From 13d70f5a5ecff367db2fb18ed4ebe433eab8a74c Mon Sep 17 00:00:00 2001 From: John Fastabend Date: Sun, 24 May 2020 09:51:15 -0700 Subject: bpf, sk_msg: Add get socket storage helpers Add helpers to use local socket storage. Signed-off-by: John Fastabend Signed-off-by: Daniel Borkmann Acked-by: Yonghong Song Link: https://lore.kernel.org/bpf/159033907577.12355.14740125020572756560.stgit@john-Precision-5820-Tower Signed-off-by: Alexei Starovoitov --- include/uapi/linux/bpf.h | 2 ++ 1 file changed, 2 insertions(+) (limited to 'include') diff --git a/include/uapi/linux/bpf.h b/include/uapi/linux/bpf.h index 97e1fd19ff58..54b93f8b49b8 100644 --- a/include/uapi/linux/bpf.h +++ b/include/uapi/linux/bpf.h @@ -3645,6 +3645,8 @@ struct sk_msg_md { __u32 remote_port; /* Stored in network byte order */ __u32 local_port; /* stored in host byte order */ __u32 size; /* Total size of sk_msg */ + + __bpf_md_ptr(struct bpf_sock *, sk); /* current socket */ }; struct sk_reuseport_md { -- cgit v1.2.3 From 457f44363a8894135c85b7a9afd2bd8196db24ab Mon Sep 17 00:00:00 2001 From: Andrii Nakryiko Date: Fri, 29 May 2020 00:54:20 -0700 Subject: bpf: Implement BPF ring buffer and verifier support for it This commit adds a new MPSC ring buffer implementation into BPF ecosystem, which allows multiple CPUs to submit data to a single shared ring buffer. On the consumption side, only single consumer is assumed. Motivation ---------- There are two distinctive motivators for this work, which are not satisfied by existing perf buffer, which prompted creation of a new ring buffer implementation. - more efficient memory utilization by sharing ring buffer across CPUs; - preserving ordering of events that happen sequentially in time, even across multiple CPUs (e.g., fork/exec/exit events for a task). These two problems are independent, but perf buffer fails to satisfy both. Both are a result of a choice to have per-CPU perf ring buffer. Both can be also solved by having an MPSC implementation of ring buffer. The ordering problem could technically be solved for perf buffer with some in-kernel counting, but given the first one requires an MPSC buffer, the same solution would solve the second problem automatically. Semantics and APIs ------------------ Single ring buffer is presented to BPF programs as an instance of BPF map of type BPF_MAP_TYPE_RINGBUF. Two other alternatives considered, but ultimately rejected. One way would be to, similar to BPF_MAP_TYPE_PERF_EVENT_ARRAY, make BPF_MAP_TYPE_RINGBUF could represent an array of ring buffers, but not enforce "same CPU only" rule. This would be more familiar interface compatible with existing perf buffer use in BPF, but would fail if application needed more advanced logic to lookup ring buffer by arbitrary key. HASH_OF_MAPS addresses this with current approach. Additionally, given the performance of BPF ringbuf, many use cases would just opt into a simple single ring buffer shared among all CPUs, for which current approach would be an overkill. Another approach could introduce a new concept, alongside BPF map, to represent generic "container" object, which doesn't necessarily have key/value interface with lookup/update/delete operations. This approach would add a lot of extra infrastructure that has to be built for observability and verifier support. It would also add another concept that BPF developers would have to familiarize themselves with, new syntax in libbpf, etc. But then would really provide no additional benefits over the approach of using a map. BPF_MAP_TYPE_RINGBUF doesn't support lookup/update/delete operations, but so doesn't few other map types (e.g., queue and stack; array doesn't support delete, etc). The approach chosen has an advantage of re-using existing BPF map infrastructure (introspection APIs in kernel, libbpf support, etc), being familiar concept (no need to teach users a new type of object in BPF program), and utilizing existing tooling (bpftool). For common scenario of using a single ring buffer for all CPUs, it's as simple and straightforward, as would be with a dedicated "container" object. On the other hand, by being a map, it can be combined with ARRAY_OF_MAPS and HASH_OF_MAPS map-in-maps to implement a wide variety of topologies, from one ring buffer for each CPU (e.g., as a replacement for perf buffer use cases), to a complicated application hashing/sharding of ring buffers (e.g., having a small pool of ring buffers with hashed task's tgid being a look up key to preserve order, but reduce contention). Key and value sizes are enforced to be zero. max_entries is used to specify the size of ring buffer and has to be a power of 2 value. There are a bunch of similarities between perf buffer (BPF_MAP_TYPE_PERF_EVENT_ARRAY) and new BPF ring buffer semantics: - variable-length records; - if there is no more space left in ring buffer, reservation fails, no