From 1142d810298e694754498dbb4983fcb6cb7fd884 Mon Sep 17 00:00:00 2001 From: Tejun Heo Date: Thu, 6 May 2010 18:49:20 +0200 Subject: cpu_stop: implement stop_cpu[s]() Implement a simplistic per-cpu maximum priority cpu monopolization mechanism. A non-sleeping callback can be scheduled to run on one or multiple cpus with maximum priority monopolozing those cpus. This is primarily to replace and unify RT workqueue usage in stop_machine and scheduler migration_thread which currently is serving multiple purposes. Four functions are provided - stop_one_cpu(), stop_one_cpu_nowait(), stop_cpus() and try_stop_cpus(). This is to allow clean sharing of resources among stop_cpu and all the migration thread users. One stopper thread per cpu is created which is currently named "stopper/CPU". This will eventually replace the migration thread and take on its name. * This facility was originally named cpuhog and lived in separate files but Peter Zijlstra nacked the name and thus got renamed to cpu_stop and moved into stop_machine.c. * Better reporting of preemption leak as per Peter's suggestion. Signed-off-by: Tejun Heo Acked-by: Peter Zijlstra Cc: Oleg Nesterov Cc: Dimitri Sivanich --- include/linux/stop_machine.h | 39 +++++++++++++++++++++++++++++++++++---- 1 file changed, 35 insertions(+), 4 deletions(-) (limited to 'include/linux/stop_machine.h') diff --git a/include/linux/stop_machine.h b/include/linux/stop_machine.h index baba3a23a814..efcbd6c37947 100644 --- a/include/linux/stop_machine.h +++ b/include/linux/stop_machine.h @@ -1,15 +1,46 @@ #ifndef _LINUX_STOP_MACHINE #define _LINUX_STOP_MACHINE -/* "Bogolock": stop the entire machine, disable interrupts. This is a - very heavy lock, which is equivalent to grabbing every spinlock - (and more). So the "read" side to such a lock is anything which - disables preeempt. */ + #include #include +#include #include #if defined(CONFIG_STOP_MACHINE) && defined(CONFIG_SMP) +/* + * stop_cpu[s]() is simplistic per-cpu maximum priority cpu + * monopolization mechanism. The caller can specify a non-sleeping + * function to be executed on a single or multiple cpus preempting all + * other processes and monopolizing those cpus until it finishes. + * + * Resources for this mechanism are preallocated when a cpu is brought + * up and requests are guaranteed to be served as long as the target + * cpus are online. + */ + +typedef int (*cpu_stop_fn_t)(void *arg); + +struct cpu_stop_work { + struct list_head list; /* cpu_stopper->works */ + cpu_stop_fn_t fn; + void *arg; + struct cpu_stop_done *done; +}; + +int stop_one_cpu(unsigned int cpu, cpu_stop_fn_t fn, void *arg); +void stop_one_cpu_nowait(unsigned int cpu, cpu_stop_fn_t fn, void *arg, + struct cpu_stop_work *work_buf); +int stop_cpus(const struct cpumask *cpumask, cpu_stop_fn_t fn, void *arg); +int try_stop_cpus(const struct cpumask *cpumask, cpu_stop_fn_t fn, void *arg); + +/* + * stop_machine "Bogolock": stop the entire machine, disable + * interrupts. This is a very heavy lock, which is equivalent to + * grabbing every spinlock (and more). So the "read" side to such a + * lock is anything which disables preeempt. + */ + /** * stop_machine: freeze the machine on all CPUs and run this function * @fn: the function to run -- cgit v1.2.3 From 3fc1f1e27a5b807791d72e5d992aa33b668a6626 Mon Sep 17 00:00:00 2001 From: Tejun Heo Date: Thu, 6 May 2010 18:49:20 +0200 Subject: stop_machine: reimplement using cpu_stop Reimplement stop_machine using cpu_stop. As cpu stoppers are guaranteed to be available for all online cpus, stop_machine_create/destroy() are no longer necessary and removed. With resource management and synchronization handled by cpu_stop, the new implementation is much simpler. Asking the cpu_stop to execute the stop_cpu() state machine on all online cpus with cpu hotplug disabled is enough. stop_machine itself doesn't need to manage any global resources anymore, so all per-instance information is rolled into struct stop_machine_data and the mutex and all static data variables are removed. The previous implementation created and destroyed RT workqueues as necessary which made stop_machine() calls highly expensive on very large machines. According to Dimitri Sivanich, preventing the dynamic creation/destruction makes booting faster more than twice on very large machines. cpu_stop resources are preallocated for all online cpus and should have the same effect. Signed-off-by: Tejun Heo Acked-by: Rusty Russell Acked-by: Peter Zijlstra Cc: Oleg Nesterov Cc: Dimitri Sivanich --- include/linux/stop_machine.h | 20 -------------------- 1 file changed, 20 deletions(-) (limited to 'include/linux/stop_machine.h') diff --git a/include/linux/stop_machine.h b/include/linux/stop_machine.h index efcbd6c37947..0e552e72a4c4 100644 --- a/include/linux/stop_machine.h +++ b/include/linux/stop_machine.h @@ -67,23 +67,6 @@ int stop_machine(int (*fn)(void *), void *data, const struct