From 3a65dfe8c088143c7155cfd36a72f4b0ad2fc4b2 Mon Sep 17 00:00:00 2001 From: Jens Axboe Date: Fri, 4 Nov 2005 08:43:35 +0100 Subject: [BLOCK] Move all core block layer code to new block/ directory drivers/block/ is right now a mix of core and driver parts. Lets move the core parts to a new top level directory. Al will move the fs/ related block parts to block/ next. Signed-off-by: Jens Axboe --- block/Kconfig | 14 + block/Kconfig.iosched | 69 + block/Makefile | 10 + block/as-iosched.c | 1985 +++++++++++++++++++++++++ block/cfq-iosched.c | 2428 +++++++++++++++++++++++++++++++ block/deadline-iosched.c | 878 +++++++++++ block/elevator.c | 802 ++++++++++ block/genhd.c | 726 ++++++++++ block/ioctl.c | 275 ++++ block/ll_rw_blk.c | 3613 ++++++++++++++++++++++++++++++++++++++++++++++ block/noop-iosched.c | 46 + block/scsi_ioctl.c | 589 ++++++++ 12 files changed, 11435 insertions(+) create mode 100644 block/Kconfig create mode 100644 block/Kconfig.iosched create mode 100644 block/Makefile create mode 100644 block/as-iosched.c create mode 100644 block/cfq-iosched.c create mode 100644 block/deadline-iosched.c create mode 100644 block/elevator.c create mode 100644 block/genhd.c create mode 100644 block/ioctl.c create mode 100644 block/ll_rw_blk.c create mode 100644 block/noop-iosched.c create mode 100644 block/scsi_ioctl.c (limited to 'block') diff --git a/block/Kconfig b/block/Kconfig new file mode 100644 index 000000000000..eb48edb80c1d --- /dev/null +++ b/block/Kconfig @@ -0,0 +1,14 @@ +# +# Block layer core configuration +# +#XXX - it makes sense to enable this only for 32-bit subarch's, not for x86_64 +#for instance. +config LBD + bool "Support for Large Block Devices" + depends on X86 || (MIPS && 32BIT) || PPC32 || ARCH_S390_31 || SUPERH || UML + help + Say Y here if you want to attach large (bigger than 2TB) discs to + your machine, or if you want to have a raid or loopback device + bigger than 2TB. Otherwise say N. + +source block/Kconfig.iosched diff --git a/block/Kconfig.iosched b/block/Kconfig.iosched new file mode 100644 index 000000000000..5b90d2fa63b8 --- /dev/null +++ b/block/Kconfig.iosched @@ -0,0 +1,69 @@ + +menu "IO Schedulers" + +config IOSCHED_NOOP + bool + default y + ---help--- + The no-op I/O scheduler is a minimal scheduler that does basic merging + and sorting. Its main uses include non-disk based block devices like + memory devices, and specialised software or hardware environments + that do their own scheduling and require only minimal assistance from + the kernel. + +config IOSCHED_AS + tristate "Anticipatory I/O scheduler" + default y + ---help--- + The anticipatory I/O scheduler is the default disk scheduler. It is + generally a good choice for most environments, but is quite large and + complex when compared to the deadline I/O scheduler, it can also be + slower in some cases especially some database loads. + +config IOSCHED_DEADLINE + tristate "Deadline I/O scheduler" + default y + ---help--- + The deadline I/O scheduler is simple and compact, and is often as + good as the anticipatory I/O scheduler, and in some database + workloads, better. In the case of a single process performing I/O to + a disk at any one time, its behaviour is almost identical to the + anticipatory I/O scheduler and so is a good choice. + +config IOSCHED_CFQ + tristate "CFQ I/O scheduler" + default y + ---help--- + The CFQ I/O scheduler tries to distribute bandwidth equally + among all processes in the system. It should provide a fair + working environment, suitable for desktop systems. + +choice + prompt "Default I/O scheduler" + default DEFAULT_AS + help + Select the I/O scheduler which will be used by default for all + block devices. + + config DEFAULT_AS + bool "Anticipatory" if IOSCHED_AS + + config DEFAULT_DEADLINE + bool "Deadline" if IOSCHED_DEADLINE + + config DEFAULT_CFQ + bool "CFQ" if IOSCHED_CFQ + + config DEFAULT_NOOP + bool "No-op" + +endchoice + +config DEFAULT_IOSCHED + string + default "anticipatory" if DEFAULT_AS + default "deadline" if DEFAULT_DEADLINE + default "cfq" if DEFAULT_CFQ + default "noop" if DEFAULT_NOOP + +endmenu diff --git a/block/Makefile b/block/Makefile new file mode 100644 index 000000000000..7e4f93e2b44e --- /dev/null +++ b/block/Makefile @@ -0,0 +1,10 @@ +# +# Makefile for the kernel block layer +# + +obj-y := elevator.o ll_rw_blk.o ioctl.o genhd.o scsi_ioctl.o + +obj-$(CONFIG_IOSCHED_NOOP) += noop-iosched.o +obj-$(CONFIG_IOSCHED_AS) += as-iosched.o +obj-$(CONFIG_IOSCHED_DEADLINE) += deadline-iosched.o +obj-$(CONFIG_IOSCHED_CFQ) += cfq-iosched.o diff --git a/block/as-iosched.c b/block/as-iosched.c new file mode 100644 index 000000000000..c6744ff38294 --- /dev/null +++ b/block/as-iosched.c @@ -0,0 +1,1985 @@ +/* + * linux/drivers/block/as-iosched.c + * + * Anticipatory & deadline i/o scheduler. + * + * Copyright (C) 2002 Jens Axboe + * Nick Piggin + * + */ +#include +#include +#include +#include +#include +#include +#include +#include +#include +#include +#include +#include +#include + +#define REQ_SYNC 1 +#define REQ_ASYNC 0 + +/* + * See Documentation/block/as-iosched.txt + */ + +/* + * max time before a read is submitted. + */ +#define default_read_expire (HZ / 8) + +/* + * ditto for writes, these limits are not hard, even + * if the disk is capable of satisfying them. + */ +#define default_write_expire (HZ / 4) + +/* + * read_batch_expire describes how long we will allow a stream of reads to + * persist before looking to see whether it is time to switch over to writes. + */ +#define default_read_batch_expire (HZ / 2) + +/* + * write_batch_expire describes how long we want a stream of writes to run for. + * This is not a hard limit, but a target we set for the auto-tuning thingy. + * See, the problem is: we can send a lot of writes to disk cache / TCQ in + * a short amount of time... + */ +#define default_write_batch_expire (HZ / 8) + +/* + * max time we may wait to anticipate a read (default around 6ms) + */ +#define default_antic_expire ((HZ / 150) ? HZ / 150 : 1) + +/* + * Keep track of up to 20ms thinktimes. We can go as big as we like here, + * however huge values tend to interfere and not decay fast enough. A program + * might be in a non-io phase of operation. Waiting on user input for example, + * or doing a lengthy computation. A small penalty can be justified there, and + * will still catch out those processes that constantly have large thinktimes. + */ +#define MAX_THINKTIME (HZ/50UL) + +/* Bits in as_io_context.state */ +enum as_io_states { + AS_TASK_RUNNING=0, /* Process has not exitted */ + AS_TASK_IOSTARTED, /* Process has started some IO */ + AS_TASK_IORUNNING, /* Process has completed some IO */ +}; + +enum anticipation_status { + ANTIC_OFF=0, /* Not anticipating (normal operation) */ + ANTIC_WAIT_REQ, /* The last read has not yet completed */ + ANTIC_WAIT_NEXT, /* Currently anticipating a request vs + last read (which has completed) */ + ANTIC_FINISHED, /* Anticipating but have found a candidate + * or timed out */ +}; + +struct as_data { + /* + * run time data + */ + + struct request_queue *q; /* the "owner" queue */ + + /* + * requests (as_rq s) are present on both sort_list and fifo_list + */ + struct rb_root sort_list[2]; + struct list_head fifo_list[2]; + + struct as_rq *next_arq[2]; /* next in sort order */ + sector_t last_sector[2]; /* last REQ_SYNC & REQ_ASYNC sectors */ + struct list_head *hash; /* request hash */ + + unsigned long exit_prob; /* probability a task will exit while + being waited on */ + unsigned long new_ttime_total; /* mean thinktime on new proc */ + unsigned long new_ttime_mean; + u64 new_seek_total; /* mean seek on new proc */ + sector_t new_seek_mean; + + unsigned long current_batch_expires; + unsigned long last_check_fifo[2]; + int changed_batch; /* 1: waiting for old batch to end */ + int new_batch; /* 1: waiting on first read complete */ + int batch_data_dir; /* current batch REQ_SYNC / REQ_ASYNC */ + int write_batch_count; /* max # of reqs in a write batch */ + int current_write_count; /* how many requests left this batch */ + int write_batch_idled; /* has the write batch gone idle? */ + mempool_t *arq_pool; + + enum anticipation_status antic_status; + unsigned long antic_start; /* jiffies: when it started */ + struct timer_list antic_timer; /* anticipatory scheduling timer */ + struct work_struct antic_work; /* Deferred unplugging */ + struct io_context *io_context; /* Identify the expected process */ + int ioc_finished; /* IO associated with io_context is finished */ + int nr_dispatched; + + /* + * settings that change how the i/o scheduler behaves + */ + unsigned long fifo_expire[2]; + unsigned long batch_expire[2]; + unsigned long antic_expire; +}; + +#define list_entry_fifo(ptr) list_entry((ptr), struct as_rq, fifo) + +/* + * per-request data. + */ +enum arq_state { + AS_RQ_NEW=0, /* New - not referenced and not on any lists */ + AS_RQ_QUEUED, /* In the request queue. It belongs to the + scheduler */ + AS_RQ_DISPATCHED, /* On the dispatch list. It belongs to the + driver now */ + AS_RQ_PRESCHED, /* Debug poisoning for requests being used */ + AS_RQ_REMOVED, + AS_RQ_MERGED, + AS_RQ_POSTSCHED, /* when they shouldn't be */ +}; + +struct as_rq { + /* + * rbtree index, key is the starting offset + */ + struct rb_node rb_node; + sector_t rb_key; + + struct request *request; + + struct io_context *io_context; /* The submitting task */ + + /* + * request hash, key is the ending offset (for back merge lookup) + */ + struct list_head hash; + unsigned int on_hash; + + /* + * expire fifo + */ + struct list_head fifo; + unsigned long expires; + + unsigned int is_sync; + enum arq_state state; +}; + +#define RQ_DATA(rq) ((struct as_rq *) (rq)->elevator_private) + +static kmem_cache_t *arq_pool; + +/* + * IO Context helper functions + */ + +/* Called to deallocate the as_io_context */ +static void free_as_io_context(struct as_io_context *aic) +{ + kfree(aic); +} + +/* Called when the task exits */ +static void exit_as_io_context(struct as_io_context *aic) +{ + WARN_ON(!test_bit(AS_TASK_RUNNING, &aic->state)); + clear_bit(AS_TASK_RUNNING, &aic->state); +} + +static struct as_io_context *alloc_as_io_context(void) +{ + struct as_io_context *ret; + + ret = kmalloc(sizeof(*ret), GFP_ATOMIC); + if (ret) { + ret->dtor = free_as_io_context; + ret->exit = exit_as_io_context; + ret->state = 1 << AS_TASK_RUNNING; + atomic_set(&ret->nr_queued, 0); + atomic_set(&ret->nr_dispatched, 0); + spin_lock_init(&ret->lock); + ret->ttime_total = 0; + ret->ttime_samples = 0; + ret->ttime_mean = 0; + ret->seek_total = 0; + ret->seek_samples = 0; + ret->seek_mean = 0; + } + + return ret; +} + +/* + * If the current task has no AS IO context then create one and initialise it. + * Then take a ref on the task's io context and return it. + */ +static struct io_context *as_get_io_context(void) +{ + struct io_context *ioc = get_io_context(GFP_ATOMIC); + if (ioc && !ioc->aic) { + ioc->aic = alloc_as_io_context(); + if (!ioc->aic) { + put_io_context(ioc); + ioc = NULL; + } + } + return ioc; +} + +static void as_put_io_context(struct as_rq *arq) +{ + struct as_io_context *aic; + + if (unlikely(!arq->io_context)) + return; + + aic = arq->io_context->aic; + + if (arq->is_sync == REQ_SYNC && aic) { + spin_lock(&aic->lock); + set_bit(AS_TASK_IORUNNING, &aic->state); + aic->last_end_request = jiffies; + spin_unlock(&aic->lock); + } + + put_io_context(arq->io_context); +} + +/* + * the back merge hash support functions + */ +static const int as_hash_shift = 6; +#define AS_HASH_BLOCK(sec) ((sec) >> 3) +#define AS_HASH_FN(sec) (hash_long(AS_HASH_BLOCK((sec)), as_hash_shift)) +#define AS_HASH_ENTRIES (1 << as_hash_shift) +#define rq_hash_key(rq) ((rq)->sector + (rq)->nr_sectors) +#define list_entry_hash(ptr) list_entry((ptr), struct as_rq, hash) + +static inline void __as_del_arq_hash(struct as_rq *arq) +{ + arq->on_hash = 0; + list_del_init(&arq->hash); +} + +static inline void as_del_arq_hash(struct as_rq *arq) +{ + if (arq->on_hash) + __as_del_arq_hash(arq); +} + +static void as_add_arq_hash(struct as_data *ad, struct as_rq *arq) +{ + struct request *rq = arq->request; + + BUG_ON(arq->on_hash); + + arq->on_hash = 1; + list_add(&arq->hash, &ad->hash[AS_HASH_FN(rq_hash_key(rq))]); +} + +/* + * move hot entry to front of chain + */ +static inline void as_hot_arq_hash(struct as_data *ad, struct as_rq *arq) +{ + struct request *rq = arq->request; + struct list_head *head = &ad->hash[AS_HASH_FN(rq_hash_key(rq))]; + + if (!arq->on_hash) { + WARN_ON(1); + return; + } + + if (arq->hash.prev != head) { + list_del(&arq->hash); + list_add(&arq->hash, head); + } +} + +static struct request *as_find_arq_hash(struct as_data *ad, sector_t offset) +{ + struct list_head *hash_list = &ad->hash[AS_HASH_FN(offset)]; + struct list_head *entry, *next = hash_list->next; + + while ((entry = next) != hash_list) { + struct as_rq *arq = list_entry_hash(entry); + struct request *__rq = arq->request; + + next = entry->next; + + BUG_ON(!arq->on_hash); + + if (!rq_mergeable(__rq)) { + as_del_arq_hash(arq); + continue; + } + + if (rq_hash_key(__rq) == offset) + return __rq; + } + + return NULL; +} + +/* + * rb tree support functions + */ +#define RB_NONE (2) +#define RB_EMPTY(root) ((root)->rb_node == NULL) +#define ON_RB(node) ((node)->rb_color != RB_NONE) +#define RB_CLEAR(node) ((node)->rb_color = RB_NONE) +#define rb_entry_arq(node) rb_entry((node), struct as_rq, rb_node) +#define ARQ_RB_ROOT(ad, arq) (&(ad)->sort_list[(arq)->is_sync]) +#define rq_rb_key(rq) (rq)->sector + +/* + * as_find_first_arq finds the first (lowest sector numbered) request + * for the specified data_dir. Used to sweep back to the start of the disk + * (1-way elevator) after we process the last (highest sector) request. + */ +static struct as_rq *as_find_first_arq(struct as_data *ad, int data_dir) +{ + struct rb_node *n = ad->sort_list[data_dir].rb_node; + + if (n == NULL) + return NULL; + + for (;;) { + if (n->rb_left == NULL) + return rb_entry_arq(n); + + n = n->rb_left; + } +} + +/* + * Add the request to the rb tree if it is unique. If there is an alias (an + * existing request against the same sector), which can happen when using + * direct IO, then return the alias. + */ +static struct as_rq *as_add_arq_rb(struct as_data *ad, struct as_rq *arq) +{ + struct rb_node **p = &ARQ_RB_ROOT(ad, arq)->rb_node; + struct rb_node *parent = NULL; + struct as_rq *__arq; + struct request *rq = arq->request; + + arq->rb_key = rq_rb_key(rq); + + while (*p) { + parent = *p; + __arq = rb_entry_arq(parent); + + if (arq->rb_key < __arq->rb_key) + p = &(*p)->rb_left; + else if (arq->rb_key > __arq->rb_key) + p = &(*p)->rb_right; + else + return __arq; + } + + rb_link_node(&arq->rb_node, parent, p); + rb_insert_color(&arq->rb_node, ARQ_RB_ROOT(ad, arq)); + + return NULL; +} + +static inline void as_del_arq_rb(struct as_data *ad, struct as_rq *arq) +{ + if (!ON_RB(&arq->rb_node)) { + WARN_ON(1); + return; + } + + rb_erase(&arq->rb_node, ARQ_RB_ROOT(ad, arq)); + RB_CLEAR(&arq->rb_node); +} + +static struct request * +as_find_arq_rb(struct as_data *ad, sector_t sector, int data_dir) +{ + struct rb_node *n = ad->sort_list[data_dir].rb_node; + struct as_rq *arq; + + while (n) { + arq = rb_entry_arq(n); + + if (sector < arq->rb_key) + n = n->rb_left; + else if (sector > arq->rb_key) + n = n->rb_right; + else + return arq->request; + } + + return NULL; +} + +/* + * IO Scheduler proper + */ + +#define MAXBACK (1024 * 1024) /* + * Maximum distance the disk will go backward + * for a request. + */ + +#define BACK_PENALTY 2 + +/* + * as_choose_req selects the preferred one of two requests of the same data_dir + * ignoring time - eg. timeouts, which is the job of as_dispatch_request + */ +static struct as_rq * +as_choose_req(struct as_data *ad, struct as_rq *arq1, struct as_rq *arq2) +{ + int data_dir; + sector_t last, s1, s2, d1, d2; + int r1_wrap=0, r2_wrap=0; /* requests are behind the disk head */ + const sector_t maxback = MAXBACK; + + if (arq1 == NULL || arq1 == arq2) + return arq2; + if (arq2 == NULL) + return arq1; + + data_dir = arq1->is_sync; + + last = ad->last_sector[data_dir]; + s1 = arq1->request->sector; + s2 = arq2->request->sector; + + BUG_ON(data_dir != arq2->is_sync); + + /* + * Strict one way elevator _except_ in the case where we allow + * short backward seeks which are biased as twice the cost of a + * similar forward seek. + */ + if (s1 >= last) + d1 = s1 - last; + else if (s1+maxback >= last) + d1 = (last - s1)*BACK_PENALTY; + else { + r1_wrap = 1; + d1 = 0; /* shut up, gcc */ + } + + if (s2 >= last) + d2 = s2 - last; + else if (s2+maxback >= last) + d2 = (last - s2)*BACK_PENALTY; + else { + r2_wrap = 1; + d2 = 0; + } + + /* Found required data */ + if (!r1_wrap && r2_wrap) + return arq1; + else if (!r2_wrap && r1_wrap) + return arq2; + else if (r1_wrap && r2_wrap) { + /* both behind the head */ + if (s1 <= s2) + return arq1; + else + return arq2; + } + + /* Both requests in front of the head */ + if (d1 < d2) + return arq1; + else if (d2 < d1) + return arq2; + else { + if (s1 >= s2) + return arq1; + else + return arq2; + } +} + +/* + * as_find_next_arq finds the next request after @prev in elevator order. + * this with as_choose_req form the basis for how the scheduler chooses + * what request to process next. Anticipation works on top of this. + */ +static struct as_rq *as_find_next_arq(struct as_data *ad, struct as_rq *last) +{ + const int data_dir = last->is_sync; + struct as_rq *ret; + struct rb_node *rbnext = rb_next(&last->rb_node); + struct rb_node *rbprev = rb_prev(&last->rb_node); + struct as_rq *arq_next, *arq_prev; + + BUG_ON(!ON_RB(&last->rb_node)); + + if (rbprev) + arq_prev = rb_entry_arq(rbprev); + else + arq_prev = NULL; + + if (rbnext) + arq_next = rb_entry_arq(rbnext); + else { + arq_next = as_find_first_arq(ad, data_dir); + if (arq_next == last) + arq_next = NULL; + } + + ret = as_choose_req(ad, arq_next, arq_prev); + + return ret; +} + +/* + * anticipatory scheduling functions follow + */ + +/* + * as_antic_expired tells us when we have anticipated too long. + * The funny "absolute difference" math on the elapsed time is to handle + * jiffy wraps, and disks which have been idle for 0x80000000 jiffies. + */ +static int as_antic_expired(struct as_data *ad) +{ + long delta_jif; + + delta_jif = jiffies - ad->antic_start; + if (unlikely(delta_jif < 0)) + delta_jif = -delta_jif; + if (delta_jif < ad->antic_expire) + return 0; + + return 1; +} + +/* + * as_antic_waitnext starts anticipating that a nice request will soon be + * submitted. See also as_antic_waitreq + */ +static void as_antic_waitnext(struct as_data *ad) +{ + unsigned long timeout; + + BUG_ON(ad->antic_status != ANTIC_OFF + && ad->antic_status != ANTIC_WAIT_REQ); + + timeout = ad->antic_start + ad->antic_expire; + + mod_timer(&ad->antic_timer, timeout); + + ad->antic_status = ANTIC_WAIT_NEXT; +} + +/* + * as_antic_waitreq starts anticipating. We don't start timing the anticipation + * until the request that we're anticipating on has finished. This means we + * are timing from when the candidate process wakes up hopefully. + */ +static void as_antic_waitreq(struct as_data *ad) +{ + BUG_ON(ad->antic_status == ANTIC_FINISHED); + if (ad->antic_status == ANTIC_OFF) { + if (!ad->io_context || ad->ioc_finished) + as_antic_waitnext(ad); + else + ad->antic_status = ANTIC_WAIT_REQ; + } +} + +/* + * This is called directly by the functions in this file to stop anticipation. + * We kill the timer and schedule a call to the request_fn asap. + */ +static void as_antic_stop(struct as_data *ad) +{ + int status = ad->antic_status; + + if (status == ANTIC_WAIT_REQ || status == ANTIC_WAIT_NEXT) { + if (status == ANTIC_WAIT_NEXT) + del_timer(&ad->antic_timer); + ad->antic_status = ANTIC_FINISHED; + /* see as_work_handler */ + kblockd_schedule_work(&ad->antic_work); + } +} + +/* + * as_antic_timeout is the timer function set by as_antic_waitnext. + */ +static void as_antic_timeout(unsigned long data) +{ + struct request_queue *q = (struct request_queue *)data; + struct as_data *ad = q->elevator->elevator_data; + unsigned long flags; + + spin_lock_irqsave(q->queue_lock, flags); + if (ad->antic_status == ANTIC_WAIT_REQ + || ad->antic_status == ANTIC_WAIT_NEXT) { + struct as_io_context *aic = ad->io_context->aic; + + ad->antic_status = ANTIC_FINISHED; + kblockd_schedule_work(&ad->antic_work); + + if (aic->ttime_samples == 0) { + /* process anticipated on has exitted or timed out*/ + ad->exit_prob = (7*ad->exit_prob + 256)/8; + } + } + spin_unlock_irqrestore(q->queue_lock, flags); +} + +/* + * as_close_req decides if one request is considered "close" to the + * previous one issued. + */ +static int as_close_req(struct as_data *ad, struct as_rq *arq) +{ + unsigned long delay; /* milliseconds */ + sector_t last = ad->last_sector[ad->batch_data_dir]; + sector_t next = arq->request->sector; + sector_t delta; /* acceptable close offset (in sectors) */ + + if (ad->antic_status == ANTIC_OFF || !ad->ioc_finished) + delay = 0; + else + delay = ((jiffies - ad->antic_start) * 1000) / HZ; + + if (delay <= 1) + delta = 64; + else if (delay <= 20 && delay <= ad->antic_expire) + delta = 64 << (delay-1); + else + return 1; + + return (last - (delta>>1) <= next) && (next <= last + delta); +} + +/* + * as_can_break_anticipation returns true if we have been anticipating this + * request. + * + * It also returns true if the process against which we are anticipating + * submits a write - that's presumably an fsync, O_SYNC write, etc. We want to + * dispatch it ASAP, because we know that application will not be submitting + * any new reads. + * + * If the task which has submitted the request has exitted, break anticipation. + * + * If this task has queued some other IO, do not enter enticipation. + */ +static int as_can_break_anticipation(struct as_data *ad, struct as_rq *arq) +{ + struct io_context *ioc; + struct as_io_context *aic; + sector_t s; + + ioc = ad->io_context; + BUG_ON(!ioc); + + if (arq && ioc == arq->io_context) { + /* request from same process */ + return 1; + } + + if (ad->ioc_finished && as_antic_expired(ad)) { + /* + * In this situation status should really be FINISHED, + * however the timer hasn't had the chance to run yet. + */ + return 1; + } + + aic = ioc->aic; + if (!aic) + return 0; + + if (!test_bit(AS_TASK_RUNNING, &aic->state)) { + /* process anticipated on has exitted */ + if (aic->ttime_samples == 0) + ad->exit_prob = (7*ad->exit_prob + 256)/8; + return 1; + } + + if (atomic_read(&aic->nr_queued) > 0) { + /* process has more requests queued */ + return 1; + } + + if (atomic_read(&aic->nr_dispatched) > 0) { + /* process has more requests dispatched */ + return 1; + } + + if (arq && arq->is_sync == REQ_SYNC && as_close_req(ad, arq)) { + /* + * Found a close request that is not one of ours. + * + * This makes close requests from another process reset + * our thinktime delay. Is generally useful when there are + * two or more cooperating processes working in the same + * area. + */ + spin_lock(&aic->lock); + aic->last_end_request = jiffies; + spin_unlock(&aic->lock); + return 1; + } + + + if (aic->ttime_samples == 0) { + if (ad->new_ttime_mean > ad->antic_expire) + return 1; + if (ad->exit_prob > 128) + return 1; + } else if (aic->ttime_mean > ad->antic_expire) { + /* the process thinks too much between requests */ + return 1; + } + + if (!arq) + return 0; + + if (ad->last_sector[REQ_SYNC] < arq->request->sector) + s = arq->request->sector - ad->last_sector[REQ_SYNC]; + else + s = ad->last_sector[REQ_SYNC] - arq->request->sector; + + if (aic->seek_samples == 0) { + /* + * Process has just started IO. Use past statistics to + * guage success possibility + */ + if (ad->new_seek_mean > s) { + /* this request is better than what we're expecting */ + return 1; + } + + } else { + if (aic->seek_mean > s) { + /* this request is better than what we're expecting */ + return 1; + } + } + + return 0; +} + +/* + * as_can_anticipate indicates weather we should either run arq + * or keep anticipating a better request. + */ +static int as_can_anticipate(struct as_data *ad, struct as_rq *arq) +{ + if (!ad->io_context) + /* + * Last request submitted was a write + */ + return 0; + + if (ad->antic_status == ANTIC_FINISHED) + /* + * Don't restart if we have just finished. Run the next request + */ + return 0; + + if (as_can_break_anticipation(ad, arq)) + /* + * This request is a good candidate. Don't keep anticipating, + * run it. + */ + return 0; + + /* + * OK from here, we haven't finished, and don't have a decent request! + * Status is either ANTIC_OFF so start waiting, + * ANTIC_WAIT_REQ so continue waiting for request to finish + * or ANTIC_WAIT_NEXT so continue waiting for an acceptable request. + * + */ + + return 1; +} + +static void as_update_thinktime(struct as_data *ad, struct as_io_context *aic, unsigned long ttime) +{ + /* fixed point: 1.0 == 1<<8 */ + if (aic->ttime_samples == 0) { + ad->new_ttime_total = (7*ad->new_ttime_total + 256*ttime) / 8; + ad->new_ttime_mean = ad->new_ttime_total / 256; + + ad->exit_prob = (7*ad->exit_prob)/8; + } + aic->ttime_samples = (7*aic->ttime_samples + 256) / 8; + aic->ttime_total = (7*aic->ttime_total + 256*ttime) / 8; + aic->ttime_mean = (aic->ttime_total + 128) / aic->ttime_samples; +} + +static void as_update_seekdist(struct as_data *ad, struct as_io_context *aic, sector_t sdist) +{ + u64 total; + + if (aic->seek_samples == 0) { + ad->new_seek_total = (7*ad->new_seek_total + 256*(u64)sdist)/8; + ad->new_seek_mean = ad->new_seek_total / 256; + } + + /* + * Don't allow the seek distance to get too large from the + * odd fragment, pagein, etc + */ + if (aic->seek_samples <= 60) /* second&third seek */ + sdist = min(sdist, (aic->seek_mean * 4) + 2*1024*1024); + else + sdist = min(sdist, (aic->seek_mean * 4) + 2*1024*64); + + aic->seek_samples = (7*aic->seek_samples + 256) / 8; + aic->seek_total = (7*aic->seek_total + (u64)256*sdist) / 8; + total = aic->seek_total + (aic->seek_samples/2); + do_div(total, aic->seek_samples); + aic->seek_mean = (sector_t)total; +} + +/* + * as_update_iohist keeps a decaying histogram of IO thinktimes, and + * updates @aic->ttime_mean based on that. It is called when a new + * request is queued. + */ +static void as_update_iohist(struct as_data *ad, struct as_io_context *aic, struct request *rq) +{ + struct as_rq *arq = RQ_DATA(rq); + int data_dir = arq->is_sync; + unsigned long thinktime; + sector_t seek_dist; + + if (aic == NULL) + return; + + if (data_dir == REQ_SYNC) { + unsigned long in_flight = atomic_read(&aic->nr_queued) + + atomic_read(&aic->nr_dispatched); + spin_lock(&aic->lock); + if (test_bit(AS_TASK_IORUNNING, &aic->state) || + test_bit(AS_TASK_IOSTARTED, &aic->state)) { + /* Calculate read -> read thinktime */ + if (test_bit(AS_TASK_IORUNNING, &aic->state) + && in_flight == 0) { + thinktime = jiffies - aic->last_end_request; + thinktime = min(thinktime, MAX_THINKTIME-1); + } else + thinktime = 0; + as_update_thinktime(ad, aic, thinktime); + + /* Calculate read -> read seek distance */ + if (aic->last_request_pos < rq->sector) + seek_dist = rq->sector - aic->last_request_pos; + else + seek_dist = aic->last_request_pos - rq->sector; + as_update_seekdist(ad, aic, seek_dist); + } + aic->last_request_pos = rq->sector + rq->nr_sectors; + set_bit(AS_TASK_IOSTARTED, &aic->state); + spin_unlock(&aic->lock); + } +} + +/* + * as_update_arq must be called whenever a request (arq) is added to + * the sort_list. This function keeps caches up to date, and checks if the + * request might be one we are "anticipating" + */ +static void as_update_arq(struct as_data *ad, struct as_rq *arq) +{ + const int data_dir = arq->is_sync; + + /* keep the next_arq cache up to date */ + ad->next_arq[data_dir] = as_choose_req(ad, arq, ad->next_arq[data_dir]); + + /* + * have we been anticipating this request? + * or does it come from the same process as the one we are anticipating + * for? + */ + if (ad->antic_status == ANTIC_WAIT_REQ + || ad->antic_status == ANTIC_WAIT_NEXT) { + if (as_can_break_anticipation(ad, arq)) + as_antic_stop(ad); + } +} + +/* + * Gathers timings and resizes the write batch automatically + */ +static void update_write_batch(struct as_data *ad) +{ + unsigned long batch = ad->batch_expire[REQ_ASYNC]; + long write_time; + + write_time = (jiffies - ad->current_batch_expires) + batch; + if (write_time < 0) + write_time = 0; + + if (write_time > batch && !ad->write_batch_idled) { + if (write_time > batch * 3) + ad->write_batch_count /= 2; + else + ad->write_batch_count--; + } else if (write_time < batch && ad->current_write_count == 0) { + if (batch > write_time * 3) + ad->write_batch_count *= 2; + else + ad->write_batch_count++; + } + + if (ad->write_batch_count < 1) + ad->write_batch_count = 1; +} + +/* + * as_completed_request is to be called when a request has completed and + * returned something to the requesting process, be it an error or data. + */ +static void as_completed_request(request_queue_t *q, struct request *rq) +{ + struct as_data *ad = q->elevator->elevator_data; + struct as_rq *arq = RQ_DATA(rq); + + WARN_ON(!list_empty(&rq->queuelist)); + + if (arq->state != AS_RQ_REMOVED) { + printk("arq->state %d\n", arq->state); + WARN_ON(1); + goto out; + } + + if (ad->changed_batch && ad->nr_dispatched == 1) { + kblockd_schedule_work(&ad->antic_work); + ad->changed_batch = 0; + + if (ad->batch_data_dir == REQ_SYNC) + ad->new_batch = 1; + } + WARN_ON(ad->nr_dispatched == 0); + ad->nr_dispatched--; + + /* + * Start counting the batch from when a request of that direction is + * actually serviced. This should help devices with big TCQ windows + * and writeback caches + */ + if (ad->new_batch && ad->batch_data_dir == arq->is_sync) { + update_write_batch(ad); + ad->current_batch_expires = jiffies + + ad->batch_expire[REQ_SYNC]; + ad->new_batch = 0; + } + + if (ad->io_context == arq->io_context && ad->io_context) { + ad->antic_start = jiffies; + ad->ioc_finished = 1; + if (ad->antic_status == ANTIC_WAIT_REQ) { + /* + * We were waiting on this request, now anticipate + * the next one + */ + as_antic_waitnext(ad); + } + } + + as_put_io_context(arq); +out: + arq->state = AS_RQ_POSTSCHED; +} + +/* + * as_remove_queued_request removes a request from the pre dispatch queue + * without updating refcounts. It is expected the caller will drop the + * reference unless it replaces the request at somepart of the elevator + * (ie. the dispatch queue) + */ +static void as_remove_queued_request(request_queue_t *q, struct request *rq) +{ + struct as_rq *arq = RQ_DATA(rq); + const int data_dir = arq->is_sync; + struct as_data *ad = q->elevator->elevator_data; + + WARN_ON(arq->state != AS_RQ_QUEUED); + + if (arq->io_context && arq->io_context->aic) { + BUG_ON(!atomic_read(&arq->io_context->aic->nr_queued)); + atomic_dec(&arq->io_context->aic->nr_queued); + } + + /* + * Update the "next_arq" cache if we are about to remove its + * entry + */ + if (ad->next_arq[data_dir] == arq) + ad->next_arq[data_dir] = as_find_next_arq(ad, arq); + + list_del_init(&arq->fifo); + as_del_arq_hash(arq); + as_del_arq_rb(ad, arq); +} + +/* + * as_fifo_expired returns 0 if there are no expired reads on the fifo, + * 1 otherwise. It is ratelimited so that we only perform the check once per + * `fifo_expire' interval. Otherwise a large number of expired requests + * would create a hopeless seekstorm. + * + * See as_antic_expired comment. + */ +static int as_fifo_expired(struct as_data *ad, int adir) +{ + struct as_rq *arq; + long delta_jif; + + delta_jif = jiffies - ad->last_check_fifo[adir]; + if (unlikely(delta_jif < 0)) + delta_jif = -delta_jif; + if (delta_jif < ad->fifo_expire[adir]) + return 0; + + ad->last_check_fifo[adir] = jiffies; + + if (list_empty(&ad->fifo_list[adir])) + return 0; + + arq = list_entry_fifo(ad->fifo_list[adir].next); + + return time_after(jiffies, arq->expires); +} + +/* + * as_batch_expired returns true if the current batch has expired. A batch + * is a set of reads or a set of writes. + */ +static inline int as_batch_expired(struct as_data *ad) +{ + if (ad->changed_batch || ad->new_batch) + return 0; + + if (ad->batch_data_dir == REQ_SYNC) + /* TODO! add a check so a complete fifo gets written? */ + return time_after(jiffies, ad->current_batch_expires); + + return time_after(jiffies, ad->current_batch_expires) + || ad->current_write_count == 0; +} + +/* + * move an entry to dispatch queue + */ +static void as_move_to_dispatch(struct as_data *ad, struct as_rq *arq) +{ + struct request *rq = arq->request; + const int data_dir = arq->is_sync; + + BUG_ON(!ON_RB(&arq->rb_node)); + + as_antic_stop(ad); + ad->antic_status = ANTIC_OFF; + + /* + * This has to be set in order to be correctly updated by + * as_find_next_arq + */ + ad->last_sector[data_dir] = rq->sector + rq->nr_sectors; + + if (data_dir == REQ_SYNC) { + /* In case we have to anticipate after this */ + copy_io_context(&ad->io_context, &arq->io_context); + } else { + if (ad->io_context) { + put_io_context(ad->io_context); + ad->io_context = NULL; + } + + if (ad->current_write_count != 0) + ad->current_write_count--; + } + ad->ioc_finished = 0; + + ad->next_arq[data_dir] = as_find_next_arq(ad, arq); + + /* + * take it off the sort and fifo list, add to dispatch queue + */ + while (!list_empty(&rq->queuelist)) { + struct request *__rq = list_entry_rq(rq->queuelist.next); + struct as_rq *__arq = RQ_DATA(__rq); + + list_del(&__rq->queuelist); + + elv_dispatch_add_tail(ad->q, __rq); + + if (__arq->io_context && __arq->io_context->aic) + atomic_inc(&__arq->io_context->aic->nr_dispatched); + + WARN_ON(__arq->state != AS_RQ_QUEUED); + __arq->state = AS_RQ_DISPATCHED; + + ad->nr_dispatched++; + } + + as_remove_queued_request(ad->q, rq); + WARN_ON(arq->state != AS_RQ_QUEUED); + + elv_dispatch_sort(ad->q, rq); + + arq->state = AS_RQ_DISPATCHED; + if (arq->io_context && arq->io_context->aic) + atomic_inc(&arq->io_context->aic->nr_dispatched); + ad->nr_dispatched++; +} + +/* + * as_dispatch_request selects the best request according to + * read/write expire, batch expire, etc, and moves it to the dispatch + * queue. Returns 1 if a request was found, 0 otherwise. + */ +static int as_dispatch_request(request_queue_t *q, int force) +{ + struct as_data *ad = q->elevator->elevator_data; + struct as_rq *arq; + const int reads = !list_empty(&ad->fifo_list[REQ_SYNC]); + const int writes = !list_empty(&ad->fifo_list[REQ_ASYNC]); + + if (unlikely(force)) { + /* + * Forced dispatch, accounting is useless. Reset + * accounting states and dump fifo_lists. Note that + * batch_data_dir is reset to REQ_SYNC to avoid + * screwing write batch accounting as write batch + * accounting occurs on W->R transition. + */ + int dispatched = 0; + + ad->batch_data_dir = REQ_SYNC; + ad->changed_batch = 0; + ad->new_batch = 0; + + while (ad->next_arq[REQ_SYNC]) { + as_move_to_dispatch(ad, ad->next_arq[REQ_SYNC]); + dispatched++; + } + ad->last_check_fifo[REQ_SYNC] = jiffies; + + while (ad->next_arq[REQ_ASYNC]) { + as_move_to_dispatch(ad, ad->next_arq[REQ_ASYNC]); + dispatched++; + } + ad->last_check_fifo[REQ_ASYNC] = jiffies; + + return dispatched; + } + + /* Signal that the write batch was uncontended, so we can't time it */ + if (ad->batch_data_dir == REQ_ASYNC && !reads) { + if (ad->current_write_count == 0 || !writes) + ad->write_batch_idled = 1; + } + + if (!(reads || writes) + || ad->antic_status == ANTIC_WAIT_REQ + || ad->antic_status == ANTIC_WAIT_NEXT + || ad->changed_batch) + return 0; + + if (!