blocking; - memory-mappable data area for user-space applications for ease of consumption and high performance; - epoll notifications for new incoming data; - but still the ability to do busy polling for new data to achieve the lowest latency, if necessary. BPF ringbuf provides two sets of APIs to BPF programs: - bpf_ringbuf_output() allows to *copy* data from one place to a ring buffer, similarly to bpf_perf_event_output(); - bpf_ringbuf_reserve()/bpf_ringbuf_commit()/bpf_ringbuf_discard() APIs split the whole process into two steps. First, a fixed amount of space is reserved. If successful, a pointer to a data inside ring buffer data area is returned, which BPF programs can use similarly to a data inside array/hash maps. Once ready, this piece of memory is either committed or discarded. Discard is similar to commit, but makes consumer ignore the record. bpf_ringbuf_output() has disadvantage of incurring extra memory copy, because record has to be prepared in some other place first. But it allows to submit records of the length that's not known to verifier beforehand. It also closely matches bpf_perf_event_output(), so will simplify migration significantly. bpf_ringbuf_reserve() avoids the extra copy of memory by providing a memory pointer directly to ring buffer memory. In a lot of cases records are larger than BPF stack space allows, so many programs have use extra per-CPU array as a temporary heap for preparing sample. bpf_ringbuf_reserve() avoid this needs completely. But in exchange, it only allows a known constant size of memory to be reserved, such that verifier can verify that BPF program can't access memory outside its reserved record space. bpf_ringbuf_output(), while slightly slower due to extra memory copy, covers some use cases that are not suitable for bpf_ringbuf_reserve(). The difference between commit and discard is very small. Discard just marks a record as discarded, and such records are supposed to be ignored by consumer code. Discard is useful for some advanced use-cases, such as ensuring all-or-nothing multi-record submission, or emulating temporary malloc()/free() within single BPF program invocation. Each reserved record is tracked by verifier through existing reference-tracking logic, similar to socket ref-tracking. It is thus impossible to reserve a record, but forget to submit (or discard) it. bpf_ringbuf_query() helper allows to query various properties of ring buffer. Currently 4 are supported: - BPF_RB_AVAIL_DATA returns amount of unconsumed data in ring buffer; - BPF_RB_RING_SIZE returns the size of ring buffer; - BPF_RB_CONS_POS/BPF_RB_PROD_POS returns current logical possition of consumer/producer, respectively. Returned values are momentarily snapshots of ring buffer state and could be off by the time helper returns, so this should be used only for debugging/reporting reasons or for implementing various heuristics, that take into account highly-changeable nature of some of those characteristics. One such heuristic might involve more fine-grained control over poll/epoll notifications about new data availability in ring buffer. Together with BPF_RB_NO_WAKEUP/BPF_RB_FORCE_WAKEUP flags for output/commit/discard helpers, it allows BPF program a high degree of control and, e.g., more efficient batched notifications. Default self-balancing strategy, though, should be adequate for most applications and will work reliable and efficiently already. Design and implementation ------------------------- This reserve/commit schema allows a natural way for multiple producers, either on different CPUs or even on the same CPU/in the same BPF program, to reserve independent records and work with them without blocking other producers. This means that if BPF program was interruped by another BPF program sharing the same ring buffer, they will both get a record reserved (provided there is enough space left) and can work with it and submit it independently. This applies to NMI context as well, except that due to using a spinlock during reservation, in NMI context, bpf_ringbuf_reserve() might fail to get a lock, in which case reservation will fail even if ring buffer is not full. The ring buffer itself internally is implemented as a power-of-2 sized circular buffer, with two logical and ever-increasing counters (which might wrap around on 32-bit architectures, that's not a problem): - consumer counter shows up to which logical position consumer consumed the data; - producer counter denotes amount of data reserved by all producers. Each time a record is reserved, producer that "owns" the record will successfully advance producer counter. At that point, data is still not yet ready to be consumed, though. Each record has 8 byte header, which contains the length of reserved record, as well as two extra bits: busy bit to denote that record is still being worked on, and discard bit, which