.00%) 70542.96 (114.93%) Hmean 12 55229.67 ( 0.00%) 93866.34 ( 69.96%) Hmean 21 39438.96 ( 0.00%) 85749.21 (117.42%) Hmean 30 37796.10 ( 0.00%) 50231.49 ( 32.90%) Hmean 47 18070.91 ( 0.00%) 38530.13 (113.22%) The metric is queries/second with the more the better. The results are way outside of the noise and the reason for the improvement is obvious from some of the vmstats 4.4.0 4.4.0 vanillanumaswap-v1r1 Minor Faults 1929399272 2146148218 Major Faults 19746529 3567 Swap Ins 57307366 9913 Swap Outs 50623229 17094 Allocation stalls 35909 443 DMA allocs 0 0 DMA32 allocs 72976349 170567396 Normal allocs 5306640898 5310651252 Movable allocs 0 0 Direct pages scanned 404130893 799577 Kswapd pages scanned 160230174 0 Kswapd pages reclaimed 55928786 0 Direct pages reclaimed 1843936 41921 Page writes file 2391 0 Page writes anon 50623229 17094 The vanilla kernel is swapping like crazy with large amounts of direct reclaim and kswapd activity. The figures are aggregate but it's known that the bad activity is throughout the entire test. Note that simple streaming anon/file memory consumers also see this problem but it's not as obvious. In those cases, kswapd is awake when it should not be. As there are at least two reclaim-related bugs out there, it's worth spelling out the user-visible impact. This patch only addresses bugs related to excessive reclaim on NUMA hardware when the working set is larger than a NUMA node. There is a bug related to high kswapd CPU usage but the reports are against laptops and other UMA hardware and is not addressed by this patch. Signed-off-by: Mel Gorman <mgorman@techsingularity.net> Cc: Vlastimil Babka <vbabka@suse.cz> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: David Rientjes <rientjes@google.com> Cc: <stable@vger.kernel.org> [4.1+] Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> Signed-off-by: Sasha Levin <sasha.levin@oracle.com>