(reads && writes && as_batch_expired(ad)) ) { + /* + * batch is still running or no reads or no writes + */ + arq = ad->next_arq[ad->batch_data_dir]; + + if (ad->batch_data_dir == REQ_SYNC && ad->antic_expire) { + if (as_fifo_expired(ad, REQ_SYNC)) + goto fifo_expired; + + if (as_can_anticipate(ad, arq)) { + as_antic_waitreq(ad); + return 0; + } + } + + if (arq) { + /* we have a "next request" */ + if (reads && !writes) + ad->current_batch_expires = + jiffies + ad->batch_expire[REQ_SYNC]; + goto dispatch_request; + } + } + + /* + * at this point we are not running a batch. select the appropriate + * data direction (read / write) + */ + + if (reads) { + BUG_ON(RB_EMPTY(&ad->sort_list[REQ_SYNC])); + + if (writes && ad->batch_data_dir == REQ_SYNC) + /* + * Last batch was a read, switch to writes + */ + goto dispatch_writes; + + if (ad->batch_data_dir == REQ_ASYNC) { + WARN_ON(ad->new_batch); + ad->changed_batch = 1; + } + ad->batch_data_dir = REQ_SYNC; + arq = list_entry_fifo(ad->fifo_list[ad->batch_data_dir].next); + ad->last_check_fifo[ad->batch_data_dir] = jiffies; + goto dispatch_request; + } + + /* + * the last batch was a read + */ + + if (writes) { +dispatch_writes: + BUG_ON(RB_EMPTY(&ad->sort_list[REQ_ASYNC])); + + if (ad->batch_data_dir == REQ_SYNC) { + ad->changed_batch = 1; + + /* + * new_batch might be 1 when the queue runs out of + * reads. A subsequent submission of a write might + * cause a change of batch before the read is finished. + */ + ad->new_batch = 0; + } + ad->batch_data_dir = REQ_ASYNC; + ad->current_write_count = ad->write_batch_count; + ad->write_batch_idled = 0; + arq = ad->next_arq[ad->batch_data_dir]; + goto dispatch_request; + } + + BUG(); + return 0; + +dispatch_request: + /* + * If a request has expired, service it. + */ + + if (as_fifo_expired(ad, ad->batch_data_dir)) { +fifo_expired: + arq = list_entry_fifo(ad->fifo_list[ad->batch_data_dir].next); + BUG_ON(arq == NULL); + } + + if (ad->changed_batch) { + WARN_ON(ad->new_batch); + + if (ad->nr_dispatched) + return 0; + + if (ad->batch_data_dir == REQ_ASYNC) + ad->current_batch_expires = jiffies + + ad->batch_expire[REQ_ASYNC]; + else + ad->new_batch = 1; + + ad->changed_batch = 0; + } + + /* + * arq is the selected appropriate request. + */ + as_move_to_dispatch(ad, arq); + + return 1; +} + +/* + * Add arq to a list behind alias + */ +static inline void +as_add_aliased_request(struct as_data *ad, struct as_rq *arq, struct as_rq *alias) +{ + struct request *req = arq->request; + struct list_head *insert = alias->request->queuelist.prev; + + /* + * Transfer list of aliases + */ + while (!list_empty(&req->queuelist)) { + struct request *__rq = list_entry_rq(req->queuelist.next); + struct as_rq *__arq = RQ_DATA(__rq); + + list_move_tail(&__rq->queuelist, &alias->request->queuelist); + + WARN_ON(__arq->state != AS_RQ_QUEUED); + } + + /* + * Another request with the same start sector on the rbtree. + * Link this request to that sector. They are untangled in + * as_move_to_dispatch + */ + list_add(&arq->request->queuelist, insert); + + /* + * Don't want to have to handle merges. + */ + as_del_arq_hash(arq); + arq->request->flags |= REQ_NOMERGE; +} + +/* + * add arq to rbtree and fifo + */ +static void as_add_request(request_queue_t *q, struct request *rq) +{ + struct as_data *ad = q->elevator->elevator_data; + struct as_rq *arq = RQ_DATA(rq); + struct as_rq *alias; + int data_dir; + + if (arq->state != AS_RQ_PRESCHED) { + printk("arq->state: %d\n", arq->state); + WARN_ON(1); + } + arq->state = AS_RQ_NEW; + + if (rq_data_dir(arq->request) == READ + || current->flags&PF_SYNCWRITE) + arq->is_sync = 1; + else + arq->is_sync = 0; + data_dir = arq->is_sync; + + arq->io_context = as_get_io_context(); + + if (arq->io_context) { + as_update_iohist(ad, arq->io_context->aic, arq->request); + atomic_inc(&arq->io_context->aic->nr_queued); + } + + alias = as_add_arq_rb(ad, arq); + if (!alias) { + /* + * set expire time (only used for reads) and add to fifo list + */ + arq->expires = jiffies + ad->fifo_expire[data_dir]; + list_add_tail(&arq->fifo, &ad->fifo_list[data_dir]); + + if (rq_mergeable(arq->request)) + as_add_arq_hash(ad, arq); + as_update_arq(ad, arq); /* keep state machine up to date */ + + } else { + as_add_aliased_request(ad, arq, alias); + + /* + * have we been anticipating this request? + * or does it come from the same process as the one we are + * anticipating for? + */ + if (ad->antic_status == ANTIC_WAIT_REQ + || ad->antic_status == ANTIC_WAIT_NEXT) { + if (as_can_break_anticipation(ad, arq)) + as_antic_stop(ad); + } + } + + arq->state = AS_RQ_QUEUED; +} + +static void as_activate_request(request_queue_t *q, struct request *rq) +{ + struct as_rq *arq = RQ_DATA(rq); + + WARN_ON(arq->state != AS_RQ_DISPATCHED); + arq->state = AS_RQ_REMOVED; + if (arq->io_context && arq->io_context->aic) + atomic_dec(&arq->io_context->aic->nr_dispatched); +} + +static void as_deactivate_request(request_queue_t *q, struct request *rq) +{ + struct as_rq *arq = RQ_DATA(rq); + + WARN_ON(arq->state != AS_RQ_REMOVED); + arq->state = AS_RQ_DISPATCHED; + if (arq->io_context && arq->io_context->aic) + atomic_inc(&arq->io_context->aic->nr_dispatched); +} + +/* + * as_queue_empty tells us if there are requests left in the device. It may + * not be the case that a driver can get the next request even if the queue + * is not empty - it is used in the block layer to check for plugging and + * merging opportunities + */ +static int as_queue_empty(request_queue_t *q) +{ + struct as_data *ad = q->elevator->elevator_data; + + return list_empty(&ad->fifo_list[REQ_ASYNC]) + && list_empty(&ad->fifo_list[REQ_SYNC]); +} + +static struct request * +as_former_request(request_queue_t *q, struct request *rq) +{ + struct as_rq *arq = RQ_DATA(rq); + struct rb_node *rbprev = rb_prev(&arq->rb_node); + struct request *ret = NULL; + + if (rbprev) + ret = rb_entry_arq(rbprev)->request; + + return ret; +} + +static struct request * +as_latter_request(request_queue_t *q, struct request *rq) +{ + struct as_rq *arq = RQ_DATA(rq); + struct rb_node *rbnext = rb_next(&arq->rb_node); + struct request *ret = NULL; + + if (rbnext) + ret = rb_entry_arq(rbnext)->request; + + return ret; +} + +static int +as_merge(request_queue_t *q, struct request **req, struct bio *bio) +{ + struct as_data *ad = q->elevator->elevator_data; + sector_t rb_key = bio->bi_sector + bio_sectors(bio); + struct request *__rq; + int ret; + + /* + * see if the merge hash can satisfy a back merge + */ + __rq = as_find_arq_hash(ad, bio->bi_sector); + if (__rq) { + BUG_ON(__rq->sector + __rq->nr_sectors != bio->bi_sector); + + if (elv_rq_merge_ok(__rq, bio)) { + ret = ELEVATOR_BACK_MERGE; + goto out; + } + } + + /* + * check for front merge + */ + __rq = as_find_arq_rb(ad, rb_key, bio_data_dir(bio)); + if (__rq) { + BUG_ON(rb_key != rq_rb_key(__rq)); + + if (elv_rq_merge_ok(__rq, bio)) { + ret = ELEVATOR_FRONT_MERGE; + goto out; + } + } + + return ELEVATOR_NO_MERGE; +out: + if (ret) { + if (rq_mergeable(__rq)) + as_hot_arq_hash(ad, RQ_DATA(__rq)); + } + *req = __rq; + return ret; +} + +static void as_merged_request(request_queue_t *q, struct request *req) +{ + struct as_data *ad = q->elevator->elevator_data; + struct as_rq *arq = RQ_DATA(req); + + /* + * hash always needs to be repositioned, key is end sector + */ + as_del_arq_hash(arq); + as_add_arq_hash(ad, arq); + + /* + * if the merge was a front merge, we need to reposition request + */ + if (rq_rb_key(req) != arq->rb_key) { + struct as_rq *alias, *next_arq = NULL; + + if (ad->next_arq[arq->is_sync] == arq) + next_arq = as_find_next_arq(ad, arq); + + /* + * Note! We should really be moving any old aliased requests + * off this request and try to insert them into the rbtree. We + * currently don't bother. Ditto the next function. + */ + as_del_arq_rb(ad, arq); + if ((alias = as_add_arq_rb(ad, arq)) ) { + list_del_init(&arq->fifo); + as_add_aliased_request(ad, arq, alias); + if (next_arq) + ad->next_arq[arq->is_sync] = next_arq; + } + /* + * Note! At this stage of this and the next function, our next + * request may not be optimal - eg the request may have "grown" + * behind the disk head. We currently don't bother adjusting. + */ + } +} + +static void +as_merged_requests(request_queue_t *q, struct request *req, + struct request *next) +{ + struct as_data *ad = q->elevator->elevator_data; + struct as_rq *arq = RQ_DATA(req); + struct as_rq *anext = RQ_DATA(next); + + BUG_ON(!arq); + BUG_ON(!anext); + + /* + * reposition arq (this is the merged request) in hash, and in rbtree + * in case of a front merge + */ + as_del_arq_hash(arq); + as_add_arq_hash(ad, arq); + + if (rq_rb_key(req) != arq->rb_key) { + struct as_rq *alias, *next_arq = NULL; + + if (ad->next_arq[arq->is_sync] == arq) + next_arq = as_find_next_arq(ad, arq); + + as_del_arq_rb(ad, arq); + if ((alias = as_add_arq_rb(ad, arq)) ) { + list_del_init(&arq->fifo); + as_add_aliased_request(ad, arq, alias); + if (next_arq) + ad->next_arq[arq->is_sync] = next_arq; + } + } + + /* + * if anext expires before arq, assign its expire time to arq + * and move into anext position (anext will be deleted) in fifo + */ + if (!list_empty(&arq->fifo) && !list_empty(&anext->fifo)) { + if (time_before(anext->expires, arq->expires)) { + list_move(&arq->fifo, &anext->fifo); + arq->expires = anext->expires; + /* + * Don't copy here but swap, because when anext is + * removed below, it must contain the unused context + */ + swap_io_context(&arq->io_context, &anext->io_context); + } + } + + /* + * Transfer list of aliases + */ + while (!list_empty(&next->queuelist)) { + struct request *__rq = list_entry_rq(next->queuelist.next); + struct as_rq *__arq = RQ_DATA(__rq); + + list_move_tail(&__rq->queuelist, &req->queuelist); + + WARN_ON(__arq->state != AS_RQ_QUEUED); + } + + /* + * kill knowledge of next, this one is a goner + */ + as_remove_queued_request(q, next); + as_put_io_context(anext); + + anext->state = AS_RQ_MERGED; +} + +/* + * This is executed in a "deferred" process context, by kblockd. It calls the + * driver's request_fn so the driver can submit that request. + * + * IMPORTANT! This guy will reenter the elevator, so set up all queue global + * state before calling, and don't rely on any state over calls. + * + * FIXME! dispatch queue is not a queue at all! + */ +static void as_work_handler(void *data) +{ + struct request_queue *q = data; + unsigned long flags; + + spin_lock_irqsave(q->queue_lock, flags); + if (!as_queue_empty(q)) + q->request_fn(q); + spin_unlock_irqrestore(q->queue_lock, flags); +} + +static void as_put_request(request_queue_t *q, struct request *rq) +{ + struct as_data *ad = q->elevator->elevator_data; + struct as_rq *arq = RQ_DATA(rq); + + if (!arq) { + WARN_ON(1); + return; + } + + if (unlikely(arq->state != AS_RQ_POSTSCHED && + arq->state != AS_RQ_PRESCHED && + arq->state != AS_RQ_MERGED)) { + printk("arq->state %d\n", arq->state); + WARN_ON(1); + } + + mempool_free(arq, ad->arq_pool); + rq->elevator_private = NULL; +} + +static int as_set_request(request_queue_t *q, struct request *rq, + struct bio *bio, gfp_t gfp_mask) +{ + struct as_data *ad = q->elevator->elevator_data; + struct as_rq *arq = mempool_alloc(ad->arq_pool, gfp_mask); + + if (arq) { + memset(arq, 0, sizeof(*arq)); + RB_CLEAR(&arq->rb_node); + arq->request = rq; + arq->state = AS_RQ_PRESCHED; + arq->io_context = NULL; + INIT_LIST_HEAD(&arq->hash); + arq->on_hash = 0; + INIT_LIST_HEAD(&arq->fifo); + rq->elevator_private = arq; + return 0; + } + + return 1; +} + +static int as_may_queue(request_queue_t *q, int rw, struct bio *bio) +{ + int ret = ELV_MQUEUE_MAY; + struct as_data *ad = q->elevator->elevator_data; + struct io_context *ioc; + if (ad->antic_status == ANTIC_WAIT_REQ || + ad->antic_status == ANTIC_WAIT_NEXT) { + ioc = as_get_io_context(); + if (ad->io_context == ioc) + ret = ELV_MQUEUE_MUST; + put_io_context(ioc); + } + + return ret; +} + +static void as_exit_queue(elevator_t *e) +{ + struct as_data *ad = e->elevator_data; + + del_timer_sync(&ad->antic_timer); + kblockd_flush(); + + BUG_ON(!list_empty(&ad->fifo_list[REQ_SYNC])); + BUG_ON(!list_empty(&ad->fifo_list[REQ_ASYNC])); + + mempool_destroy(ad->arq_pool); + put_io_context(ad->io_context); + kfree(ad->hash); + kfree(ad); +} + +/* + * initialize elevator private data (as_data), and alloc a arq for + * each request on the free lists + */ +static int as_init_queue(request_queue_t *q, elevator_t *e) +{ + struct as_data *ad; + int i; + + if (!arq_pool) + return -ENOMEM; + + ad = kmalloc_node(sizeof(*ad), GFP_KERNEL, q->node); + if (!ad) + return -ENOMEM; + memset(ad, 0, sizeof(*ad)); + + ad->q = q; /* Identify what queue the data belongs to */ + + ad->hash = kmalloc_node(sizeof(struct list_head)*AS_HASH_ENTRIES, + GFP_KERNEL, q->node); + if (!ad->hash) { + kfree(ad); + return -ENOMEM; + } + + ad->arq_pool = mempool_create_node(BLKDEV_MIN_RQ, mempool_alloc_slab, + mempool_free_slab, arq_pool, q->node); + if (!ad->arq_pool) { + kfree(ad->hash); + kfree(ad); + return -ENOMEM; + } + + /* anticipatory scheduling helpers */ + ad->antic_timer.function = as_antic_timeout; + ad->antic_timer.data = (unsigned long)q; + init_timer(&ad->antic_timer); + INIT_WORK(&ad->antic_work, as_work_handler, q); + + for (i = 0; i < AS_HASH_ENTRIES; i++) + INIT_LIST_HEAD(&ad->hash[i]); + + INIT_LIST_HEAD(&ad->fifo_list[REQ_SYNC]); + INIT_LIST_HEAD(&ad->fifo_list[REQ_ASYNC]); + ad->sort_list[REQ_SYNC] = RB_ROOT; + ad->sort_list[REQ_ASYNC] = RB_ROOT; + ad->fifo_expire[REQ_SYNC] = default_read_expire; + ad->fifo_expire[REQ_ASYNC] = default_write_expire; + ad->antic_expire = default_antic_expire; + ad->batch_expire[REQ_SYNC] = default_read_batch_expire; + ad->batch_expire[REQ_ASYNC] = default_write_batch_expire; + e->elevator_data = ad; + + ad->current_batch_expires = jiffies + ad->batch_expire[REQ_SYNC]; + ad->write_batch_count = ad->batch_expire[REQ_ASYNC] / 10; + if (ad->write_batch_count < 2) + ad->write_batch_count = 2; + + return 0; +} + +/* + * sysfs parts below + */ +struct as_fs_entry { + struct attribute attr; + ssize_t (*show)(struct as_data *, char *); + ssize_t (*store)(struct as_data *, const char *, size_t); +}; + +static ssize_t +as_var_show(unsigned int var, char *page) +{ + return sprintf(page, "%d\n", var); +} + +static ssize_t +as_var_store(unsigned long *var, const char *page, size_t count) +{ + char *p = (char *) page; + + *var = simple_strtoul(p, &p, 10); + return count; +} + +static ssize_t as_est_show(struct as_data *ad, char *page) +{ + int pos = 0; + + pos += sprintf(page+pos, "%lu %% exit probability\n", 100*ad->exit_prob/256); + pos += sprintf(page+pos, "%lu ms new thinktime\n", ad->new_ttime_mean); + pos += sprintf(page+pos, "%llu sectors new seek distance\n", (unsigned long long)ad->new_seek_mean); + + return pos; +} + +#define SHOW_FUNCTION(__FUNC, __VAR) \ +static ssize_t __FUNC(struct as_data *ad, char *page) \ +{ \ + return as_var_show(jiffies_to_msecs((__VAR)), (page)); \ +} +SHOW_FUNCTION(as_readexpire_show, ad->fifo_expire[REQ_SYNC]); +SHOW_FUNCTION(as_writeexpire_show, ad->fifo_expire[REQ_ASYNC]); +SHOW_FUNCTION(as_anticexpire_show, ad->antic_expire); +SHOW_FUNCTION(as_read_batchexpire_show, ad->batch_expire[REQ_SYNC]); +SHOW_FUNCTION(as_write_batchexpire_show, ad->batch_expire[REQ_ASYNC]); +#undef SHOW_FUNCTION + +#define STORE_FUNCTION(__FUNC, __PTR, MIN, MAX) \ +static ssize_t __FUNC(struct as_data *ad, const char *page, size_t count) \ +{ \ + int ret = as_var_store(__PTR, (page), count); \ + if (*(__PTR) < (MIN)) \ + *(__PTR) = (MIN); \ + else if (*(__PTR) > (MAX)) \ + *(__PTR) = (MAX); \ + *(__PTR) = msecs_to_jiffies(*(__PTR)); \ + return ret; \ +} +STORE_FUNCTION(as_readexpire_store, &ad->fifo_expire[REQ_SYNC], 0, INT_MAX); +STORE_FUNCTION(as_writeexpire_store, &ad->fifo_expire[REQ_ASYNC], 0, INT_MAX); +STORE_FUNCTION(as_anticexpire_store, &ad->antic_expire, 0, INT_MAX); +STORE_FUNCTION(as_read_batchexpire_store, + &ad->batch_expire[REQ_SYNC], 0, INT_MAX); +STORE_FUNCTION(as_write_batchexpire_store, + &ad->batch_expire[REQ_ASYNC], 0, INT_MAX); +#undef STORE_FUNCTION + +static struct as_fs_entry as_est_entry = { + .attr = {.name = "est_time", .mode = S_IRUGO }, + .show = as_est_show, +}; +static struct as_fs_entry as_readexpire_entry = { + .attr = {.name = "read_expire", .mode = S_IRUGO | S_IWUSR }, + .show = as_readexpire_show, + .store = as_readexpire_store, +}; +static struct as_fs_entry as_writeexpire_entry = { + .attr = {.name = "write_expire", .mode = S_IRUGO | S_IWUSR }, + .show = as_writeexpire_show, + .store = as_writeexpire_store, +}; +static struct as_fs_entry as_anticexpire_entry = { + .attr = {.name = "antic_expire", .mode = S_IRUGO | S_IWUSR }, + .show = as_anticexpire_show, + .store = as_anticexpire_store, +}; +static struct as_fs_entry as_read_batchexpire_entry = { + .attr = {.name = "read_batch_expire", .mode = S_IRUGO | S_IWUSR }, + .show = as_read_batchexpire_show, + .store = as_read_batchexpire_store, +}; +static struct as_fs_entry as_write_batchexpire_entry = { + .attr = {.name = "write_batch_expire", .mode = S_IRUGO | S_IWUSR }, + .show = as_write_batchexpire_show, + .store = as_write_batchexpire_store, +}; + +static struct attribute *default_attrs[] = { + &as_est_entry.attr, + &as_readexpire_entry.attr, + &as_writeexpire_entry.attr, + &as_anticexpire_entry.attr, + &as_read_batchexpire_entry.attr, + &as_write_batchexpire_entry.attr, + NULL, +}; + +#define to_as(atr) container_of((atr), struct as_fs_entry, attr) + +static ssize_t +as_attr_show(struct kobject *kobj, struct attribute *attr, char *page) +{ + elevator_t *e = container_of(kobj, elevator_t, kobj); + struct as_fs_entry *entry = to_as(attr); + + if (!entry->show) + return -EIO; + + return entry->show(e->elevator_data, page); +} + +static ssize_t +as_attr_store(struct kobject *kobj, struct attribute *attr, + const char *page, size_t length) +{ + elevator_t *e = container_of(kobj, elevator_t, kobj); + struct as_fs_entry *entry = to_as(attr); + + if (!entry->store) + return -EIO; + + return entry->store(e->elevator_data, page, length); +} + +static struct sysfs_ops as_sysfs_ops = { + .show = as_attr_show, + .store = as_attr_store, +}; + +static struct kobj_type as_ktype = { + .sysfs_ops = &as_sysfs_ops, + .default_attrs = default_attrs, +}; + +static struct elevator_type iosched_as = { + .ops = { + .elevator_merge_fn = as_merge, + .elevator_merged_fn = as_merged_request, + .elevator_merge_req_fn = as_merged_requests, + .elevator_dispatch_fn = as_dispatch_request, + .elevator_add_req_fn = as_add_request, + .elevator_activate_req_fn = as_activate_request, + .elevator_deactivate_req_fn = as_deactivate_request, + .elevator_queue_empty_fn = as_queue_empty, + .elevator_completed_req_fn = as_completed_request, + .elevator_former_req_fn = as_former_request, + .elevator_latter_req_fn = as_latter_request, + .elevator_set_req_fn = as_set_request, + .elevator_put_req_fn = as_put_request, + .elevator_may_queue_fn = as_may_queue, + .elevator_init_fn = as_init_queue, + .elevator_exit_fn = as_exit_queue, + }, + + .elevator_ktype = &as_ktype, + .elevator_name = "anticipatory", + .elevator_owner = THIS_MODULE, +}; + +static int __init as_init(void) +{ + int ret; + + arq_pool = kmem_cache_create("as_arq", sizeof(struct as_rq), + 0, 0, NULL, NULL); + if (!arq_pool) + return -ENOMEM; + + ret = elv_register(&iosched_as); + if (!ret) { + /* + * don't allow AS to get unregistered, since we would have + * to browse all tasks in the system and release their + * as_io_context first + */ + __module_get(THIS_MODULE); + return 0; + } + + kmem_cache_destroy(arq_pool); + return ret; +} + +static void __exit as_exit(void) +{ + elv_unregister(&iosched_as); + kmem_cache_destroy(arq_pool); +} + +module_init(as_init); +module_exit(as_exit); + +MODULE_AUTHOR("Nick Piggin"); +MODULE_LICENSE("GPL"); +MODULE_DESCRIPTION("anticipatory IO scheduler"); diff --git a/block/cfq-iosched.c b/block/cfq-iosched.c new file mode 100644 index 000000000000..ecacca9c877e --- /dev/null +++ b/block/cfq-iosched.c @@ -0,0 +1,2428 @@ +/* + * linux/drivers/block/cfq-iosched.c + * + * CFQ, or complete fairness queueing, disk scheduler. + * + * Based on ideas from a previously unfinished io + * scheduler (round robin per-process disk scheduling) and Andrea Arcangeli. + * + * Copyright (C) 2003 Jens Axboe + */ +#include +#include +#include +#include +#include +#include +#include +#include +#include +#include +#include +#include +#include +#include +#include + +/* + * tunables + */ +static int cfq_quantum = 4; /* max queue in one round of service */ +static int cfq_queued = 8; /* minimum rq allocate limit per-queue*/ +static int cfq_fifo_expire[2] = { HZ / 4, HZ / 8 }; +static int cfq_back_max = 16 * 1024; /* maximum backwards seek, in KiB */ +static int cfq_back_penalty = 2; /* penalty of a backwards seek */ + +static int cfq_slice_sync = HZ / 10; +static int cfq_slice_async = HZ / 25; +static int cfq_slice_async_rq = 2; +static int cfq_slice_idle = HZ / 100; + +#define CFQ_IDLE_GRACE (HZ / 10) +#define CFQ_SLICE_SCALE (5) + +#define CFQ_KEY_ASYNC (0) +#define CFQ_KEY_ANY (0xffff) + +/* + * disable queueing at the driver/hardware level + */ +static int cfq_max_depth = 2; + +/* + * for the hash of cfqq inside the cfqd + */ +#define CFQ_QHASH_SHIFT 6 +#define CFQ_QHASH_ENTRIES (1 << CFQ_QHASH_SHIFT) +#define list_entry_qhash(entry) hlist_entry((entry), struct cfq_queue, cfq_hash) + +/* + * for the hash of crq inside the cfqq + */ +#define CFQ_MHASH_SHIFT 6 +#define CFQ_MHASH_BLOCK(sec) ((sec) >> 3) +#define CFQ_MHASH_ENTRIES (1 << CFQ_MHASH_SHIFT) +#define CFQ_MHASH_FN(sec) hash_long(CFQ_MHASH_BLOCK(sec), CFQ_MHASH_SHIFT) +#define rq_hash_key(rq) ((rq)->sector + (rq)->nr_sectors) +#define list_entry_hash(ptr) hlist_entry((ptr), struct cfq_rq, hash) + +#define list_entry_cfqq(ptr) list_entry((ptr), struct cfq_queue, cfq_list) +#define list_entry_fifo(ptr) list_entry((ptr), struct request, queuelist) + +#define RQ_DATA(rq) (rq)->elevator_private + +/* + * rb-tree defines + */ +#define RB_NONE (2) +#define RB_EMPTY(node) ((node)->rb_node == NULL) +#define RB_CLEAR_COLOR(node) (node)->rb_color = RB_NONE +#define RB_CLEAR(node) do { \ + (node)->rb_parent = NULL; \ + RB_CLEAR_COLOR((node)); \ + (node)->rb_right = NULL; \ + (node)->rb_left = NULL; \ +} while (0) +#define RB_CLEAR_ROOT(root) ((root)->rb_node = NULL) +#define rb_entry_crq(node) rb_entry((node), struct cfq_rq, rb_node) +#define rq_rb_key(rq) (rq)->sector + +static kmem_cache_t *crq_pool; +static kmem_cache_t *cfq_pool; +static kmem_cache_t *cfq_ioc_pool; + +#define CFQ_PRIO_LISTS IOPRIO_BE_NR +#define cfq_class_idle(cfqq) ((cfqq)->ioprio_class == IOPRIO_CLASS_IDLE) +#define cfq_class_be(cfqq) ((cfqq)->ioprio_class == IOPRIO_CLASS_BE) +#define cfq_class_rt(cfqq) ((cfqq)->ioprio_class == IOPRIO_CLASS_RT) + +#define ASYNC (0) +#define SYNC (1) + +#define cfq_cfqq_dispatched(cfqq) \ + ((cfqq)->on_dispatch[ASYNC] + (cfqq)->on_dispatch[SYNC]) + +#define cfq_cfqq_class_sync(cfqq) ((cfqq)->key != CFQ_KEY_ASYNC) + +#define cfq_cfqq_sync(cfqq) \ + (cfq_cfqq_class_sync(cfqq) || (cfqq)->on_dispatch[SYNC]) + +/* + * Per block device queue structure + */ +struct cfq_data { + atomic_t ref; + request_queue_t *queue; + + /* + * rr list of queues with requests and the count of them + */ + struct list_head rr_list[CFQ_PRIO_LISTS]; + struct list_head busy_rr; + struct list_head cur_rr; + struct list_head idle_rr; + unsigned int busy_queues; + + /* + * non-ordered list of empty cfqq's + */ + struct list_head empty_list; + + /* + * cfqq lookup hash + */ + struct hlist_head *cfq_hash; + + /* + * global crq hash for all queues + */ + struct hlist_head *crq_hash; + + unsigned int max_queued; + + mempool_t *crq_pool; + + int rq_in_driver; + + /* + * schedule slice state info + */ + /* + * idle window management + */ + struct timer_list idle_slice_timer; + struct work_struct unplug_work; + + struct cfq_queue *active_queue; + struct cfq_io_context *active_cic; + int cur_prio, cur_end_prio; + unsigned int dispatch_slice; + + struct timer_list idle_class_timer; + + sector_t last_sector; + unsigned long last_end_request; + + unsigned int rq_starved; + + /* + * tunables, see top of file + */ + unsigned int cfq_quantum; + unsigned int cfq_queued; + unsigned int cfq_fifo_expire[2]; + unsigned int cfq_back_penalty; + unsigned int cfq_back_max; + unsigned int cfq_slice[2]; + unsigned int cfq_slice_async_rq; + unsigned int cfq_slice_idle; + unsigned int cfq_max_depth; +}; + +/* + * Per process-grouping structure + */ +struct cfq_queue { + /* reference count */ + atomic_t ref; + /* parent cfq_data */ + struct cfq_data *cfqd; + /* cfqq lookup hash */ + struct hlist_node cfq_hash; + /* hash key */ + unsigned int key; + /* on either rr or empty list of cfqd */ + struct list_head cfq_list; + /* sorted list of pending requests */ + struct rb_root sort_list; + /* if fifo isn't expired, next request to serve */ + struct cfq_rq *next_crq; + /* requests queued in sort_list */ + int queued[2]; + /* currently allocated requests */ + int allocated[2]; + /* fifo list of requests in sort_list */ + struct list_head fifo; + + unsigned long slice_start; + unsigned long slice_end; + unsigned long slice_left; + unsigned long service_last; + + /* number of requests that are on the dispatch list */ + int on_dispatch[2]; + + /* io prio of this group */ + unsigned short ioprio, org_ioprio; + unsigned short ioprio_class, org_ioprio_class; + + /* various state flags, see below */ + unsigned int flags; +}; + +struct cfq_rq { + struct rb_node rb_node; + sector_t rb_key; + struct request *request; + struct hlist_node hash; + + struct cfq_queue *cfq_queue; + struct cfq_io_context *io_context; + + unsigned int crq_flags; +}; + +enum cfqq_state_flags { + CFQ_CFQQ_FLAG_on_rr = 0, + CFQ_CFQQ_FLAG_wait_request, + CFQ_CFQQ_FLAG_must_alloc, + CFQ_CFQQ_FLAG_must_alloc_slice, + CFQ_CFQQ_FLAG_must_dispatch, + CFQ_CFQQ_FLAG_fifo_expire, + CFQ_CFQQ_FLAG_idle_window, + CFQ_CFQQ_FLAG_prio_changed, + CFQ_CFQQ_FLAG_expired, +}; + +#define CFQ_CFQQ_FNS(name) \ +static inline void cfq_mark_cfqq_##name(struct cfq_queue *cfqq) \ +{ \ + cfqq->flags |= (1 << CFQ_CFQQ_FLAG_##name); \ +} \ +static inline void cfq_clear_cfqq_##name(struct cfq_queue *cfqq) \ +{ \ + cfqq->flags &= ~(1 << CFQ_CFQQ_FLAG_##name); \ +} \ +static inline int cfq_cfqq_##name(const struct cfq_queue *cfqq) \ +{ \ + return (cfqq->flags & (1 << CFQ_CFQQ_FLAG_##name)) != 0; \ +} + +CFQ_CFQQ_FNS(on_rr); +CFQ_CFQQ_FNS(wait_request); +CFQ_CFQQ_FNS(must_alloc); +CFQ_CFQQ_FNS(must_alloc_slice); +CFQ_CFQQ_FNS(must_dispatch); +CFQ_CFQQ_FNS(fifo_expire); +CFQ_CFQQ_FNS(idle_window); +CFQ_CFQQ_FNS(prio_changed); +CFQ_CFQQ_FNS(expired); +#undef CFQ_CFQQ_FNS + +enum cfq_rq_state_flags { + CFQ_CRQ_FLAG_is_sync = 0, +}; + +#define CFQ_CRQ_FNS(name) \ +static inline void cfq_mark_crq_##name(struct cfq_rq *crq) \ +{ \ + crq->crq_flags |= (1 << CFQ_CRQ_FLAG_##name); \ +} \ +static inline void cfq_clear_crq_##name(struct cfq_rq *crq) \ +{ \ + crq->crq_flags &= ~(1 << CFQ_CRQ_FLAG_##name); \ +} \ +static inline int cfq_crq_##name(const struct cfq_rq *crq) \ +{ \ + return (crq->crq_flags & (1 << CFQ_CRQ_FLAG_##name)) != 0; \ +} + +CFQ_CRQ_FNS(is_sync); +#undef CFQ_CRQ_FNS + +static struct cfq_queue *cfq_find_cfq_hash(struct cfq_data *, unsigned int, unsigned short); +static void cfq_dispatch_insert(request_queue_t *, struct cfq_rq *); +static void cfq_put_cfqd(struct cfq_data *cfqd); + +#define process_sync(tsk) ((tsk)->flags & PF_SYNCWRITE) + +/* + * lots of deadline iosched dupes, can be abstracted later... + */ +static inline void cfq_del_crq_hash(struct cfq_rq *crq) +{ + hlist_del_init(&crq->hash); +} + +static inline void cfq_add_crq_hash(struct cfq_data *cfqd, struct cfq_rq *crq) +{ + const int hash_idx = CFQ_MHASH_FN(rq_hash_key(crq->request)); + + hlist_add_head(&crq->hash, &cfqd->crq_hash[hash_idx]); +} + +static struct request *cfq_find_rq_hash(struct cfq_data *cfqd, sector_t offset) +{ + struct hlist_head *hash_list = &cfqd->crq_hash[CFQ_MHASH_FN(offset)]; + struct hlist_node *entry, *next; + + hlist_for_each_safe(entry, next, hash_list) { + struct cfq_rq *crq = list_entry_hash(entry); + struct request *__rq = crq->request; + + if (!rq_mergeable(__rq)) { + cfq_del_crq_hash(crq); + continue; + } + + if (rq_hash_key(__rq) == offset) + return __rq; + } + + return NULL; +} + +/* + * scheduler run of queue, if there are requests pending and no one in the + * driver that will restart queueing + */ +static inline void cfq_schedule_dispatch(struct cfq_data *cfqd) +{ + if (!cfqd->rq_in_driver && cfqd->busy_queues) + kblockd_schedule_work(&cfqd->unplug_work); +} + +static int cfq_queue_empty(request_queue_t *q) +{ + struct cfq_data *cfqd = q->elevator->elevator_data; + + return !cfqd->busy_queues; +} + +/* + * Lifted from AS - choose which of crq1 and crq2 that is best served now. + * We choose the request that is closest to the head right now. Distance + * behind the head are penalized and only allowed to a certain extent. + */ +static struct cfq_rq * +cfq_choose_req(struct cfq_data *cfqd, struct cfq_rq *crq1, struct cfq_rq *crq2) +{ + sector_t last, s1, s2, d1 = 0, d2 = 0; + int r1_wrap = 0, r2_wrap = 0; /* requests are behind the disk head */ + unsigned long back_max; + + if (crq1 == NULL || crq1 == crq2) + return crq2; + if (crq2 == NULL) + return crq1; + + if (cfq_crq_is_sync(crq1) && !cfq_crq_is_sync(crq2)) + return crq1; + else if (cfq_crq_is_sync(crq2) && !cfq_crq_is_sync(crq1)) + return crq2; + + s1 = crq1->request->sector; + s2 = crq2->request->sector; + + last = cfqd->last_sector; + + /* + * by definition, 1KiB is 2 sectors + */ + back_max = cfqd->cfq_back_max * 2; + + /* + * Strict one way elevator _except_ in the case where we allow + * short backward seeks which are biased as twice the cost of a + * similar forward seek. + */ + if (s1 >= last) + d1 = s1 - last; + else if (s1 + back_max >= last) + d1 = (last - s1) * cfqd->cfq_back_penalty; + else + r1_wrap = 1; + + if (s2 >= last) + d2 = s2 - last; + else if (s2 + back_max >= last) + d2 = (last - s2) * cfqd->cfq_back_penalty; + else + r2_wrap = 1; + + /* Found required data */ + if (!r1_wrap && r2_wrap) + return crq1; + else if (!r2_wrap && r1_wrap) + return crq2; + else if (r1_wrap && r2_wrap) { + /* both behind the head */ + if (s1 <= s2) + return crq1; + else + return crq2; + } + + /* Both requests in front of the head */ + if (d1 < d2) + return crq1; + else if (d2 < d1) + return crq2; + else { + if (s1 >= s2) + return crq1; + else + return crq2; + } +} + +/* + * would be nice to take fifo expire time into account as well + */ +static struct cfq_rq * +cfq_find_next_crq(struct cfq_data *cfqd, struct cfq_queue *cfqq, + struct cfq_rq *last) +{ + struct cfq_rq *crq_next = NULL, *crq_prev = NULL; + struct rb_node *rbnext, *rbprev; + + if (!(rbnext = rb_next(&last->rb_node))) { + rbnext = rb_first(&cfqq->sort_list); + if (rbnext == &last->rb_node) + rbnext = NULL; + } + + rbprev = rb_prev(&last->rb_node); + + if (rbprev) + crq_prev = rb_entry_crq(rbprev); + if (rbnext) + crq_next = rb_entry_crq(rbnext); + + return cfq_choose_req(cfqd, crq_next, crq_prev); +} + +static void cfq_update_next_crq(struct cfq_rq *crq) +{ + struct cfq_queue *cfqq = crq->cfq_queue; + + if (cfqq->next_crq == crq) + cfqq->next_crq = cfq_find_next_crq(cfqq->cfqd, cfqq, crq); +} + +static void cfq_resort_rr_list(struct cfq_queue *cfqq, int preempted) +{ + struct cfq_data *cfqd = cfqq->cfqd; + struct list_head *list, *entry; + + BUG_ON(!cfq_cfqq_on_rr(cfqq)); + + list_del(&cfqq->cfq_list); + + if (cfq_class_rt(cfqq)) + list = &cfqd->cur_rr; + else if (cfq_class_idle(cfqq)) + list = &cfqd->idle_rr; + else { + /* + * if cfqq has requests in flight, don't allow it to be + * found in cfq_set_active_queue before it has finished them. + * this is done to increase fairness between a process that + * has lots of io pending vs one that only generates one + * sporadically or synchronously + */ + if (cfq_cfqq_dispatched(cfqq)) + list = &cfqd->busy_rr; + else + list = &cfqd->rr_list[cfqq->ioprio]; + } + + /* + * if queue was preempted, just add to front to be fair. busy_rr + * isn't sorted. + */ + if (preempted || list == &cfqd->busy_rr) { + list_add(&cfqq->cfq_list, list); + return; + } + + /* + * sort by when queue was last serviced + */ + entry = list; + while ((entry = entry->prev) != list) { + struct cfq_queue *__cfqq = list_entry_cfqq(entry); + + if (!