cpumask *cpus); */ int __stop_machine(int (*fn)(void *), void *data, const struct cpumask *cpus); -/** - * stop_machine_create: create all stop_machine threads - * - * Description: This causes all stop_machine threads to be created before - * stop_machine actually gets called. This can be used by subsystems that - * need a non failing stop_machine infrastructure. - */ -int stop_machine_create(void); - -/** - * stop_machine_destroy: destroy all stop_machine threads - * - * Description: This causes all stop_machine threads which were created with - * stop_machine_create to be destroyed again. - */ -void stop_machine_destroy(void); - #else static inline int stop_machine(int (*fn)(void *), void *data, @@ -96,8 +79,5 @@ static inline int stop_machine(int (*fn)(void *), void *data, return ret; } -static inline int stop_machine_create(void) { return 0; } -static inline void stop_machine_destroy(void) { } - #endif /* CONFIG_SMP */ #endif /* _LINUX_STOP_MACHINE */ -- cgit v1.2.3 From bbf1bb3eee86f2eef2baa14e600be454d09109ee Mon Sep 17 00:00:00 2001 From: Tejun Heo Date: Sat, 8 May 2010 16:20:53 +0200 Subject: cpu_stop: add dummy implementation for UP When !CONFIG_SMP, cpu_stop functions weren't defined at all which could lead to build failures if UP code uses cpu_stop facility. Add dummy cpu_stop implementation for UP. The waiting variants execute the work function directly with preempt disabled and stop_one_cpu_nowait() schedules a workqueue work. Makefile and ifdefs around stop_machine implementation are updated to accomodate CONFIG_SMP && !CONFIG_STOP_MACHINE case. Signed-off-by: Tejun Heo Reported-by: Ingo Molnar --- include/linux/stop_machine.h | 69 ++++++++++++++++++++++++++++++++++++++++---- 1 file changed, 63 insertions(+), 6 deletions(-) (limited to 'include/linux/stop_machine.h') diff --git a/include/linux/stop_machine.h b/include/linux/stop_machine.h index 0e552e72a4c4..6b524a0d02e4 100644 --- a/include/linux/stop_machine.h +++ b/include/linux/stop_machine.h @@ -6,8 +6,6 @@ #include #include -#if defined(CONFIG_STOP_MACHINE) && defined(CONFIG_SMP) - /* * stop_cpu[s]() is simplistic per-cpu maximum priority cpu * monopolization mechanism. The caller can specify a non-sleeping @@ -18,9 +16,10 @@ * up and requests are guaranteed to be served as long as the target * cpus are online. */ - typedef int (*cpu_stop_fn_t)(void *arg); +#ifdef CONFIG_SMP + struct cpu_stop_work { struct list_head list; /* cpu_stopper->works */ cpu_stop_fn_t fn; @@ -34,12 +33,70 @@ void stop_one_cpu_nowait(unsigned int cpu, cpu_stop_fn_t fn, void *arg, int stop_cpus(const struct cpumask *cpumask, cpu_stop_fn_t fn, void *arg); int try_stop_cpus(const struct cpumask *cpumask, cpu_stop_fn_t fn, void *arg); +#else /* CONFIG_SMP */ + +#include + +struct cpu_stop_work { + struct work_struct work; + cpu_stop_fn_t fn; + void *arg; +}; + +static inline int stop_one_cpu(unsigned int cpu, cpu_stop_fn_t fn, void *arg) +{ + int ret = -ENOENT; + preempt_disable(); + if (cpu == smp_processor_id()) + ret = fn(arg); + preempt_enable(); + return ret; +} + +static void stop_one_cpu_nowait_workfn(struct work_struct *work) +{ + struct cpu_stop_work *stwork = + container_of(work, struct cpu_stop_work, work); + preempt_disable(); + stwork->fn(stwork->arg); + preempt_enable(); +} + +static inline void stop_one_cpu_nowait(unsigned int cpu, + cpu_stop_fn_t fn, void *arg, + struct cpu_stop_work *work_buf) +{ + if (cpu == smp_processor_id()) { + INIT_WORK(&work_buf->work, stop_one_cpu_nowait_workfn); + work_buf->fn = fn; + work_buf->arg = arg; + schedule_work(&work_buf->work); + } +} + +static inline int stop_cpus(const struct cpumask *cpumask, + cpu_stop_fn_t fn, void *arg) +{ + if (cpumask_test_cpu(raw_smp_processor_id(), cpumask)) + return stop_one_cpu(raw_smp_processor_id(), fn, arg); + return -ENOENT; +} + +static inline int try_stop_cpus(const struct cpumask *cpumask, + cpu_stop_fn_t fn, void *arg) +{ + return stop_cpus(cpumask, fn, arg); +} + +#endif /* CONFIG_SMP */ + /* * stop_machine "Bogolock": stop the entire machine, disable * interrupts. This is a very heavy lock, which is equivalent to * grabbing every spinlock (and more). So the "read" side to such a * lock is anything which disables preeempt. */ +#if defined(CONFIG_STOP_MACHINE) && defined(CONFIG_SMP) /** * stop_machine: freeze the machine on all CPUs and run this function @@ -67,7 +124,7 @@ int stop_machine(int (*fn)(void *), void *data, const struct cpumask *cpus); */ int __stop_machine(int (*fn)(void *), void *data, const struct cpumask *cpus); -#else +#else /* CONFIG_STOP_MACHINE && CONFIG_SMP */ static inline int stop_machine(int (*fn)(void *), void *data, const struct cpumask *cpus) @@ -79,5 +136,5 @@ static inline int stop_machine(int (*fn)(void *), void *data, return ret; } -#endif /* CONFIG_SMP */ -#endif /* _LINUX_STOP_MACHINE */ +#endif /* CONFIG_STOP_MACHINE && CONFIG_SMP */ +#endif /* _LINUX_STOP_MACHINE */ -- cgit v1.2.3