__cfqq->service_last) + break; + if (time_before(__cfqq->service_last, cfqq->service_last)) + break; + } + + list_add(&cfqq->cfq_list, entry); +} + +/* + * add to busy list of queues for service, trying to be fair in ordering + * the pending list according to last request service + */ +static inline void +cfq_add_cfqq_rr(struct cfq_data *cfqd, struct cfq_queue *cfqq) +{ + BUG_ON(cfq_cfqq_on_rr(cfqq)); + cfq_mark_cfqq_on_rr(cfqq); + cfqd->busy_queues++; + + cfq_resort_rr_list(cfqq, 0); +} + +static inline void +cfq_del_cfqq_rr(struct cfq_data *cfqd, struct cfq_queue *cfqq) +{ + BUG_ON(!cfq_cfqq_on_rr(cfqq)); + cfq_clear_cfqq_on_rr(cfqq); + list_move(&cfqq->cfq_list, &cfqd->empty_list); + + BUG_ON(!cfqd->busy_queues); + cfqd->busy_queues--; +} + +/* + * rb tree support functions + */ +static inline void cfq_del_crq_rb(struct cfq_rq *crq) +{ + struct cfq_queue *cfqq = crq->cfq_queue; + struct cfq_data *cfqd = cfqq->cfqd; + const int sync = cfq_crq_is_sync(crq); + + BUG_ON(!cfqq->queued[sync]); + cfqq->queued[sync]--; + + cfq_update_next_crq(crq); + + rb_erase(&crq->rb_node, &cfqq->sort_list); + RB_CLEAR_COLOR(&crq->rb_node); + + if (cfq_cfqq_on_rr(cfqq) && RB_EMPTY(&cfqq->sort_list)) + cfq_del_cfqq_rr(cfqd, cfqq); +} + +static struct cfq_rq * +__cfq_add_crq_rb(struct cfq_rq *crq) +{ + struct rb_node **p = &crq->cfq_queue->sort_list.rb_node; + struct rb_node *parent = NULL; + struct cfq_rq *__crq; + + while (*p) { + parent = *p; + __crq = rb_entry_crq(parent); + + if (crq->rb_key < __crq->rb_key) + p = &(*p)->rb_left; + else if (crq->rb_key > __crq->rb_key) + p = &(*p)->rb_right; + else + return __crq; + } + + rb_link_node(&crq->rb_node, parent, p); + return NULL; +} + +static void cfq_add_crq_rb(struct cfq_rq *crq) +{ + struct cfq_queue *cfqq = crq->cfq_queue; + struct cfq_data *cfqd = cfqq->cfqd; + struct request *rq = crq->request; + struct cfq_rq *__alias; + + crq->rb_key = rq_rb_key(rq); + cfqq->queued[cfq_crq_is_sync(crq)]++; + + /* + * looks a little odd, but the first insert might return an alias. + * if that happens, put the alias on the dispatch list + */ + while ((__alias = __cfq_add_crq_rb(crq)) != NULL) + cfq_dispatch_insert(cfqd->queue, __alias); + + rb_insert_color(&crq->rb_node, &cfqq->sort_list); + + if (!cfq_cfqq_on_rr(cfqq)) + cfq_add_cfqq_rr(cfqd, cfqq); + + /* + * check if this request is a better next-serve candidate + */ + cfqq->next_crq = cfq_choose_req(cfqd, cfqq->next_crq, crq); +} + +static inline void +cfq_reposition_crq_rb(struct cfq_queue *cfqq, struct cfq_rq *crq) +{ + rb_erase(&crq->rb_node, &cfqq->sort_list); + cfqq->queued[cfq_crq_is_sync(crq)]--; + + cfq_add_crq_rb(crq); +} + +static struct request *cfq_find_rq_rb(struct cfq_data *cfqd, sector_t sector) + +{ + struct cfq_queue *cfqq = cfq_find_cfq_hash(cfqd, current->pid, CFQ_KEY_ANY); + struct rb_node *n; + + if (!cfqq) + goto out; + + n = cfqq->sort_list.rb_node; + while (n) { + struct cfq_rq *crq = rb_entry_crq(n); + + if (sector < crq->rb_key) + n = n->rb_left; + else if (sector > crq->rb_key) + n = n->rb_right; + else + return crq->request; + } + +out: + return NULL; +} + +static void cfq_activate_request(request_queue_t *q, struct request *rq) +{ + struct cfq_data *cfqd = q->elevator->elevator_data; + + cfqd->rq_in_driver++; +} + +static void cfq_deactivate_request(request_queue_t *q, struct request *rq) +{ + struct cfq_data *cfqd = q->elevator->elevator_data; + + WARN_ON(!cfqd->rq_in_driver); + cfqd->rq_in_driver--; +} + +static void cfq_remove_request(struct request *rq) +{ + struct cfq_rq *crq = RQ_DATA(rq); + + list_del_init(&rq->queuelist); + cfq_del_crq_rb(crq); + cfq_del_crq_hash(crq); +} + +static int +cfq_merge(request_queue_t *q, struct request **req, struct bio *bio) +{ + struct cfq_data *cfqd = q->elevator->elevator_data; + struct request *__rq; + int ret; + + __rq = cfq_find_rq_hash(cfqd, bio->bi_sector); + if (__rq && elv_rq_merge_ok(__rq, bio)) { + ret = ELEVATOR_BACK_MERGE; + goto out; + } + + __rq = cfq_find_rq_rb(cfqd, bio->bi_sector + bio_sectors(bio)); + if (__rq && elv_rq_merge_ok(__rq, bio)) { + ret = ELEVATOR_FRONT_MERGE; + goto out; + } + + return ELEVATOR_NO_MERGE; +out: + *req = __rq; + return ret; +} + +static void cfq_merged_request(request_queue_t *q, struct request *req) +{ + struct cfq_data *cfqd = q->elevator->elevator_data; + struct cfq_rq *crq = RQ_DATA(req); + + cfq_del_crq_hash(crq); + cfq_add_crq_hash(cfqd, crq); + + if (rq_rb_key(req) != crq->rb_key) { + struct cfq_queue *cfqq = crq->cfq_queue; + + cfq_update_next_crq(crq); + cfq_reposition_crq_rb(cfqq, crq); + } +} + +static void +cfq_merged_requests(request_queue_t *q, struct request *rq, + struct request *next) +{ + cfq_merged_request(q, rq); + + /* + * reposition in fifo if next is older than rq + */ + if (!list_empty(&rq->queuelist) && !list_empty(&next->queuelist) && + time_before(next->start_time, rq->start_time)) + list_move(&rq->queuelist, &next->queuelist); + + cfq_remove_request(next); +} + +static inline void +__cfq_set_active_queue(struct cfq_data *cfqd, struct cfq_queue *cfqq) +{ + if (cfqq) { + /* + * stop potential idle class queues waiting service + */ + del_timer(&cfqd->idle_class_timer); + + cfqq->slice_start = jiffies; + cfqq->slice_end = 0; + cfqq->slice_left = 0; + cfq_clear_cfqq_must_alloc_slice(cfqq); + cfq_clear_cfqq_fifo_expire(cfqq); + cfq_clear_cfqq_expired(cfqq); + } + + cfqd->active_queue = cfqq; +} + +/* + * 0 + * 0,1 + * 0,1,2 + * 0,1,2,3 + * 0,1,2,3,4 + * 0,1,2,3,4,5 + * 0,1,2,3,4,5,6 + * 0,1,2,3,4,5,6,7 + */ +static int cfq_get_next_prio_level(struct cfq_data *cfqd) +{ + int prio, wrap; + + prio = -1; + wrap = 0; + do { + int p; + + for (p = cfqd->cur_prio; p <= cfqd->cur_end_prio; p++) { + if (!list_empty(&cfqd->rr_list[p])) { + prio = p; + break; + } + } + + if (prio != -1) + break; + cfqd->cur_prio = 0; + if (++cfqd->cur_end_prio == CFQ_PRIO_LISTS) { + cfqd->cur_end_prio = 0; + if (wrap) + break; + wrap = 1; + } + } while (1); + + if (unlikely(prio == -1)) + return -1; + + BUG_ON(prio >= CFQ_PRIO_LISTS); + + list_splice_init(&cfqd->rr_list[prio], &cfqd->cur_rr); + + cfqd->cur_prio = prio + 1; + if (cfqd->cur_prio > cfqd->cur_end_prio) { + cfqd->cur_end_prio = cfqd->cur_prio; + cfqd->cur_prio = 0; + } + if (cfqd->cur_end_prio == CFQ_PRIO_LISTS) { + cfqd->cur_prio = 0; + cfqd->cur_end_prio = 0; + } + + return prio; +} + +static struct cfq_queue *cfq_set_active_queue(struct cfq_data *cfqd) +{ + struct cfq_queue *cfqq; + + /* + * if current queue is expired but not done with its requests yet, + * wait for that to happen + */ + if ((cfqq = cfqd->active_queue) != NULL) { + if (cfq_cfqq_expired(cfqq) && cfq_cfqq_dispatched(cfqq)) + return NULL; + } + + /* + * if current list is non-empty, grab first entry. if it is empty, + * get next prio level and grab first entry then if any are spliced + */ + if (!list_empty(&cfqd->cur_rr) || cfq_get_next_prio_level(cfqd) != -1) + cfqq = list_entry_cfqq(cfqd->cur_rr.next); + + /* + * if we have idle queues and no rt or be queues had pending + * requests, either allow immediate service if the grace period + * has passed or arm the idle grace timer + */ + if (!cfqq && !list_empty(&cfqd->idle_rr)) { + unsigned long end = cfqd->last_end_request + CFQ_IDLE_GRACE; + + if (time_after_eq(jiffies, end)) + cfqq = list_entry_cfqq(cfqd->idle_rr.next); + else + mod_timer(&cfqd->idle_class_timer, end); + } + + __cfq_set_active_queue(cfqd, cfqq); + return cfqq; +} + +/* + * current cfqq expired its slice (or was too idle), select new one + */ +static void +__cfq_slice_expired(struct cfq_data *cfqd, struct cfq_queue *cfqq, + int preempted) +{ + unsigned long now = jiffies; + + if (cfq_cfqq_wait_request(cfqq)) + del_timer(&cfqd->idle_slice_timer); + + if (!preempted && !cfq_cfqq_dispatched(cfqq)) + cfqq->service_last = now; + + cfq_clear_cfqq_must_dispatch(cfqq); + cfq_clear_cfqq_wait_request(cfqq); + + /* + * store what was left of this slice, if the queue idled out + * or was preempted + */ + if (time_after(now, cfqq->slice_end)) + cfqq->slice_left = now - cfqq->slice_end; + else + cfqq->slice_left = 0; + + if (cfq_cfqq_on_rr(cfqq)) + cfq_resort_rr_list(cfqq, preempted); + + if (cfqq == cfqd->active_queue) + cfqd->active_queue = NULL; + + if (cfqd->active_cic) { + put_io_context(cfqd->active_cic->ioc); + cfqd->active_cic = NULL; + } + + cfqd->dispatch_slice = 0; +} + +static inline void cfq_slice_expired(struct cfq_data *cfqd, int preempted) +{ + struct cfq_queue *cfqq = cfqd->active_queue; + + if (cfqq) { + /* + * use deferred expiry, if there are requests in progress as + * not to disturb the slice of the next queue + */ + if (cfq_cfqq_dispatched(cfqq)) + cfq_mark_cfqq_expired(cfqq); + else + __cfq_slice_expired(cfqd, cfqq, preempted); + } +} + +static int cfq_arm_slice_timer(struct cfq_data *cfqd, struct cfq_queue *cfqq) + +{ + WARN_ON(!RB_EMPTY(&cfqq->sort_list)); + WARN_ON(cfqq != cfqd->active_queue); + + /* + * idle is disabled, either manually or by past process history + */ + if (!cfqd->cfq_slice_idle) + return 0; + if (!cfq_cfqq_idle_window(cfqq)) + return 0; + /* + * task has exited, don't wait + */ + if (cfqd->active_cic && !cfqd->active_cic->ioc->task) + return 0; + + cfq_mark_cfqq_must_dispatch(cfqq); + cfq_mark_cfqq_wait_request(cfqq); + + if (!timer_pending(&cfqd->idle_slice_timer)) { + unsigned long slice_left = min(cfqq->slice_end - 1, (unsigned long) cfqd->cfq_slice_idle); + + cfqd->idle_slice_timer.expires = jiffies + slice_left; + add_timer(&cfqd->idle_slice_timer); + } + + return 1; +} + +static void cfq_dispatch_insert(request_queue_t *q, struct cfq_rq *crq) +{ + struct cfq_data *cfqd = q->elevator->elevator_data; + struct cfq_queue *cfqq = crq->cfq_queue; + + cfqq->next_crq = cfq_find_next_crq(cfqd, cfqq, crq); + cfq_remove_request(crq->request); + cfqq->on_dispatch[cfq_crq_is_sync(crq)]++; + elv_dispatch_sort(q, crq->request); +} + +/* + * return expired entry, or NULL to just start from scratch in rbtree + */ +static inline struct cfq_rq *cfq_check_fifo(struct cfq_queue *cfqq) +{ + struct cfq_data *cfqd = cfqq->cfqd; + struct request *rq; + struct cfq_rq *crq; + + if (cfq_cfqq_fifo_expire(cfqq)) + return NULL; + + if (!list_empty(&cfqq->fifo)) { + int fifo = cfq_cfqq_class_sync(cfqq); + + crq = RQ_DATA(list_entry_fifo(cfqq->fifo.next)); + rq = crq->request; + if (time_after(jiffies, rq->start_time + cfqd->cfq_fifo_expire[fifo])) { + cfq_mark_cfqq_fifo_expire(cfqq); + return crq; + } + } + + return NULL; +} + +/* + * Scale schedule slice based on io priority. Use the sync time slice only + * if a queue is marked sync and has sync io queued. A sync queue with async + * io only, should not get full sync slice length. + */ +static inline int +cfq_prio_to_slice(struct cfq_data *cfqd, struct cfq_queue *cfqq) +{ + const int base_slice = cfqd->cfq_slice[cfq_cfqq_sync(cfqq)]; + + WARN_ON(cfqq->ioprio >= IOPRIO_BE_NR); + + return base_slice + (base_slice/CFQ_SLICE_SCALE * (4 - cfqq->ioprio)); +} + +static inline void +cfq_set_prio_slice(struct cfq_data *cfqd, struct cfq_queue *cfqq) +{ + cfqq->slice_end = cfq_prio_to_slice(cfqd, cfqq) + jiffies; +} + +static inline int +cfq_prio_to_maxrq(struct cfq_data *cfqd, struct cfq_queue *cfqq) +{ + const int base_rq = cfqd->cfq_slice_async_rq; + + WARN_ON(cfqq->ioprio >= IOPRIO_BE_NR); + + return 2 * (base_rq + base_rq * (CFQ_PRIO_LISTS - 1 - cfqq->ioprio)); +} + +/* + * get next queue for service + */ +static struct cfq_queue *cfq_select_queue(struct cfq_data *cfqd, int force) +{ + unsigned long now = jiffies; + struct cfq_queue *cfqq; + + cfqq = cfqd->active_queue; + if (!cfqq) + goto new_queue; + + if (cfq_cfqq_expired(cfqq)) + goto new_queue; + + /* + * slice has expired + */ + if (!cfq_cfqq_must_dispatch(cfqq) && time_after(now, cfqq->slice_end)) + goto expire; + + /* + * if queue has requests, dispatch one. if not, check if + * enough slice is left to wait for one + */ + if (!RB_EMPTY(&cfqq->sort_list)) + goto keep_queue; + else if (!force && cfq_cfqq_class_sync(cfqq) && + time_before(now, cfqq->slice_end)) { + if (cfq_arm_slice_timer(cfqd, cfqq)) + return NULL; + } + +expire: + cfq_slice_expired(cfqd, 0); +new_queue: + cfqq = cfq_set_active_queue(cfqd); +keep_queue: + return cfqq; +} + +static int +__cfq_dispatch_requests(struct cfq_data *cfqd, struct cfq_queue *cfqq, + int max_dispatch) +{ + int dispatched = 0; + + BUG_ON(RB_EMPTY(&cfqq->sort_list)); + + do { + struct cfq_rq *crq; + + /* + * follow expired path, else get first next available + */ + if ((crq = cfq_check_fifo(cfqq)) == NULL) + crq = cfqq->next_crq; + + /* + * finally, insert request into driver dispatch list + */ + cfq_dispatch_insert(cfqd->queue, crq); + + cfqd->dispatch_slice++; + dispatched++; + + if (!cfqd->active_cic) { + atomic_inc(&crq->io_context->ioc->refcount); + cfqd->active_cic = crq->io_context; + } + + if (RB_EMPTY(&cfqq->sort_list)) + break; + + } while (dispatched < max_dispatch); + + /* + * if slice end isn't set yet, set it. if at least one request was + * sync, use the sync time slice value + */ + if (!cfqq->slice_end) + cfq_set_prio_slice(cfqd, cfqq); + + /* + * expire an async queue immediately if it has used up its slice. idle + * queue always expire after 1 dispatch round. + */ + if ((!cfq_cfqq_sync(cfqq) && + cfqd->dispatch_slice >= cfq_prio_to_maxrq(cfqd, cfqq)) || + cfq_class_idle(cfqq)) + cfq_slice_expired(cfqd, 0); + + return dispatched; +} + +static int +cfq_dispatch_requests(request_queue_t *q, int force) +{ + struct cfq_data *cfqd = q->elevator->elevator_data; + struct cfq_queue *cfqq; + + if (!cfqd->busy_queues) + return 0; + + cfqq = cfq_select_queue(cfqd, force); + if (cfqq) { + int max_dispatch; + + /* + * if idle window is disabled, allow queue buildup + */ + if (!cfq_cfqq_idle_window(cfqq) && + cfqd->rq_in_driver >= cfqd->cfq_max_depth) + return 0; + + cfq_clear_cfqq_must_dispatch(cfqq); + cfq_clear_cfqq_wait_request(cfqq); + del_timer(&cfqd->idle_slice_timer); + + if (!force) { + max_dispatch = cfqd->cfq_quantum; + if (cfq_class_idle(cfqq)) + max_dispatch = 1; + } else + max_dispatch = INT_MAX; + + return __cfq_dispatch_requests(cfqd, cfqq, max_dispatch); + } + + return 0; +} + +/* + * task holds one reference to the queue, dropped when task exits. each crq + * in-flight on this queue also holds a reference, dropped when crq is freed. + * + * queue lock must be held here. + */ +static void cfq_put_queue(struct cfq_queue *cfqq) +{ + struct cfq_data *cfqd = cfqq->cfqd; + + BUG_ON(atomic_read(&cfqq->ref) <= 0); + + if (!atomic_dec_and_test(&cfqq->ref)) + return; + + BUG_ON(rb_first(&cfqq->sort_list)); + BUG_ON(cfqq->allocated[READ] + cfqq->allocated[WRITE]); + BUG_ON(cfq_cfqq_on_rr(cfqq)); + + if (unlikely(cfqd->active_queue == cfqq)) { + __cfq_slice_expired(cfqd, cfqq, 0); + cfq_schedule_dispatch(cfqd); + } + + cfq_put_cfqd(cfqq->cfqd); + + /* + * it's on the empty list and still hashed + */ + list_del(&cfqq->cfq_list); + hlist_del(&cfqq->cfq_hash); + kmem_cache_free(cfq_pool, cfqq); +} + +static inline struct cfq_queue * +__cfq_find_cfq_hash(struct cfq_data *cfqd, unsigned int key, unsigned int prio, + const int hashval) +{ + struct hlist_head *hash_list = &cfqd->cfq_hash[hashval]; + struct hlist_node *entry, *next; + + hlist_for_each_safe(entry, next, hash_list) { + struct cfq_queue *__cfqq = list_entry_qhash(entry); + const unsigned short __p = IOPRIO_PRIO_VALUE(__cfqq->ioprio_class, __cfqq->ioprio); + + if (__cfqq->key == key && (__p == prio || prio == CFQ_KEY_ANY)) + return __cfqq; + } + + return NULL; +} + +static struct cfq_queue * +cfq_find_cfq_hash(struct cfq_data *cfqd, unsigned int key, unsigned short prio) +{ + return __cfq_find_cfq_hash(cfqd, key, prio, hash_long(key, CFQ_QHASH_SHIFT)); +} + +static void cfq_free_io_context(struct cfq_io_context *cic) +{ + struct cfq_io_context *__cic; + struct list_head *entry, *next; + + list_for_each_safe(entry, next, &cic->list) { + __cic = list_entry(entry, struct cfq_io_context, list); + kmem_cache_free(cfq_ioc_pool, __cic); + } + + kmem_cache_free(cfq_ioc_pool, cic); +} + +/* + * Called with interrupts disabled + */ +static void cfq_exit_single_io_context(struct cfq_io_context *cic) +{ + struct cfq_data *cfqd = cic->cfqq->cfqd; + request_queue_t *q = cfqd->queue; + + WARN_ON(!irqs_disabled()); + + spin_lock(q->queue_lock); + + if (unlikely(cic->cfqq == cfqd->active_queue)) { + __cfq_slice_expired(cfqd, cic->cfqq, 0); + cfq_schedule_dispatch(cfqd); + } + + cfq_put_queue(cic->cfqq); + cic->cfqq = NULL; + spin_unlock(q->queue_lock); +} + +/* + * Another task may update the task cic list, if it is doing a queue lookup + * on its behalf. cfq_cic_lock excludes such concurrent updates + */ +static void cfq_exit_io_context(struct cfq_io_context *cic) +{ + struct cfq_io_context *__cic; + struct list_head *entry; + unsigned long flags; + + local_irq_save(flags); + + /* + * put the reference this task is holding to the various queues + */ + list_for_each(entry, &cic->list) { + __cic = list_entry(entry, struct cfq_io_context, list); + cfq_exit_single_io_context(__cic); + } + + cfq_exit_single_io_context(cic); + local_irq_restore(flags); +} + +static struct cfq_io_context * +cfq_alloc_io_context(struct cfq_data *cfqd, gfp_t gfp_mask) +{ + struct cfq_io_context *cic = kmem_cache_alloc(cfq_ioc_pool, gfp_mask); + + if (cic) { + INIT_LIST_HEAD(&cic->list); + cic->cfqq = NULL; + cic->key = NULL; + cic->last_end_request = jiffies; + cic->ttime_total = 0; + cic->ttime_samples = 0; + cic->ttime_mean = 0; + cic->dtor = cfq_free_io_context; + cic->exit = cfq_exit_io_context; + } + + return cic; +} + +static void cfq_init_prio_data(struct cfq_queue *cfqq) +{ + struct task_struct *tsk = current; + int ioprio_class; + + if (!cfq_cfqq_prio_changed(cfqq)) + return; + + ioprio_class = IOPRIO_PRIO_CLASS(tsk->ioprio); + switch (ioprio_class) { + default: + printk(KERN_ERR "cfq: bad prio %x\n", ioprio_class); + case IOPRIO_CLASS_NONE: + /* + * no prio set, place us in the middle of the BE classes + */ + cfqq->ioprio = task_nice_ioprio(tsk); + cfqq->ioprio_class = IOPRIO_CLASS_BE; + break; + case IOPRIO_CLASS_RT: + cfqq->ioprio = task_ioprio(tsk); + cfqq->ioprio_class = IOPRIO_CLASS_RT; + break; + case IOPRIO_CLASS_BE: + cfqq->ioprio = task_ioprio(tsk); + cfqq->ioprio_class = IOPRIO_CLASS_BE; + break; + case IOPRIO_CLASS_IDLE: + cfqq->ioprio_class = IOPRIO_CLASS_IDLE; + cfqq->ioprio = 7; + cfq_clear_cfqq_idle_window(cfqq); + break; + } + + /* + * keep track of original prio settings in case we have to temporarily + * elevate the priority of this queue + */ + cfqq->org_ioprio = cfqq->ioprio; + cfqq->org_ioprio_class = cfqq->ioprio_class; + + if (cfq_cfqq_on_rr(cfqq)) + cfq_resort_rr_list(cfqq, 0); + + cfq_clear_cfqq_prio_changed(cfqq); +} + +static inline void changed_ioprio(struct cfq_queue *cfqq) +{ + if (cfqq) { + struct cfq_data *cfqd = cfqq->cfqd; + + spin_lock(cfqd->queue->queue_lock); + cfq_mark_cfqq_prio_changed(cfqq); + cfq_init_prio_data(cfqq); + spin_unlock(cfqd->queue->queue_lock); + } +} + +/* + * callback from sys_ioprio_set, irqs are disabled + */ +static int cfq_ioc_set_ioprio(struct io_context *ioc, unsigned int ioprio) +{ + struct cfq_io_context *cic = ioc->cic; + + changed_ioprio(cic->cfqq); + + list_for_each_entry(cic, &cic->list, list) + changed_ioprio(cic->cfqq); + + return 0; +} + +static struct cfq_queue * +cfq_get_queue(struct cfq_data *cfqd, unsigned int key, unsigned short ioprio, + gfp_t gfp_mask) +{ + const int hashval = hash_long(key, CFQ_QHASH_SHIFT); + struct cfq_queue *cfqq, *new_cfqq = NULL; + +retry: + cfqq = __cfq_find_cfq_hash(cfqd, key, ioprio, hashval); + + if (!cfqq) { + if (new_cfqq) { + cfqq = new_cfqq; + new_cfqq = NULL; + } else if (gfp_mask & __GFP_WAIT) { + spin_unlock_irq(cfqd->queue->queue_lock); + new_cfqq = kmem_cache_alloc(cfq_pool, gfp_mask); + spin_lock_irq(cfqd->queue->queue_lock); + goto retry; + } else { + cfqq = kmem_cache_alloc(cfq_pool, gfp_mask); + if (!cfqq) + goto out; + } + + memset(cfqq, 0, sizeof(*cfqq)); + + INIT_HLIST_NODE(&cfqq->cfq_hash); + INIT_LIST_HEAD(&cfqq->cfq_list); + RB_CLEAR_ROOT(&cfqq->sort_list); + INIT_LIST_HEAD(&cfqq->fifo); + + cfqq->key = key; + hlist_add_head(&cfqq->cfq_hash, &cfqd->cfq_hash[hashval]); + atomic_set(&cfqq->ref, 0); + cfqq->cfqd = cfqd; + atomic_inc(&cfqd->ref); + cfqq->service_last = 0; + /* + * set ->slice_left to allow preemption for a new process + */ + cfqq->slice_left = 2 * cfqd->cfq_slice_idle; + cfq_mark_cfqq_idle_window(cfqq); + cfq_mark_cfqq_prio_changed(cfqq); + cfq_init_prio_data(cfqq); + } + + if (new_cfqq) + kmem_cache_free(cfq_pool, new_cfqq); + + atomic_inc(&cfqq->ref); +out: + WARN_ON((gfp_mask & __GFP_WAIT) && !cfqq); + return cfqq; +} + +/* + * Setup general io context and cfq io context. There can be several cfq + * io contexts per general io context, if this process is doing io to more + * than one device managed by cfq. Note that caller is holding a reference to + * cfqq, so we don't need to worry about it disappearing + */ +static struct cfq_io_context * +cfq_get_io_context(struct cfq_data *cfqd, pid_t pid, gfp_t gfp_mask) +{ + struct io_context *ioc = NULL; + struct cfq_io_context *cic; + + might_sleep_if(gfp_mask & __GFP_WAIT); + + ioc = get_io_context(gfp_mask); + if (!ioc) + return NULL; + + if ((cic = ioc->cic) == NULL) { + cic = cfq_alloc_io_context(cfqd, gfp_mask); + + if (cic == NULL) + goto err; + + /* + * manually increment generic io_context usage count, it + * cannot go away since we are already holding one ref to it + */ + ioc->cic = cic; + ioc->set_ioprio = cfq_ioc_set_ioprio; + cic->ioc = ioc; + cic->key = cfqd; + atomic_inc(&cfqd->ref); + } else { + struct cfq_io_context *__cic; + + /* + * the first cic on the list is actually the head itself + */ + if (cic->key == cfqd) + goto out; + + /* + * cic exists, check if we already are there. linear search + * should be ok here, the list will usually not be more than + * 1 or a few entries long + */ + list_for_each_entry(__cic, &cic->list, list) { + /* + * this process is already holding a reference to + * this queue, so no need to get one more + */ + if (__cic->key == cfqd) { + cic = __cic; + goto out; + } + } + + /* + * nope, process doesn't have a cic assoicated with this + * cfqq yet. get a new one and add to list + */ + __cic = cfq_alloc_io_context(cfqd, gfp_mask); + if (__cic == NULL) + goto err; + + __cic->ioc = ioc; + __cic->key = cfqd; + atomic_inc(&cfqd->ref); + list_add(&__cic->list, &cic->list); + cic = __cic; + } + +out: + return cic; +err: + put_io_context(ioc); + return NULL; +} + +static void +cfq_update_io_thinktime(struct cfq_data *cfqd, struct cfq_io_context *cic) +{ + unsigned long elapsed, ttime; + + /* + * if this context already has stuff queued, thinktime is from + * last queue not last end + */ +#if 0 + if (time_after(cic->last_end_request, cic->last_queue)) + elapsed = jiffies - cic->last_end_request; + else + elapsed = jiffies - cic->last_queue; +#else + elapsed = jiffies - cic->last_end_request; +#endif + + ttime = min(elapsed, 2UL * cfqd->cfq_slice_idle); + + cic->ttime_samples = (7*cic->ttime_samples + 256) / 8; + cic->ttime_total = (7*cic->ttime_total + 256*ttime) / 8; + cic->ttime_mean = (cic->ttime_total + 128) / cic->ttime_samples; +} + +#define sample_valid(samples) ((samples) > 80) + +/* + * Disable idle window if the process thinks too long or seeks so much that + * it doesn't matter + */ +static void +cfq_update_idle_window(struct cfq_data *cfqd, struct cfq_queue *cfqq, + struct cfq_io_context *cic) +{ + int enable_idle = cfq_cfqq_idle_window(cfqq); + + if (!cic->ioc->task || !cfqd->cfq_slice_idle) + enable_idle = 0; + else if (sample_valid(cic->ttime_samples)) { + if (cic->ttime_mean > cfqd->cfq_slice_idle) + enable_idle = 0; + else + enable_idle = 1; + } + + if (enable_idle) + cfq_mark_cfqq_idle_window(cfqq); + else + cfq_clear_cfqq_idle_window(cfqq); +} + + +/* + * Check if new_cfqq should preempt the currently active queue. Return 0 for + * no or if we aren't sure, a 1 will cause a preempt. + */ +static int +cfq_should_preempt(struct cfq_data *cfqd, struct cfq_queue *new_cfqq, + struct cfq_rq *crq) +{ + struct cfq_queue *cfqq = cfqd->active_queue; + + if (cfq_class_idle(new_cfqq)) + return 0; + + if (!cfqq) + return 1; + + if (cfq_class_idle(cfqq)) + return 1; + if (!cfq_cfqq_wait_request(new_cfqq)) + return 0; + /* + * if it doesn't have slice left, forget it + */ + if (new_cfqq->slice_left < cfqd->cfq_slice_idle) + return 0; + if (cfq_crq_is_sync(crq) && !cfq_cfqq_sync(cfqq)) + return 1; + + return 0; +} + +/* + * cfqq preempts the active queue. if we allowed preempt with no slice left, + * let it have half of its nominal slice. + */ +static void cfq_preempt_queue(struct cfq_data *cfqd, struct cfq_queue *cfqq) +{ + struct cfq_queue *__cfqq, *next; + + list_for_each_entry_safe(__cfqq, next, &cfqd->cur_rr, cfq_list) + cfq_resort_rr_list(__cfqq, 1); + + if (!cfqq->slice_left) + cfqq->slice_left = cfq_prio_to_slice(cfqd, cfqq) / 2; + + cfqq->slice_end = cfqq->slice_left + jiffies; + __cfq_slice_expired(cfqd, cfqq, 1); + __cfq_set_active_queue(cfqd, cfqq); +} + +/* + * should really be a ll_rw_blk.c helper + */ +static void cfq_start_queueing(struct cfq_data *cfqd, struct cfq_queue *cfqq) +{ + request_queue_t *q = cfqd->queue; + + if (!blk_queue_plugged(q)) + q->request_fn(q); + else + __generic_unplug_device(q); +} + +/* + * Called when a new fs request (crq) is added (to cfqq). Check if there's + * something we should do about it + */ +static void +cfq_crq_enqueued(struct cfq_data *cfqd, struct cfq_queue *cfqq, + struct cfq_rq *crq) +{ + struct cfq_io_context *cic; + + cfqq->next_crq = cfq_choose_req(cfqd, cfqq->next_crq, crq); + + /* + * we never wait for an async request and we don't allow preemption + * of an async request. so just return early + */ + if (!cfq_crq_is_sync(crq)) + return; + + cic = crq->io_context; + + cfq_update_io_thinktime(cfqd, cic); + cfq_update_idle_window(cfqd, cfqq, cic); + + cic->last_queue = jiffies; + + if (cfqq == cfqd->active_queue) { + /* + * if we are waiting for a request for this queue, let it rip + * immediately and flag that we must not expire this queue + * just now + */ + if (cfq_cfqq_wait_request(cfqq)) { + cfq_mark_cfqq_must_dispatch(cfqq); + del_timer(&cfqd->idle_slice_timer); + cfq_start_queueing(cfqd, cfqq); + } + } else if (cfq_should_preempt(cfqd, cfqq, crq)) { + /* + * not the active queue - expire current slice if it is + * idle and has expired it's mean thinktime or this new queue + * has some old slice time left and is of higher priority + */ + cfq_preempt_queue(cfqd, cfqq); + cfq_mark_cfqq_must_dispatch(cfqq); + cfq_start_queueing(cfqd, cfqq); + } +} + +static void cfq_insert_request(request_queue_t *q, struct request *rq) +{ + struct cfq_data *cfqd = q->elevator->elevator_data; + struct cfq_rq *crq = RQ_DATA(rq); + struct cfq_queue *cfqq = crq->cfq_queue; + + cfq_init_prio_data(cfqq); + + cfq_add_crq_rb(crq); + + list_add_tail(&rq->queuelist, &cfqq->fifo); + + if (rq_mergeable(rq)) + cfq_add_crq_hash(cfqd, crq); + + cfq_crq_enqueued(cfqd, cfqq, crq); +} + +static void cfq_completed_request(request_queue_t *q, struct request *rq) +{ + struct cfq_rq *crq = RQ_DATA(rq); + struct cfq_queue *cfqq = crq->cfq_queue; + struct cfq_data *cfqd = cfqq->cfqd; + const int sync = cfq_crq_is_sync(crq); + unsigned long now; + + now = jiffies; + + WARN_ON(!cfqd->rq_in_driver); + WARN_ON(!cfqq->on_dispatch[sync]); + cfqd->rq_in_driver--; + cfqq->on_dispatch[sync]--; + + if (!cfq_class_idle(cfqq)) + cfqd->last_end_request = now; + + if (!cfq_cfqq_dispatched(cfqq)) { + if (cfq_cfqq_on_rr(cfqq)) { + cfqq->service_last = now; + cfq_resort_rr_list(cfqq, 0); + } + if (cfq_cfqq_expired(cfqq)) { + __cfq_slice_expired(cfqd, cfqq, 0); + cfq_schedule_dispatch(cfqd); + } + } + + if (cfq_crq_is_sync(crq)) + crq->io_context->last_end_request = now; +} + +static struct request * +cfq_former_request(request_queue_t *q, struct request *rq) +{ + struct cfq_rq *crq = RQ_DATA(rq); + struct rb_node *rbprev = rb_prev(&crq->rb_node); + + if (rbprev) + return rb_entry_crq(rbprev)->request; + + return NULL; +} + +static struct request * +cfq_latter_request(request_queue_t *q, struct request *rq) +{ + struct cfq_rq *crq = RQ_DATA(rq); + struct rb_node *rbnext = rb_next(&crq->rb_node); + + if (rbnext) + return rb_entry_crq(rbnext)->request; + + return NULL; +} + +/* + * we temporarily boost lower priority queues if they are holding fs exclusive + * resources. they are boosted to normal prio (CLASS_BE/4) + */ +static void cfq_prio_boost(struct cfq_queue *cfqq) +{ + const int ioprio_class = cfqq->ioprio_class; + const int ioprio = cfqq->ioprio; + + if (has_fs_excl()) { + /* + * boost idle prio on transactions that would lock out other + * users of the filesystem + */ + if (cfq_class_idle(cfqq)) + cfqq->ioprio_class = IOPRIO_CLASS_BE; + if (cfqq->ioprio > IOPRIO_NORM) + cfqq->ioprio = IOPRIO_NORM; + } else { + /* + * check if we need to unboost the queue + */ + if (cfqq->ioprio_class != cfqq->org_ioprio_class) + cfqq->ioprio_class = cfqq->org_ioprio_class; + if (cfqq->ioprio != cfqq->org_ioprio) + cfqq->ioprio = cfqq->org_ioprio; + } + + /* + * refile between round-robin lists if we moved the priority class + */ + if ((ioprio_class != cfqq->ioprio_class || ioprio != cfqq->ioprio) && + cfq_cfqq_on_rr(cfqq)) + cfq_resort_rr_list(cfqq, 0); +} + +static inline pid_t cfq_queue_pid(struct task_struct *task, int rw) +{ + if (rw == READ || process_sync(task)) + return task->pid; + + return CFQ_KEY_ASYNC; +} + +static inline int +__cfq_may_queue(struct cfq_data *cfqd, struct cfq_queue *cfqq, + struct task_struct *task, int rw) +{ +#if 1 + if ((cfq_cfqq_wait_request(cfqq) || cfq_cfqq_must_alloc(cfqq)) && + !cfq_cfqq_must_alloc_slice(cfqq)) { + cfq_mark_cfqq_must_alloc_slice(cfqq); + return ELV_MQUEUE_MUST; + } + + return ELV_MQUEUE_MAY; +#else + if (!cfqq || task->flags & PF_MEMALLOC) + return ELV_MQUEUE_MAY; + if (!cfqq->allocated[rw] || cfq_cfqq_must_alloc(cfqq)) { + if (cfq_cfqq_wait_request(cfqq)) + return ELV_MQUEUE_MUST; + + /* + * only allow 1 ELV_MQUEUE_MUST per slice, otherwise we + * can quickly flood the queue with writes from a single task + */ + if (rw == READ || !cfq_cfqq_must_alloc_slice(cfqq)) { + cfq_mark_cfqq_must_alloc_slice(cfqq); + return ELV_MQUEUE_MUST; + } + + return ELV_MQUEUE_MAY; + } + if (cfq_class_idle(cfqq)) + return ELV_MQUEUE_NO; + if (cfqq->allocated[rw] >= cfqd->max_queued) { + struct io_context *ioc = get_io_context(GFP_ATOMIC); + int ret = ELV_MQUEUE_NO; + + if (ioc && ioc->nr_batch_requests) + ret = ELV_MQUEUE_MAY; + + put_io_context(ioc); + return ret; + } + + return ELV_MQUEUE_MAY; +#endif +} + +static int cfq_may_queue(request_queue_t *q, int rw, struct bio *bio) +{ + struct cfq_data *cfqd = q->elevator->elevator_data; + struct task_struct *tsk = current; + struct cfq_queue *cfqq; + + /* + * don't force setup of a queue from here, as a call to may_queue + * does not necessarily imply that a request actually will be queued. + * so just lookup a possibly existing queue, or return 'may queue' + * if that fails + */ + cfqq = cfq_find_cfq_hash(cfqd, cfq_queue_pid(tsk, rw), tsk->ioprio); + if (cfqq) { + cfq_init_prio_data(cfqq); + cfq_prio_boost(cfqq); + + return __cfq_may_queue(cfqd, cfqq, tsk, rw); + } + + return ELV_MQUEUE_MAY; +} + +static void cfq_check_waiters(request_queue_t *q, struct cfq_queue *cfqq) +{ + struct cfq_data *cfqd = q->elevator->elevator_data; + struct request_list *rl = &q->rq; + + if (cfqq->allocated[READ] <= cfqd->max_queued || cfqd->rq_starved) { + smp_mb(); + if (waitqueue_active(&rl->wait[READ])) + wake_up(&rl->wait[READ]); + } + + if (cfqq->allocated[WRITE] <= cfqd->max_queued || cfqd->rq_starved) { + smp_mb(); + if (waitqueue_active(&rl->wait[WRITE])) + wake_up(&rl->wait[WRITE]); + } +} + +/* + * queue lock held here + */ +static void cfq_put_request(request_queue_t *q, struct request *rq) +{ + struct cfq_data *cfqd = q->elevator->elevator_data; + struct cfq_rq *crq = RQ_DATA(rq); + + if (crq) { + struct cfq_queue *cfqq = crq->cfq_queue; + const int rw = rq_data_dir(rq); + + BUG_ON(!cfqq->allocated[rw]); + cfqq->allocated[rw]--; + + put_io_context(crq->io_context->ioc); + + mempool_free(crq, cfqd->crq_pool); + rq->elevator_private = NULL; + + cfq_check_waiters(q, cfqq); + cfq_put_queue(cfqq); + } +} + +/* + * Allocate cfq data structures associated with this request. + */ +static int +cfq_set_request(request_queue_t *q, struct request *rq, struct bio *bio, + gfp_t gfp_mask) +{ + struct cfq_data *cfqd = q->elevator->elevator_data; + struct task_struct *tsk = current; + struct cfq_io_context *cic; + const int rw = rq_data_dir(rq); + pid_t key = cfq_queue_pid(tsk, rw); + struct cfq_queue *cfqq; + struct cfq_rq *crq; + unsigned long flags; + + might_sleep_if(gfp_mask & __GFP_WAIT); + + cic = cfq_get_io_context(cfqd, key, gfp_mask); + + spin_lock_irqsave(q->queue_lock, flags); + + if (!cic) + goto queue_fail; + + if (!cic->cfqq) { + cfqq = cfq_get_queue(cfqd, key, tsk->ioprio, gfp_mask); + if (!cfqq) + goto queue_fail; + + cic->cfqq = cfqq; + } else + cfqq = cic->cfqq; + + cfqq->allocated[rw]++; + cfq_clear_cfqq_must_alloc(cfqq); + cfqd->rq_starved = 0; + atomic_inc(&cfqq->ref); + spin_unlock_irqrestore(q->queue_lock, flags); + + crq = mempool_alloc(cfqd->crq_pool, gfp_mask); + if (crq) { + RB_CLEAR(&crq->rb_node); + crq->rb_key = 0; + crq->request = rq; + INIT_HLIST_NODE(&crq->hash); + crq->cfq_queue = cfqq; + crq->io_context = cic; + + if (rw == READ || process_sync(tsk)) + cfq_mark_crq_is_sync(crq); + else + cfq_clear_crq_is_sync(crq); + + rq->elevator_private = crq; + return 0; + } + + spin_lock_irqsave(q->queue_lock, flags); + cfqq->allocated[rw]--; + if (!(cfqq->allocated[0] + cfqq->allocated[1])) + cfq_mark_cfqq_must_alloc(cfqq); + cfq_put_queue(cfqq); +queue_fail: + if (cic) + put_io_context(cic->ioc); + /* + * mark us rq allocation starved. we need to kickstart the process + * ourselves if there are no pending requests that can do it for us. + * that would be an extremely rare OOM situation + */ + cfqd->rq_starved = 1; + cfq_schedule_dispatch(cfqd); + spin_unlock_irqrestore(q->queue_lock, flags); + return 1; +} + +static void cfq_kick_queue(void *data) +{ + request_queue_t *q = data; + struct cfq_data *cfqd = q->elevator->elevator_data; + unsigned long flags; + + spin_lock_irqsave(q->queue_lock, flags); + + if (cfqd->rq_starved) { + struct request_list *rl = &q->rq; + + /* + * we aren't guaranteed to get a request after this, but we + * have to be opportunistic + */ + smp_mb(); + if (waitqueue_active(&rl->wait[READ])) + wake_up(&rl->wait[READ]); + if (waitqueue_active(&rl->wait[WRITE])) + wake_up(&rl->wait[WRITE]); + } + + blk_remove_plug(q); + q->request_fn(q); + spin_unlock_irqrestore(q->queue_lock, flags); +} + +/* + * Timer running if the active_queue is currently idling inside its time slice + */ +static void cfq_idle_slice_timer(unsigned long data) +{ + struct cfq_data *cfqd = (struct cfq_data *) data; + struct cfq_queue *cfqq; + unsigned long flags; + + spin_lock_irqsave(cfqd->queue->queue_lock, flags); + + if ((cfqq = cfqd->active_queue) != NULL) { + unsigned long now = jiffies; + + /* + * expired + */ + if (time_after(now, cfqq->slice_end)) + goto expire; + + /* + * only expire and reinvoke request handler, if there are + * other queues with pending requests + */ + if (!cfqd->busy_queues) { + cfqd->idle_slice_timer.expires = min(now + cfqd->cfq_slice_idle, cfqq->slice_end); + add_timer(&cfqd->idle_slice_timer); + goto out_cont; + } + + /* + * not expired and it has a request pending, let it dispatch + */ + if (!RB_EMPTY(&cfqq->sort_list)) { + cfq_mark_cfqq_must_dispatch(cfqq); + goto out_kick; + } + } +expire: + cfq_slice_expired(cfqd, 0); +out_kick: + cfq_schedule_dispatch(cfqd); +out_cont: + spin_unlock_irqrestore(cfqd->queue->queue_lock, flags); +} + +/* + * Timer running if an idle class queue is waiting for service + */ +static void cfq_idle_class_timer(unsigned long data) +{ + struct cfq_data *cfqd = (struct cfq_data *) data; + unsigned long flags, end; + + spin_lock_irqsave(cfqd->queue->queue_lock, flags); + + /* + * race with a non-idle queue, reset timer + */ + end = cfqd->last_end_request + CFQ_IDLE_GRACE; + if (!time_after_eq(jiffies, end)) { + cfqd->idle_class_timer.expires = end; + add_timer(&cfqd->idle_class_timer); + } else + cfq_schedule_dispatch(cfqd); + + spin_unlock_irqrestore(cfqd->queue->queue_lock, flags); +} + +static void cfq_shutdown_timer_wq(struct cfq_data *cfqd) +{ + del_timer_sync(&cfqd->idle_slice_timer); + del_timer_sync(&cfqd->idle_class_timer); + blk_sync_queue(cfqd->queue); +} + +static void cfq_put_cfqd(struct cfq_data *cfqd) +{ + request_queue_t *q = cfqd->queue; + + if (!atomic_dec_and_test(&cfqd->ref)) + return; + + cfq_shutdown_timer_wq(cfqd); + blk_put_queue(q); + + mempool_destroy(cfqd->crq_pool); + kfree(cfqd->crq_hash); + kfree(cfqd->cfq_hash); + kfree(cfqd); +} + +static void cfq_exit_queue(elevator_t *e) +{ + struct cfq_data *cfqd = e->elevator_data; + + cfq_shutdown_timer_wq(cfqd); + cfq_put_cfqd(cfqd); +} + +static int cfq_init_queue(request_queue_t *q, elevator_t *e) +{ + struct cfq_data *cfqd; + int i; + + cfqd = kmalloc(sizeof(*cfqd), GFP_KERNEL); + if (!cfqd) + return -ENOMEM; + + memset(cfqd, 0, sizeof(*cfqd)); + + for (i = 0; i < CFQ_PRIO_LISTS; i++) + INIT_LIST_HEAD(&cfqd->rr_list[i]); + + INIT_LIST_HEAD(&cfqd->busy_rr); + INIT_LIST_HEAD(&cfqd->cur_rr); + INIT_LIST_HEAD(&cfqd->idle_rr); + INIT_LIST_HEAD(&cfqd->empty_list); + + cfqd->crq_hash = kmalloc(sizeof(struct hlist_head) * CFQ_MHASH_ENTRIES, GFP_KERNEL); + if (!cfqd->crq_hash) + goto out_crqhash; + + cfqd->cfq_hash = kmalloc(sizeof(struct hlist_head) * CFQ_QHASH_ENTRIES, GFP_KERNEL); + if (!cfqd->cfq_hash) + goto out_cfqhash; + + cfqd->crq_pool = mempool_create(BLKDEV_MIN_RQ, mempool_alloc_slab, mempool_free_slab, crq_pool); + if (!cfqd->crq_pool) + goto out_crqpool; + + for (i = 0; i < CFQ_MHASH_ENTRIES; i++) + INIT_HLIST_HEAD(&cfqd->crq_hash[i]); + for (i = 0; i < CFQ_QHASH_ENTRIES; i++) + INIT_HLIST_HEAD(&cfqd->cfq_hash[i]); + + e->elevator_data = cfqd; + + cfqd->queue = q; + atomic_inc(&q->refcnt); + + cfqd->max_queued = q->nr_requests / 4; + q->nr_batching = cfq_queued; + + init_timer(&cfqd->idle_slice_timer); + cfqd->idle_slice_timer.function = cfq_idle_slice_timer; + cfqd->idle_slice_timer.data = (unsigned long) cfqd; + + init_timer(&cfqd->idle_class_timer); + cfqd->idle_class_timer.function = cfq_idle_class_timer; + cfqd->idle_class_timer.data = (unsigned long) cfqd; + + INIT_WORK(&cfqd->unplug_work, cfq_kick_queue, q); + + atomic_set(&cfqd->ref, 1); + + cfqd->cfq_queued = cfq_queued; + cfqd->cfq_quantum = cfq_quantum; + cfqd->cfq_fifo_expire[0] = cfq_fifo_expire[0]; + cfqd->cfq_fifo_expire[1] = cfq_fifo_expire[1]; + cfqd->cfq_back_max = cfq_back_max; + cfqd->cfq_back_penalty = cfq_back_penalty; + cfqd->cfq_slice[0] = cfq_slice_async; + cfqd->cfq_slice[1] = cfq_slice_sync; + cfqd->cfq_slice_async_rq = cfq_slice_async_rq; + cfqd->cfq_slice_idle = cfq_slice_idle; + cfqd->cfq_max_depth = cfq_max_depth; + + return 0; +out_crqpool: + kfree(cfqd->cfq_hash); +out_cfqhash: + kfree(cfqd->crq_hash); +out_crqhash: + kfree(cfqd); + return -ENOMEM; +} + +static void cfq_slab_kill(void) +{ + if (crq_pool) + kmem_cache_destroy(crq_pool); + if (cfq_pool) + kmem_cache_destroy(cfq_pool); + if (cfq_ioc_pool) + kmem_cache_destroy(cfq_ioc_pool); +} + +static int __init cfq_slab_setup(void) +{ + crq_pool = kmem_cache_create("crq_pool", sizeof(struct cfq_rq), 0, 0, + NULL, NULL); + if (!crq_pool) + goto fail; + + cfq_pool = kmem_cache_create("cfq_pool", sizeof(struct cfq_queue), 0, 0, + NULL, NULL); + if (!cfq_pool) + goto fail; + + cfq_ioc_pool = kmem_cache_create("cfq_ioc_pool", + sizeof(struct cfq_io_context), 0, 0, NULL, NULL); + if (!cfq_ioc_pool) + goto fail; + + return 0; +fail: + cfq_slab_kill(); + return -ENOMEM; +} + +/* + * sysfs parts below --> + */ +struct cfq_fs_entry { + struct attribute attr; + ssize_t (*show)(struct cfq_data *, char *); + ssize_t (*store)(struct cfq_data *, const char *, size_t); +}; + +static ssize_t +cfq_var_show(unsigned int var, char *page) +{ + return sprintf(page, "%d\n", var); +} + +static ssize_t +cfq_var_store(unsigned int *var, const char *page, size_t count) +{ + char *p = (char *) page; + + *var = simple_strtoul(p, &p, 10); + return count; +} + +#define SHOW_FUNCTION(__FUNC, __VAR, __CONV) \ +static ssize_t __FUNC(struct cfq_data *cfqd, char *page) \ +{ \ + unsigned int __data = __VAR; \ + if (__CONV) \ + __data = jiffies_to_msecs(__data); \ + return cfq_var_show(__data, (page)); \ +} +SHOW_FUNCTION(cfq_quantum_show, cfqd->cfq_quantum, 0); +SHOW_FUNCTION(cfq_queued_show, cfqd->cfq_queued, 0); +SHOW_FUNCTION(cfq_fifo_expire_sync_show, cfqd->cfq_fifo_expire[1], 1); +SHOW_FUNCTION(cfq_fifo_expire_async_show, cfqd->cfq_fifo_expire[0], 1); +SHOW_FUNCTION(cfq_back_max_show, cfqd->cfq_back_max, 0); +SHOW_FUNCTION(cfq_back_penalty_show, cfqd->cfq_back_penalty, 0); +SHOW_FUNCTION(cfq_slice_idle_show, cfqd->cfq_slice_idle, 1); +SHOW_FUNCTION(cfq_slice_sync_show, cfqd->cfq_slice[1], 1); +SHOW_FUNCTION(cfq_slice_async_show, cfqd->cfq_slice[0], 1); +SHOW_FUNCTION(cfq_slice_async_rq_show, cfqd->cfq_slice_async_rq, 0); +SHOW_FUNCTION(cfq_max_depth_show, cfqd->cfq_max_depth, 0); +#undef SHOW_FUNCTION + +#define STORE_FUNCTION(__FUNC, __PTR, MIN, MAX, __CONV) \ +static ssize_t __FUNC(struct cfq_data *cfqd, const char *page, size_t count) \ +{ \ + unsigned int __data; \ + int ret = cfq_var_store(&__data, (page), count); \ + if (__data < (MIN)) \ + __data = (MIN); \ + else if (__data > (MAX)) \ + __data = (MAX); \ + if (__CONV) \ + *(__PTR) = msecs_to_jiffies(__data); \ + else \ + *(__PTR) = __data; \ + return ret; \ +} +STORE_FUNCTION(cfq_quantum_store, &cfqd->cfq_quantum, 1, UINT_MAX, 0); +STORE_FUNCTION(cfq_queued_store, &cfqd->cfq_queued, 1, UINT_MAX, 0); +STORE_FUNCTION(cfq_fifo_expire_sync_store, &cfqd->cfq_fifo_expire[1], 1, UINT_MAX, 1); +STORE_FUNCTION(cfq_fifo_expire_async_store, &cfqd->cfq_fifo_expire[0], 1, UINT_MAX, 1); +STORE_FUNCTION(cfq_back_max_store, &cfqd->cfq_back_max, 0, UINT_MAX, 0); +STORE_FUNCTION(cfq_back_penalty_store, &cfqd->cfq_back_penalty, 1, UINT_MAX, 0); +STORE_FUNCTION(cfq_slice_idle_store, &cfqd->cfq_slice_idle, 0, UINT_MAX, 1); +STORE_FUNCTION(cfq_slice_sync_store, &cfqd->cfq_slice[1], 1, UINT_MAX, 1); +STORE_FUNCTION(cfq_slice_async_store, &cfqd->cfq_slice[0], 1, UINT_MAX, 1); +STORE_FUNCTION(cfq_slice_async_rq_store, &cfqd->cfq_slice_async_rq, 1, UINT_MAX, 0); +STORE_FUNCTION(cfq_max_depth_store, &cfqd->cfq_max_depth, 1, UINT_MAX, 0); +#undef STORE_FUNCTION + +static struct cfq_fs_entry cfq_quantum_entry = { + .attr = {.name = "quantum", .mode = S_IRUGO | S_IWUSR }, + .show = cfq_quantum_show, + .store = cfq_quantum_store, +}; +static struct cfq_fs_entry cfq_queued_entry = { + .attr = {.name = "queued", .mode = S_IRUGO | S_IWUSR }, + .show = cfq_queued_show, + .store = cfq_queued_store, +}; +static struct cfq_fs_entry cfq_fifo_expire_sync_entry = { + .attr = {.name = "fifo_expire_sync", .mode = S_IRUGO | S_IWUSR }, + .show = cfq_fifo_expire_sync_show, + .store = cfq_fifo_expire_sync_store, +}; +static struct cfq_fs_entry cfq_fifo_expire_async_entry = { + .attr = {.name = "fifo_expire_async", .mode = S_IRUGO | S_IWUSR }, + .show = cfq_fifo_expire_async_show, + .store = cfq_fifo_expire_async_store, +}; +static struct cfq_fs_entry cfq_back_max_entry = { + .attr = {.name = "back_seek_max", .mode = S_IRUGO | S_IWUSR }, + .show = cfq_back_max_show, + .store = cfq_back_max_store, +}; +static struct cfq_fs_entry cfq_back_penalty_entry = { + .attr = {.name = "back_seek_penalty", .mode = S_IRUGO | S_IWUSR }, + .show = cfq_back_penalty_show, + .store = cfq_back_penalty_store, +}; +static struct cfq_fs_entry cfq_slice_sync_entry = { + .attr = {.name = "slice_sync", .mode = S_IRUGO | S_IWUSR }, + .show = cfq_slice_sync_show, + .store = cfq_slice_sync_store, +}; +static struct cfq_fs_entry cfq_slice_async_entry = { + .attr = {.name = "slice_async", .mode = S_IRUGO | S_IWUSR }, + .show = cfq_slice_async_show, + .store = cfq_slice_async_store, +}; +static struct cfq_fs_entry cfq_slice_async_rq_entry = { + .attr = {.name = "slice_async_rq", .mode = S_IRUGO | S_IWUSR }, + .show = cfq_slice_async_rq_show, + .store = cfq_slice_async_rq_store, +}; +static struct cfq_fs_entry cfq_slice_idle_entry = { + .attr = {.name = "slice_idle", .mode = S_IRUGO | S_IWUSR }, + .show = cfq_slice_idle_show, + .store = cfq_slice_idle_store, +}; +static struct cfq_fs_entry cfq_max_depth_entry = { + .attr = {.name = "max_depth", .mode = S_IRUGO | S_IWUSR }, + .show = cfq_max_depth_show, + .store = cfq_max_depth_store, +}; + +static struct attribute *default_attrs[] = { + &cfq_quantum_entry.attr, + &cfq_queued_entry.attr, + &cfq_fifo_expire_sync_entry.attr, + &cfq_fifo_expire_async_entry.attr, + &cfq_back_max_entry.attr, + &cfq_back_penalty_entry.attr, + &cfq_slice_sync_entry.attr, + &cfq_slice_async_entry.attr, + &cfq_slice_async_rq_entry.attr, + &cfq_slice_idle_entry.attr, + &cfq_max_depth_entry.attr, + NULL, +}; + +#define to_cfq(atr) container_of((atr), struct cfq_fs_entry, attr) + +static ssize_t +cfq_attr_show(struct kobject *kobj, struct attribute *attr, char *page) +{ + elevator_t *e = container_of(kobj, elevator_t, kobj); + struct cfq_fs_entry *entry = to_cfq(attr); + + if (!entry->show) + return -EIO; + + return entry->show(e->elevator_data, page); +} + +static ssize_t +cfq_attr_store(struct kobject *kobj, struct attribute *attr, + const char *page, size_t length) +{ + elevator_t *e = container_of(kobj, elevator_t, kobj); + struct cfq_fs_entry *entry = to_cfq(attr); + + if (!entry->store) + return -EIO; + + return entry->store(e->elevator_data, page, length); +} + +static struct sysfs_ops cfq_sysfs_ops = { + .show = cfq_attr_show, + .store = cfq_attr_store, +}; + +static struct kobj_type cfq_ktype = { + .sysfs_ops = &cfq_sysfs_ops, + .default_attrs = default_attrs, +}; + +static struct elevator_type iosched_cfq = { + .ops = { + .elevator_merge_fn = cfq_merge, + .elevator_merged_fn = cfq_merged_request, + .elevator_merge_req_fn = cfq_merged_requests, + .elevator_dispatch_fn = cfq_dispatch_requests, + .elevator_add_req_fn = cfq_insert_request, + .elevator_activate_req_fn = cfq_activate_request, + .elevator_deactivate_req_fn = cfq_deactivate_request, + .elevator_queue_empty_fn = cfq_queue_empty, + .elevator_completed_req_fn = cfq_completed_request, + .elevator_former_req_fn = cfq_former_request, + .elevator_latter_req_fn = cfq_latter_request, + .elevator_set_req_fn = cfq_set_request, + .elevator_put_req_fn = cfq_put_request, + .elevator_may_queue_fn = cfq_may_queue, + .elevator_init_fn = cfq_init_queue, + .elevator_exit_fn = cfq_exit_queue, + }, + .elevator_ktype = &cfq_ktype, + .elevator_name = "cfq", + .elevator_owner = THIS_MODULE, +}; + +static int __init cfq_init(void) +{ + int ret; + + /* + * could be 0 on HZ < 1000 setups + */ + if (!cfq_slice_async) + cfq_slice_async = 1; + if (!cfq_slice_idle) + cfq_slice_idle = 1; + + if (cfq_slab_setup()) + return -ENOMEM; + + ret = elv_register(&iosched_cfq); + if (ret) + cfq_slab_kill(); + + return ret; +} + +static void __exit cfq_exit(void) +{ + elv_unregister(&iosched_cfq); + cfq_slab_kill(); +} + +module_init(cfq_init); +module_exit(cfq_exit); + +MODULE_AUTHOR("Jens Axboe"); +MODULE_LICENSE("GPL"); +MODULE_DESCRIPTION("Completely Fair Queueing IO scheduler"); diff --git a/block/deadline-iosched.c b/block/deadline-iosched.c new file mode 100644 index 000000000000..7929471d7df7 --- /dev/null +++ b/block/deadline-iosched.c @@ -0,0 +1,878 @@ +/* + * linux/drivers/block/deadline-iosched.c + * + * Deadline i/o scheduler. + * + * Copyright (C) 2002 Jens Axboe + */ +#include +#include +#include +#include +#include +#include +#include +#include +#include +#include +#include +#include + +/* + * See Documentation/block/deadline-iosched.txt + */ +static int read_expire = HZ / 2; /* max time before a read is submitted. */ +static int write_expire = 5 * HZ; /* ditto for writes, these limits are SOFT! */ +static int writes_starved = 2; /* max times reads can starve a write */ +static int fifo_batch = 16; /* # of sequential requests treated as one + by the above parameters. For throughput. */ + +static const int deadline_hash_shift = 5; +#define DL_HASH_BLOCK(sec) ((sec) >> 3) +#define DL_HASH_FN(sec) (hash_long(DL_HASH_BLOCK((sec)), deadline_hash_shift)) +#define DL_HASH_ENTRIES (1 << deadline_hash_shift) +#define rq_hash_key(rq) ((rq)->sector + (rq)->nr_sectors) +#define list_entry_hash(ptr) list_entry((ptr), struct deadline_rq, hash) +#define ON_HASH(drq) (drq)->on_hash + +struct deadline_data { + /* + * run time data + */ + + /* + * requests (deadline_rq s) are present on both sort_list and fifo_list + */ + struct rb_root sort_list[2]; + struct list_head fifo_list[2]; + + /* + * next in sort order. read, write or both are NULL + */ + struct deadline_rq *next_drq[2]; + struct list_head *hash; /* request hash */ + unsigned int batching; /* number of sequential requests made */ + sector_t last_sector; /* head position */ + unsigned int starved; /* times reads have starved writes */ + + /* + * settings that change how the i/o scheduler behaves + */ + int fifo_expire[2]; + int fifo_batch; + int writes_starved; + int front_merges; + + mempool_t *drq_pool; +}; + +/* + * pre-request data. + */ +struct deadline_rq { + /* + * rbtree index, key is the starting offset + */ + struct rb_node rb_node; + sector_t rb_key; + + struct request *request; + + /* + * request hash, key is the ending offset (for back merge lookup) + */ + struct list_head hash; + char on_hash; + + /* + * expire fifo + */ + struct list_head fifo; + unsigned long expires; +}; + +static void deadline_move_request(struct deadline_data *dd, struct deadline_rq *drq); + +static kmem_cache_t *drq_pool; + +#define RQ_DATA(rq) ((struct deadline_rq *) (rq)->elevator_private) + +/* + * the back merge hash support functions + */ +static inline void __deadline_del_drq_hash(struct deadline_rq *drq) +{ + drq->on_hash = 0; + list_del_init(&drq->hash); +} + +static inline void deadline_del_drq_hash(struct deadline_rq *drq) +{ + if (ON_HASH(drq)) + __deadline_del_drq_hash(drq); +} + +static inline void +deadline_add_drq_hash(struct deadline_data *dd, struct deadline_rq *drq) +{ + struct request *rq = drq->request; + + BUG_ON(ON_HASH(drq)); + + drq->on_hash = 1; + list_add(&drq->hash, &dd->hash[DL_HASH_FN(rq_hash_key(rq))]); +} + +/* + * move hot entry to front of chain + */ +static inline void +deadline_hot_drq_hash(struct deadline_data *dd, struct deadline_rq *drq) +{ + struct request *rq = drq->request; + struct list_head *head = &dd->hash[DL_HASH_FN(rq_hash_key(rq))]; + + if (ON_HASH(drq) && drq->hash.prev != head) { + list_del(&drq->hash); + list_add(&drq->hash, head); + } +} + +static struct request * +deadline_find_drq_hash(struct deadline_data *dd, sector_t offset) +{ + struct list_head *hash_list = &dd->hash[DL_HASH_FN(offset)]; + struct list_head *entry, *next = hash_list->next; + + while ((entry = next) != hash_list) { + struct deadline_rq *drq = list_entry_hash(entry); + struct request *__rq = drq->request; + + next = entry->next; + + BUG_ON(!ON_HASH(drq)); + + if (!rq_mergeable(__rq)) { + __deadline_del_drq_hash(drq); + continue; + } + + if (rq_hash_key(__rq) == offset) + return __rq; + } + + return NULL; +} + +/* + * rb tree support functions + */ +#define RB_NONE (2) +#define RB_EMPTY(root) ((root)->rb_node == NULL) +#define ON_RB(node) ((node)->rb_color != RB_NONE) +#define RB_CLEAR(node) ((node)->rb_color = RB_NONE) +#define rb_entry_drq(node) rb_entry((node), struct deadline_rq, rb_node) +#define DRQ_RB_ROOT(dd, drq) (&(dd)->sort_list[rq_data_dir((drq)->request)]) +#define rq_rb_key(rq) (rq)->sector + +static struct deadline_rq * +__deadline_add_drq_rb(struct deadline_data *dd, struct deadline_rq *drq) +{ + struct rb_node **p = &DRQ_RB_ROOT(dd, drq)->rb_node; + struct rb_node *parent = NULL; + struct deadline_rq *__drq; + + while (*p) { + parent = *p; + __drq = rb_entry_drq(parent); + + if (drq->rb_key < __drq->rb_key) + p = &(*p)->rb_left; + else if (drq->rb_key > __drq->rb_key) + p = &(*p)->rb_right; + else + return __drq; + } + + rb_link_node(&drq->rb_node, parent, p); + return NULL; +} + +static void +deadline_add_drq_rb(struct deadline_data *dd, struct deadline_rq *drq) +{ + struct deadline_rq *__alias; + + drq->rb_key = rq_rb_key(drq->request); + +retry: + __alias = __deadline_add_drq_rb(dd, drq); + if (!__alias) { + rb_insert_color(&drq->rb_node, DRQ_RB_ROOT(dd, drq)); + return; + } + + deadline_move_request(dd, __alias); + goto retry; +} + +static inline void +deadline_del_drq_rb(struct deadline_data *dd, struct deadline_rq *drq) +{ + const int data_dir = rq_data_dir(drq->request); + + if (dd->next_drq[data_dir] == drq) { + struct rb_node *rbnext = rb_next(&drq->rb_node); + + dd->next_drq[data_dir] = NULL; + if (rbnext) + dd->next_drq[data_dir] = rb_entry_drq(rbnext); + } + + BUG_ON(!ON_RB(&drq->rb_node)); + rb_erase(&drq->rb_node, DRQ_RB_ROOT(dd, drq)); + RB_CLEAR(&drq->rb_node); +} + +static struct request * +deadline_find_drq_rb(struct deadline_data *dd, sector_t sector, int data_dir) +{ + struct rb_node *n = dd->sort_list[data_dir].rb_node; + struct deadline_rq *drq; + + while (n) { + drq = rb_entry_drq(n); + + if (sector < drq->rb_key) + n = n->rb_left; + else if (sector > drq->rb_key) + n = n->rb_right; + else + return drq->request; + } + + return NULL; +} + +/* + * deadline_find_first_drq finds the first (lowest sector numbered) request + * for the specified data_dir. Used to sweep back to the start of the disk + * (1-way elevator) after we process the last (highest sector) request. + */ +static struct deadline_rq * +deadline_find_first_drq(struct deadline_data *dd, int data_dir) +{ + struct rb_node *n = dd->sort_list[data_dir].rb_node; + + for (;;) { + if (n->rb_left == NULL) + return rb_entry_drq(n); + + n = n->rb_left; + } +} + +/* + * add drq to rbtree and fifo + */ +static void +deadline_add_request(struct request_queue *q, struct request *rq) +{ + struct deadline_data *dd = q->elevator->elevator_data; + struct deadline_rq *drq = RQ_DATA(rq); + + const int data_dir = rq_data_dir(drq->request); + + deadline_add_drq_rb(dd, drq); + /* + * set expire time (only used for reads) and add to fifo list + */ + drq->expires = jiffies + dd->fifo_expire[data_dir]; + list_add_tail(&drq->fifo, &dd->fifo_list[data_dir]); + + if (rq_mergeable(rq)) + deadline_add_drq_hash(dd, drq); +} + +/* + * remove rq from rbtree, fifo, and hash + */ +static void deadline_remove_request(request_queue_t *q, struct request *rq) +{ + struct deadline_rq *drq = RQ_DATA(rq); + struct deadline_data *dd = q->elevator->elevator_data; + + list_del_init(&drq->fifo); + deadline_del_drq_rb(dd, drq); + deadline_del_drq_hash(drq); +} + +static int +deadline_merge(request_queue_t *q, struct request **req, struct bio *bio) +{ + struct deadline_data *dd = q->elevator->elevator_data; + struct request *__rq; + int ret; + + /* + * see if the merge hash can satisfy a back merge + */ + __rq = deadline_find_drq_hash(dd, bio->bi_sector); + if (__rq) { + BUG_ON(__rq->sector + __rq->nr_sectors != bio->bi_sector); + + if (elv_rq_merge_ok(__rq, bio)) { + ret = ELEVATOR_BACK_MERGE; + goto out; + } + } + + /* + * check for front merge + */ + if (dd->front_merges) { + sector_t rb_key = bio->bi_sector + bio_sectors(bio); + + __rq = deadline_find_drq_rb(dd, rb_key, bio_data_dir(bio)); + if (__rq) { + BUG_ON(rb_key != rq_rb_key(__rq)); + + if (elv_rq_merge_ok(__rq, bio)) { + ret = ELEVATOR_FRONT_MERGE; + goto out; + } + } + } + + return ELEVATOR_NO_MERGE; +out: + if (ret) + deadline_hot_drq_hash(dd, RQ_DATA(__rq)); + *req = __rq; + return ret; +} + +static void deadline_merged_request(request_queue_t *q, struct request *req) +{ + struct deadline_data *dd = q->elevator->elevator_data; + struct deadline_rq *drq = RQ_DATA(req); + + /* + * hash always needs to be repositioned, key is end sector + */ + deadline_del_drq_hash(drq); + deadline_add_drq_hash(dd, drq); + + /* + * if the merge was a front merge, we need to reposition request + */ + if (rq_rb_key(req) != drq->rb_key) { + deadline_del_drq_rb(dd, drq); + deadline_add_drq_rb(dd, drq); + } +} + +static void +deadline_merged_requests(request_queue_t *q, struct request *req, + struct request *next) +{ + struct deadline_data *dd = q->elevator->elevator_data; + struct deadline_rq *drq = RQ_DATA(req); + struct deadline_rq *dnext = RQ_DATA(next); + + BUG_ON(!drq); + BUG_ON(!dnext); + + /* + * reposition drq (this is the merged request) in hash, and in rbtree + * in case of a front merge + */ + deadline_del_drq_hash(drq); + deadline_add_drq_hash(dd, drq); + + if (rq_rb_key(req) != drq->rb_key) { + deadline_del_drq_rb(dd, drq); + deadline_add_drq_rb(dd, drq); + } + + /* + * if dnext expires before drq, assign its expire time to drq + * and move into dnext position (dnext will be deleted) in fifo + */ + if (!list_empty(&drq->fifo) && !list_empty(&dnext->fifo)) { + if (time_before(dnext->expires, drq->expires)) { + list_move(&drq->fifo, &dnext->fifo); + drq->expires = dnext->expires; + } + } + + /* + * kill knowledge of next, this one is a goner + */ + deadline_remove_request(q, next); +} + +/* + * move request from sort list to dispatch queue. + */ +static inline void +deadline_move_to_dispatch(struct deadline_data *dd, struct deadline_rq *drq) +{ + request_queue_t *q = drq->request->q; + + deadline_remove_request(q, drq->request); + elv_dispatch_add_tail(q, drq->request); +} + +/* + * move an entry to dispatch queue + */ +static void +deadline_move_request(struct deadline_data *dd, struct deadline_rq *drq) +{ + const int data_dir = rq_data_dir(drq->request); + struct rb_node *rbnext = rb_next(&drq->rb_node); + + dd->next_drq[READ] = NULL; + dd->next_drq[WRITE] = NULL; + + if (rbnext) + dd->next_drq[data_dir] = rb_entry_drq(rbnext); + + dd->last_sector = drq->request->sector + drq->request->nr_sectors; + + /* + * take it off the sort and fifo list, move + * to dispatch queue + */ + deadline_move_to_dispatch(dd, drq); +} + +#define list_entry_fifo(ptr) list_entry((ptr), struct deadline_rq, fifo) + +/* + * deadline_check_fifo returns 0 if there are no expired reads on the fifo, + * 1 otherwise. Requires !list_empty(&dd->fifo_list[data_dir]) + */ +static inline int deadline_check_fifo(struct deadline_data *dd, int ddir) +{ + struct deadline_rq *drq = list_entry_fifo(dd->fifo_list[ddir].next); + + /* + * drq is expired! + */ + if (time_after(jiffies, drq->expires)) + return 1; + + return 0; +} + +/* + * deadline_dispatch_requests selects the best request according to + * read/write expire, fifo_batch, etc + */ +static int deadline_dispatch_requests(request_queue_t *q, int force) +{ + struct deadline_data *dd = q->elevator->elevator_data; + const int reads = !list_empty(&dd->fifo_list[READ]); + const int writes = !list_empty(&dd->fifo_list[WRITE]); + struct deadline_rq *drq; + int data_dir; + + /* + * batches are currently reads XOR writes + */ + if (dd->next_drq[WRITE]) + drq = dd->next_drq[WRITE]; + else + drq = dd->next_drq[READ]; + + if (drq) { + /* we have a "next request" */ + + if (dd->last_sector != drq->request->sector) + /* end the batch on a non sequential request */ + dd->batching += dd->fifo_batch; + + if (dd->batching < dd->fifo_batch) + /* we are still entitled to batch */ + goto dispatch_request; + } + + /* + * at this point we are not running a batch. select the appropriate + * data direction (read / write) + */ + + if (reads) { + BUG_ON(RB_EMPTY(&dd->sort_list[READ])); + + if (writes && (dd->starved++ >= dd->writes_starved)) + goto dispatch_writes; + + data_dir = READ; + + goto dispatch_find_request; + } + + /* + * there are either no reads or writes have been starved + */ + + if (writes) { +dispatch_writes: + BUG_ON(RB_EMPTY(&dd->sort_list[WRITE])); + + dd->starved = 0; + + data_dir = WRITE; + + goto dispatch_find_request; + } + + return 0; + +dispatch_find_request: + /* + * we are not running a batch, find best request for selected data_dir + */ + if (deadline_check_fifo(dd, data_dir)) { + /* An expired request exists - satisfy it */ + dd->batching = 0; + drq = list_entry_fifo(dd->fifo_list[data_dir].next); + + } else if (dd->next_drq[data_dir]) { + /* + * The last req was the same dir and we have a next request in + * sort order. No expired requests so continue on from here. + */ + drq = dd->next_drq[data_dir]; + } else { + /* + * The last req was the other direction or we have run out of + * higher-sectored requests. Go back to the lowest sectored + * request (1 way elevator) and start a new batch. + */ + dd->batching = 0; + drq = deadline_find_first_drq(dd, data_dir); + } + +dispatch_request: + /* + * drq is the selected appropriate request. + */ + dd->batching++; + deadline_move_request(dd, drq); + + return 1; +} + +static int deadline_queue_empty(request_queue_t *q) +{ + struct deadline_data *dd = q->elevator->elevator_data; + + return list_empty(&dd->fifo_list[WRITE]) + && list_empty(&dd->fifo_list[READ]); +} + +static struct request * +deadline_former_request(request_queue_t *q, struct request *rq) +{ + struct deadline_rq *drq = RQ_DATA(rq); + struct rb_node *rbprev = rb_prev(&drq->rb_node); + + if (rbprev) + return rb_entry_drq(rbprev)->request; + + return NULL; +} + +static struct request * +deadline_latter_request(request_queue_t *q, struct request *rq) +{ + struct deadline_rq *drq = RQ_DATA(rq); + struct rb_node *rbnext = rb_next(&drq->rb_node); + + if (rbnext) + return rb_entry_drq(rbnext)->request; + + return NULL; +} + +static void deadline_exit_queue(elevator_t *e) +{ + struct deadline_data *dd = e->elevator_data; + + BUG_ON(!list_empty(&dd->fifo_list[READ])); + BUG_ON(!list_empty(&dd->fifo_list[WRITE])); + + mempool_destroy(dd->drq_pool); + kfree(dd->hash); + kfree(dd); +} + +/* + * initialize elevator private data (deadline_data), and alloc a drq for + * each request on the free lists + */ +static int deadline_init_queue(request_queue_t *q, elevator_t *e) +{ + struct deadline_data *dd; + int i; + + if (!drq_pool) + return -ENOMEM; + + dd = kmalloc_node(sizeof(*dd), GFP_KERNEL, q->node); + if (!dd) + return -ENOMEM; + memset(dd, 0, sizeof(*dd)); + + dd->hash = kmalloc_node(sizeof(struct list_head)*DL_HASH_ENTRIES, + GFP_KERNEL, q->node); + if (!dd->hash) { + kfree(dd); + return -ENOMEM; + } + + dd->drq_pool = mempool_create_node(BLKDEV_MIN_RQ, mempool_alloc_slab, + mempool_free_slab, drq_pool, q->node); + if (!dd->drq_pool) { + kfree(dd->hash); + kfree(dd); + return -ENOMEM; + } + + for (i = 0; i < DL_HASH_ENTRIES; i++) + INIT_LIST_HEAD(&dd->hash[i]); + + INIT_LIST_HEAD(&dd->fifo_list[READ]); + INIT_LIST_HEAD(&dd->fifo_list[WRITE]); + dd->sort_list[READ] = RB_ROOT; + dd->sort_list[WRITE] = RB_ROOT; + dd->fifo_expire[READ] = read_expire; + dd->fifo_expire[WRITE] = write_expire; + dd->writes_starved = writes_starved; + dd->front_merges = 1; + dd->fifo_batch = fifo_batch; + e->elevator_data = dd; + return 0; +} + +static void deadline_put_request(request_queue_t *q, struct request *rq) +{ + struct deadline_data *dd = q->elevator->elevator_data; + struct deadline_rq *drq = RQ_DATA(rq); + + mempool_free(drq, dd->drq_pool); + rq->elevator_private = NULL; +} + +static int +deadline_set_request(request_queue_t *q, struct request *rq, struct bio *bio, + gfp_t gfp_mask) +{ + struct deadline_data *dd = q->elevator->elevator_data; + struct deadline_rq *drq; + + drq = mempool_alloc(dd->drq_pool, gfp_mask); + if (drq) { + memset(drq, 0, sizeof(*drq)); + RB_CLEAR(&drq->rb_node); + drq->request = rq; + + INIT_LIST_HEAD(&drq->hash); + drq->on_hash = 0; + + INIT_LIST_HEAD(&drq->fifo); + + rq->elevator_private = drq; + return 0; + } + + return 1; +} + +/* + * sysfs parts below + */ +struct deadline_fs_entry { + struct attribute attr; + ssize_t (*show)(struct deadline_data *, char *); + ssize_t (*store)(struct deadline_data *, const char *, size_t); +}; + +static ssize_t +deadline_var_show(int var, char *page) +{ + return sprintf(page, "%d\n", var); +} + +static ssize_t +deadline_var_store(int *var, const char *page, size_t count) +{ + char *p = (char *) page; + + *var = simple_strtol(p, &p, 10); + return count; +} + +#define SHOW_FUNCTION(__FUNC, __VAR, __CONV) \ +static ssize_t __FUNC(struct deadline_data *dd, char *page) \ +{ \ + int __data = __VAR; \ + if (__CONV) \ + __data = jiffies_to_msecs(__data); \ + return deadline_var_show(__data, (page)); \ +} +SHOW_FUNCTION(deadline_readexpire_show, dd->fifo_expire[READ], 1); +SHOW_FUNCTION(deadline_writeexpire_show, dd->fifo_expire[WRITE], 1); +SHOW_FUNCTION(deadline_writesstarved_show, dd->writes_starved, 0); +SHOW_FUNCTION(deadline_frontmerges_show, dd->front_merges, 0); +SHOW_FUNCTION(deadline_fifobatch_show, dd->fifo_batch, 0); +#undef SHOW_FUNCTION + +#define STORE_FUNCTION(__FUNC, __PTR, MIN, MAX, __CONV) \ +static ssize_t __FUNC(struct deadline_data *dd, const char *page, size_t count) \ +{ \ + int __data; \ + int ret = deadline_var_store(&__data, (page), count); \ + if (__data < (MIN)) \ + __data = (MIN); \ + else if (__data > (MAX)) \ + __data = (MAX); \ + if (__CONV) \ + *(__PTR) = msecs_to_jiffies(__data); \ + else \ + *(__PTR) = __data; \ + return ret; \ +} +STORE_FUNCTION(deadline_readexpire_store, &dd->fifo_expire[READ], 0, INT_MAX, 1); +STORE_FUNCTION(deadline_writeexpire_store, &dd->fifo_expire[WRITE], 0, INT_MAX, 1); +STORE_FUNCTION(deadline_writesstarved_store, &dd->writes_starved, INT_MIN, INT_MAX, 0); +STORE_FUNCTION(deadline_frontmerges_store, &dd->front_merges, 0, 1, 0); +STORE_FUNCTION(deadline_fifobatch_store, &dd->fifo_batch, 0, INT_MAX, 0); +#undef STORE_FUNCTION + +static struct deadline_fs_entry deadline_readexpire_entry = { + .attr = {.name = "read_expire", .mode = S_IRUGO | S_IWUSR }, + .show = deadline_readexpire_show, + .store = deadline_readexpire_store, +}; +static struct deadline_fs_entry deadline_writeexpire_entry = { + .attr = {.name = "write_expire", .mode = S_IRUGO | S_IWUSR }, + .show = deadline_writeexpire_show, + .store = deadline_writeexpire_store, +}; +static struct deadline_fs_entry deadline_writesstarved_entry = { + .attr = {.name = "writes_starved", .mode = S_IRUGO | S_IWUSR }, + .show = deadline_writesstarved_show, + .store = deadline_writesstarved_store, +}; +static struct deadline_fs_entry deadline_frontmerges_entry = { + .attr = {.name = "front_merges", .mode = S_IRUGO | S_IWUSR }, + .show = deadline_frontmerges_show, + .store = deadline_frontmerges_store, +}; +static struct deadline_fs_entry deadline_fifobatch_entry = { + .attr = {.name = "fifo_batch", .mode = S_IRUGO | S_IWUSR }, + .show = deadline_fifobatch_show, + .store = deadline_fifobatch_store, +}; + +static struct attribute *default_attrs[] = { + &deadline_readexpire_entry.attr, + &deadline_writeexpire_entry.attr, + &deadline_writesstarved_entry.attr, + &deadline_frontmerges_entry.attr, + &deadline_fifobatch_entry.attr, + NULL, +}; + +#define to_deadline(atr) container_of((atr), struct deadline_fs_entry, attr) + +static ssize_t +deadline_attr_show(struct kobject *kobj, struct attribute *attr, char *page) +{ + elevator_t *e = container_of(kobj, elevator_t, kobj); + struct deadline_fs_entry *entry = to_deadline(attr); + + if (!entry->show) + return -EIO; + + return entry->show(e->elevator_data, page); +} + +static ssize_t +deadline_attr_store(struct kobject *kobj, struct attribute *attr, + const char *page, size_t length) +{ + elevator_t *e = container_of(kobj, elevator_t, kobj); + struct deadline_fs_entry *entry = to_deadline(attr); + + if (!entry->store) + return -EIO; + + return entry->store(e->elevator_data, page, length); +} + +static struct sysfs_ops deadline_sysfs_ops = { + .show = deadline_attr_show, + .store = deadline_attr_store, +}; + +static struct kobj_type deadline_ktype = { + .sysfs_ops = &deadline_sysfs_ops, + .default_attrs = default_attrs, +}; + +static struct elevator_type iosched_deadline = { + .ops = { + .elevator_merge_fn = deadline_merge, + .elevator_merged_fn = deadline_merged_request, + .elevator_merge_req_fn = deadline_merged_requests, + .elevator_dispatch_fn = deadline_dispatch_requests, + .elevator_add_req_fn = deadline_add_request, + .elevator_queue_empty_fn = deadline_queue_empty, + .elevator_former_req_fn = deadline_former_request, + .elevator_latter_req_fn = deadline_latter_request, + .elevator_set_req_fn = deadline_set_request, + .elevator_put_req_fn = deadline_put_request, + .elevator_init_fn = deadline_init_queue, + .elevator_exit_fn = deadline_exit_queue, + }, + + .elevator_ktype = &deadline_ktype, + .elevator_name = "deadline", + .elevator_owner = THIS_MODULE, +}; + +static int __init deadline_init(void) +{ + int ret; + + drq_pool = kmem_cache_create("deadline_drq", sizeof(struct deadline_rq), + 0, 0, NULL, NULL); + + if (!drq_pool) + return -ENOMEM; + + ret = elv_register(&iosched_deadline); + if (ret) + kmem_cache_destroy(drq_pool); + + return ret; +} + +static void __exit deadline_exit(void) +{ + kmem_cache_destroy(drq_pool); + elv_unregister(&iosched_deadline); +} + +module_init(deadline_init); +module_exit(deadline_exit); + +MODULE_AUTHOR("Jens Axboe"); +MODULE_LICENSE("GPL"); +MODULE_DESCRIPTION("deadline IO scheduler"); diff --git a/block/elevator.c b/block/elevator.c new file mode 100644 index 000000000000..d4a49a3df829 --- /dev/null +++ b/block/elevator.c @@ -0,0 +1,802 @@ +/* + * linux/drivers/block/elevator.c + * + * Block device elevator/IO-scheduler. + * + * Copyright (C) 2000 Andrea Arcangeli SuSE + * + * 30042000 Jens Axboe : + * + * Split the elevator a bit so that it is possible to choose a different + * one or even write a new "plug in". There are three pieces: + * - elevator_fn, inserts a new request in the queue list + * - elevator_merge_fn, decides whether a new buffer can be merged with + * an existing request + * - elevator_dequeue_fn, called when a request is taken off the active list + * + * 20082000 Dave Jones : + * Removed tests for max-bomb-segments, which was breaking elvtune + * when run without -bN + * + * Jens: + * - Rework again to work with bio instead of buffer_heads + * - loose bi_dev comparisons, partition handling is right now + * - completely modularize elevator setup and teardown + * + */ +#include +#include +#include +#include +#include +#include +#include +#include +#include +#include +#include + +#include + +static DEFINE_SPINLOCK(elv_list_lock); +static LIST_HEAD(elv_list); + +/* + * can we safely merge with this request? + */ +inline int elv_rq_merge_ok(struct request *rq, struct bio *bio) +{ + if (!rq_mergeable(rq)) + return 0; + + /* + * different data direction or already started, don't merge + */ + if (bio_data_dir(bio) != rq_data_dir(rq)) + return 0; + + /* + * same device and no special stuff set, merge is ok + */ + if (rq->rq_disk == bio->bi_bdev->bd_disk && + !rq->waiting && !rq->special) + return 1; + + return 0; +} +EXPORT_SYMBOL(elv_rq_merge_ok); + +inline int elv_try_merge(struct request *__rq, struct bio *bio) +{ + int ret = ELEVATOR_NO_MERGE; + + /* + * we can merge and sequence is ok, check if it's possible + */ + if (elv_rq_merge_ok(__rq, bio)) { + if (__rq->sector + __rq->nr_sectors == bio->bi_sector) + ret = ELEVATOR_BACK_MERGE; + else if (__rq->sector - bio_sectors(bio) == bio->bi_sector) + ret = ELEVATOR_FRONT_MERGE; + } + + return ret; +} +EXPORT_SYMBOL(elv_try_merge); + +static struct elevator_type *elevator_find(const char *name) +{ + struct elevator_type *e = NULL; + struct list_head *entry; + + list_for_each(entry, &elv_list) { + struct elevator_type *__e; + + __e = list_entry(entry, struct elevator_type, list); + + if (!strcmp(__e->elevator_name, name)) { + e = __e; + break; + } + } + + return e; +} + +static void elevator_put(struct elevator_type *e) +{ + module_put(e->elevator_owner); +} + +static struct elevator_type *elevator_get(const char *name) +{ + struct elevator_type *e; + + spin_lock_irq(&elv_list_lock); + + e = elevator_find(name); + if (e && !try_module_get(e->elevator_owner)) + e = NULL; + + spin_unlock_irq(&elv_list_lock); + + return e; +} + +static int elevator_attach(request_queue_t *q, struct elevator_type *e, + struct elevator_queue *eq) +{ + int ret = 0; + + memset(eq, 0, sizeof(*eq)); + eq->ops = &e->ops; + eq->elevator_type = e; + + q->elevator = eq; + + if (eq->ops->elevator_init_fn) + ret = eq->ops->elevator_init_fn(q, eq); + + return ret; +} + +static char chosen_elevator[16]; + +static void elevator_setup_default(void) +{ + struct elevator_type *e; + + /* + * If default has not been set, use the compiled-in selection. + */ + if (!chosen_elevator[0]) + strcpy(chosen_elevator, CONFIG_DEFAULT_IOSCHED); + + /* + * If the given scheduler is not available, fall back to no-op. + */ + if (!(e = elevator_find(chosen_elevator))) + strcpy(chosen_elevator, "noop"); + elevator_put(e); +} + +static int __init elevator_setup(char *str) +{ + strncpy(chosen_elevator, str, sizeof(chosen_elevator) - 1); + return 0; +} + +__setup("elevator=", elevator_setup); + +int elevator_init(request_queue_t *q, char *name) +{ + struct elevator_type *e = NULL; + struct elevator_queue *eq; + int ret = 0; + + INIT_LIST_HEAD(&q->queue_head); + q->last_merge = NULL; + q->end_sector = 0; + q->boundary_rq = NULL; + + elevator_setup_default(); + + if (!name) + name = chosen_elevator; + + e = elevator_get(name); + if (!e) + return -EINVAL; + + eq = kmalloc(sizeof(struct elevator_queue), GFP_KERNEL); + if (!eq) { + elevator_put(e->elevator_type); + return -ENOMEM; + } + + ret = elevator_attach(q, e, eq); + if (ret) { + kfree(eq); + elevator_put(e->elevator_type); + } + + return ret; +} + +void elevator_exit(elevator_t *e) +{ + if (e->ops->elevator_exit_fn) + e->ops->elevator_exit_fn(e); + + elevator_put(e->elevator_type); + e->elevator_type = NULL; + kfree(e); +} + +/* + * Insert rq into dispatch queue of q. Queue lock must be held on + * entry. If sort != 0, rq is sort-inserted; otherwise, rq will be + * appended to the dispatch queue. To be used by specific elevators. + */ +void elv_dispatch_sort(request_queue_t *q, struct request *rq) +{ + sector_t boundary; + struct list_head *entry; + + if (q->last_merge == rq) + q->last_merge = NULL; + + boundary = q->end_sector; + + list_for_each_prev(entry, &q->queue_head) { + struct request *pos = list_entry_rq(entry); + + if (pos->flags & (REQ_SOFTBARRIER|REQ_HARDBARRIER|REQ_STARTED)) + break; + if (rq->sector >= boundary) { + if (pos->sector < boundary) + continue; + } else { + if (pos->sector >= boundary) + break; + } + if (rq->sector >= pos->sector) + break; + } + + list_add(&rq->queuelist, entry); +} + +int elv_merge(request_queue_t *q, struct request **req, struct bio *bio) +{ + elevator_t *e = q->elevator; + int ret; + + if (q->last_merge) { + ret = elv_try_merge(q->last_merge, bio); + if (ret != ELEVATOR_NO_MERGE) { + *req = q->last_merge; + return ret; + } + } + + if (e->ops->elevator_merge_fn) + return e->ops->elevator_merge_fn(q, req, bio); + + return ELEVATOR_NO_MERGE; +} + +void elv_merged_request(request_queue_t *q, struct request *rq) +{ + elevator_t *e = q->elevator; + + if (e->ops->elevator_merged_fn) + e->ops->elevator_merged_fn(q, rq); + + q->last_merge = rq; +} + +void elv_merge_requests(request_queue_t *q, struct request *rq, + struct request *next) +{ + elevator_t *e = q->elevator; + + if (e->ops->elevator_merge_req_fn) + e->ops->elevator_merge_req_fn(q, rq, next); + + q->last_merge = rq; +} + +void elv_requeue_request(request_queue_t *q, struct request *rq) +{ + elevator_t *e = q->elevator; + + /* + * it already went through dequeue, we need to decrement the + * in_flight count again + */ + if (blk_account_rq(rq)) { + q->in_flight--; + if (blk_sorted_rq(rq) && e->ops->elevator_deactivate_req_fn) + e->ops->elevator_deactivate_req_fn(q, rq); + } + + rq->flags &= ~REQ_STARTED; + + /* + * if this is the flush, requeue the original instead and drop the flush + */ + if (rq->flags & REQ_BAR_FLUSH) { + clear_bit(QUEUE_FLAG_FLUSH, &q->queue_flags); + rq = rq->end_io_data; + } + + __elv_add_request(q, rq, ELEVATOR_INSERT_FRONT, 0); +} + +void __elv_add_request(request_queue_t *q, struct request *rq, int where, + int plug) +{ + if (rq->flags & (REQ_SOFTBARRIER | REQ_HARDBARRIER)) { + /* + * barriers implicitly indicate back insertion + */ + if (where == ELEVATOR_INSERT_SORT) + where = ELEVATOR_INSERT_BACK; + + /* + * this request is scheduling boundary, update end_sector + */ + if (blk_fs_request(rq)) { + q->end_sector = rq_end_sector(rq); + q->boundary_rq = rq; + } + } else if (!(rq->flags & REQ_ELVPRIV) && where == ELEVATOR_INSERT_SORT) + where = ELEVATOR_INSERT_BACK; + + if (plug) + blk_plug_device(q); + + rq->q = q; + + switch (where) { + case ELEVATOR_INSERT_FRONT: + rq->flags |= REQ_SOFTBARRIER; + + list_add(&rq->queuelist, &q->queue_head); + break; + + case ELEVATOR_INSERT_BACK: + rq->flags |= REQ_SOFTBARRIER; + + while (q->elevator->ops->elevator_dispatch_fn(q, 1)) + ; + list_add_tail(&rq->queuelist, &q->queue_head); + /* + * We kick the queue here for the following reasons. + * - The elevator might have returned NULL previously + * to delay requests and returned them now. As the + * queue wasn't empty before this request, ll_rw_blk + * won't run the queue on return, resulting in hang. + * - Usually, back inserted requests won't be merged + * with anything. There's no point in delaying queue + * processing. + */ + blk_remove_plug(q); + q->request_fn(q); + break; + + case ELEVATOR_INSERT_SORT: + BUG_ON(!blk_fs_request(rq)); + rq->flags |= REQ_SORTED; + if (q->last_merge == NULL && rq_mergeable(rq)) + q->last_merge = rq; + /* + * Some ioscheds (cfq) run q->request_fn directly, so + * rq cannot be accessed after calling + * elevator_add_req_fn. + */ + q->elevator->ops->elevator_add_req_fn(q, rq); + break; + + default: + printk(KERN_ERR "%s: bad insertion point %d\n", + __FUNCTION__, where); + BUG(); + } + + if (blk_queue_plugged(q)) { + int nrq = q->rq.count[READ] + q->rq.count[WRITE] + - q->in_flight; + + if (nrq >= q->unplug_thresh) + __generic_unplug_device(q); + } +} + +void elv_add_request(request_queue_t *q, struct request *rq, int where, + int plug) +{ + unsigned long flags; + + spin_lock_irqsave(q->queue_lock, flags); + __elv_add_request(q, rq, where, plug); + spin_unlock_irqrestore(q->queue_lock, flags); +} + +static inline struct request *__elv_next_request(request_queue_t *q) +{ + struct request *rq; + + if (unlikely(list_empty(&q->queue_head) && + !q->elevator->ops->elevator_dispatch_fn(q, 0))) + return NULL; + + rq = list_entry_rq(q->queue_head.next); + + /* + * if this is a barrier write and the device has to issue a + * flush sequence to support it, check how far we are + */ + if (blk_fs_request(rq) && blk_barrier_rq(rq)) { + BUG_ON(q->ordered == QUEUE_ORDERED_NONE); + + if (q->ordered == QUEUE_ORDERED_FLUSH && + !blk_barrier_preflush(rq)) + rq = blk_start_pre_flush(q, rq); + } + + return rq; +} + +struct request *elv_next_request(request_queue_t *q) +{ + struct request *rq; + int ret; + + while ((rq = __elv_next_request(q)) != NULL) { + if (!(rq->flags & REQ_STARTED)) { + elevator_t *e = q->elevator; + + /* + * This is the first time the device driver + * sees this request (possibly after + * requeueing). Notify IO scheduler. + */ + if (blk_sorted_rq(rq) && + e->ops->elevator_activate_req_fn) + e->ops->elevator_activate_req_fn(q, rq); + + /* + * just mark as started even if we don't start + * it, a request that has been delayed should + * not be passed by new incoming requests + */ + rq->flags |= REQ_STARTED; + } + + if (!q->boundary_rq || q->boundary_rq == rq) { + q->end_sector = rq_end_sector(rq); + q->boundary_rq = NULL; + } + + if ((rq->flags & REQ_DONTPREP) || !q->prep_rq_fn) + break; + + ret = q->prep_rq_fn(q, rq); + if (ret == BLKPREP_OK) { + break; + } else if (ret == BLKPREP_DEFER) { + /* + * the request may have been (partially) prepped. + * we need to keep this request in the front to + * avoid resource deadlock. REQ_STARTED will + * prevent other fs requests from passing this one. + */ + rq = NULL; + break; + } else if (ret == BLKPREP_KILL) { + int nr_bytes = rq->hard_nr_sectors << 9; + + if (!nr_bytes) + nr_bytes = rq->data_len; + + blkdev_dequeue_request(rq); + rq->flags |= REQ_QUIET; + end_that_request_chunk(rq, 0, nr_bytes); + end_that_request_last(rq); + } else { + printk(KERN_ERR "%s: bad return=%d\n", __FUNCTION__, + ret); + break; + } + } + + return rq; +} + +void elv_dequeue_request(request_queue_t *q, struct request *rq) +{ + BUG_ON(list_empty(&rq->queuelist)); + + list_del_init(&rq->queuelist); + + /* + * the time frame between a request being removed from the lists + * and to it is freed is accounted as io that is in progress at + * the driver side. + */ + if (blk_account_rq(rq)) + q->in_flight++; +} + +int elv_queue_empty(request_queue_t *q) +{ + elevator_t *e = q->elevator; + + if (!list_empty(&q->queue_head)) + return 0; + + if (e->ops->elevator_queue_empty_fn) + return e->ops->elevator_queue_empty_fn(q); + + return 1; +} + +struct request *elv_latter_request(request_queue_t *q, struct request *rq) +{ + struct list_head *next; + + elevator_t *e = q->elevator; + + if (e->ops->elevator_latter_req_fn) + return e->ops->elevator_latter_req_fn(q, rq); + + next = rq->queuelist.next; + if (next != &q->queue_head && next != &rq->queuelist) + return list_entry_rq(next); + + return NULL; +} + +struct request *elv_former_request(request_queue_t *q, struct request *rq) +{ + struct list_head *prev; + + elevator_t *e = q->elevator; + + if (e->ops->elevator_former_req_fn) + return e->ops->elevator_former_req_fn(q, rq); + + prev = rq->queuelist.prev; + if (prev != &q->queue_head && prev != &rq->queuelist) + return list_entry_rq(prev); + + return NULL; +} + +int elv_set_request(request_queue_t *q, struct request *rq, struct bio *bio, + gfp_t gfp_mask) +{ + elevator_t *e = q->elevator; + + if (e->ops->elevator_set_req_fn) + return e->ops->elevator_set_req_fn(q, rq, bio, gfp_mask); + + rq->elevator_private = NULL; + return 0; +} + +void elv_put_request(request_queue_t *q, struct request *rq) +{ + elevator_t *e = q->elevator; + + if (e->ops->elevator_put_req_fn) + e->ops->elevator_put_req_fn(q, rq); +} + +int elv_may_queue(request_queue_t *q, int rw, struct bio *bio) +{ + elevator_t *e = q->elevator; + + if (e->ops->elevator_may_queue_fn) + return e->ops->elevator_may_queue_fn(q, rw, bio); + + return ELV_MQUEUE_MAY; +} + +void elv_completed_request(request_queue_t *q, struct request *rq) +{ + elevator_t *e = q->elevator; + + /* + * request is released from the driver, io must be done + */ + if (blk_account_rq(rq)) { + q->in_flight--; + if (blk_sorted_rq(rq) && e->ops->elevator_completed_req_fn) + e->ops->elevator_completed_req_fn(q, rq); + } +} + +int elv_register_queue(struct request_queue *q) +{ + elevator_t *e = q->elevator; + + e->kobj.parent = kobject_get(&q->kobj); + if (!e->kobj.parent) + return -EBUSY; + + snprintf(e->kobj.name, KOBJ_NAME_LEN, "%s", "iosched"); + e->kobj.ktype = e->elevator_type->elevator_ktype; + + return kobject_register(&e->kobj); +} + +void elv_unregister_queue(struct request_queue *q) +{ + if (q) { + elevator_t *e = q->elevator; + kobject_unregister(&e->kobj); + kobject_put(&q->kobj); + } +} + +int elv_register(struct elevator_type *e) +{ + spin_lock_irq(&elv_list_lock); + if (elevator_find(e->elevator_name)) + BUG(); + list_add_tail(&e->list, &elv_list); + spin_unlock_irq(&elv_list_lock); + + printk(KERN_INFO "io scheduler %s registered", e->elevator_name); + if (!strcmp(e->elevator_name, chosen_elevator)) + printk(" (default)"); + printk("\n"); + return 0; +} +EXPORT_SYMBOL_GPL(elv_register); + +void elv_unregister(struct elevator_type *e) +{ + struct task_struct *g, *p; + + /* + * Iterate every thread in the process to remove the io contexts. + */ + read_lock(&tasklist_lock); + do_each_thread(g, p) { + struct io_context *ioc = p->io_context; + if (ioc && ioc->cic) { + ioc->cic->exit(ioc->cic); + ioc->cic->dtor(ioc->cic); + ioc->cic = NULL; + } + if (ioc && ioc->aic) { + ioc->aic->exit(ioc->aic); + ioc->aic->dtor(ioc->aic); + ioc->aic = NULL; + } + } while_each_thread(g, p); + read_unlock(&tasklist_lock); + + spin_lock_irq(&elv_list_lock); + list_del_init(&e->list); + spin_unlock_irq(&elv_list_lock); +} +EXPORT_SYMBOL_GPL(elv_unregister); + +/* + * switch to new_e io scheduler. be careful not to introduce deadlocks - + * we don't free the old io scheduler, before we have allocated what we + * need for the new one. this way we have a chance of going back to the old + * one, if the new one fails init for some reason. + */ +static void elevator_switch(request_queue_t *q, struct elevator_type *new_e) +{ + elevator_t *old_elevator, *e; + + /* + * Allocate new elevator + */ + e = kmalloc(sizeof(elevator_t), GFP_KERNEL); + if (!e) + goto error; + + /* + * Turn on BYPASS and drain all requests w/ elevator private data + */ + spin_lock_irq(q->queue_lock); + + set_bit(QUEUE_FLAG_ELVSWITCH, &q->queue_flags); + + while (q->elevator->ops->elevator_dispatch_fn(q, 1)) + ; + + while (q->rq.elvpriv) { + spin_unlock_irq(q->queue_lock); + msleep(10); + spin_lock_irq(q->queue_lock); + } + + spin_unlock_irq(q->queue_lock); + + /* + * unregister old elevator data + */ + elv_unregister_queue(q); + old_elevator = q->elevator; + + /* + * attach and start new elevator + */ + if (elevator_attach(q, new_e, e)) + goto fail; + + if (elv_register_queue(q)) + goto fail_register; + + /* + * finally exit old elevator and turn off BYPASS. + */ + elevator_exit(old_elevator); + clear_bit(QUEUE_FLAG_ELVSWITCH, &q->queue_flags); + return; + +fail_register: + /* + * switch failed, exit the new io scheduler and reattach the old + * one again (along with re-adding the sysfs dir) + */ + elevator_exit(e); + e = NULL; +fail: + q->elevator = old_elevator; + elv_register_queue(q); + clear_bit(QUEUE_FLAG_ELVSWITCH, &q->queue_flags); + kfree(e); +error: + elevator_put(new_e); + printk(KERN_ERR "elevator: switch to %s failed\n",new_e->elevator_name); +} + +ssize_t elv_iosched_store(request_queue_t *q, const char *name, size_t count) +{ + char elevator_name[ELV_NAME_MAX]; + struct elevator_type *e; + + memset(elevator_name, 0, sizeof(elevator_name)); + strncpy(elevator_name, name, sizeof(elevator_name)); + + if (elevator_name[strlen(elevator_name) - 1] == '\n') + elevator_name[strlen(elevator_name) - 1] = '\0'; + + e = elevator_get(elevator_name); + if (!e) { + printk(KERN_ERR "elevator: type %s not found\n", elevator_name); + return -EINVAL; + } + + if (!strcmp(elevator_name, q->elevator->elevator_type->elevator_name)) { + elevator_put(e); + return count; + } + + elevator_switch(q, e); + return count; +} + +ssize_t elv_iosched_show(request_queue_t *q, char *name) +{ + elevator_t *e = q->elevator; + struct elevator_type *elv = e->elevator_type; + struct list_head *entry; + int len = 0; + + spin_lock_irq(q->queue_lock); + list_for_each(entry, &elv_list) { + struct elevator_type *__e; + + __e = list_entry(entry, struct elevator_type, list); + if (!strcmp(elv->elevator_name, __e->elevator_name)) + len += sprintf(name+len, "[%s] ", elv->elevator_name); + else + len += sprintf(name+len, "%s ", __e->elevator_name); + } + spin_unlock_irq(q->queue_lock); + + len += sprintf(len+name, "\n"); + return len; +} + +EXPORT_SYMBOL(elv_dispatch_sort); +EXPORT_SYMBOL(elv_add_request); +EXPORT_SYMBOL(__elv_add_request); +EXPORT_SYMBOL(elv_requeue_request); +EXPORT_SYMBOL(elv_next_request); +EXPORT_SYMBOL(elv_dequeue_request); +EXPORT_SYMBOL(elv_queue_empty); +EXPORT_SYMBOL(elv_completed_request); +EXPORT_SYMBOL(elevator_exit); +EXPORT_SYMBOL(elevator_init); diff --git a/block/genhd.c b/block/genhd.c new file mode 100644 index 000000000000..54aec4a1ae13 --- /dev/null +++ b/block/genhd.c @@ -0,0 +1,726 @@ +/* + * gendisk handling + */ + +#include +#include +#include +#include +#include +#include +#include +#include +#include +#include +#include +#include +#include + +#define MAX_PROBE_HASH 255 /* random */ + +static struct subsystem block_subsys; + +static DECLARE_MUTEX(block_subsys_sem); + +/* + * Can be deleted altogether. Later. + * + */ +static struct blk_major_name { + struct blk_major_name *next; + int major; + char name[16]; +} *major_names[MAX_PROBE_HASH]; + +/* index in the above - for now: assume no multimajor ranges */ +static inline int major_to_index(int major) +{ + return major % MAX_PROBE_HASH; +} + +#ifdef CONFIG_PROC_FS +/* get block device names in somewhat random order */ +int get_blkdev_list(char *p, int used) +{ + struct blk_major_name *n; + int i, len; + + len = snprintf(p, (PAGE_SIZE-used), "\nBlock devices:\n"); + + down(&block_subsys_sem); + for (i = 0; i < ARRAY_SIZE(major_names); i++) { + for (n = major_names[i]; n; n = n->next) { + /* + * If the curent string plus the 5 extra characters + * in the line would run us off the page, then we're done + */ + if ((len + used + strlen(n->name) + 5) >= PAGE_SIZE) + goto page_full; + len += sprintf(p+len, "%3d %s\n", + n->major, n->name); + } + } +page_full: + up(&block_subsys_sem); + + return len; +} +#endif + +int register_blkdev(unsigned int major, const char *name) +{ + struct blk_major_name **n, *p; + int index, ret = 0; + + down(&block_subsys_sem); + + /* temporary */ + if (major == 0) { + for (index = ARRAY_SIZE(major_names)-1; index > 0; index--) { + if (major_names[index] == NULL) + break; + } + + if (index == 0) { + printk("register_blkdev: failed to get major for %s\n", + name); + ret = -EBUSY; + goto out; + } + major = index; + ret = major; + } + + p = kmalloc(sizeof(struct blk_major_name), GFP_KERNEL); + if (p == NULL) { + ret = -ENOMEM; + goto out; + } + + p->major = major; + strlcpy(p->name, name, sizeof(p->name)); + p->next = NULL; + index = major_to_index(major); + + for (n = &major_names[index]; *n; n = &(*n)->next) { + if ((*n)->major == major) + break; + } + if (!*n) + *n = p; + else + ret = -EBUSY; + + if (ret < 0) { + printk("register_blkdev: cannot get major %d for %s\n", + major, name); + kfree(p); + } +out: + up(&block_subsys_sem); + return ret; +} + +EXPORT_SYMBOL(register_blkdev); + +/* todo: make void - error printk here */ +int unregister_blkdev(unsigned int major, const char *name) +{ + struct blk_major_name **n; + struct blk_major_name *p = NULL; + int index = major_to_index(major); + int ret = 0; + + down(&block_subsys_sem); + for (n = &major_names[index]; *n; n = &(*n)->next) + if ((*n)->major == major) + break; + if (!*n || strcmp((*n)->name, name)) + ret = -EINVAL; + else { + p = *n; + *n = p->next; + } + up(&block_subsys_sem); + kfree(p); + + return ret; +} + +EXPORT_SYMBOL(unregister_blkdev); + +static struct kobj_map *bdev_map; + +/* + * Register device numbers dev..(dev+range-1) + * range must be nonzero + * The hash chain is sorted on range, so that subranges can override. + */ +void blk_register_region(dev_t dev, unsigned long range, struct module *module, + struct kobject *(*probe)(dev_t, int *, void *), + int (*lock)(dev_t, void *), void *data) +{ + kobj_map(bdev_map, dev, range, module, probe, lock, data); +} + +EXPORT_SYMBOL(blk_register_region); + +void blk_unregister_region(dev_t dev, unsigned long range) +{ + kobj_unmap(bdev_map, dev, range); +} + +EXPORT_SYMBOL(blk_unregister_region); + +static struct kobject *exact_match(dev_t dev, int *part, void *data) +{ + struct gendisk *p = data; + return &p->kobj; +} + +static int exact_lock(dev_t dev, void *data) +{ + struct gendisk *p = data; + + if (!get_disk(p)) + return -1; + return 0; +} + +/** + * add_disk - add partitioning information to kernel list + * @disk: per-device partitioning information + * + * This function registers the partitioning information in @disk + * with the kernel. + */ +void add_disk(struct gendisk *disk) +{ + disk->flags |= GENHD_FL_UP; + blk_register_region(MKDEV(disk->major, disk->first_minor), + disk->minors, NULL, exact_match, exact_lock, disk); + register_disk(disk); + blk_register_queue(disk); +} + +EXPORT_SYMBOL(add_disk); +EXPORT_SYMBOL(del_gendisk); /* in partitions/check.c */ + +void unlink_gendisk(struct gendisk *disk) +{ + blk_unregister_queue(disk); + blk_unregister_region(MKDEV(disk->major, disk->first_minor), + disk->minors); +} + +#define to_disk(obj) container_of(obj,struct gendisk,kobj) + +/** + * get_gendisk - get partitioning information for a given device + * @dev: device to get partitioning information for + * + * This function gets the structure containing partitioning + * information for the given device @dev. + */ +struct gendisk *get_gendisk(dev_t dev, int *part) +{ + struct kobject *kobj = kobj_lookup(bdev_map, dev, part); + return kobj ? to_disk(kobj) : NULL; +} + +#ifdef CONFIG_PROC_FS +/* iterator */ +static void *part_start(struct seq_file *part, loff_t *pos) +{ + struct list_head *p; + loff_t l = *pos; + + down(&block_subsys_sem); + list_for_each(p, &block_subsys.kset.list) + if (!l--) + return list_entry(p, struct gendisk, kobj.entry); + return NULL; +} + +static void *part_next(struct seq_file *part, void *v, loff_t *pos) +{ + struct list_head *p = ((struct gendisk *)v)->kobj.entry.next; + ++*pos; + return p==&block_subsys.kset.list ? NULL : + list_entry(p, struct gendisk, kobj.entry); +} + +static void part_stop(struct seq_file *part, void *v) +{ + up(&block_subsys_sem); +} + +static int show_partition(struct seq_file *part, void *v) +{ + struct gendisk *sgp = v; + int n; + char buf[BDEVNAME_SIZE]; + + if (&sgp->kobj.entry == block_subsys.kset.list.next) + seq_puts(part, "major minor #blocks name\n\n"); + + /* Don't show non-partitionable removeable devices or empty devices */ + if (!get_capacity(sgp) || + (sgp->minors == 1 && (sgp->flags & GENHD_FL_REMOVABLE))) + return 0; + if (sgp->flags & GENHD_FL_SUPPRESS_PARTITION_INFO) + return 0; + + /* show the full disk and all non-0 size partitions of it */ + seq_printf(part, "%4d %4d %10llu %s\n", + sgp->major, sgp->first_minor, + (unsigned long long)get_capacity(sgp) >> 1, + disk_name(sgp, 0, buf)); + for (n = 0; n < sgp->minors - 1; n++) { + if (!sgp->part[n]) + continue; + if (sgp->part[n]->nr_sects == 0) + continue; + seq_printf(part, "%4d %4d %10llu %s\n", + sgp->major, n + 1 + sgp->first_minor, + (unsigned long long)sgp->part[n]->nr_sects >> 1 , + disk_name(sgp, n + 1, buf)); + } + + return 0; +} + +struct seq_operations partitions_op = { + .start =part_start, + .next = part_next, + .stop = part_stop, + .show = show_partition +}; +#endif + + +extern int blk_dev_init(void); + +static struct kobject *base_probe(dev_t dev, int *part, void *data) +{ + if (request_module("block-major-%d-%d", MAJOR(dev), MINOR(dev)) > 0) + /* Make old-style 2.4 aliases work */ + request_module("block-major-%d", MAJOR(dev)); + return NULL; +} + +static int __init genhd_device_init(void) +{ + bdev_map = kobj_map_init(base_probe, &block_subsys_sem); + blk_dev_init(); + subsystem_register(&block_subsys); + return 0; +} + +subsys_initcall(genhd_device_init); + + + +/* + * kobject & sysfs bindings for block devices + */ +static ssize_t disk_attr_show(struct kobject *kobj, struct attribute *attr, + char *page) +{ + struct gendisk *disk = to_disk(kobj); + struct disk_attribute *disk_attr = + container_of(attr,struct disk_attribute,attr); + ssize_t ret = -EIO; + + if (disk_attr->show) + ret = disk_attr->show(disk,page); + return ret; +} + +static ssize_t disk_attr_store(struct kobject * kobj, struct attribute * attr, + const char *page, size_t count) +{ + struct gendisk *disk = to_disk(kobj); + struct disk_attribute *disk_attr = + container_of(attr,struct disk_attribute,attr); + ssize_t ret = 0; + + if (disk_attr->store) + ret = disk_attr->store(disk, page, count); + return ret; +} + +static struct sysfs_ops disk_sysfs_ops = { + .show = &disk_attr_show, + .store = &disk_attr_store, +}; + +static ssize_t disk_uevent_store(struct gendisk * disk, + const char *buf, size_t count) +{ + kobject_hotplug(&disk->kobj, KOBJ_ADD); + return count; +} +static ssize_t disk_dev_read(struct gendisk * disk, char *page) +{ + dev_t base = MKDEV(disk->major, disk->first_minor); + return print_dev_t(page, base); +} +static ssize_t disk_range_read(struct gendisk * disk, char *page) +{ + return sprintf(page, "%d\n", disk->minors); +} +static ssize_t disk_removable_read(struct gendisk * disk, char *page) +{ + return sprintf(page, "%d\n", + (disk->flags & GENHD_FL_REMOVABLE ? 1 : 0)); + +} +static ssize_t disk_size_read(struct gendisk * disk, char *page) +{ + return sprintf(page, "%llu\n", (unsigned long long)get_capacity(disk)); +} + +static ssize_t disk_stats_read(struct gendisk * disk, char *page) +{ + preempt_disable(); + disk_round_stats(disk); + preempt_enable(); + return sprintf(page, + "%8u %8u %8llu %8u " + "%8u %8u %8llu %8u " + "%8u %8u %8u" + "\n", + disk_stat_read(disk, ios[0]), disk_stat_read(disk, merges[0]), + (unsigned long long)disk_stat_read(disk, sectors[0]), + jiffies_to_msecs(disk_stat_read(disk, ticks[0])), + disk_stat_read(disk, ios[1]), disk_stat_read(disk, merges[1]), + (unsigned long long)disk_stat_read(disk, sectors[1]), + jiffies_to_msecs(disk_stat_read(disk, ticks[1])), + disk->in_flight, + jiffies_to_msecs(disk_stat_read(disk, io_ticks)), + jiffies_to_msecs(disk_stat_read(disk, time_in_queue))); +} +static struct disk_attribute disk_attr_uevent = { + .attr = {.name = "uevent", .mode = S_IWUSR }, + .store = disk_uevent_store +}; +static struct disk_attribute disk_attr_dev = { + .attr = {.name = "dev", .mode = S_IRUGO }, + .show = disk_dev_read +}; +static struct disk_attribute disk_attr_range = { + .attr = {.name = "range", .mode = S_IRUGO }, + .show = disk_range_read +}; +static struct disk_attribute disk_attr_removable = { + .attr = {.name = "removable", .mode = S_IRUGO }, + .show = disk_removable_read +}; +static struct disk_attribute disk_attr_size = { + .attr = {.name = "size", .mode = S_IRUGO }, + .show = disk_size_read +}; +static struct disk_attribute disk_attr_stat = { + .attr = {.name = "stat", .mode = S_IRUGO }, + .show = disk_stats_read +}; + +static struct attribute * default_attrs[] = { + &disk_attr_uevent.attr, + &disk_attr_dev.attr, + &disk_attr_range.attr, + &disk_attr_removable.attr, + &disk_attr_size.attr, + &disk_attr_stat.attr, + NULL, +}; + +static void disk_release(struct kobject * kobj) +{ + struct gendisk *disk = to_disk(kobj); + kfree(disk->random); + kfree(disk->part); + free_disk_stats(disk); + kfree(disk); +} + +static struct kobj_type ktype_block = { + .release = disk_release, + .sysfs_ops = &disk_sysfs_ops, + .default_attrs = default_attrs, +}; + +extern struct kobj_type ktype_part; + +static int block_hotplug_filter(struct kset *kset, struct kobject *kobj) +{ + struct kobj_type *ktype = get_ktype(kobj); + + return ((ktype == &ktype_block) || (ktype == &ktype_part)); +} + +static int block_hotplug(struct kset *kset, struct kobject *kobj, char **envp, + int num_envp, char *buffer, int buffer_size) +{ + struct kobj_type *ktype = get_ktype(kobj); + struct device *physdev; + struct gendisk *disk; + struct hd_struct *part; + int length = 0; + int i = 0; + + if (ktype == &ktype_block) { + disk = container_of(kobj, struct gendisk, kobj); + add_hotplug_env_var(envp, num_envp, &i, buffer, buffer_size, + &length, "MINOR=%u", disk->first_minor); + } else if (ktype == &ktype_part) { + disk = container_of(kobj->parent, struct gendisk, kobj); + part = container_of(kobj, struct hd_struct, kobj); + add_hotplug_env_var(envp, num_envp, &i, buffer, buffer_size, + &length, "MINOR=%u", + disk->first_minor + part->partno); + } else + return 0; + + add_hotplug_env_var(envp, num_envp, &i, buffer, buffer_size, &length, + "MAJOR=%u", disk->major); + + /* add physical device, backing this device */ + physdev = disk->driverfs_dev; + if (physdev) { + char *path = kobject_get_path(&physdev->kobj, GFP_KERNEL); + + add_hotplug_env_var(envp, num_envp, &i, buffer, buffer_size, + &length, "PHYSDEVPATH=%s", path); + kfree(path); + + if (physdev->bus) + add_hotplug_env_var(envp, num_envp, &i, + buffer, buffer_size, &length, + "PHYSDEVBUS=%s", + physdev->bus->name); + + if (physdev->driver) + add_hotplug_env_var(envp, num_envp, &i, + buffer, buffer_size, &length, + "PHYSDEVDRIVER=%s", + physdev->driver->name); + } + + /* terminate, set to next free slot, shrink available space */ + envp[i] = NULL; + envp = &envp[i]; + num_envp -= i; + buffer = &buffer[length]; + buffer_size -= length; + + return 0; +} + +static struct kset_hotplug_ops block_hotplug_ops = { + .filter = block_hotplug_filter, + .hotplug = block_hotplug, +}; + +/* declare block_subsys. */ +static decl_subsys(block, &ktype_block, &block_hotplug_ops); + + +/* + * aggregate disk stat collector. Uses the same stats that the sysfs + * entries do, above, but makes them available through one seq_file. + * Watching a few disks may be efficient through sysfs, but watching + * all of them will be more efficient through this interface. + * + * The output looks suspiciously like /proc/partitions with a bunch of + * extra fields. + */ + +/* iterator */ +static void *diskstats_start(struct seq_file *part, loff_t *pos) +{ + loff_t k = *pos; + struct list_head *p; + + down(&block_subsys_sem); + list_for_each(p, &block_subsys.kset.list) + if (!k--) + return list_entry(p, struct gendisk, kobj.entry); + return NULL; +} + +static void *diskstats_next(struct seq_file *part, void *v, loff_t *pos) +{ + struct list_head *p = ((struct gendisk *)v)->kobj.entry.next; + ++*pos; + return p==&block_subsys.kset.list ? NULL : + list_entry(p, struct gendisk, kobj.entry); +} + +static void diskstats_stop(struct seq_file *part, void *v) +{ + up(&block_subsys_sem); +} + +static int diskstats_show(struct seq_file *s, void *v) +{ + struct gendisk *gp = v; + char buf[BDEVNAME_SIZE]; + int n = 0; + + /* + if (&sgp->kobj.entry == block_subsys.kset.list.next) + seq_puts(s, "major minor name" + " rio rmerge rsect ruse wio wmerge " + "wsect wuse running use aveq" + "\n\n"); + */ + + preempt_disable(); + disk_round_stats(gp); + preempt_enable(); + seq_printf(s, "%4d %4d %s %u %u %llu %u %u %u %llu %u %u %u %u\n", + gp->major, n + gp->first_minor, disk_name(gp, n, buf), + disk_stat_read(gp, ios[0]), disk_stat_read(gp, merges[0]), + (unsigned long long)disk_stat_read(gp, sectors[0]), + jiffies_to_msecs(disk_stat_read(gp, ticks[0])), + disk_stat_read(gp, ios[1]), disk_stat_read(gp, merges[1]), + (unsigned long long)disk_stat_read(gp, sectors[1]), + jiffies_to_msecs(disk_stat_read(gp, ticks[1])), + gp->in_flight, + jiffies_to_msecs(disk_stat_read(gp, io_ticks)), + jiffies_to_msecs(disk_stat_read(gp, time_in_queue))); + + /* now show all non-0 size partitions of it */ + for (n = 0; n < gp->minors - 1; n++) { + struct hd_struct *hd = gp->part[n]; + + if (hd && hd->nr_sects) + seq_printf(s, "%4d %4d %s %u %u %u %u\n", + gp->major, n + gp->first_minor + 1, + disk_name(gp, n + 1, buf), + hd->ios[0], hd->sectors[0], + hd->ios[1], hd->sectors[1]); + } + + return 0; +} + +struct seq_operations diskstats_op = { + .start = diskstats_start, + .next = diskstats_next, + .stop = diskstats_stop, + .show = diskstats_show +}; + +struct gendisk *alloc_disk(int minors) +{ + return alloc_disk_node(minors, -1); +} + +struct gendisk *alloc_disk_node(int minors, int node_id) +{ + struct gendisk *disk; + + disk = kmalloc_node(sizeof(struct gendisk), GFP_KERNEL, node_id); + if (disk) { + memset(disk, 0, sizeof(struct gendisk)); + if (!init_disk_stats(disk)) { + kfree(disk); + return NULL; + } + if (minors > 1) { + int size = (minors - 1) * sizeof(struct hd_struct *); + disk->part = kmalloc_node(size, GFP_KERNEL, node_id); + if (!disk->part) { + kfree(disk); + return NULL; + } + memset(disk->part, 0, size); + } + disk->minors = minors; + kobj_set_kset_s(disk,block_subsys); + kobject_init(&disk->kobj); + rand_initialize_disk(disk); + } + return disk; +} + +EXPORT_SYMBOL(alloc_disk); +EXPORT_SYMBOL(alloc_disk_node); + +struct kobject *get_disk(struct gendisk *disk) +{ + struct module *owner; + struct kobject *kobj; + + if (!disk->fops) + return NULL; + owner = disk->fops->owner; + if (owner && !try_module_get(owner)) + return NULL; + kobj = kobject_get(&disk->kobj); + if (kobj == NULL) { + module_put(owner); + return NULL; + } + return kobj; + +} + +EXPORT_SYMBOL(get_disk); + +void put_disk(struct gendisk *disk) +{ + if (disk) + kobject_put(&disk->kobj); +} + +EXPORT_SYMBOL(put_disk); + +void set_device_ro(struct block_device *bdev, int flag) +{ + if (bdev->bd_contains != bdev) + bdev->bd_part->policy = flag; + else + bdev->bd_disk->policy = flag; +} + +EXPORT_SYMBOL(set_device_ro); + +void set_disk_ro(struct gendisk *disk, int flag) +{ + int i; + disk->policy = flag; + for (i = 0; i < disk->minors - 1; i++) + if (disk->part[i]) disk->part[i]->policy = flag; +} + +EXPORT_SYMBOL(set_disk_ro); + +int bdev_read_only(struct block_device *bdev) +{ + if (!bdev) + return 0; + else if (bdev->bd_contains != bdev) + return bdev->bd_part->policy; + else + return bdev->bd_disk->policy; +} + +EXPORT_SYMBOL(bdev_read_only); + +int invalidate_partition(struct gendisk *disk, int index) +{ + int res = 0; + struct block_device *bdev = bdget_disk(disk, index); + if (bdev) { + fsync_bdev(bdev); + res = __invalidate_device(bdev); + bdput(bdev); + } + return res; +} + +EXPORT_SYMBOL(invalidate_partition); diff --git a/block/ioctl.c b/block/ioctl.c new file mode 100644 index 000000000000..6e278474f9a8 --- /dev/null +++ b/block/ioctl.c @@ -0,0 +1,275 @@ +#include /* for capable() */ +#include +#include +#include +#include +#include +#include + +static int blkpg_ioctl(struct block_device *bdev, struct blkpg_ioctl_arg __user *arg) +{ + struct block_device *bdevp; + struct gendisk *disk; + struct blkpg_ioctl_arg a; + struct blkpg_partition p; + long long start, length; + int part; + int i; + + if (!capable(CAP_SYS_ADMIN)) + return -EACCES; + if (copy_from_user(&a, arg, sizeof(struct blkpg_ioctl_arg))) + return -EFAULT; + if (copy_from_user(&p, a.data, sizeof(struct blkpg_partition))) + return -EFAULT; + disk = bdev->bd_disk; + if (bdev != bdev->bd_contains) + return -EINVAL; + part = p.pno; + if (part <= 0 || part >= disk->minors) + return -EINVAL; + switch (a.op) { + case BLKPG_ADD_PARTITION: + start = p.start >> 9; + length = p.length >> 9; + /* check for fit in a hd_struct */ + if (sizeof(sector_t) == sizeof(long) && + sizeof(long long) > sizeof(long)) { + long pstart = start, plength = length; + if (pstart != start || plength != length + || pstart < 0 || plength < 0) + return -EINVAL; + } + /* partition number in use? */ + down(&bdev->bd_sem); + if (disk->part[part - 1]) { + up(&bdev->bd_sem); + return -EBUSY; + } + /* overlap? */ + for (i = 0; i < disk->minors - 1; i++) { + struct hd_struct *s = disk->part[i]; + + if (!s) + continue; + if (!(start+length <= s->start_sect || + start >= s->start_sect + s->nr_sects)) { + up(&bdev->bd_sem); + return -EBUSY; + } + } + /* all seems OK */ + add_partition(disk, part, start, length); + up(&bdev->bd_sem); + return 0; + case BLKPG_DEL_PARTITION: + if (!disk->part[part-1]) + return -ENXIO; + if (disk->part[part - 1]->nr_sects == 0) + return -ENXIO; + bdevp = bdget_disk(disk, part); + if (!bdevp) + return -ENOMEM; + down(&bdevp->bd_sem); + if (bdevp->bd_openers) { + up(&bdevp->bd_sem); + bdput(bdevp); + return -EBUSY; + } + /* all seems OK */ + fsync_bdev(bdevp); + invalidate_bdev(bdevp, 0); + + down(&bdev->bd_sem); + delete_partition(disk, part); + up(&bdev->bd_sem); + up(&bdevp->bd_sem); + bdput(bdevp); + + return 0; + default: + return -EINVAL; + } +} + +static int blkdev_reread_part(struct block_device *bdev) +{ + struct gendisk *disk = bdev->bd_disk; + int res; + + if (disk->minors == 1 || bdev != bdev->bd_contains) + return -EINVAL; + if (!capable(CAP_SYS_ADMIN)) + return -EACCES; + if (down_trylock(&bdev->bd_sem)) + return -EBUSY; + res = rescan_partitions(disk, bdev); + up(&bdev->bd_sem); + return res; +} + +static int put_ushort(unsigned long arg, unsigned short val) +{ + return put_user(val, (unsigned short __user *)arg); +} + +static int put_int(unsigned long arg, int val) +{ + return put_user(val, (int __user *)arg); +} + +static int put_long(unsigned long arg, long val) +{ + return put_user(val, (long __user *)arg); +} + +static int put_ulong(unsigned long arg, unsigned long val) +{ + return put_user(val, (unsigned long __user *)arg); +} + +static int put_u64(unsigned long arg, u64 val) +{ + return put_user(val, (u64 __user *)arg); +} + +static int blkdev_locked_ioctl(struct file *file, struct block_device *bdev, + unsigned cmd, unsigned long arg) +{ + struct backing_dev_info *bdi; + int ret, n; + + switch (cmd) { + case BLKRAGET: + case BLKFRAGET: + if (!arg) + return -EINVAL; + bdi = blk_get_backing_dev_info(bdev); + if (bdi == NULL) + return -ENOTTY; + return put_long(arg, (bdi->ra_pages * PAGE_CACHE_SIZE) / 512); + case BLKROGET: + return put_int(arg, bdev_read_only(bdev) != 0); + case BLKBSZGET: /* get the logical block size (cf. BLKSSZGET) */ + return put_int(arg, block_size(bdev)); + case BLKSSZGET: /* get block device hardware sector size */ + return put_int(arg, bdev_hardsect_size(bdev)); + case BLKSECTGET: + return put_ushort(arg, bdev_get_queue(bdev)->max_sectors); + case BLKRASET: + case BLKFRASET: + if(!capable(CAP_SYS_ADMIN)) + return -EACCES; + bdi = blk_get_backing_dev_info(bdev); + if (bdi == NULL) + return -ENOTTY; + bdi->ra_pages = (arg * 512) / PAGE_CACHE_SIZE; + return 0; + case BLKBSZSET: + /* set the logical block size */ + if (!capable(CAP_SYS_ADMIN)) + return -EACCES; + if (!arg) + return -EINVAL; + if (get_user(n, (int __user *) arg)) + return -EFAULT; + if (bd_claim(bdev, file) < 0) + return -EBUSY; + ret = set_blocksize(bdev, n); + bd_release(bdev); + return ret; + case BLKPG: + return blkpg_ioctl(bdev, (struct blkpg_ioctl_arg __user *) arg); + case BLKRRPART: + return blkdev_reread_part(bdev); + case BLKGETSIZE: + if ((bdev->bd_inode->i_size >> 9) > ~0UL) + return -EFBIG; + return put_ulong(arg, bdev->bd_inode->i_size >> 9); + case BLKGETSIZE64: + return put_u64(arg, bdev->bd_inode->i_size); + } + return -ENOIOCTLCMD; +} + +static int blkdev_driver_ioctl(struct inode *inode, struct file *file, + struct gendisk *disk, unsigned cmd, unsigned long arg) +{ + int ret; + if (disk->fops->unlocked_ioctl) + return disk->fops->unlocked_ioctl(file, cmd, arg); + + if (disk->fops->ioctl) { + lock_kernel(); + ret = disk->fops->ioctl(inode, file, cmd, arg); + unlock_kernel(); + return ret; + } + + return -ENOTTY; +} + +int blkdev_ioctl(struct inode *inode, struct file *file, unsigned cmd, + unsigned long arg) +{ + struct block_device *bdev = inode->i_bdev; + struct gendisk *disk = bdev->bd_disk; + int ret, n; + + switch(cmd) { + case BLKFLSBUF: + if (!capable(CAP_SYS_ADMIN)) + return -EACCES; + + ret = blkdev_driver_ioctl(inode, file, disk, cmd, arg); + /* -EINVAL to handle old uncorrected drivers */ + if (ret != -EINVAL && ret != -ENOTTY) + return ret; + + lock_kernel(); + fsync_bdev(bdev); + invalidate_bdev(bdev, 0); + unlock_kernel(); + return 0; + + case BLKROSET: + ret = blkdev_driver_ioctl(inode, file, disk, cmd, arg); + /* -EINVAL to handle old uncorrected drivers */ + if (ret != -EINVAL && ret != -ENOTTY) + return ret; + if (!capable(CAP_SYS_ADMIN)) + return -EACCES; + if (get_user(n, (int __user *)(arg))) + return -EFAULT; + lock_kernel(); + set_device_ro(bdev, n); + unlock_kernel(); + return 0; + } + + lock_kernel(); + ret = blkdev_locked_ioctl(file, bdev, cmd, arg); + unlock_kernel(); + if (ret != -ENOIOCTLCMD) + return ret; + + return blkdev_driver_ioctl(inode, file, disk, cmd, arg); +} + +/* Most of the generic ioctls are handled in the normal fallback path. + This assumes the blkdev's low level compat_ioctl always returns + ENOIOCTLCMD for unknown ioctls. */ +long compat_blkdev_ioctl(struct file *file, unsigned cmd, unsigned long arg) +{ + struct block_device *bdev = file->f_dentry->d_inode->i_bdev; + struct gendisk *disk = bdev->bd_disk; + int ret = -ENOIOCTLCMD; + if (disk->fops->compat_ioctl) { + lock_kernel(); + ret = disk->fops->compat_ioctl(file, cmd, arg); + unlock_kernel(); + } + return ret; +} + +EXPORT_SYMBOL_GPL(blkdev_ioctl); diff --git a/block/ll_rw_blk.c b/block/ll_rw_blk.c new file mode 100644 index 000000000000..2747741677fb --- /dev/null +++ b/block/ll_rw_blk.c @@ -0,0 +1,3613 @@ +/* + * linux/drivers/block/ll_rw_blk.c + * + * Copyright (C) 1991, 1992 Linus Torvalds + * Copyright (C) 1994, Karl Keyte: Added support for disk statistics + * Elevator latency, (C) 2000 Andrea Arcangeli SuSE + * Queue request tables / lock, selectable elevator, Jens Axboe + * kernel-doc documentation started by NeilBrown - July2000 + * bio rewrite, highmem i/o, etc, Jens Axboe - may 2001 + */ + +/* + * This handles all read/write requests to block devices + */ +#include +#include +#include +#include +#include +#include +#include +#include +#include +#include +#include +#include /* for max_pfn/max_low_pfn */ +#include +#include +#include +#include +#include + +/* + * for max sense size + */ +#include + +static void blk_unplug_work(void *data); +static void blk_unplug_timeout(unsigned long data); +static void drive_stat_acct(struct request *rq, int nr_sectors, int new_io); + +/* + * For the allocated request tables + */ +static kmem_cache_t *request_cachep; + +/* + * For queue allocation + */ +static kmem_cache_t *requestq_cachep; + +/* + * For io context allocations + */ +static kmem_cache_t *iocontext_cachep; + +static wait_queue_head_t congestion_wqh[2] = { + __WAIT_QUEUE_HEAD_INITIALIZER(congestion_wqh[0]), + __WAIT_QUEUE_HEAD_INITIALIZER(congestion_wqh[1]) + }; + +/* + * Controlling structure to kblockd + */ +static struct workqueue_struct *kblockd_workqueue; + +unsigned long blk_max_low_pfn, blk_max_pfn; + +EXPORT_SYMBOL(blk_max_low_pfn); +EXPORT_SYMBOL(blk_max_pfn); + +/* Amount of time in which a process may batch requests */ +#define BLK_BATCH_TIME (HZ/50UL) + +/* Number of requests a "batching" process may submit */ +#define BLK_BATCH_REQ 32 + +/* + * Return the threshold (number of used requests) at which the queue is + * considered to be congested. It include a little hysteresis to keep the + * context switch rate down. + */ +static inline int queue_congestion_on_threshold(struct request_queue *q) +{ + return q->nr_congestion_on; +} + +/* + * The threshold at which a queue is considered to be uncongested + */ +static inline int queue_congestion_off_threshold(struct request_queue *q) +{ + return q->nr_congestion_off; +} + +static void blk_queue_congestion_threshold(struct request_queue *q) +{ + int nr; + + nr = q->nr_requests - (q->nr_requests / 8) + 1; + if (nr > q->nr_requests) + nr = q->nr_requests; + q->nr_congestion_on = nr; + + nr = q->nr_requests - (q->nr_requests / 8) - (q->nr_requests / 16) - 1; + if (nr < 1) + nr = 1; + q->nr_congestion_off = nr; +} + +/* + * A queue has just exitted congestion. Note this in the global counter of + * congested queues, and wake up anyone who was waiting for requests to be + * put back. + */ +static void clear_queue_congested(request_queue_t *q, int rw) +{ + enum bdi_state bit; + wait_queue_head_t *wqh = &congestion_wqh[rw]; + + bit = (rw == WRITE) ? BDI_write_congested : BDI_read_congested; + clear_bit(bit, &q->backing_dev_info.state); + smp_mb__after_clear_bit(); + if (waitqueue_active(wqh)) + wake_up(wqh); +} + +/* + * A queue has just entered congestion. Flag that in the queue's VM-visible + * state flags and increment the global gounter of congested queues. + */ +static void set_queue_congested(request_queue_t *q, int rw) +{ + enum bdi_state bit; + + bit = (rw == WRITE) ? BDI_write_congested : BDI_read_congested; + set_bit(bit, &q->backing_dev_info.state); +} + +/** + * blk_get_backing_dev_info - get the address of a queue's backing_dev_info + * @bdev: device + * + * Locates the passed device's request queue and returns the address of its + * backing_dev_info + * + * Will return NULL if the request queue cannot be located. + */ +struct backing_dev_info *blk_get_backing_dev_info(struct block_device *bdev) +{ + struct backing_dev_info *ret = NULL; + request_queue_t *q = bdev_get_queue(bdev); + + if (q) + ret = &q->backing_dev_info; + return ret; +} + +EXPORT_SYMBOL(blk_get_backing_dev_info); + +void blk_queue_activity_fn(request_queue_t *q, activity_fn *fn, void *data) +{ + q->activity_fn = fn; + q->activity_data = data; +} + +EXPORT_SYMBOL(blk_queue_activity_fn); + +/** + * blk_queue_prep_rq - set a prepare_request function for queue + * @q: queue + * @pfn: prepare_request function + * + * It's possible for a queue to register a prepare_request callback which + * is invoked before the request is handed to the request_fn. The goal of + * the function is to prepare a request for I/O, it can be used to build a + * cdb from the request data for instance. + * + */ +void blk_queue_prep_rq(request_queue_t *q, prep_rq_fn *pfn) +{ + q->prep_rq_fn = pfn; +} + +EXPORT_SYMBOL(blk_queue_prep_rq); + +/** + * blk_queue_merge_bvec - set a merge_bvec function for queue + * @q: queue + * @mbfn: merge_bvec_fn + * + * Usually queues have static limitations on the max sectors or segments that + * we can put in a request. Stacking drivers may have some settings that + * are dynamic, and thus we have to query the queue whether it is ok to + * add a new bio_vec to a bio at a given offset or not. If the block device + * has such limitations, it needs to register a merge_bvec_fn to control + * the size of bio's sent to it. Note that a block device *must* allow a + * single page to be added to an empty bio. The block device driver may want + * to use the bio_split() function to deal with these bio's. By default + * no merge_bvec_fn is defined for a queue, and only the fixed limits are + * honored. + */ +void blk_queue_merge_bvec(request_queue_t *q, merge_bvec_fn *mbfn) +{ + q->merge_bvec_fn = mbfn; +} + +EXPORT_SYMBOL(blk_queue_merge_bvec); + +/** + * blk_queue_make_request - define an alternate make_request function for a device + * @q: the request queue for the device to be affected + * @mfn: the alternate make_request function + * + * Description: + * The normal way for &struct bios to be passed to a device + * driver is for them to be collected into requests on a request + * queue, and then to allow the device driver to select requests + * off that queue when it is ready. This works well for many block + * devices. However some block devices (typically virtual devices + * such as md or lvm) do not benefit from the processing on the + * request queue, and are served best by having the requests passed + * directly to them. This can be achieved by providing a function + * to blk_queue_make_request(). + * + * Caveat: + * The driver that does this *must* be able to deal appropriately + * with buffers in "highmemory". This can be accomplished by either calling + * __bio_kmap_atomic() to get a temporary kernel mapping, or by calling + * blk_queue_bounce() to create a buffer in normal memory. + **/ +void blk_queue_make_request(request_queue_t * q, make_request_fn * mfn) +{ + /* + * set defaults + */ + q->nr_requests = BLKDEV_MAX_RQ; + blk_queue_max_phys_segments(q, MAX_PHYS_SEGMENTS); + blk_queue_max_hw_segments(q, MAX_HW_SEGMENTS); + q->make_request_fn = mfn; + q->backing_dev_info.ra_pages = (VM_MAX_READAHEAD * 1024) / PAGE_CACHE_SIZE; + q->backing_dev_info.state = 0; + q->backing_dev_info.capabilities = BDI_CAP_MAP_COPY; + blk_queue_max_sectors(q, MAX_SECTORS); + blk_queue_hardsect_size(q, 512); + blk_queue_dma_alignment(q, 511); + blk_queue_congestion_threshold(q); + q->nr_batching = BLK_BATCH_REQ; + + q->unplug_thresh = 4; /* hmm */ + q->unplug_delay = (3 * HZ) / 1000; /* 3 milliseconds */ + if (q->unplug_delay == 0) + q->unplug_delay = 1; + + INIT_WORK(&q->unplug_work, blk_unplug_work, q); + + q->unplug_timer.function = blk_unplug_timeout; + q->unplug_timer.data = (unsigned long)q; + + /* + * by default assume old behaviour and bounce for any highmem page + */ + blk_queue_bounce_limit(q, BLK_BOUNCE_HIGH); + + blk_queue_activity_fn(q, NULL, NULL); +} + +EXPORT_SYMBOL(blk_queue_make_request); + +static inline void rq_init(request_queue_t *q, struct request *rq) +{ + INIT_LIST_HEAD(&rq->queuelist); + + rq->errors = 0; + rq->rq_status = RQ_ACTIVE; + rq->bio = rq->biotail = NULL; + rq->ioprio = 0; + rq->buffer = NULL; + rq->ref_count = 1; + rq->q = q; + rq->waiting = NULL; + rq->special = NULL; + rq->data_len = 0; + rq->data = NULL; + rq->nr_phys_segments = 0; + rq->sense = NULL; + rq->end_io = NULL; + rq->end_io_data = NULL; +} + +/** + * blk_queue_ordered - does this queue support ordered writes + * @q: the request queue + * @flag: see below + * + * Description: + * For journalled file systems, doing ordered writes on a commit + * block instead of explicitly doing wait_on_buffer (which is bad + * for performance) can be a big win. Block drivers supporting this + * feature should call this function and indicate so. + * + **/ +void blk_queue_ordered(request_queue_t *q, int flag) +{ + switch (flag) { + case QUEUE_ORDERED_NONE: + if (q->flush_rq) + kmem_cache_free(request_cachep, q->flush_rq); + q->flush_rq = NULL; + q->ordered = flag; + break; + case QUEUE_ORDERED_TAG: + q->ordered = flag; + break; + case QUEUE_ORDERED_FLUSH: + q->ordered = flag; + if (!q->flush_rq) + q->flush_rq = kmem_cache_alloc(request_cachep, + GFP_KERNEL); + break; + default: + printk("blk_queue_ordered: bad value %d\n", flag); + break; + } +} + +EXPORT_SYMBOL(blk_queue_ordered); + +/** + * blk_queue_issue_flush_fn - set function for issuing a flush + * @q: the request queue + * @iff: the function to be called issuing the flush + * + * Description: + * If a driver supports issuing a flush command, the support is notified + * to the block layer by defining it through this call. + * + **/ +void blk_queue_issue_flush_fn(request_queue_t *q, issue_flush_fn *iff) +{ + q->issue_flush_fn = iff; +} + +EXPORT_SYMBOL(blk_queue_issue_flush_fn); + +/* + * Cache flushing for ordered writes handling + */ +static void blk_pre_flush_end_io(struct request *flush_rq) +{ + struct request *rq = flush_rq->end_io_data; + request_queue_t *q = rq->q; + + elv_completed_request(q, flush_rq); + + rq->flags |= REQ_BAR_PREFLUSH; + + if (!flush_rq->errors) + elv_requeue_request(q, rq); + else { + q->end_flush_fn(q, flush_rq); + clear_bit(QUEUE_FLAG_FLUSH, &q->queue_flags); + q->request_fn(q); + } +} + +static void blk_post_flush_end_io(struct request *flush_rq) +{ + struct request *rq = flush_rq->end_io_data; + request_queue_t *q = rq->q; + + elv_completed_request(q, flush_rq); + + rq->flags |= REQ_BAR_POSTFLUSH; + + q->end_flush_fn(q, flush_rq); + clear_bit(QUEUE_FLAG_FLUSH, &q->queue_flags); + q->request_fn(q); +} + +struct request *blk_start_pre_flush(request_queue_t *q, struct request *rq) +{ + struct request *flush_rq = q->flush_rq; + + BUG_ON(!blk_barrier_rq(rq)); + + if (test_and_set_bit(QUEUE_FLAG_FLUSH, &q->queue_flags)) + return NULL; + + rq_init(q, flush_rq); + flush_rq->elevator_private = NULL; + flush_rq->flags = REQ_BAR_FLUSH; + flush_rq->rq_disk = rq->rq_disk; + flush_rq->rl = NULL; + + /* + * prepare_flush returns 0 if no flush is needed, just mark both + * pre and post flush as done in that case + */ + if (!q->prepare_flush_fn(q, flush_rq)) { + rq->flags |= REQ_BAR_PREFLUSH | REQ_BAR_POSTFLUSH; + clear_bit(QUEUE_FLAG_FLUSH, &q->queue_flags); + return rq; + } + + /* + * some drivers dequeue requests right away, some only after io + * completion. make sure the request is dequeued. + */ + if (!list_empty(&rq->queuelist)) + blkdev_dequeue_request(rq); + + flush_rq->end_io_data = rq; + flush_rq->end_io = blk_pre_flush_end_io; + + __elv_add_request(q, flush_rq, ELEVATOR_INSERT_FRONT, 0); + return flush_rq; +} + +static void blk_start_post_flush(request_queue_t *q, struct request *rq) +{ + struct request *flush_rq = q->flush_rq; + + BUG_ON(!blk_barrier_rq(rq)); + + rq_init(q, flush_rq); + flush_rq->elevator_private = NULL; + flush_rq->flags = REQ_BAR_FLUSH; + flush_rq->rq_disk = rq->rq_disk; + flush_rq->rl = NULL; + + if (q->prepare_flush_fn(q, flush_rq)) { + flush_rq->end_io_data = rq; + flush_rq->end_io = blk_post_flush_end_io; + + __elv_add_request(q, flush_rq, ELEVATOR_INSERT_FRONT, 0); + q->request_fn(q); + } +} + +static inline int blk_check_end_barrier(request_queue_t *q, struct request *rq, + int sectors) +{ + if (sectors > rq->nr_sectors) + sectors = rq->nr_sectors; + + rq->nr_sectors -= sectors; + return rq->nr_sectors; +} + +static int __blk_complete_barrier_rq(request_queue_t *q, struct request *rq, + int sectors, int queue_locked) +{ + if (q->ordered != QUEUE_ORDERED_FLUSH) + return 0; + if (!blk_fs_request(rq) || !blk_barrier_rq(rq)) + return 0; + if (blk_barrier_postflush(rq)) + return 0; + + if (!blk_check_end_barrier(q, rq, sectors)) { + unsigned long flags = 0; + + if (!queue_locked) + spin_lock_irqsave(q->queue_lock, flags); + + blk_start_post_flush(q, rq); + + if (!queue_locked) + spin_unlock_irqrestore(q->queue_lock, flags); + } + + return 1; +} + +/** + * blk_complete_barrier_rq - complete possible barrier request + * @q: the request queue for the device + * @rq: the request + * @sectors: number of sectors to complete + * + * Description: + * Used in driver end_io handling to determine whether to postpone + * completion of a barrier request until a post flush has been done. This + * is the unlocked variant, used if the caller doesn't already hold the + * queue lock. + **/ +int blk_complete_barrier_rq(request_queue_t *q, struct request *rq, int sectors) +{ + return __blk_complete_barrier_rq(q, rq, sectors, 0); +} +EXPORT_SYMBOL(blk_complete_barrier_rq); + +/** + * blk_complete_barrier_rq_locked - complete possible barrier request + * @q: the request queue for the device + * @rq: the request + * @sectors: number of sectors to complete + * + * Description: + * See blk_complete_barrier_rq(). This variant must be used if the caller + * holds the queue lock. + **/ +int blk_complete_barrier_rq_locked(request_queue_t *q, struct request *rq, + int sectors) +{ + return __blk_complete_barrier_rq(q, rq, sectors, 1); +} +EXPORT_SYMBOL(blk_complete_barrier_rq_locked); + +/** + * blk_queue_bounce_limit - set bounce buffer limit for queue + * @q: the request queue for the device + * @dma_addr: bus address limit + * + * Description: + * Different hardware can have different requirements as to what pages + * it can do I/O directly to. A low level driver can call + * blk_queue_bounce_limit to have lower memory pages allocated as bounce + * buffers for doing I/O to pages residing above @page. By default + * the block layer sets this to the highest numbered "low" memory page. + **/ +void blk_queue_bounce_limit(request_queue_t *q, u64 dma_addr) +{ + unsigned long bounce_pfn = dma_addr >> PAGE_SHIFT; + + /* + * set appropriate bounce gfp mask -- unfortunately we don't have a + * full 4GB zone, so we have to resort to low memory for any bounces. + * ISA has its own < 16MB zone. + */ + if (bounce_pfn < blk_max_low_pfn) { + BUG_ON(dma_addr < BLK_BOUNCE_ISA); + init_emergency_isa_pool(); + q->bounce_gfp = GFP_NOIO | GFP_DMA; + } else + q->bounce_gfp = GFP_NOIO; + + q->bounce_pfn = bounce_pfn; +} + +EXPORT_SYMBOL(blk_queue_bounce_limit); + +/** + * blk_queue_max_sectors - set max sectors for a request for this queue + * @q: the request queue for the device + * @max_sectors: max sectors in the usual 512b unit + * + * Description: + * Enables a low level driver to set an upper limit on the size of + * received requests. + **/ +void blk_queue_max_sectors(request_queue_t *q, unsigned short max_sectors) +{ + if ((max_sectors << 9) < PAGE_CACHE_SIZE) { + max_sectors = 1 << (PAGE_CACHE_SHIFT - 9); + printk("%s: set to minimum %d\n", __FUNCTION__, max_sectors); + } + + q->max_sectors = q->max_hw_sectors = max_sectors; +} + +EXPORT_SYMBOL(blk_queue_max_sectors); + +/** + * blk_queue_max_phys_segments - set max phys segments for a request for this queue + * @q: the request queue for the device + * @max_segments: max number of segments + * + * Description: + * Enables a low level driver to set an upper limit on the number of + * physical data segments in a request. This would be the largest sized + * scatter list the driver could handle. + **/ +void blk_queue_max_phys_segments(request_queue_t *q, unsigned short max_segments) +{ + if (!max_segments) { + max_segments = 1; + printk("%s: set to minimum %d\n", __FUNCTION__, max_segments); + } + + q->max_phys_segments = max_segments; +} + +EXPORT_SYMBOL(blk_queue_max_phys_segments); + +/** + * blk_queue_max_hw_segments - set max hw segments for a request for this queue + * @q: the request queue for the device + * @max_segments: max number of segments + * + * Description: + * Enables a low level driver to set an upper limit on the number of + * hw data segments in a request. This would be the largest number of + * address/length pairs the host adapter can actually give as once + * to the device. + **/ +void blk_queue_max_hw_segments(request_queue_t *q, unsigned short max_segments) +{ + if (!max_segments) { + max_segments = 1; + printk("%s: set to minimum %d\n", __FUNCTION__, max_segments); + } + + q->max_hw_segments = max_segments; +} + +EXPORT_SYMBOL(blk_queue_max_hw_segments); + +/** + * blk_queue_max_segment_size - set max segment size for blk_rq_map_sg + * @q: the request queue for the device + * @max_size: max size of segment in bytes + * + * Description: + * Enables a low level driver to set an upper limit on the size of a + * coalesced segment + **/ +void blk_queue_max_segment_size(request_queue_t *q, unsigned int max_size) +{ + if (max_size < PAGE_CACHE_SIZE) { + max_size = PAGE_CACHE_SIZE; + printk("%s: set to minimum %d\n", __FUNCTION__, max_size); + } + + q->max_segment_size = max_size; +} + +EXPORT_SYMBOL(blk_queue_max_segment_size); + +/** + * blk_queue_hardsect_size - set hardware sector size for the queue + * @q: the request queue for the device + * @size: the hardware sector size, in bytes + * + * Description: + * This should typically be set to the lowest possible sector size + * that the hardware can operate on (possible without reverting to + * even internal read-modify-write operations). Usually the default + * of 512 covers most hardware. + **/ +void blk_queue_hardsect_size(request_queue_t *q, unsigned short size) +{ + q->hardsect_size = size; +} + +EXPORT_SYMBOL(blk_queue_hardsect_size); + +/* + * Returns the minimum that is _not_ zero, unless both are zero. + */ +#define min_not_zero(l, r) (l == 0) ? r : ((r == 0) ? l : min(l, r)) + +/** + * blk_queue_stack_limits - inherit underlying queue limits for stacked drivers + * @t: the stacking driver (top) + * @b: the underlying device (bottom) + **/ +void blk_queue_stack_limits(request_queue_t *t, request_queue_t *b) +{ + /* zero is "infinity" */ + t->max_sectors = t->max_hw_sectors = + min_not_zero(t->max_sectors,b->max_sectors); + + t->max_phys_segments = min(t->max_phys_segments,b->max_phys_segments); + t->max_hw_segments = min(t->max_hw_segments,b->max_hw_segments); + t->max_segment_size = min(t->max_segment_size,b->max_segment_size); + t->hardsect_size = max(t->hardsect_size,b->hardsect_size); +} + +EXPORT_SYMBOL(blk_queue_stack_limits); + +/** + * blk_queue_segment_boundary - set boundary rules for segment merging + * @q: the request queue for the device + * @mask: the memory boundary mask + **/ +void blk_queue_segment_boundary(request_queue_t *q, unsigned long mask) +{ + if (mask < PAGE_CACHE_SIZE - 1) { + mask = PAGE_CACHE_SIZE - 1; + printk("%s: set to minimum %lx\n", __FUNCTION__, mask); + } + + q->seg_boundary_mask = mask; +} + +EXPORT_SYMBOL(blk_queue_segment_boundary); + +/** + * blk_queue_dma_alignment - set dma length and memory alignment + * @q: the request queue for the device + * @mask: alignment mask + * + * description: + * set required memory and length aligment for direct dma transactions. + * this is used when buiding direct io requests for the queue. + * + **/ +void blk_queue_dma_alignment(request_queue_t *q, int mask) +{ + q->dma_alignment = mask; +} + +EXPORT_SYMBOL(blk_queue_dma_alignment); + +/** + * blk_queue_find_tag - find a request by its tag and queue + * + * @q: The request queue for the device + * @tag: The tag of the request + * + * Notes: + * Should be used when a device returns a tag and you want to match + * it with a request. + * + * no locks need be held. + **/ +struct request *blk_queue_find_tag(request_queue_t *q, int tag) +{ + struct blk_queue_tag *bqt = q->queue_tags; + + if (unlikely(bqt == NULL || tag >= bqt->real_max_depth)) + return NULL; + + return bqt->tag_index[tag]; +} + +EXPORT_SYMBOL(blk_queue_find_tag); + +/** + * __blk_queue_free_tags - release tag maintenance info + * @q: the request queue for the device + * + * Notes: + * blk_cleanup_queue() will take care of calling this function, if tagging + * has been used. So there's no need to call this directly. + **/ +static void __blk_queue_free_tags(request_queue_t *q) +{ + struct blk_queue_tag *bqt = q->queue_tags; + + if (!bqt) + return; + + if (atomic_dec_and_test(&bqt->refcnt)) { + BUG_ON(bqt->busy); + BUG_ON(!list_empty(&bqt->busy_list)); + + kfree(bqt->tag_index); + bqt->tag_index = NULL; + + kfree(bqt->tag_map); + bqt->tag_map = NULL; + + kfree(bqt); + } + + q->queue_tags = NULL; + q->queue_flags &= ~(1 << QUEUE_FLAG_QUEUED); +} + +/** + * blk_queue_free_tags - release tag maintenance info + * @q: the request queue for the device + * + * Notes: + * This is used to disabled tagged queuing to a device, yet leave + * queue in function. + **/ +void blk_queue_free_tags(request_queue_t *q) +{ + clear_bit(QUEUE_FLAG_QUEUED, &q->queue_flags); +} + +EXPORT_SYMBOL(blk_queue_free_tags); + +static int +init_tag_map(request_queue_t *q, struct blk_queue_tag *tags, int depth) +{ + struct request **tag_index; + unsigned long *tag_map; + int nr_ulongs; + + if (depth > q->nr_requests * 2) { + depth = q->nr_requests * 2; + printk(KERN_ERR "%s: adjusted depth to %d\n", + __FUNCTION__, depth); + } + + tag_index = kmalloc(depth * sizeof(struct request *), GFP_ATOMIC); + if (!tag_index) + goto fail; + + nr_ulongs = ALIGN(depth, BITS_PER_LONG) / BITS_PER_LONG; + tag_map = kmalloc(nr_ulongs * sizeof(unsigned long), GFP_ATOMIC); + if (!tag_map) + goto fail; + + memset(tag_index, 0, depth * sizeof(struct request *)); + memset(tag_map, 0, nr_ulongs * sizeof(unsigned long)); + tags->real_max_depth = depth; + tags->max_depth = depth; + tags->tag_index = tag_index; + tags->tag_map = tag_map; + + return 0; +fail: + kfree(tag_index); + return -ENOMEM; +} + +/** + * blk_queue_init_tags - initialize the queue tag info + * @q: the request queue for the device + * @depth: the maximum queue depth supported + * @tags: the tag to use + **/ +int blk_queue_init_tags(request_queue_t *q, int depth, + struct blk_queue_tag *tags) +{ + int rc; + + BUG_ON(tags && q->queue_tags && tags != q->queue_tags); + + if (!tags && !q->queue_tags) { + tags = kmalloc(sizeof(struct blk_queue_tag), GFP_ATOMIC); + if (!tags) + goto fail; + + if (init_tag_map(q, tags, depth)) + goto fail; + + INIT_LIST_HEAD(&tags->busy_list); + tags->busy = 0; + atomic_set(&tags->refcnt, 1); + } else if (q->queue_tags) { + if ((rc = blk_queue_resize_tags(q, depth))) + return rc; + set_bit(QUEUE_FLAG_QUEUED, &q->queue_flags); + return 0; + } else + atomic_inc(&tags->refcnt); + + /* + * assign it, all done + */ + q->queue_tags = tags; + q->queue_flags |= (1 << QUEUE_FLAG_QUEUED); + return 0; +fail: + kfree(tags); + return -ENOMEM; +} + +EXPORT_SYMBOL(blk_queue_init_tags); + +/** + * blk_queue_resize_tags - change the queueing depth + * @q: the request queue for the device + * @new_depth: the new max command queueing depth + * + * Notes: + * Must be called with the queue lock held. + **/ +int blk_queue_resize_tags(request_queue_t *q, int new_depth) +{ + struct blk_queue_tag *bqt = q->queue_tags; + struct request **tag_index; + unsigned long *tag_map; + int max_depth, nr_ulongs; + + if (!bqt) + return -ENXIO; + + /* + * if we already have large enough real_max_depth. just + * adjust max_depth. *NOTE* as requests with tag value + * between new_depth and real_max_depth can be in-flight, tag + * map can not be shrunk blindly here. + */ + if (new_depth <= bqt->real_max_depth) { + bqt->max_depth = new_depth; + return 0; + } + + /* + * save the old state info, so we can copy it back + */ + tag_index = bqt->tag_index; + tag_map = bqt->tag_map; + max_depth = bqt->real_max_depth; + + if (init_tag_map(q, bqt, new_depth)) + return -ENOMEM; + + memcpy(bqt->tag_index, tag_index, max_depth * sizeof(struct request *)); + nr_ulongs = ALIGN(max_depth, BITS_PER_LONG) / BITS_PER_LONG; + memcpy(bqt->tag_map, tag_map, nr_ulongs * sizeof(unsigned long)); + + kfree(tag_index); + kfree(tag_map); + return 0; +} + +EXPORT_SYMBOL(blk_queue_resize_tags); + +/** + * blk_queue_end_tag - end tag operations for a request + * @q: the request queue for the device + * @rq: the request that has completed + * + * Description: + * Typically called when end_that_request_first() returns 0, meaning + * all transfers have been done for a request. It's important to call + * this function before end_that_request_last(), as that will put the + * request back on the free list thus corrupting the internal tag list. + * + * Notes: + * queue lock must be held. + **/ +void blk_queue_end_tag(request_queue_t *q, struct request *rq) +{ + struct blk_queue_tag *bqt = q->queue_tags; + int tag = rq->tag; + + BUG_ON(tag == -1); + + if (unlikely(tag >= bqt->real_max_depth)) + /* + * This can happen after tag depth has been reduced. + * FIXME: how about a warning or info message here? + */ + return; + + if (unlikely(!__test_and_clear_bit(tag, bqt->tag_map))) { + printk(KERN_ERR "%s: attempt to clear non-busy tag (%d)\n", + __FUNCTION__, tag); + return; + } + + list_del_init(&rq->queuelist); + rq->flags &= ~REQ_QUEUED; + rq->tag = -1; + + if (unlikely(bqt->tag_index[tag] == NULL)) + printk(KERN_ERR "%s: tag %d is missing\n", + __FUNCTION__, tag); + + bqt->tag_index[tag] = NULL; + bqt->busy--; +} + +EXPORT_SYMBOL(blk_queue_end_tag); + +/** + * blk_queue_start_tag - find a free tag and assign it + * @q: the request queue for the device + * @rq: the block request that needs tagging + * + * Description: + * This can either be used as a stand-alone helper, or possibly be + * assigned as the queue &prep_rq_fn (in which case &struct request + * automagically gets a tag assigned). Note that this function + * assumes that any type of request can be queued! if this is not + * true for your device, you must check the request type before + * calling this function. The request will also be removed from + * the request queue, so it's the drivers responsibility to readd + * it if it should need to be restarted for some reason. + * + * Notes: + * queue lock must be held. + **/ +int blk_queue_start_tag(request_queue_t *q, struct request *rq) +{ + struct blk_queue_tag *bqt = q->queue_tags; + int tag; + + if (unlikely((rq->flags & REQ_QUEUED))) { + printk(KERN_ERR + "%s: request %p for device [%s] already tagged %d", + __FUNCTION__, rq, + rq->rq_disk ? rq->rq_disk->disk_name : "?", rq->tag); + BUG(); + } + + tag = find_first_zero_bit(bqt->tag_map, bqt->max_depth); + if (tag >= bqt->max_depth) + return 1; + + __set_bit(tag, bqt->tag_map); + + rq->flags |= REQ_QUEUED; + rq->tag = tag; + bqt->tag_index[tag] = rq; + blkdev_dequeue_request(rq); + list_add(&rq->queuelist, &bqt->busy_list); + bqt->busy++; + return 0; +} + +EXPORT_SYMBOL(blk_queue_start_tag); + +/** + * blk_queue_invalidate_tags - invalidate all pending tags + * @q: the request queue for the device + * + * Description: + * Hardware conditions may dictate a need to stop all pending requests. + * In this case, we will safely clear the block side of the tag queue and + * readd all requests to the request queue in the right order. + * + * Notes: + * queue lock must be held. + **/ +void blk_queue_invalidate_tags(request_queue_t *q) +{ + struct blk_queue_tag *bqt = q->queue_tags; + struct list_head *tmp, *n; + struct request *rq; + + list_for_each_safe(tmp, n, &bqt->busy_list) { + rq = list_entry_rq(tmp); + + if (rq->tag == -1) { + printk(KERN_ERR + "%s: bad tag found on list\n", __FUNCTION__); + list_del_init(&rq->queuelist); + rq->flags &= ~REQ_QUEUED; + } else + blk_queue_end_tag(q, rq); + + rq->flags &= ~REQ_STARTED; + __elv_add_request(q, rq, ELEVATOR_INSERT_BACK, 0); + } +} + +EXPORT_SYMBOL(blk_queue_invalidate_tags); + +static char *rq_flags[] = { + "REQ_RW", + "REQ_FAILFAST", + "REQ_SORTED", + "REQ_SOFTBARRIER", + "REQ_HARDBARRIER", + "REQ_CMD", + "REQ_NOMERGE", + "REQ_STARTED", + "REQ_DONTPREP", + "REQ_QUEUED", + "REQ_ELVPRIV", + "REQ_PC", + "REQ_BLOCK_PC", + "REQ_SENSE", + "REQ_FAILED", + "REQ_QUIET", + "REQ_SPECIAL", + "REQ_DRIVE_CMD", + "REQ_DRIVE_TASK", + "REQ_DRIVE_TASKFILE", + "REQ_PREEMPT", + "REQ_PM_SUSPEND", + "REQ_PM_RESUME", + "REQ_PM_SHUTDOWN", +}; + +void blk_dump_rq_flags(struct request *rq, char *msg) +{ + int bit; + + printk("%s: dev %s: flags = ", msg, + rq->rq_disk ? rq->rq_disk->disk_name : "?"); + bit = 0; + do { + if (rq->flags & (1 << bit)) + printk("%s ", rq_flags[bit]); + bit++; + } while (bit < __REQ_NR_BITS); + + printk("\nsector %llu, nr/cnr %lu/%u\n", (unsigned long long)rq->sector, + rq->nr_sectors, + rq->current_nr_sectors); + printk("bio %p, biotail %p, buffer %p, data %p, len %u\n", rq->bio, rq->biotail, rq->buffer, rq->data, rq->data_len); + + if (rq->flags & (REQ_BLOCK_PC | REQ_PC)) { + printk("cdb: "); + for (bit = 0; bit < sizeof(rq->cmd); bit++) + printk("%02x ", rq->cmd[bit]); + printk("\n"); + } +} + +EXPORT_SYMBOL(blk_dump_rq_flags); + +void blk_recount_segments(request_queue_t *q, struct bio *bio) +{ + struct bio_vec *bv, *bvprv = NULL; + int i, nr_phys_segs, nr_hw_segs, seg_size, hw_seg_size, cluster; + int high, highprv = 1; + + if (unlikely(!bio->bi_io_vec)) + return; + + cluster = q->queue_flags & (1 << QUEUE_FLAG_CLUSTER); + hw_seg_size = seg_size = nr_phys_segs = nr_hw_segs = 0; + bio_for_each_segment(bv, bio, i) { + /* + * the trick here is making sure that a high page is never + * considered part of another segment, since that might + * change with the bounce page. + */ + high = page_to_pfn(bv->bv_page) >= q->bounce_pfn; + if (high || highprv) + goto new_hw_segment; + if (cluster) { + if (seg_size + bv->bv_len > q->max_segment_size) + goto new_segment; + if (!BIOVEC_PHYS_MERGEABLE(bvprv, bv)) + goto new_segment; + if (!BIOVEC_SEG_BOUNDARY(q, bvprv, bv)) + goto new_segment; + if (BIOVEC_VIRT_OVERSIZE(hw_seg_size + bv->bv_len)) + goto new_hw_segment; + + seg_size += bv->bv_len; + hw_seg_size += bv->bv_len; + bvprv = bv; + continue; + } +new_segment: + if (BIOVEC_VIRT_MERGEABLE(bvprv, bv) && + !BIOVEC_VIRT_OVERSIZE(hw_seg_size + bv->bv_len)) { + hw_seg_size += bv->bv_len; + } else { +new_hw_segment: + if (hw_seg_size > bio->bi_hw_front_size) + bio->bi_hw_front_size = hw_seg_size; + hw_seg_size = BIOVEC_VIRT_START_SIZE(bv) + bv->bv_len; + nr_hw_segs++; + } + + nr_phys_segs++; + bvprv = bv; + seg_size = bv->bv_len; + highprv = high; + } + if (hw_seg_size > bio->bi_hw_back_size) + bio->bi_hw_back_size = hw_seg_size; + if (nr_hw_segs == 1 && hw_seg_size > bio->bi_hw_front_size) + bio->bi_hw_front_size = hw_seg_size; + bio->bi_phys_segments = nr_phys_segs; + bio->bi_hw_segments = nr_hw_segs; + bio->bi_flags |= (1 << BIO_SEG_VALID); +} + + +static int blk_phys_contig_segment(request_queue_t *q, struct bio *bio, + struct bio *nxt) +{ + if (!(q->queue_flags & (1 << QUEUE_FLAG_CLUSTER))) + return 0; + + if (!BIOVEC_PHYS_MERGEABLE(__BVEC_END(bio), __BVEC_START(nxt))) + return 0; + if (bio->bi_size + nxt->bi_size > q->max_segment_size) + return 0; + + /* + * bio and nxt are contigous in memory, check if the queue allows + * these two to be merged into one + */ + if (BIO_SEG_BOUNDARY(q, bio, nxt)) + return 1; + + return 0; +} + +static int blk_hw_contig_segment(request_queue_t *q, struct bio *bio, + struct bio *nxt) +{ + if (unlikely(!bio_flagged(bio, BIO_SEG_VALID))) + blk_recount_segments(q, bio); + if (unlikely(!bio_flagged(nxt, BIO_SEG_VALID))) + blk_recount_segments(q, nxt); + if (!BIOVEC_VIRT_MERGEABLE(__BVEC_END(bio), __BVEC_START(nxt)) || + BIOVEC_VIRT_OVERSIZE(bio->bi_hw_front_size + bio->bi_hw_back_size)) + return 0; + if (bio->bi_size + nxt->bi_size > q->max_segment_size) + return 0; + + return 1; +} + +/* + * map a request to scatterlist, return number of sg entries setup. Caller + * must make sure sg can hold rq->nr_phys_segments entries + */ +int blk_rq_map_sg(request_queue_t *q, struct request *rq, struct scatterlist *sg) +{ + struct bio_vec *bvec, *bvprv; + struct bio *bio; + int nsegs, i, cluster; + + nsegs = 0; + cluster = q->queue_flags & (1 << QUEUE_FLAG_CLUSTER); + + /* + * for each bio in rq + */ + bvprv = NULL; + rq_for_each_bio(bio, rq) { + /* + * for each segment in bio + */ + bio_for_each_segment(bvec, bio, i) { + int nbytes = bvec->bv_len; + + if (bvprv && cluster) { + if (sg[nsegs - 1].length + nbytes > q->max_segment_size) + goto new_segment; + + if (!BIOVEC_PHYS_MERGEABLE(bvprv, bvec)) + goto new_segment; + if (!BIOVEC_SEG_BOUNDARY(q, bvprv, bvec)) + goto new_segment; + + sg[nsegs - 1].length += nbytes; + } else { +new_segment: + memset(&sg[nsegs],0,sizeof(struct scatterlist)); + sg[nsegs].page = bvec->bv_page; + sg[nsegs].length = nbytes; + sg[nsegs].offset = bvec->bv_offset; + + nsegs++; + } + bvprv = bvec; + } /* segments in bio */ + } /* bios in rq */ + + return nsegs; +} + +EXPORT_SYMBOL(blk_rq_map_sg); + +/* + * the standard queue merge functions, can be overridden with device + * specific ones if so desired + */ + +static inline int ll_new_mergeable(request_queue_t *q, + struct request *req, + struct bio *bio) +{ + int nr_phys_segs = bio_phys_segments(q, bio); + + if (req->nr_phys_segments + nr_phys_segs > q->max_phys_segments) { + req->flags |= REQ_NOMERGE; + if (req == q->last_merge) + q->last_merge = NULL; + return 0; + } + + /* + * A hw segment is just getting larger, bump just the phys + * counter. + */ + req->nr_phys_segments += nr_phys_segs; + return 1; +} + +static inline int ll_new_hw_segment(request_queue_t *q, + struct request *req, + struct bio *bio) +{ + int nr_hw_segs = bio_hw_segments(q, bio); + int nr_phys_segs = bio_phys_segments(q, bio); + + if (req->nr_hw_segments + nr_hw_segs > q->max_hw_segments + || req->nr_phys_segments + nr_phys_segs > q->max_phys_segments) { + req->flags |= REQ_NOMERGE; + if (req == q->last_merge) + q->last_merge = NULL; + return 0; + } + + /* + * This will form the start of a new hw segment. Bump both + * counters. + */ + req->nr_hw_segments += nr_hw_segs; + req->nr_phys_segments += nr_phys_segs; + return 1; +} + +static int ll_back_merge_fn(request_queue_t *q, struct request *req, + struct bio *bio) +{ + int len; + + if (req->nr_sectors + bio_sectors(bio) > q->max_sectors) { + req->flags |= REQ_NOMERGE; + if (req == q->last_merge) + q->last_merge = NULL; + return 0; + } + if (unlikely(!bio_flagged(req->biotail, BIO_SEG_VALID))) + blk_recount_segments(q, req->biotail); + if (unlikely(!bio_flagged(bio, BIO_SEG_VALID))) + blk_recount_segments(q, bio); + len = req->biotail->bi_hw_back_size + bio->bi_hw_front_size; + if (BIOVEC_VIRT_MERGEABLE(__BVEC_END(req->biotail), __BVEC_START(bio)) && + !BIOVEC_VIRT_OVERSIZE(len)) { + int mergeable = ll_new_mergeable(q, req, bio); + + if (mergeable) { + if (req->nr_hw_segments == 1) + req->bio->bi_hw_front_size = len; + if (bio->bi_hw_segments == 1) + bio->bi_hw_back_size = len; + } + return mergeable; + } + + return ll_new_hw_segment(q, req, bio); +} + +static int ll_front_merge_fn(request_queue_t *q, struct request *req, + struct bio *bio) +{ + int len; + + if (req->nr_sectors + bio_sectors(bio) > q->max_sectors) { + req->flags |= REQ_NOMERGE; + if (req == q->last_merge) + q->last_merge = NULL; + return 0; + } + len = bio->bi_hw_back_size + req->bio->bi_hw_front_size; + if (unlikely(!bio_flagged(bio, BIO_SEG_VALID))) + blk_recount_segments(q, bio); + if (unlikely(!bio_flagged(req->bio, BIO_SEG_VALID))) + blk_recount_segments(q, req->bio); + if (BIOVEC_VIRT_MERGEABLE(__BVEC_END(bio), __BVEC_START(req->bio)) && + !BIOVEC_VIRT_OVERSIZE(len)) { + int mergeable = ll_new_mergeable(q, req, bio); + + if (mergeable) { + if (bio->bi_hw_segments == 1) + bio->bi_hw_front_size = len; + if (req->nr_hw_segments == 1) + req->biotail->bi_hw_back_size = len; + } + return mergeable; + } + + return ll_new_hw_segment(q, req, bio); +} + +static int ll_merge_requests_fn(request_queue_t *q, struct request *req, + struct request *next) +{ + int total_phys_segments; + int total_hw_segments; + + /* + * First check if the either of the requests are re-queued + * requests. Can't merge them if they are. + */ + if (req->special || next->special) + return 0; + + /* + * Will it become too large? + */ + if ((req->nr_sectors + next->nr_sectors) > q->max_sectors) + return 0; + + total_phys_segments = req->nr_phys_segments + next->nr_phys_segments; + if (blk_phys_contig_segment(q, req->biotail, next->bio)) + total_phys_segments--; + + if (total_phys_segments > q->max_phys_segments) + return 0; + + total_hw_segments = req->nr_hw_segments + next->nr_hw_segments; + if (blk_hw_contig_segment(q, req->biotail, next->bio)) { + int len = req->biotail->bi_hw_back_size + next->bio->bi_hw_front_size; + /* + * propagate the combined length to the end of the requests + */ + if (req->nr_hw_segments == 1) + req->bio->bi_hw_front_size = len; + if (next->nr_hw_segments == 1) + next->biotail->bi_hw_back_size = len; + total_hw_segments--; + } + + if (total_hw_segments > q->max_hw_segments) + return 0; + + /* Merge is OK... */ + req->nr_phys_segments = total_phys_segments; + req->nr_hw_segments = total_hw_segments; + return 1; +} + +/* + * "plug" the device if there are no outstanding requests: this will + * force the transfer to start only after we have put all the requests + * on the list. + * + * This is called with interrupts off and no requests on the queue and + * with the queue lock held. + */ +void blk_plug_device(request_queue_t *q) +{ + WARN_ON(!irqs_disabled()); + + /* + * don't plug a stopped queue, it must be paired with blk_start_queue() + * which will restart the queueing + */ + if (test_bit(QUEUE_FLAG_STOPPED, &q->queue_flags)) + return; + + if (!test_and_set_bit(QUEUE_FLAG_PLUGGED, &q->queue_flags)) + mod_timer(&q->unplug_timer, jiffies + q->unplug_delay); +} + +EXPORT_SYMBOL(blk_plug_device); + +/* + * remove the queue from the plugged list, if present. called with + * queue lock held and interrupts disabled. + */ +int blk_remove_plug(request_queue_t *q) +{ + WARN_ON(!irqs_disabled()); + + if (!test_and_clear_bit(QUEUE_FLAG_PLUGGED, &q->queue_flags)) + return 0; + + del_timer(&q->unplug_timer); + return 1; +} + +EXPORT_SYMBOL(blk_remove_plug); + +/* + * remove the plug and let it rip.. + */ +void __generic_unplug_device(request_queue_t *q) +{ + if (unlikely(test_bit(QUEUE_FLAG_STOPPED, &q->queue_flags))) + return; + + if (!blk_remove_plug(q)) + return; + + q->request_fn(q); +} +EXPORT_SYMBOL(__generic_unplug_device); + +/** + * generic_unplug_device - fire a request queue + * @q: The &request_queue_t in question + * + * Description: + * Linux uses plugging to build bigger requests queues before letting + * the device have at them. If a queue is plugged, the I/O scheduler + * is still adding and merging requests on the queue. Once the queue + * gets unplugged, the request_fn defined for the queue is invoked and + * transfers started. + **/ +void generic_unplug_device(request_queue_t *q) +{ + spin_lock_irq(q->queue_lock); + __generic_unplug_device(q); + spin_unlock_irq(q->queue_lock); +} +EXPORT_SYMBOL(generic_unplug_device); + +static void blk_backing_dev_unplug(struct backing_dev_info *bdi, + struct page *page) +{ + request_queue_t *q = bdi->unplug_io_data; + + /* + * devices don't necessarily have an ->unplug_fn defined + */ + if (q->unplug_fn) + q->unplug_fn(q); +} + +static void blk_unplug_work(void *data) +{ + request_queue_t *q = data; + + q->unplug_fn(q); +} + +static void blk_unplug_timeout(unsigned long data) +{ + request_queue_t *q = (request_queue_t *)data; + + kblockd_schedule_work(&q->unplug_work); +} + +/** + * blk_start_queue - restart a previously stopped queue + * @q: The &request_queue_t in question + * + * Description: + * blk_start_queue() will clear the stop flag on the queue, and call + * the request_fn for the queue if it was in a stopped state when + * entered. Also see blk_stop_queue(). Queue lock must be held. + **/ +void blk_start_queue(request_queue_t *q) +{ + clear_bit(QUEUE_FLAG_STOPPED, &q->queue_flags); + + /* + * one level of recursion is ok and is much faster than kicking + * the unplug handling + */ + if (!test_and_set_bit(QUEUE_FLAG_REENTER, &q->queue_flags)) { + q->request_fn(q); + clear_bit(QUEUE_FLAG_REENTER, &q->queue_flags); + } else { + blk_plug_device(q); + kblockd_schedule_work(&q->unplug_work); + } +} + +EXPORT_SYMBOL(blk_start_queue); + +/** + * blk_stop_queue - stop a queue + * @q: The &request_queue_t in question + * + * Description: + * The Linux block layer assumes that a block driver will consume all + * entries on the request queue when the request_fn strategy is called. + * Often this will not happen, because of hardware limitations (queue + * depth settings). If a device driver gets a 'queue full' response, + * or if it simply chooses not to queue more I/O at one point, it can + * call this function to prevent the request_fn from being called until + * the driver has signalled it's ready to go again. This happens by calling + * blk_start_queue() to restart queue operations. Queue lock must be held. + **/ +void blk_stop_queue(request_queue_t *q) +{ + blk_remove_plug(q); + set_bit(QUEUE_FLAG_STOPPED, &q->queue_flags); +} +EXPORT_SYMBOL(blk_stop_queue); + +/** + * blk_sync_queue - cancel any pending callbacks on a queue + * @q: the queue + * + * Description: + * The block layer may perform asynchronous callback activity + * on a queue, such as calling the unplug function after a timeout. + * A block device may call blk_sync_queue to ensure that any + * such activity is cancelled, thus allowing it to release resources + * the the callbacks might use. The caller must already have made sure + * that its ->make_request_fn will not re-add plugging prior to calling + * this function. + * + */ +void blk_sync_queue(struct request_queue *q) +{ + del_timer_sync(&q->unplug_timer); + kblockd_flush(); +} +EXPORT_SYMBOL(blk_sync_queue); + +/** + * blk_run_queue - run a single device queue + * @q: The queue to run + */ +void blk_run_queue(struct request_queue *q) +{ + unsigned long flags; + + spin_lock_irqsave(q->queue_lock, flags); + blk_remove_plug(q); + if (!elv_queue_empty(q)) + q->request_fn(q); + spin_unlock_irqrestore(q->queue_lock, flags); +} +EXPORT_SYMBOL(blk_run_queue); + +/** + * blk_cleanup_queue: - release a &request_queue_t when it is no longer needed + * @q: the request queue to be released + * + * Description: + * blk_cleanup_queue is the pair to blk_init_queue() or + * blk_queue_make_request(). It should be called when a request queue is + * being released; typically when a block device is being de-registered. + * Currently, its primary task it to free all the &struct request + * structures that were allocated to the queue and the queue itself. + * + * Caveat: + * Hopefully the low level driver will have finished any + * outstanding requests first... + **/ +void blk_cleanup_queue(request_queue_t * q) +{ + struct request_list *rl = &q->rq; + + if (!atomic_dec_and_test(&q->refcnt)) + return; + + if (q->elevator) + elevator_exit(q->elevator); + + blk_sync_queue(q); + + if (rl->rq_pool) + mempool_destroy(rl->rq_pool); + + if (q->queue_tags) + __blk_queue_free_tags(q); + + blk_queue_ordered(q, QUEUE_ORDERED_NONE); + + kmem_cache_free(requestq_cachep, q); +} + +EXPORT_SYMBOL(blk_cleanup_queue); + +static int blk_init_free_list(request_queue_t *q) +{ + struct request_list *rl = &q->rq; + + rl->count[READ] = rl->count[WRITE] = 0; + rl->starved[READ] = rl->starved[WRITE] = 0; + rl->elvpriv = 0; + init_waitqueue_head(&rl->wait[READ]); + init_waitqueue_head(&rl->wait[WRITE]); + + rl->rq_pool = mempool_create_node(BLKDEV_MIN_RQ, mempool_alloc_slab, + mempool_free_slab, request_cachep, q->node); + + if (!rl->rq_pool) + return -ENOMEM; + + return 0; +} + +static int __make_request(request_queue_t *, struct bio *); + +request_queue_t *blk_alloc_queue(gfp_t gfp_mask) +{ + return blk_alloc_queue_node(gfp_mask, -1); +} +EXPORT_SYMBOL(blk_alloc_queue); + +request_queue_t *blk_alloc_queue_node(gfp_t gfp_mask, int node_id) +{ + request_queue_t *q; + + q = kmem_cache_alloc_node(requestq_cachep, gfp_mask, node_id); + if (!q) + return NULL; + + memset(q, 0, sizeof(*q)); + init_timer(&q->unplug_timer); + atomic_set(&q->refcnt, 1); + + q->backing_dev_info.unplug_io_fn = blk_backing_dev_unplug; + q->backing_dev_info.unplug_io_data = q; + + return q; +} +EXPORT_SYMBOL(blk_alloc_queue_node); + +/** + * blk_init_queue - prepare a request queue for use with a block device + * @rfn: The function to be called to process requests that have been + * placed on the queue. + * @lock: Request queue spin lock + * + * Description: + * If a block device wishes to use the standard request handling procedures, + * which sorts requests and coalesces adjacent requests, then it must + * call blk_init_queue(). The function @rfn will be called when there + * are requests on the queue that need to be processed. If the device + * supports plugging, then @rfn may not be called immediately when requests + * are available on the queue, but may be called at some time later instead. + * Plugged queues are generally unplugged when a buffer belonging to one + * of the requests on the queue is needed, or due to memory pressure. + * + * @rfn is not required, or even expected, to remove all requests off the + * queue, but only as many as it can handle at a time. If it does leave + * requests on the queue, it is responsible for arranging that the requests + * get dealt with eventually. + * + * The queue spin lock must be held while manipulating the requests on the + * request queue. + * + * Function returns a pointer to the initialized request queue, or NULL if + * it didn't succeed. + * + * Note: + * blk_init_queue() must be paired with a blk_cleanup_queue() call + * when the block device is deactivated (such as at module unload). + **/ + +request_queue_t *blk_init_queue(request_fn_proc *rfn, spinlock_t *lock) +{ + return blk_init_queue_node(rfn, lock, -1); +} +EXPORT_SYMBOL(blk_init_queue); + +request_queue_t * +blk_init_queue_node(request_fn_proc *rfn, spinlock_t *lock, int node_id) +{ + request_queue_t *q = blk_alloc_queue_node(GFP_KERNEL, node_id); + + if (!q) + return NULL; + + q->node = node_id; + if (blk_init_free_list(q)) + goto out_init; + + /* + * if caller didn't supply a lock, they get per-queue locking with + * our embedded lock + */ + if (!lock) { + spin_lock_init(&q->__queue_lock); + lock = &q->__queue_lock; + } + + q->request_fn = rfn; + q->back_merge_fn = ll_back_merge_fn; + q->front_merge_fn = ll_front_merge_fn; + q->merge_requests_fn = ll_merge_requests_fn; + q->prep_rq_fn = NULL; + q->unplug_fn = generic_unplug_device; + q->queue_flags = (1 << QUEUE_FLAG_CLUSTER); + q->queue_lock = lock; + + blk_queue_segment_boundary(q, 0xffffffff); + + blk_queue_make_request(q, __make_request); + blk_queue_max_segment_size(q, MAX_SEGMENT_SIZE); + + blk_queue_max_hw_segments(q, MAX_HW_SEGMENTS); + blk_queue_max_phys_segments(q, MAX_PHYS_SEGMENTS); + + /* + * all done + */ + if (!elevator_init(q, NULL)) { + blk_queue_congestion_threshold(q); + return q; + } + + blk_cleanup_queue(q); +out_init: + kmem_cache_free(requestq_cachep, q); + return NULL; +} +EXPORT_SYMBOL(blk_init_queue_node); + +int blk_get_queue(request_queue_t *q) +{ + if (likely(!test_bit(QUEUE_FLAG_DEAD, &q->queue_flags))) { + atomic_inc(&q->refcnt); + return 0; + } + + return 1; +} + +EXPORT_SYMBOL(blk_get_queue); + +static inline void blk_free_request(request_queue_t *q, struct request *rq) +{ + if (rq->flags & REQ_ELVPRIV) + elv_put_request(q, rq); + mempool_free(rq, q->rq.rq_pool); +} + +static inline struct request * +blk_alloc_request(request_queue_t *q, int rw, struct bio *bio, + int priv, gfp_t gfp_mask) +{ + struct request *rq = mempool_alloc(q->rq.rq_pool, gfp_mask); + + if (!rq) + return NULL; + + /* + * first three bits are identical in rq->flags and bio->bi_rw, + * see bio.h and blkdev.h + */ + rq->flags = rw; + + if (priv) { + if (unlikely(elv_set_request(q, rq, bio, gfp_mask))) { + mempool_free(rq, q->rq.rq_pool); + return NULL; + } + rq->flags |= REQ_ELVPRIV; + } + + return rq; +} + +/* + * ioc_batching returns true if the ioc is a valid batching request and + * should be given priority access to a request. + */ +static inline int ioc_batching(request_queue_t *q, struct io_context *ioc) +{ + if (!ioc) + return 0; + + /* + * Make sure the process is able to allocate at least 1 request + * even if the batch times out, otherwise we could theoretically + * lose wakeups. + */ + return ioc->nr_batch_requests == q->nr_batching || + (ioc->nr_batch_requests > 0 + && time_before(jiffies, ioc->last_waited + BLK_BATCH_TIME)); +} + +/* + * ioc_set_batching sets ioc to be a new "batcher" if it is not one. This + * will cause the process to be a "batcher" on all queues in the system. This + * is the behaviour we want though - once it gets a wakeup it should be given + * a nice run. + */ +static void ioc_set_batching(request_queue_t *q, struct io_context *ioc) +{ + if (!ioc || ioc_batching(q, ioc)) + return; + + ioc->nr_batch_requests = q->nr_batching; + ioc->last_waited = jiffies; +} + +static void __freed_request(request_queue_t *q, int rw) +{ + struct request_list *rl = &q->rq; + + if (rl->count[rw] < queue_congestion_off_threshold(q)) + clear_queue_congested(q, rw); + + if (rl->count[rw] + 1 <= q->nr_requests) { + if (waitqueue_active(&rl->wait[rw])) + wake_up(&rl->wait[rw]); + + blk_clear_queue_full(q, rw); + } +} + +/* + * A request has just been released. Account for it, update the full and + * congestion status, wake up any waiters. Called under q->queue_lock. + */ +static void freed_request(request_queue_t *q, int rw, int priv) +{ + struct request_list *rl = &q->rq; + + rl->count[rw]--; + if (priv) + rl->elvpriv--; + + __freed_request(q, rw); + + if (unlikely(rl->starved[rw ^ 1])) + __freed_request(q, rw ^ 1); +} + +#define blkdev_free_rq(list) list_entry((list)->next, struct request, queuelist) +/* + * Get a free request, queue_lock must be held. + * Returns NULL on failure, with queue_lock held. + * Returns !NULL on success, with queue_lock *not held*. + */ +static struct request *get_request(request_queue_t *q, int rw, struct bio *bio, + gfp_t gfp_mask) +{ + struct request *rq = NULL; + struct request_list *rl = &q->rq; + struct io_context *ioc = current_io_context(GFP_ATOMIC); + int priv; + + if (rl->count[rw]+1 >= q->nr_requests) { + /* + * The queue will fill after this allocation, so set it as + * full, and mark this process as "batching". This process + * will be allowed to complete a batch of requests, others + * will be blocked. + */ + if (!blk_queue_full(q, rw)) { + ioc_set_batching(q, ioc); + blk_set_queue_full(q, rw); + } + } + + switch (elv_may_queue(q, rw, bio)) { + case ELV_MQUEUE_NO: + goto rq_starved; + case ELV_MQUEUE_MAY: + break; + case ELV_MQUEUE_MUST: + goto get_rq; + } + + if (blk_queue_full(q, rw) && !ioc_batching(q, ioc)) { + /* + * The queue is full and the allocating process is not a + * "batcher", and not exempted by the IO scheduler + */ + goto out; + } + +get_rq: + /* + * Only allow batching queuers to allocate up to 50% over the defined + * limit of requests, otherwise we could have thousands of requests + * allocated with any setting of ->nr_requests + */ + if (rl->count[rw] >= (3 * q->nr_requests / 2)) + goto out; + + rl->count[rw]++; + rl->starved[rw] = 0; + if (rl->count[rw] >= queue_congestion_on_threshold(q)) + set_queue_congested(q, rw); + + priv = !test_bit(QUEUE_FLAG_ELVSWITCH, &q->queue_flags); + if (priv) + rl->elvpriv++; + + spin_unlock_irq(q->queue_lock); + + rq = blk_alloc_request(q, rw, bio, priv, gfp_mask); + if (!rq) { + /* + * Allocation failed presumably due to memory. Undo anything + * we might have messed up. + * + * Allocating task should really be put onto the front of the + * wait queue, but this is pretty rare. + */ + spin_lock_irq(q->queue_lock); + freed_request(q, rw, priv); + + /* + * in the very unlikely event that allocation failed and no + * requests for this direction was pending, mark us starved + * so that freeing of a request in the other direction will + * notice us. another possible fix would be to split the + * rq mempool into READ and WRITE + */ +rq_starved: + if (unlikely(rl->count[rw] == 0)) + rl->starved[rw] = 1; + + goto out; + } + + if (ioc_batching(q, ioc)) + ioc->nr_batch_requests--; + + rq_init(q, rq); + rq->rl = rl; +out: + return rq; +} + +/* + * No available requests for this queue, unplug the device and wait for some + * requests to become available. + * + * Called with q->queue_lock held, and returns with it unlocked. + */ +static struct request *get_request_wait(request_queue_t *q, int rw, + struct bio *bio) +{ + struct request *rq; + + rq = get_request(q, rw, bio, GFP_NOIO); + while (!rq) { + DEFINE_WAIT(wait); + struct request_list *rl = &q->rq; + + prepare_to_wait_exclusive(&rl->wait[rw], &wait, + TASK_UNINTERRUPTIBLE); + + rq = get_request(q, rw, bio, GFP_NOIO); + + if (!rq) { + struct io_context *ioc; + + __generic_unplug_device(q); + spin_unlock_irq(q->queue_lock); + io_schedule(); + + /* + * After sleeping, we become a "batching" process and + * will be able to allocate at least one request, and + * up to a big batch of them for a small period time. + * See ioc_batching, ioc_set_batching + */ + ioc = current_io_context(GFP_NOIO); + ioc_set_batching(q, ioc); + + spin_lock_irq(q->queue_lock); + } + finish_wait(&rl->wait[rw], &wait); + } + + return rq; +} + +struct request *blk_get_request(request_queue_t *q, int rw, gfp_t gfp_mask) +{ + struct request *rq; + + BUG_ON(rw != READ && rw != WRITE); + + spin_lock_irq(q->queue_lock); + if (gfp_mask & __GFP_WAIT) { + rq = get_request_wait(q, rw, NULL); + } else { + rq = get_request(q, rw, NULL, gfp_mask); + if (!rq) + spin_unlock_irq(q->queue_lock); + } + /* q->queue_lock is unlocked at this point */ + + return rq; +} +EXPORT_SYMBOL(blk_get_request); + +/** + * blk_requeue_request - put a request back on queue + * @q: request queue where request should be inserted + * @rq: request to be inserted + * + * Description: + * Drivers often keep queueing requests until the hardware cannot accept + * more, when that condition happens we need to put the request back + * on the queue. Must be called with queue lock held. + */ +void blk_requeue_request(request_queue_t *q, struct request *rq) +{ + if (blk_rq_tagged(rq)) + blk_queue_end_tag(q, rq); + + elv_requeue_request(q, rq); +} + +EXPORT_SYMBOL(blk_requeue_request); + +/** + * blk_insert_request - insert a special request in to a request queue + * @q: request queue where request should be inserted + * @rq: request to be inserted + * @at_head: insert request at head or tail of queue + * @data: private data + * + * Description: + * Many block devices need to execute commands asynchronously, so they don't + * block the whole kernel from preemption during request execution. This is + * accomplished normally by inserting aritficial requests tagged as + * REQ_SPECIAL in to the corresponding request queue, and letting them be + * scheduled for actual execution by the request queue. + * + * We have the option of inserting the head or the tail of the queue. + * Typically we use the tail for new ioctls and so forth. We use the head + * of the queue for things like a QUEUE_FULL message from a device, or a + * host that is unable to accept a particular command. + */ +void blk_insert_request(request_queue_t *q, struct request *rq, + int at_head, void *data) +{ + int where = at_head ? ELEVATOR_INSERT_FRONT : ELEVATOR_INSERT_BACK; + unsigned long flags; + + /* + * tell I/O scheduler that this isn't a regular read/write (ie it + * must not attempt merges on this) and that it acts as a soft + * barrier + */ + rq->flags |= REQ_SPECIAL | REQ_SOFTBARRIER; + + rq->special = data; + + spin_lock_irqsave(q->queue_lock, flags); + + /* + * If command is tagged, release the tag + */ + if (blk_rq_tagged(rq)) + blk_queue_end_tag(q, rq); + + drive_stat_acct(rq, rq->nr_sectors, 1); + __elv_add_request(q, rq, where, 0); + + if (blk_queue_plugged(q)) + __generic_unplug_device(q); + else + q->request_fn(q); + spin_unlock_irqrestore(q->queue_lock, flags); +} + +EXPORT_SYMBOL(blk_insert_request); + +/** + * blk_rq_map_user - map user data to a request, for REQ_BLOCK_PC usage + * @q: request queue where request should be inserted + * @rq: request structure to fill + * @ubuf: the user buffer + * @len: length of user data + * + * Description: + * Data will be mapped directly for zero copy io, if possible. Otherwise + * a kernel bounce buffer is used. + * + * A matching blk_rq_unmap_user() must be issued at the end of io, while + * still in process context. + * + * Note: The mapped bio may need to be bounced through blk_queue_bounce() + * before being submitted to the device, as pages mapped may be out of + * reach. It's the callers responsibility to make sure this happens. The + * original bio must be passed back in to blk_rq_unmap_user() for proper + * unmapping. + */ +int blk_rq_map_user(request_queue_t *q, struct request *rq, void __user *ubuf, + unsigned int len) +{ + unsigned long uaddr; + struct bio *bio; + int reading; + + if (len > (q->max_sectors << 9)) + return -EINVAL; + if (!len || !ubuf) + return -EINVAL; + + reading = rq_data_dir(rq) == READ; + + /* + * if alignment requirement is satisfied, map in user pages for + * direct dma. else, set up kernel bounce buffers + */ + uaddr = (unsigned long) ubuf; + if (!(uaddr & queue_dma_alignment(q)) && !(len & queue_dma_alignment(q))) + bio = bio_map_user(q, NULL, uaddr, len, reading); + else + bio = bio_copy_user(q, uaddr, len, reading); + + if (!IS_ERR(bio)) { + rq->bio = rq->biotail = bio; + blk_rq_bio_prep(q, rq, bio); + + rq->buffer = rq->data = NULL; + rq->data_len = len; + return 0; + } + + /* + * bio is the err-ptr + */ + return PTR_ERR(bio); +} + +EXPORT_SYMBOL(blk_rq_map_user); + +/** + * blk_rq_map_user_iov - map user data to a request, for REQ_BLOCK_PC usage + * @q: request queue where request should be inserted + * @rq: request to map data to + * @iov: pointer to the iovec + * @iov_count: number of elements in the iovec + * + * Description: + * Data will be mapped directly for zero copy io, if possible. Otherwise + * a kernel bounce buffer is used. + * + * A matching blk_rq_unmap_user() must be issued at the end of io, while + * still in process context. + * + * Note: The mapped bio may need to be bounced through blk_queue_bounce() + * before being submitted to the device, as pages mapped may be out of + * reach. It's the callers responsibility to make sure this happens. The + * original bio must be passed back in to blk_rq_unmap_user() for proper + * unmapping. + */ +int blk_rq_map_user_iov(request_queue_t *q, struct request *rq, + struct sg_iovec *iov, int iov_count) +{ + struct bio *bio; + + if (!iov || iov_count <= 0) + return -EINVAL; + + /* we don't allow misaligned data like bio_map_user() does. If the + * user is using sg, they're expected to know the alignment constraints + * and respect them accordingly */ + bio = bio_map_user_iov(q, NULL, iov, iov_count, rq_data_dir(rq)== READ); + if (IS_ERR(bio)) + return PTR_ERR(bio); + + rq->bio = rq->biotail = bio; + blk_rq_bio_prep(q, rq, bio); + rq->buffer = rq->data = NULL; + rq->data_len = bio->bi_size; + return 0; +} + +EXPORT_SYMBOL(blk_rq_map_user_iov); + +/** + * blk_rq_unmap_user - unmap a request with user data + * @bio: bio to be unmapped + * @ulen: length of user buffer + * + * Description: + * Unmap a bio previously mapped by blk_rq_map_user(). + */ +int blk_rq_unmap_user(struct bio *bio, unsigned int ulen) +{ + int ret = 0; + + if (bio) { + if (bio_flagged(bio, BIO_USER_MAPPED)) + bio_unmap_user(bio); + else + ret = bio_uncopy_user(bio); + } + + return 0; +} + +EXPORT_SYMBOL(blk_rq_unmap_user); + +/** + * blk_rq_map_kern - map kernel data to a request, for REQ_BLOCK_PC usage + * @q: request queue where request should be inserted + * @rq: request to fill + * @kbuf: the kernel buffer + * @len: length of user data + * @gfp_mask: memory allocation flags + */ +int blk_rq_map_kern(request_queue_t *q, struct request *rq, void *kbuf, + unsigned int len, gfp_t gfp_mask) +{ + struct bio *bio; + + if (len > (q->max_sectors << 9)) + return -EINVAL; + if (!len || !kbuf) + return -EINVAL; + + bio = bio_map_kern(q, kbuf, len, gfp_mask); + if (IS_ERR(bio)) + return PTR_ERR(bio); + + if (rq_data_dir(rq) == WRITE) + bio->bi_rw |= (1 << BIO_RW); + + rq->bio = rq->biotail = bio; + blk_rq_bio_prep(q, rq, bio); + + rq->buffer = rq->data = NULL; + rq->data_len = len; + return 0; +} + +EXPORT_SYMBOL(blk_rq_map_kern); + +/** + * blk_execute_rq_nowait - insert a request into queue for execution + * @q: queue to insert the request in + * @bd_disk: matching gendisk + * @rq: request to insert + * @at_head: insert request at head or tail of queue + * @done: I/O completion handler + * + * Description: + * Insert a fully prepared request at the back of the io scheduler queue + * for execution. Don't wait for completion. + */ +void blk_execute_rq_nowait(request_queue_t *q, struct gendisk *bd_disk, + struct request *rq, int at_head, + void (*done)(struct request *)) +{ + int where = at_head ? ELEVATOR_INSERT_FRONT : ELEVATOR_INSERT_BACK; + + rq->rq_disk = bd_disk; + rq->flags |= REQ_NOMERGE; + rq->end_io = done; + elv_add_request(q, rq, where, 1); + generic_unplug_device(q); +} + +/** + * blk_execute_rq - insert a request into queue for execution + * @q: queue to insert the request in + * @bd_disk: matching gendisk + * @rq: request to insert + * @at_head: insert request at head or tail of queue + * + * Description: + * Insert a fully prepared request at the back of the io scheduler queue + * for execution and wait for completion. + */ +int blk_execute_rq(request_queue_t *q, struct gendisk *bd_disk, + struct request *rq, int at_head) +{ + DECLARE_COMPLETION(wait); + char sense[SCSI_SENSE_BUFFERSIZE]; + int err = 0; + + /* + * we need an extra reference to the request, so we can look at + * it after io completion + */ + rq->ref_count++; + + if (!rq->sense) { + memset(sense, 0, sizeof(sense)); + rq->sense = sense; + rq->sense_len = 0; + } + + rq->waiting = &wait; + blk_execute_rq_nowait(q, bd_disk, rq, at_head, blk_end_sync_rq); + wait_for_completion(&wait); + rq->waiting = NULL; + + if (rq->errors) + err = -EIO; + + return err; +} + +EXPORT_SYMBOL(blk_execute_rq); + +/** + * blkdev_issue_flush - queue a flush + * @bdev: blockdev to issue flush for + * @error_sector: error sector + * + * Description: + * Issue a flush for the block device in question. Caller can supply + * room for storing the error offset in case of a flush error, if they + * wish to. Caller must run wait_for_completion() on its own. + */ +int blkdev_issue_flush(struct block_device *bdev, sector_t *error_sector) +{ + request_queue_t *q; + + if (bdev->bd_disk == NULL) + return -ENXIO; + + q = bdev_get_queue(bdev); + if (!q) + return -ENXIO; + if (!q->issue_flush_fn) + return -EOPNOTSUPP; + + return q->issue_flush_fn(q, bdev->bd_disk, error_sector); +} + +EXPORT_SYMBOL(blkdev_issue_flush); + +static void drive_stat_acct(struct request *rq, int nr_sectors, int new_io) +{ + int rw = rq_data_dir(rq); + + if (!blk_fs_request(rq) || !rq->rq_disk) + return; + + if (!new_io) { + __disk_stat_inc(rq->rq_disk, merges[rw]); + } else { + disk_round_stats(rq->rq_disk); + rq->rq_disk->in_flight++; + } +} + +/* + * add-request adds a request to the linked list. + * queue lock is held and interrupts disabled, as we muck with the + * request queue list. + */ +static inline void add_request(request_queue_t * q, struct request * req) +{ + drive_stat_acct(req, req->nr_sectors, 1); + + if (q->activity_fn) + q->activity_fn(q->activity_data, rq_data_dir(req)); + + /* + * elevator indicated where it wants this request to be + * inserted at elevator_merge time + */ + __elv_add_request(q, req, ELEVATOR_INSERT_SORT, 0); +} + +/* + * disk_round_stats() - Round off the performance stats on a struct + * disk_stats. + * + * The average IO queue length and utilisation statistics are maintained + * by observing the current state of the queue length and the amount of + * time it has been in this state for. + * + * Normally, that accounting is done on IO completion, but that can result + * in more than a second's worth of IO being accounted for within any one + * second, leading to >100% utilisation. To deal with that, we call this + * function to do a round-off before returning the results when reading + * /proc/diskstats. This accounts immediately for all queue usage up to + * the current jiffies and restarts the counters again. + */ +void disk_round_stats(struct gendisk *disk) +{ + unsigned long now = jiffies; + + if (now == disk->stamp) + return; + + if (disk->in_flight) { + __disk_stat_add(disk, time_in_queue, + disk->in_flight * (now - disk->stamp)); + __disk_stat_add(disk, io_ticks, (now - disk->stamp)); + } + disk->stamp = now; +} + +/* + * queue lock must be held + */ +static void __blk_put_request(request_queue_t *q, struct request *req) +{ + struct request_list *rl = req->rl; + + if (unlikely(!q)) + return; + if (unlikely(--req->ref_count)) + return; + + elv_completed_request(q, req); + + req->rq_status = RQ_INACTIVE; + req->rl = NULL; + + /* + * Request may not have originated from ll_rw_blk. if not, + * it didn't come out of our reserved rq pools + */ + if (rl) { + int rw = rq_data_dir(req); + int priv = req->flags & REQ_ELVPRIV; + + BUG_ON(!list_empty(&req->queuelist)); + + blk_free_request(q, req); + freed_request(q, rw, priv); + } +} + +void blk_put_request(struct request *req) +{ + unsigned long flags; + request_queue_t *q = req->q; + + /* + * Gee, IDE calls in w/ NULL q. Fix IDE and remove the + * following if (q) test. + */ + if (q) { + spin_lock_irqsave(q->queue_lock, flags); + __blk_put_request(q, req); + spin_unlock_irqrestore(q->queue_lock, flags); + } +} + +EXPORT_SYMBOL(blk_put_request); + +/** + * blk_end_sync_rq - executes a completion event on a request + * @rq: request to complete + */ +void blk_end_sync_rq(struct request *rq) +{ + struct completion *waiting = rq->waiting; + + rq->waiting = NULL; + __blk_put_request(rq->q, rq); + + /* + * complete last, if this is a stack request the process (and thus + * the rq pointer) could be invalid right after this complete() + */ + complete(waiting); +} +EXPORT_SYMBOL(blk_end_sync_rq); + +/** + * blk_congestion_wait - wait for a queue to become uncongested + * @rw: READ or WRITE + * @timeout: timeout in jiffies + * + * Waits for up to @timeout jiffies for a queue (any queue) to exit congestion. + * If no queues are congested then just wait for the next request to be + * returned. + */ +long blk_congestion_wait(int rw, long timeout) +{ + long ret; + DEFINE_WAIT(wait); + wait_queue_head_t *wqh = &congestion_wqh[rw]; + + prepare_to_wait(wqh, &wait, TASK_UNINTERRUPTIBLE); + ret = io_schedule_timeout(timeout); + finish_wait(wqh, &wait); + return ret; +} + +EXPORT_SYMBOL(blk_congestion_wait); + +/* + * Has to be called with the request spinlock acquired + */ +static int attempt_merge(request_queue_t *q, struct request *req, + struct request *next) +{ + if (!rq_mergeable(req) || !rq_mergeable(next)) + return 0; + + /* + * not contigious + */ + if (req->sector + req->nr_sectors != next->sector) + return 0; + + if (rq_data_dir(req) != rq_data_dir(next) + || req->rq_disk != next->rq_disk + || next->waiting || next->special) + return 0; + + /* + * If we are allowed to merge, then append bio list + * from next to rq and release next. merge_requests_fn + * will have updated segment counts, update sector + * counts here. + */ + if (!q->merge_requests_fn(q, req, next)) + return 0; + + /* + * At this point we have either done a back merge + * or front merge. We need the smaller start_time of + * the merged requests to be the current request + * for accounting purposes. + */ + if (time_after(req->start_time, next->start_time)) + req->start_time = next->start_time; + + req->biotail->bi_next = next->bio; + req->biotail = next->biotail; + + req->nr_sectors = req->hard_nr_sectors += next->hard_nr_sectors; + + elv_merge_requests(q, req, next); + + if (req->rq_disk) { + disk_round_stats(req->rq_disk); + req->rq_disk->in_flight--; + } + + req->ioprio = ioprio_best(req->ioprio, next->ioprio); + + __blk_put_request(q, next); + return 1; +} + +static inline int attempt_back_merge(request_queue_t *q, struct request *rq) +{ + struct request *next = elv_latter_request(q, rq); + + if (next) + return attempt_merge(q, rq, next); + + return 0; +} + +static inline int attempt_front_merge(request_queue_t *q, struct request *rq) +{ + struct request *prev = elv_former_request(q, rq); + + if (prev) + return attempt_merge(q, prev, rq); + + return 0; +} + +/** + * blk_attempt_remerge - attempt to remerge active head with next request + * @q: The &request_queue_t belonging to the device + * @rq: The head request (usually) + * + * Description: + * For head-active devices, the queue can easily be unplugged so quickly + * that proper merging is not done on the front request. This may hurt + * performance greatly for some devices. The block layer cannot safely + * do merging on that first request for these queues, but the driver can + * call this function and make it happen any way. Only the driver knows + * when it is safe to do so. + **/ +void blk_attempt_remerge(request_queue_t *q, struct request *rq) +{ + unsigned long flags; + + spin_lock_irqsave(q->queue_lock, flags); + attempt_back_merge(q, rq); + spin_unlock_irqrestore(q->queue_lock, flags); +} + +EXPORT_SYMBOL(blk_attempt_remerge); + +static int __make_request(request_queue_t *q, struct bio *bio) +{ + struct request *req; + int el_ret, rw, nr_sectors, cur_nr_sectors, barrier, err, sync; + unsigned short prio; + sector_t sector; + + sector = bio->bi_sector; + nr_sectors = bio_sectors(bio); + cur_nr_sectors = bio_cur_sectors(bio); + prio = bio_prio(bio); + + rw = bio_data_dir(bio); + sync = bio_sync(bio); + + /* + * low level driver can indicate that it wants pages above a + * certain limit bounced to low memory (ie for highmem, or even + * ISA dma in theory) + */ + blk_queue_bounce(q, &bio); + + spin_lock_prefetch(q->queue_lock); + + barrier = bio_barrier(bio); + if (unlikely(barrier) && (q->ordered == QUEUE_ORDERED_NONE)) { + err = -EOPNOTSUPP; + goto end_io; + } + + spin_lock_irq(q->queue_lock); + + if (unlikely(barrier) || elv_queue_empty(q)) + goto get_rq; + + el_ret = elv_merge(q, &req, bio); + switch (el_ret) { + case ELEVATOR_BACK_MERGE: + BUG_ON(!rq_mergeable(req)); + + if (!q->back_merge_fn(q, req, bio)) + break; + + req->biotail->bi_next = bio; + req->biotail = bio; + req->nr_sectors = req->hard_nr_sectors += nr_sectors; + req->ioprio = ioprio_best(req->ioprio, prio); + drive_stat_acct(req, nr_sectors, 0); + if (!attempt_back_merge(q, req)) + elv_merged_request(q, req); + goto out; + + case ELEVATOR_FRONT_MERGE: + BUG_ON(!rq_mergeable(req)); + + if (!q->front_merge_fn(q, req, bio)) + break; + + bio->bi_next = req->bio; + req->bio = bio; + + /* + * may not be valid. if the low level driver said + * it didn't need a bounce buffer then it better + * not touch req->buffer either... + */ + req->buffer = bio_data(bio); + req->current_nr_sectors = cur_nr_sectors; + req->hard_cur_sectors = cur_nr_sectors; + req->sector = req->hard_sector = sector; + req->nr_sectors = req->hard_nr_sectors += nr_sectors; + req->ioprio = ioprio_best(req->ioprio, prio); + drive_stat_acct(req, nr_sectors, 0); + if (!attempt_front_merge(q, req)) + elv_merged_request(q, req); + goto out; + + /* ELV_NO_MERGE: elevator says don't/can't merge. */ + default: + ; + } + +get_rq: + /* + * Grab a free request. This is might sleep but can not fail. + * Returns with the queue unlocked. + */ + req = get_request_wait(q, rw, bio); + + /* + * After dropping the lock and possibly sleeping here, our request + * may now be mergeable after it had proven unmergeable (above). + * We don't worry about that case for efficiency. It won't happen + * often, and the elevators are able to handle it. + */ + + req->flags |= REQ_CMD; + + /* + * inherit FAILFAST from bio (for read-ahead, and explicit FAILFAST) + */ + if (bio_rw_ahead(bio) || bio_failfast(bio)) + req->flags |= REQ_FAILFAST; + + /* + * REQ_BARRIER implies no merging, but lets make it explicit + */ + if (unlikely(barrier)) + req->flags |= (REQ_HARDBARRIER | REQ_NOMERGE); + + req->errors = 0; + req->hard_sector = req->sector = sector; + req->hard_nr_sectors = req->nr_sectors = nr_sectors; + req->current_nr_sectors = req->hard_cur_sectors = cur_nr_sectors; + req->nr_phys_segments = bio_phys_segments(q, bio); + req->nr_hw_segments = bio_hw_segments(q, bio); + req->buffer = bio_data(bio); /* see ->buffer comment above */ + req->waiting = NULL; + req->bio = req->biotail = bio; + req->ioprio = prio; + req->rq_disk = bio->bi_bdev->bd_disk; + req->start_time = jiffies; + + spin_lock_irq(q->queue_lock); + if (elv_queue_empty(q)) + blk_plug_device(q); + add_request(q, req); +out: + if (sync) + __generic_unplug_device(q); + + spin_unlock_irq(q->queue_lock); + return 0; + +end_io: + bio_endio(bio, nr_sectors << 9, err); + return 0; +} + +/* + * If bio->bi_dev is a partition, remap the location + */ +static inline void blk_partition_remap(struct bio *bio) +{ + struct block_device *bdev = bio->bi_bdev; + + if (bdev != bdev->bd_contains) { + struct hd_struct *p = bdev->bd_part; + const int rw = bio_data_dir(bio); + + p->sectors[rw] += bio_sectors(bio); + p->ios[rw]++; + + bio->bi_sector += p->start_sect; + bio->bi_bdev = bdev->bd_contains; + } +} + +static void handle_bad_sector(struct bio *bio) +{ + char b[BDEVNAME_SIZE]; + + printk(KERN_INFO "attempt to access beyond end of device\n"); + printk(KERN_INFO "%s: rw=%ld, want=%Lu, limit=%Lu\n", + bdevname(bio->bi_bdev, b), + bio->bi_rw, + (unsigned long long)bio->bi_sector + bio_sectors(bio), + (long long)(bio->bi_bdev->bd_inode->i_size >> 9)); + + set_bit(BIO_EOF, &bio->bi_flags); +} + +/** + * generic_make_request: hand a buffer to its device driver for I/O + * @bio: The bio describing the location in memory and on the device. + * + * generic_make_request() is used to make I/O requests of block + * devices. It is passed a &struct bio, which describes the I/O that needs + * to be done. + * + * generic_make_request() does not return any status. The + * success/failure status of the request, along with notification of + * completion, is delivered asynchronously through the bio->bi_end_io + * function described (one day) else where. + * + * The caller of generic_make_request must make sure that bi_io_vec + * are set to describe the memory buffer, and that bi_dev and bi_sector are + * set to describe the device address, and the + * bi_end_io and optionally bi_private are set to describe how + * completion notification should be signaled. + * + * generic_make_request and the drivers it calls may use bi_next if this + * bio happens to be merged with someone else, and may change bi_dev and + * bi_sector for remaps as it sees fit. So the values of these fields + * should NOT be depended on after the call to generic_make_request. + */ +void generic_make_request(struct bio *bio) +{ + request_queue_t *q; + sector_t maxsector; + int ret, nr_sectors = bio_sectors(bio); + + might_sleep(); + /* Test device or partition size, when known. */ + maxsector = bio->bi_bdev->bd_inode->i_size >> 9; + if (maxsector) { + sector_t sector = bio->bi_sector; + + if (maxsector < nr_sectors || maxsector - nr_sectors < sector) { + /* + * This may well happen - the kernel calls bread() + * without checking the size of the device, e.g., when + * mounting a device. + */ + handle_bad_sector(bio); + goto end_io; + } + } + + /* + * Resolve the mapping until finished. (drivers are + * still free to implement/resolve their own stacking + * by explicitly returning 0) + * + * NOTE: we don't repeat the blk_size check for each new device. + * Stacking drivers are expected to know what they are doing. + */ + do { + char b[BDEVNAME_SIZE]; + + q = bdev_get_queue(bio->bi_bdev); + if (!q) { + printk(KERN_ERR + "generic_make_request: Trying to access " + "nonexistent block-device %s (%Lu)\n", + bdevname(bio->bi_bdev, b), + (long long) bio->bi_sector); +end_io: + bio_endio(bio, bio->bi_size, -EIO); + break; + } + + if (unlikely(bio_sectors(bio) > q->max_hw_sectors)) { + printk("bio too big device %s (%u > %u)\n", + bdevname(bio->bi_bdev, b), + bio_sectors(bio), + q->max_hw_sectors); + goto end_io; + } + + if (unlikely(test_bit(QUEUE_FLAG_DEAD, &q->queue_flags))) + goto end_io; + + /* + * If this device has partitions, remap block n + * of partition p to block n+start(p) of the disk. + */ + blk_partition_remap(bio); + + ret = q->make_request_fn(q, bio); + } while (ret); +} + +EXPORT_SYMBOL(generic_make_request); + +/** + * submit_bio: submit a bio to the block device layer for I/O + * @rw: whether to %READ or %WRITE, or maybe to %READA (read ahead) + * @bio: The &struct bio which describes the I/O + * + * submit_bio() is very similar in purpose to generic_make_request(), and + * uses that function to do most of the work. Both are fairly rough + * interfaces, @bio must be presetup and ready for I/O. + * + */ +void submit_bio(int rw, struct bio *bio) +{ + int count = bio_sectors(bio); + + BIO_BUG_ON(!bio->bi_size); + BIO_BUG_ON(!bio->bi_io_vec); + bio->bi_rw |= rw; + if (rw & WRITE) + mod_page_state(pgpgout, count); + else + mod_page_state(pgpgin, count); + + if (unlikely(block_dump)) { + char b[BDEVNAME_SIZE]; + printk(KERN_DEBUG "%s(%d): %s block %Lu on %s\n", + current->comm, current->pid, + (rw & WRITE) ? "WRITE" : "READ", + (unsigned long long)bio->bi_sector, + bdevname(bio->bi_bdev,b)); + } + + generic_make_request(bio); +} + +EXPORT_SYMBOL(submit_bio); + +static void blk_recalc_rq_segments(struct request *rq) +{ + struct bio *bio, *prevbio = NULL; + int nr_phys_segs, nr_hw_segs; + unsigned int phys_size, hw_size; + request_queue_t *q = rq->q; + + if (!rq->bio) + return; + + phys_size = hw_size = nr_phys_segs = nr_hw_segs = 0; + rq_for_each_bio(bio, rq) { + /* Force bio hw/phys segs to be recalculated. */ + bio->bi_flags &= ~(1 << BIO_SEG_VALID); + + nr_phys_segs += bio_phys_segments(q, bio); + nr_hw_segs += bio_hw_segments(q, bio); + if (prevbio) { + int pseg = phys_size + prevbio->bi_size + bio->bi_size; + int hseg = hw_size + prevbio->bi_size + bio->bi_size; + + if (blk_phys_contig_segment(q, prevbio, bio) && + pseg <= q->max_segment_size) { + nr_phys_segs--; + phys_size += prevbio->bi_size + bio->bi_size; + } else + phys_size = 0; + + if (blk_hw_contig_segment(q, prevbio, bio) && + hseg <= q->max_segment_size) { + nr_hw_segs--; + hw_size += prevbio->bi_size + bio->bi_size; + } else + hw_size = 0; + } + prevbio = bio; + } + + rq->nr_phys_segments = nr_phys_segs; + rq->nr_hw_segments = nr_hw_segs; +} + +static void blk_recalc_rq_sectors(struct request *rq, int nsect) +{ + if (blk_fs_request(rq)) { + rq->hard_sector += nsect; + rq->hard_nr_sectors -= nsect; + + /* + * Move the I/O submission pointers ahead if required. + */ + if ((rq->nr_sectors >= rq->hard_nr_sectors) && + (rq->sector <= rq->hard_sector)) { + rq->sector = rq->hard_sector; + rq->nr_sectors = rq->hard_nr_sectors; + rq->hard_cur_sectors = bio_cur_sectors(rq->bio); + rq->current_nr_sectors = rq->hard_cur_sectors; + rq->buffer = bio_data(rq->bio); + } + + /* + * if total number of sectors is less than the first segment + * size, something has gone terribly wrong + */ + if (rq->nr_sectors < rq->current_nr_sectors) { + printk("blk: request botched\n"); + rq->nr_sectors = rq->current_nr_sectors; + } + } +} + +static int __end_that_request_first(struct request *req, int uptodate, + int nr_bytes) +{ + int total_bytes, bio_nbytes, error, next_idx = 0; + struct bio *bio; + + /* + * extend uptodate bool to allow < 0 value to be direct io error + */ + error = 0; + if (end_io_error(uptodate)) + error = !uptodate ? -EIO : uptodate; + + /* + * for a REQ_BLOCK_PC request, we want to carry any eventual + * sense key with us all the way through + */ + if (!blk_pc_request(req)) + req->errors = 0; + + if (!uptodate) { + if (blk_fs_request(req) && !(req->flags & REQ_QUIET)) + printk("end_request: I/O error, dev %s, sector %llu\n", + req->rq_disk ? req->rq_disk->disk_name : "?", + (unsigned long long)req->sector); + } + + if (blk_fs_request(req) && req->rq_disk) { + const int rw = rq_data_dir(req); + + __disk_stat_add(req->rq_disk, sectors[rw], nr_bytes >> 9); + } + + total_bytes = bio_nbytes = 0; + while ((bio = req->bio) != NULL) { + int nbytes; + + if (nr_bytes >= bio->bi_size) { + req->bio = bio->bi_next; + nbytes = bio->bi_size; + bio_endio(bio, nbytes, error); + next_idx = 0; + bio_nbytes = 0; + } else { + int idx = bio->bi_idx + next_idx; + + if (unlikely(bio->bi_idx >= bio->bi_vcnt)) { + blk_dump_rq_flags(req, "__end_that"); + printk("%s: bio idx %d >= vcnt %d\n", + __FUNCTION__, + bio->bi_idx, bio->bi_vcnt); + break; + } + + nbytes = bio_iovec_idx(bio, idx)->bv_len; + BIO_BUG_ON(nbytes > bio->bi_size); + + /* + * not a complete bvec done + */ + if (unlikely(nbytes > nr_bytes)) { + bio_nbytes += nr_bytes; + total_bytes += nr_bytes; + break; + } + + /* + * advance to the next vector + */ + next_idx++; + bio_nbytes += nbytes; + } + + total_bytes += nbytes; + nr_bytes -= nbytes; + + if ((bio = req->bio)) { + /* + * end more in this run, or just return 'not-done' + */ + if (unlikely(nr_bytes <= 0)) + break; + } + } + + /* + * completely done + */ + if (!req->bio) + return 0; + + /* + * if the request wasn't completed, update state + */ + if (bio_nbytes) { + bio_endio(bio, bio_nbytes, error); + bio->bi_idx += next_idx; + bio_iovec(bio)->bv_offset += nr_bytes; + bio_iovec(bio)->bv_len -= nr_bytes; + } + + blk_recalc_rq_sectors(req, total_bytes >> 9); + blk_recalc_rq_segments(req); + return 1; +} + +/** + * end_that_request_first - end I/O on a request + * @req: the request being processed + * @uptodate: 1 for success, 0 for I/O error, < 0 for specific error + * @nr_sectors: number of sectors to end I/O on + * + * Description: + * Ends I/O on a number of sectors attached to @req, and sets it up + * for the next range of segments (if any) in the cluster. + * + * Return: + * 0 - we are done with this request, call end_that_request_last() + * 1 - still buffers pending for this request + **/ +int end_that_request_first(struct request *req, int uptodate, int nr_sectors) +{ + return __end_that_request_first(req, uptodate, nr_sectors << 9); +} + +EXPORT_SYMBOL(end_that_request_first); + +/** + * end_that_request_chunk - end I/O on a request + * @req: the request being processed + * @uptodate: 1 for success, 0 for I/O error, < 0 for specific error + * @nr_bytes: number of bytes to complete + * + * Description: + * Ends I/O on a number of bytes attached to @req, and sets it up + * for the next range of segments (if any). Like end_that_request_first(), + * but deals with bytes instead of sectors. + * + * Return: + * 0 - we are done with this request, call end_that_request_last() + * 1 - still buffers pending for this request + **/ +int end_that_request_chunk(struct request *req, int uptodate, int nr_bytes) +{ + return __end_that_request_first(req, uptodate, nr_bytes); +} + +EXPORT_SYMBOL(end_that_request_chunk); + +/* + * queue lock must be held + */ +void end_that_request_last(struct request *req) +{ + struct gendisk *disk = req->rq_disk; + + if (unlikely(laptop_mode) && blk_fs_request(req)) + laptop_io_completion(); + + if (disk && blk_fs_request(req)) { + unsigned long duration = jiffies - req->start_time; + const int rw = rq_data_dir(req); + + __disk_stat_inc(disk, ios[rw]); + __disk_stat_add(disk, ticks[rw], duration); + disk_round_stats(disk); + disk->in_flight--; + } + if (req->end_io) + req->end_io(req); + else + __blk_put_request(req->q, req); +} + +EXPORT_SYMBOL(end_that_request_last); + +void end_request(struct request *req, int uptodate) +{ + if (!end_that_request_first(req, uptodate, req->hard_cur_sectors)) { + add_disk_randomness(req->rq_disk); + blkdev_dequeue_request(req); + end_that_request_last(req); + } +} + +EXPORT_SYMBOL(end_request); + +void blk_rq_bio_prep(request_queue_t *q, struct request *rq, struct bio *bio) +{ + /* first three bits are identical in rq->flags and bio->bi_rw */ + rq->flags |= (bio->bi_rw & 7); + + rq->nr_phys_segments = bio_phys_segments(q, bio); + rq->nr_hw_segments = bio_hw_segments(q, bio); + rq->current_nr_sectors = bio_cur_sectors(bio); + rq->hard_cur_sectors = rq->current_nr_sectors; + rq->hard_nr_sectors = rq->nr_sectors = bio_sectors(bio); + rq->buffer = bio_data(bio); + + rq->bio = rq->biotail = bio; +} + +EXPORT_SYMBOL(blk_rq_bio_prep); + +int kblockd_schedule_work(struct work_struct *work) +{ + return queue_work(kblockd_workqueue, work); +} + +EXPORT_SYMBOL(kblockd_schedule_work); + +void kblockd_flush(void) +{ + flush_workqueue(kblockd_workqueue); +} +EXPORT_SYMBOL(kblockd_flush); + +int __init blk_dev_init(void) +{ + kblockd_workqueue = create_workqueue("kblockd"); + if (!kblockd_workqueue) + panic("Failed to create kblockd\n"); + + request_cachep = kmem_cache_create("blkdev_requests", + sizeof(struct request), 0, SLAB_PANIC, NULL, NULL); + + requestq_cachep = kmem_cache_create("blkdev_queue", + sizeof(request_queue_t), 0, SLAB_PANIC, NULL, NULL); + + iocontext_cachep = kmem_cache_create("blkdev_ioc", + sizeof(struct io_context), 0, SLAB_PANIC, NULL, NULL); + + blk_max_low_pfn = max_low_pfn; + blk_max_pfn = max_pfn; + + return 0; +} + +/* + * IO Context helper functions + */ +void put_io_context(struct io_context *ioc) +{ + if (ioc == NULL) + return; + + BUG_ON(atomic_read(&ioc->refcount) == 0); + + if (atomic_dec_and_test(&ioc->refcount)) { + if (ioc->aic && ioc->aic->dtor) + ioc->aic->dtor(ioc->aic); + if (ioc->cic && ioc->cic->dtor) + ioc->cic->dtor(ioc->cic); + + kmem_cache_free(iocontext_cachep, ioc); + } +} +EXPORT_SYMBOL(put_io_context); + +/* Called by the exitting task */ +void exit_io_context(void) +{ + unsigned long flags; + struct io_context *ioc; + + local_irq_save(flags); + task_lock(current); + ioc = current->io_context; + current->io_context = NULL; + ioc->task = NULL; + task_unlock(current); + local_irq_restore(flags); + + if (ioc->aic && ioc->aic->exit) + ioc->aic->exit(ioc->aic); + if (ioc->cic && ioc->cic->exit) + ioc->cic->exit(ioc->cic); + + put_io_context(ioc); +} + +/* + * If the current task has no IO context then create one and initialise it. + * Otherwise, return its existing IO context. + * + * This returned IO context doesn't have a specifically elevated refcount, + * but since the current task itself holds a reference, the context can be + * used in general code, so long as it stays within `current` context. + */ +struct io_context *current_io_context(gfp_t gfp_flags) +{ + struct task_struct *tsk = current; + struct io_context *ret; + + ret = tsk->io_context; + if (likely(ret)) + return ret; + + ret = kmem_cache_alloc(iocontext_cachep, gfp_flags); + if (ret) { + atomic_set(&ret->refcount, 1); + ret->task = current; + ret->set_ioprio = NULL; + ret->last_waited = jiffies; /* doesn't matter... */ + ret->nr_batch_requests = 0; /* because this is 0 */ + ret->aic = NULL; + ret->cic = NULL; + tsk->io_context = ret; + } + + return ret; +} +EXPORT_SYMBOL(current_io_context); + +/* + * If the current task has no IO context then create one and initialise it. + * If it does have a context, take a ref on it. + * + * This is always called in the context of the task which submitted the I/O. + */ +struct io_context *get_io_context(gfp_t gfp_flags) +{ + struct io_context *ret; + ret = current_io_context(gfp_flags); + if (likely(ret)) + atomic_inc(&ret->refcount); + return ret; +} +EXPORT_SYMBOL(get_io_context); + +void copy_io_context(struct io_context **pdst, struct io_context **psrc) +{ + struct io_context *src = *psrc; + struct io_context *dst = *pdst; + + if (src) { + BUG_ON(atomic_read(&src->refcount) == 0); + atomic_inc(&src->refcount); + put_io_context(dst); + *pdst = src; + } +} +EXPORT_SYMBOL(copy_io_context); + +void swap_io_context(struct io_context **ioc1, struct io_context **ioc2) +{ + struct io_context *temp; + temp = *ioc1; + *ioc1 = *ioc2; + *ioc2 = temp; +} +EXPORT_SYMBOL(swap_io_context); + +/* + * sysfs parts below + */ +struct queue_sysfs_entry { + struct attribute attr; + ssize_t (*show)(struct request_queue *, char *); + ssize_t (*store)(struct request_queue *, const char *, size_t); +}; + +static ssize_t +queue_var_show(unsigned int var, char *page) +{ + return sprintf(page, "%d\n", var); +} + +static ssize_t +queue_var_store(unsigned long *var, const char *page, size_t count) +{ + char *p = (char *) page; + + *var = simple_strtoul(p, &p, 10); + return count; +} + +static ssize_t queue_requests_show(struct request_queue *q, char *page) +{ + return queue_var_show(q->nr_requests, (page)); +} + +static ssize_t +queue_requests_store(struct request_queue *q, const char *page, size_t count) +{ + struct request_list *rl = &q->rq; + + int ret = queue_var_store(&q->nr_requests, page, count); + if (q->nr_requests < BLKDEV_MIN_RQ) + q->nr_requests = BLKDEV_MIN_RQ; + blk_queue_congestion_threshold(q); + + if (rl->count[READ] >= queue_congestion_on_threshold(q)) + set_queue_congested(q, READ); + else if (rl->count[READ] < queue_congestion_off_threshold(q)) + clear_queue_congested(q, READ); + + if (rl->count[WRITE] >= queue_congestion_on_threshold(q)) + set_queue_congested(q, WRITE); + else if (rl->count[WRITE] < queue_congestion_off_threshold(q)) + clear_queue_congested(q, WRITE); + + if (rl->count[READ] >= q->nr_requests) { + blk_set_queue_full(q, READ); + } else if (rl->count[READ]+1 <= q->nr_requests) { + blk_clear_queue_full(q, READ); + wake_up(&rl->wait[READ]); + } + + if (rl->count[WRITE] >= q->nr_requests) { + blk_set_queue_full(q, WRITE); + } else if (rl->count[WRITE]+1 <= q->nr_requests) { + blk_clear_queue_full(q, WRITE); + wake_up(&rl->wait[WRITE]); + } + return ret; +} + +static ssize_t queue_ra_show(struct request_queue *q, char *page) +{ + int ra_kb = q->backing_dev_info.ra_pages << (PAGE_CACHE_SHIFT - 10); + + return queue_var_show(ra_kb, (page)); +} + +static ssize_t +queue_ra_store(struct request_queue *q, const char *page, size_t count) +{ + unsigned long ra_kb; + ssize_t ret = queue_var_store(&ra_kb, page, count); + + spin_lock_irq(q->queue_lock); + if (ra_kb > (q->max_sectors >> 1)) + ra_kb = (q->max_sectors >> 1); + + q->backing_dev_info.ra_pages = ra_kb >> (PAGE_CACHE_SHIFT - 10); + spin_unlock_irq(q->queue_lock); + + return ret; +} + +static ssize_t queue_max_sectors_show(struct request_queue *q, char *page) +{ + int max_sectors_kb = q->max_sectors >> 1; + + return queue_var_show(max_sectors_kb, (page)); +} + +static ssize_t +queue_max_sectors_store(struct request_queue *q, const char *page, size_t count) +{ + unsigned long max_sectors_kb, + max_hw_sectors_kb = q->max_hw_sectors >> 1, + page_kb = 1 << (PAGE_CACHE_SHIFT - 10); + ssize_t ret = queue_var_store(&max_sectors_kb, page, count); + int ra_kb; + + if (max_sectors_kb > max_hw_sectors_kb || max_sectors_kb < page_kb) + return -EINVAL; + /* + * Take the queue lock to update the readahead and max_sectors + * values synchronously: + */ + spin_lock_irq(q->queue_lock); + /* + * Trim readahead window as well, if necessary: + */ + ra_kb = q->backing_dev_info.ra_pages << (PAGE_CACHE_SHIFT - 10); + if (ra_kb > max_sectors_kb) + q->backing_dev_info.ra_pages = + max_sectors_kb >> (PAGE_CACHE_SHIFT - 10); + + q->max_sectors = max_sectors_kb << 1; + spin_unlock_irq(q->queue_lock); + + return ret; +} + +static ssize_t queue_max_hw_sectors_show(struct request_queue *q, char *page) +{ + int max_hw_sectors_kb = q->max_hw_sectors >> 1; + + return queue_var_show(max_hw_sectors_kb, (page)); +} + + +static struct queue_sysfs_entry queue_requests_entry = { + .attr = {.name = "nr_requests", .mode = S_IRUGO | S_IWUSR }, + .show = queue_requests_show, + .store = queue_requests_store, +}; + +static struct queue_sysfs_entry queue_ra_entry = { + .attr = {.name = "read_ahead_kb", .mode = S_IRUGO | S_IWUSR }, + .show = queue_ra_show, + .store = queue_ra_store, +}; + +static struct queue_sysfs_entry queue_max_sectors_entry = { + .attr = {.name = "max_sectors_kb", .mode = S_IRUGO | S_IWUSR }, + .show = queue_max_sectors_show, + .store = queue_max_sectors_store, +}; + +static struct queue_sysfs_entry queue_max_hw_sectors_entry = { + .attr = {.name = "max_hw_sectors_kb", .mode = S_IRUGO }, + .show = queue_max_hw_sectors_show, +}; + +static struct queue_sysfs_entry queue_iosched_entry = { + .attr = {.name = "scheduler", .mode = S_IRUGO | S_IWUSR }, + .show = elv_iosched_show, + .store = elv_iosched_store, +}; + +static struct attribute *default_attrs[] = { + &queue_requests_entry.attr, + &queue_ra_entry.attr, + &queue_max_hw_sectors_entry.attr, + &queue_max_sectors_entry.attr, + &queue_iosched_entry.attr, + NULL, +}; + +#define to_queue(atr) container_of((atr), struct queue_sysfs_entry, attr) + +static ssize_t +queue_attr_show(struct kobject *kobj, struct attribute *attr, char *page) +{ + struct queue_sysfs_entry *entry = to_queue(attr); + struct request_queue *q; + + q = container_of(kobj, struct request_queue, kobj); + if (!entry->show) + return -EIO; + + return entry->show(q, page); +} + +static ssize_t +queue_attr_store(struct kobject *kobj, struct attribute *attr, + const char *page, size_t length) +{ + struct queue_sysfs_entry *entry = to_queue(attr); + struct request_queue *q; + + q = container_of(kobj, struct request_queue, kobj); + if (!entry->store) + return -EIO; + + return entry->store(q, page, length); +} + +static struct sysfs_ops queue_sysfs_ops = { + .show = queue_attr_show, + .store = queue_attr_store, +}; + +static struct kobj_type queue_ktype = { + .sysfs_ops = &queue_sysfs_ops, + .default_attrs = default_attrs, +}; + +int blk_register_queue(struct gendisk *disk) +{ + int ret; + + request_queue_t *q = disk->queue; + + if (!q || !q->request_fn) + return -ENXIO; + + q->kobj.parent = kobject_get(&disk->kobj); + if (!q->kobj.parent) + return -EBUSY; + + snprintf(q->kobj.name, KOBJ_NAME_LEN, "%s", "queue"); + q->kobj.ktype = &queue_ktype; + + ret = kobject_register(&q->kobj); + if (ret < 0) + return ret; + + ret = elv_register_queue(q); + if (ret) { + kobject_unregister(&q->kobj); + return ret; + } + + return 0; +} + +void blk_unregister_queue(struct gendisk *disk) +{ + request_queue_t *q = disk->queue; + + if (q && q->request_fn) { + elv_unregister_queue(q); + + kobject_unregister(&q->kobj); + kobject_put(&disk->kobj); + } +} diff --git a/block/noop-iosched.c b/block/noop-iosched.c new file mode 100644 index 000000000000..e54f006e7e60 --- /dev/null +++ b/block/noop-iosched.c @@ -0,0 +1,46 @@ +/* + * elevator noop + */ +#include +#include +#include +#include +#include + +static void elevator_noop_add_request(request_queue_t *q, struct request *rq) +{ + rq->flags |= REQ_NOMERGE; + elv_dispatch_add_tail(q, rq); +} + +static int elevator_noop_dispatch(request_queue_t *q, int force) +{ + return 0; +} + +static struct elevator_type elevator_noop = { + .ops = { + .elevator_dispatch_fn = elevator_noop_dispatch, + .elevator_add_req_fn = elevator_noop_add_request, + }, + .elevator_name = "noop", + .elevator_owner = THIS_MODULE, +}; + +static int __init noop_init(void) +{ + return elv_register(&elevator_noop); +} + +static void __exit noop_exit(void) +{ + elv_unregister(&elevator_noop); +} + +module_init(noop_init); +module_exit(noop_exit); + + +MODULE_AUTHOR("Jens Axboe"); +MODULE_LICENSE("GPL"); +MODULE_DESCRIPTION("No-op IO scheduler"); diff --git a/block/scsi_ioctl.c b/block/scsi_ioctl.c new file mode 100644 index 000000000000..382dea7b224c --- /dev/null +++ b/block/scsi_ioctl.c @@ -0,0 +1,589 @@ +/* + * Copyright (C) 2001 Jens Axboe + * + * This program is free software; you can redistribute it and/or modify + * it under the terms of the GNU General Public License version 2 as + * published by the Free Software Foundation. + * + * This program is distributed in the hope that it will be useful, + * but WITHOUT ANY WARRANTY; without even the implied warranty of + * + * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the + * GNU General Public License for more details. + * + * You should have received a copy of the GNU General Public Licens + * along with this program; if not, write to the Free Software + * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111- + * + */ +#include +#include +#include +#include +#include +#include +#include +#include +#include +#include + +#include +#include +#include + +/* Command group 3 is reserved and should never be used. */ +const unsigned char scsi_command_size[8] = +{ + 6, 10, 10, 12, + 16, 12, 10, 10 +}; + +EXPORT_SYMBOL(scsi_command_size); + +#define BLK_DEFAULT_TIMEOUT (60 * HZ) + +#include + +static int sg_get_version(int __user *p) +{ + static int sg_version_num = 30527; + return put_user(sg_version_num, p); +} + +static int scsi_get_idlun(request_queue_t *q, int __user *p) +{ + return put_user(0, p); +} + +static int scsi_get_bus(request_queue_t *q, int __user *p) +{ + return put_user(0, p); +} + +static int sg_get_timeout(request_queue_t *q) +{ + return q->sg_timeout / (HZ / USER_HZ); +} + +static int sg_set_timeout(request_queue_t *q, int __user *p) +{ + int timeout, err = get_user(timeout, p); + + if (!err) + q->sg_timeout = timeout * (HZ / USER_HZ); + + return err; +} + +static int sg_get_reserved_size(request_queue_t *q, int __user *p) +{ + return put_user(q->sg_reserved_size, p); +} + +static int sg_set_reserved_size(request_queue_t *q, int __user *p) +{ + int size, err = get_user(size, p); + + if (err) + return err; + + if (size < 0) + return -EINVAL; + if (size > (q->max_sectors << 9)) + size = q->max_sectors << 9; + + q->sg_reserved_size = size; + return 0; +} + +/* + * will always return that we are ATAPI even for a real SCSI drive, I'm not + * so sure this is worth doing anything about (why would you care??) + */ +static int sg_emulated_host(request_queue_t *q, int __user *p) +{ + return put_user(1, p); +} + +#define CMD_READ_SAFE 0x01 +#define CMD_WRITE_SAFE 0x02 +#define CMD_WARNED 0x04 +#define safe_for_read(cmd) [cmd] = CMD_READ_SAFE +#define safe_for_write(cmd) [cmd] = CMD_WRITE_SAFE + +static int verify_command(struct file *file, unsigned char *cmd) +{ + static unsigned char cmd_type[256] = { + + /* Basic read-only commands */ + safe_for_read(TEST_UNIT_READY), + safe_for_read(REQUEST_SENSE), + safe_for_read(READ_6), + safe_for_read(READ_10), + safe_for_read(READ_12), + safe_for_read(READ_16), + safe_for_read(READ_BUFFER), + safe_for_read(READ_DEFECT_DATA), + safe_for_read(READ_LONG), + safe_for_read(INQUIRY), + safe_for_read(MODE_SENSE), + safe_for_read(MODE_SENSE_10), + safe_for_read(LOG_SENSE), + safe_for_read(START_STOP), + safe_for_read(GPCMD_VERIFY_10), + safe_for_read(VERIFY_16), + + /* Audio CD commands */ + safe_for_read(GPCMD_PLAY_CD), + safe_for_read(GPCMD_PLAY_AUDIO_10), + safe_for_read(GPCMD_PLAY_AUDIO_MSF), + safe_for_read(GPCMD_PLAY_AUDIO_TI), + safe_for_read(GPCMD_PAUSE_RESUME), + + /* CD/DVD data reading */ + safe_for_read(GPCMD_READ_BUFFER_CAPACITY), + safe_for_read(GPCMD_READ_CD), + safe_for_read(GPCMD_READ_CD_MSF), + safe_for_read(GPCMD_READ_DISC_INFO), + safe_for_read(GPCMD_READ_CDVD_CAPACITY), + safe_for_read(GPCMD_READ_DVD_STRUCTURE), + safe_for_read(GPCMD_READ_HEADER), + safe_for_read(GPCMD_READ_TRACK_RZONE_INFO), + safe_for_read(GPCMD_READ_SUBCHANNEL), + safe_for_read(GPCMD_READ_TOC_PMA_ATIP), + safe_for_read(GPCMD_REPORT_KEY), + safe_for_read(GPCMD_SCAN), + safe_for_read(GPCMD_GET_CONFIGURATION), + safe_for_read(GPCMD_READ_FORMAT_CAPACITIES), + safe_for_read(GPCMD_GET_EVENT_STATUS_NOTIFICATION), + safe_for_read(GPCMD_GET_PERFORMANCE), + safe_for_read(GPCMD_SEEK), + safe_for_read(GPCMD_STOP_PLAY_SCAN), + + /* Basic writing commands */ + safe_for_write(WRITE_6), + safe_for_write(WRITE_10), + safe_for_write(WRITE_VERIFY), + safe_for_write(WRITE_12), + safe_for_write(WRITE_VERIFY_12), + safe_for_write(WRITE_16), + safe_for_write(WRITE_LONG), + safe_for_write(WRITE_LONG_2), + safe_for_write(ERASE), + safe_for_write(GPCMD_MODE_SELECT_10), + safe_for_write(MODE_SELECT), + safe_for_write(LOG_SELECT), + safe_for_write(GPCMD_BLANK), + safe_for_write(GPCMD_CLOSE_TRACK), + safe_for_write(GPCMD_FLUSH_CACHE), + safe_for_write(GPCMD_FORMAT_UNIT), + safe_for_write(GPCMD_REPAIR_RZONE_TRACK), + safe_for_write(GPCMD_RESERVE_RZONE_TRACK), + safe_for_write(GPCMD_SEND_DVD_STRUCTURE), + safe_for_write(GPCMD_SEND_EVENT), + safe_for_write(GPCMD_SEND_KEY), + safe_for_write(GPCMD_SEND_OPC), + safe_for_write(GPCMD_SEND_CUE_SHEET), + safe_for_write(GPCMD_SET_SPEED), + safe_for_write(GPCMD_PREVENT_ALLOW_MEDIUM_REMOVAL), + safe_for_write(GPCMD_LOAD_UNLOAD), + safe_for_write(GPCMD_SET_STREAMING), + }; + unsigned char type = cmd_type[cmd[0]]; + + /* Anybody who can open the device can do a read-safe command */ + if (type & CMD_READ_SAFE) + return 0; + + /* Write-safe commands just require a writable open.. */ + if (type & CMD_WRITE_SAFE) { + if (file->f_mode & FMODE_WRITE) + return 0; + } + + /* And root can do any command.. */ + if (capable(CAP_SYS_RAWIO)) + return 0; + + if (!type) { + cmd_type[cmd[0]] = CMD_WARNED; + printk(KERN_WARNING "scsi: unknown opcode 0x%02x\n", cmd[0]); + } + + /* Otherwise fail it with an "Operation not permitted" */ + return -EPERM; +} + +static int sg_io(struct file *file, request_queue_t *q, + struct gendisk *bd_disk, struct sg_io_hdr *hdr) +{ + unsigned long start_time; + int writing = 0, ret = 0; + struct request *rq; + struct bio *bio; + char sense[SCSI_SENSE_BUFFERSIZE]; + unsigned char cmd[BLK_MAX_CDB]; + + if (hdr->interface_id != 'S') + return -EINVAL; + if (hdr->cmd_len > BLK_MAX_CDB) + return -EINVAL; + if (copy_from_user(cmd, hdr->cmdp, hdr->cmd_len)) + return -EFAULT; + if (verify_command(file, cmd)) + return -EPERM; + + if (hdr->dxfer_len > (q->max_sectors << 9)) + return -EIO; + + if (hdr->dxfer_len) + switch (hdr->dxfer_direction) { + default: + return -EINVAL; + case SG_DXFER_TO_FROM_DEV: + case SG_DXFER_TO_DEV: + writing = 1; + break; + case SG_DXFER_FROM_DEV: + break; + } + + rq = blk_get_request(q, writing ? WRITE : READ, GFP_KERNEL); + if (!rq) + return -ENOMEM; + + if (hdr->iovec_count) { + const int size = sizeof(struct sg_iovec) * hdr->iovec_count; + struct sg_iovec *iov; + + iov = kmalloc(size, GFP_KERNEL); + if (!iov) { + ret = -ENOMEM; + goto out; + } + + if (copy_from_user(iov, hdr->dxferp, size)) { + kfree(iov); + ret = -EFAULT; + goto out; + } + + ret = blk_rq_map_user_iov(q, rq, iov, hdr->iovec_count); + kfree(iov); + } else if (hdr->dxfer_len) + ret = blk_rq_map_user(q, rq, hdr->dxferp, hdr->dxfer_len); + + if (ret) + goto out; + + /* + * fill in request structure + */ + rq->cmd_len = hdr->cmd_len; + memcpy(rq->cmd, cmd, hdr->cmd_len); + if (sizeof(rq->cmd) != hdr->cmd_len) + memset(rq->cmd + hdr->cmd_len, 0, sizeof(rq->cmd) - hdr->cmd_len); + + memset(sense, 0, sizeof(sense)); + rq->sense = sense; + rq->sense_len = 0; + + rq->flags |= REQ_BLOCK_PC; + bio = rq->bio; + + /* + * bounce this after holding a reference to the original bio, it's + * needed for proper unmapping + */ + if (rq->bio) + blk_queue_bounce(q, &rq->bio); + + rq->timeout = (hdr->timeout * HZ) / 1000; + if (!rq->timeout) + rq->timeout = q->sg_timeout; + if (!rq->timeout) + rq->timeout = BLK_DEFAULT_TIMEOUT; + + start_time = jiffies; + + /* ignore return value. All information is passed back to caller + * (if he doesn't check that is his problem). + * N.B. a non-zero SCSI status is _not_ necessarily an error. + */ + blk_execute_rq(q, bd_disk, rq, 0); + + /* write to all output members */ + hdr->status = 0xff & rq->errors; + hdr->masked_status = status_byte(rq->errors); + hdr->msg_status = msg_byte(rq->errors); + hdr->host_status = host_byte(rq->errors); + hdr->driver_status = driver_byte(rq->errors); + hdr->info = 0; + if (hdr->masked_status || hdr->host_status || hdr->driver_status) + hdr->info |= SG_INFO_CHECK; + hdr->resid = rq->data_len; + hdr->duration = ((jiffies - start_time) * 1000) / HZ; + hdr->sb_len_wr = 0; + + if (rq->sense_len && hdr->sbp) { + int len = min((unsigned int) hdr->mx_sb_len, rq->sense_len); + + if (!copy_to_user(hdr->sbp, rq->sense, len)) + hdr->sb_len_wr = len; + } + + if (blk_rq_unmap_user(bio, hdr->dxfer_len)) + ret = -EFAULT; + + /* may not have succeeded, but output values written to control + * structure (struct sg_io_hdr). */ +out: + blk_put_request(rq); + return ret; +} + +#define OMAX_SB_LEN 16 /* For backward compatibility */ + +static int sg_scsi_ioctl(struct file *file, request_queue_t *q, + struct gendisk *bd_disk, Scsi_Ioctl_Command __user *sic) +{ + struct request *rq; + int err; + unsigned int in_len, out_len, bytes, opcode, cmdlen; + char *buffer = NULL, sense[SCSI_SENSE_BUFFERSIZE]; + + /* + * get in an out lengths, verify they don't exceed a page worth of data + */ + if (get_user(in_len, &sic->inlen)) + return -EFAULT; + if (get_user(out_len, &sic->outlen)) + return -EFAULT; + if (in_len > PAGE_SIZE || out_len > PAGE_SIZE) + return -EINVAL; + if (get_user(opcode, sic->data)) + return -EFAULT; + + bytes = max(in_len, out_len); + if (bytes) { + buffer = kmalloc(bytes, q->bounce_gfp | GFP_USER| __GFP_NOWARN); + if (!buffer) + return -ENOMEM; + + memset(buffer, 0, bytes); + } + + rq = blk_get_request(q, in_len ? WRITE : READ, __GFP_WAIT); + + cmdlen = COMMAND_SIZE(opcode); + + /* + * get command and data to send to device, if any + */ + err = -EFAULT; + rq->cmd_len = cmdlen; + if (copy_from_user(rq->cmd, sic->data, cmdlen)) + goto error; + + if (copy_from_user(buffer, sic->data + cmdlen, in_len)) + goto error; + + err = verify_command(file, rq->cmd); + if (err) + goto error; + + switch (opcode) { + case SEND_DIAGNOSTIC: + case FORMAT_UNIT: + rq->timeout = FORMAT_UNIT_TIMEOUT; + break; + case START_STOP: + rq->timeout = START_STOP_TIMEOUT; + break; + case MOVE_MEDIUM: + rq->timeout = MOVE_MEDIUM_TIMEOUT; + break; + case READ_ELEMENT_STATUS: + rq->timeout = READ_ELEMENT_STATUS_TIMEOUT; + break; + case READ_DEFECT_DATA: + rq->timeout = READ_DEFECT_DATA_TIMEOUT; + break; + default: + rq->timeout = BLK_DEFAULT_TIMEOUT; + break; + } + + memset(sense, 0, sizeof(sense)); + rq->sense = sense; + rq->sense_len = 0; + + rq->data = buffer; + rq->data_len = bytes; + rq->flags |= REQ_BLOCK_PC; + + blk_execute_rq(q, bd_disk, rq, 0); + err = rq->errors & 0xff; /* only 8 bit SCSI status */ + if (err) { + if (rq->sense_len && rq->sense) { + bytes = (OMAX_SB_LEN > rq->sense_len) ? + rq->sense_len : OMAX_SB_LEN; + if (copy_to_user(sic->data, rq->sense, bytes)) + err = -EFAULT; + } + } else { + if (copy_to_user(sic->data, buffer, out_len)) + err = -EFAULT; + } + +error: + kfree(buffer); + blk_put_request(rq); + return err; +} + +int scsi_cmd_ioctl(struct file *file, struct gendisk *bd_disk, unsigned int cmd, void __user *arg) +{ + request_queue_t *q; + struct request *rq; + int close = 0, err; + + q = bd_disk->queue; + if (!q) + return -ENXIO; + + if (blk_get_queue(q)) + return -ENXIO; + + switch (cmd) { + /* + * new sgv3 interface + */ + case SG_GET_VERSION_NUM: + err = sg_get_version(arg); + break; + case SCSI_IOCTL_GET_IDLUN: + err = scsi_get_idlun(q, arg); + break; + case SCSI_IOCTL_GET_BUS_NUMBER: + err = scsi_get_bus(q, arg); + break; + case SG_SET_TIMEOUT: + err = sg_set_timeout(q, arg); + break; + case SG_GET_TIMEOUT: + err = sg_get_timeout(q); + break; + case SG_GET_RESERVED_SIZE: + err = sg_get_reserved_size(q, arg); + break; + case SG_SET_RESERVED_SIZE: + err = sg_set_reserved_size(q, arg); + break; + case SG_EMULATED_HOST: + err = sg_emulated_host(q, arg); + break; + case SG_IO: { + struct sg_io_hdr hdr; + + err = -EFAULT; + if (copy_from_user(&hdr, arg, sizeof(hdr))) + break; + err = sg_io(file, q, bd_disk, &hdr); + if (err == -EFAULT) + break; + + if (copy_to_user(arg, &hdr, sizeof(hdr))) + err = -EFAULT; + break; + } + case CDROM_SEND_PACKET: { + struct cdrom_generic_command cgc; + struct sg_io_hdr hdr; + + err = -EFAULT; + if (copy_from_user(&cgc, arg, sizeof(cgc))) + break; + cgc.timeout = clock_t_to_jiffies(cgc.timeout); + memset(&hdr, 0, sizeof(hdr)); + hdr.interface_id = 'S'; + hdr.cmd_len = sizeof(cgc.cmd); + hdr.dxfer_len = cgc.buflen; + err = 0; + switch (cgc.data_direction) { + case CGC_DATA_UNKNOWN: + hdr.dxfer_direction = SG_DXFER_UNKNOWN; + break; + case CGC_DATA_WRITE: + hdr.dxfer_direction = SG_DXFER_TO_DEV; + break; + case CGC_DATA_READ: + hdr.dxfer_direction = SG_DXFER_FROM_DEV; + break; + case CGC_DATA_NONE: + hdr.dxfer_direction = SG_DXFER_NONE; + break; + default: + err = -EINVAL; + } + if (err) + break; + + hdr.dxferp = cgc.buffer; + hdr.sbp = cgc.sense; + if (hdr.sbp) + hdr.mx_sb_len = sizeof(struct request_sense); + hdr.timeout = cgc.timeout; + hdr.cmdp = ((struct cdrom_generic_command __user*) arg)->cmd; + hdr.cmd_len = sizeof(cgc.cmd); + + err = sg_io(file, q, bd_disk, &hdr); + if (err == -EFAULT) + break; + + if (hdr.status) + err = -EIO; + + cgc.stat = err; + cgc.buflen = hdr.resid; + if (copy_to_user(arg, &cgc, sizeof(cgc))) + err = -EFAULT; + + break; + } + + /* + * old junk scsi send command ioctl + */ + case SCSI_IOCTL_SEND_COMMAND: + printk(KERN_WARNING "program %s is using a deprecated SCSI ioctl, please convert it to SG_IO\n", current->comm); + err = -EINVAL; + if (!arg) + break; + + err = sg_scsi_ioctl(file, q, bd_disk, arg); + break; + case CDROMCLOSETRAY: + close = 1; + case CDROMEJECT: + rq = blk_get_request(q, WRITE, __GFP_WAIT); + rq->flags |= REQ_BLOCK_PC; + rq->data = NULL; + rq->data_len = 0; + rq->timeout = BLK_DEFAULT_TIMEOUT; + memset(rq->cmd, 0, sizeof(rq->cmd)); + rq->cmd[0] = GPCMD_START_STOP_UNIT; + rq->cmd[4] = 0x02 + (close != 0); + rq->cmd_len = 6; + err = blk_execute_rq(q, bd_disk, rq, 0); + blk_put_request(rq); + break; + default: + err = -ENOTTY; + } + + blk_put_queue(q); + return err; +} + +EXPORT_SYMBOL(scsi_cmd_ioctl); -- cgit v1.2.3 From c6ea2ba7b8acdb6c4a883b2d38607c8078dff4ee Mon Sep 17 00:00:00 2001 From: Jens Axboe Date: Fri, 4 Nov 2005 08:44:58 +0100 Subject: [BLOCK] iosched: fix setting of default io scheduler With the recent reorg of the io scheduler selection, it unfortunately became possible to select an io scheduler to be the default even if it wasn't builtin. Fix this by requiring the default scheduler to be builtin. Signed-off-by: Jens Axboe --- block/Kconfig.iosched | 6 +++--- 1 file changed, 3 insertions(+), 3 deletions(-) (limited to 'block') diff --git a/block/Kconfig.iosched b/block/Kconfig.iosched index 5b90d2fa63b8..f3b7753aac99 100644 --- a/block/Kconfig.iosched +++ b/block/Kconfig.iosched @@ -46,13 +46,13 @@ choice block devices. config DEFAULT_AS - bool "Anticipatory" if IOSCHED_AS + bool "Anticipatory" if IOSCHED_AS=y config DEFAULT_DEADLINE - bool "Deadline" if IOSCHED_DEADLINE + bool "Deadline" if IOSCHED_DEADLINE=y config DEFAULT_CFQ - bool "CFQ" if IOSCHED_CFQ + bool "CFQ" if IOSCHED_CFQ=y config DEFAULT_NOOP bool "No-op" -- cgit v1.2.3