might be set at commit time if record is discarded. In the latter case, consumer is supposed to skip the record and move on to the next one. Record header also encodes record's relative offset from the beginning of ring buffer data area (in pages). This allows bpf_ringbuf_commit()/bpf_ringbuf_discard() to accept only the pointer to the record itself, without requiring also the pointer to ring buffer itself. Ring buffer memory location will be restored from record metadata header. This significantly simplifies verifier, as well as improving API usability. Producer counter increments are serialized under spinlock, so there is a strict ordering between reservations. Commits, on the other hand, are completely lockless and independent. All records become available to consumer in the order of reservations, but only after all previous records where already committed. It is thus possible for slow producers to temporarily hold off submitted records, that were reserved later. Reservation/commit/consumer protocol is verified by litmus tests in Documentation/litmus-test/bpf-rb. One interesting implementation bit, that significantly simplifies (and thus speeds up as well) implementation of both producers and consumers is how data area is mapped twice contiguously back-to-back in the virtual memory. This allows to not take any special measures for samples that have to wrap around at the end of the circular buffer data area, because the next page after the last data page would be first data page again, and thus the sample will still appear completely contiguous in virtual memory. See comment and a simple ASCII diagram showing this visually in bpf_ringbuf_area_alloc(). Another feature that distinguishes BPF ringbuf from perf ring buffer is a self-pacing notifications of new data being availability. bpf_ringbuf_commit() implementation will send a notification of new record being available after commit only if consumer has already caught up right up to the record being committed. If not, consumer still has to catch up and thus will see new data anyways without needing an extra poll notification. Benchmarks (see tools/testing/selftests/bpf/benchs/bench_ringbuf.c) show that this allows to achieve a very high throughput without having to resort to tricks like "notify only every Nth sample", which are necessary with perf buffer. For extreme cases, when BPF program wants more manual control of notifications, commit/discard/output helpers accept BPF_RB_NO_WAKEUP and BPF_RB_FORCE_WAKEUP flags, which give full control over notifications of data availability, but require extra caution and diligence in using this API. Comparison to alternatives -------------------------- Before considering implementing BPF ring buffer from scratch existing alternatives in kernel were evaluated, but didn't seem to meet the needs. They largely fell into few categores: - per-CPU buffers (perf, ftrace, etc), which don't satisfy two motivations outlined above (ordering and memory consumption); - linked list-based implementations; while some were multi-producer designs, consuming these from user-space would be very complicated and most probably not performant; memory-mapping contiguous piece of memory is simpler and more performant for user-space consumers; - io_uring is SPSC, but also requires fixed-sized elements. Naively turning SPSC queue into MPSC w/ lock would have subpar performance compared to locked reserve + lockless commit, as with BPF ring buffer. Fixed sized elements would be too limiting for BPF programs, given existing BPF programs heavily rely on variable-sized perf buffer already; - specialized implementations (like a new printk ring buffer, [0]) with lots of printk-specific limitations and implications, that didn't seem to fit well for intended use with BPF programs. [0] https://lwn.net/Articles/779550/ Signed-off-by: Andrii Nakryiko Signed-off-by: Daniel Borkmann Link: https://lore.kernel.org/bpf/20200529075424.3139988-2-andriin@fb.com Signed-off-by: Alexei Starovoitov --- include/linux/bpf.h | 13 +++++++ include/linux/bpf_types.h | 1 + include/linux/bpf_verifier.h | 4 +++ include/uapi/linux/bpf.h | 84 +++++++++++++++++++++++++++++++++++++++++++- 4 files changed, 101 insertions(+), 1 deletion(-) (limited to 'include') diff --git a/include/linux/bpf.h b/include/linux/bpf.h index efe8836b5c48..e5884f7f801c 100644 --- a/include/linux/bpf.h +++ b/include/linux/bpf.h @@ -90,6 +90,8 @@ struct bpf_map_ops { int (*map_direct_value_meta)(const struct bpf_map *map, u64 imm, u32 *off); int (*map_mmap)(struct bpf_map *map, struct vm_area_struct *vma); + __poll_t (*map_poll)(struct bpf_map *map, struct file *filp, + struct poll_table_struct *pts); }; struct bpf_map_memory { @@ -244,6 +246,9 @@ enum bpf_arg_type { ARG_PTR_TO_LONG, /* pointer to long */ ARG_PTR_TO_SOCKET, /* pointer to bpf_sock (fullsock) */ ARG_PTR_TO_BTF_ID, /* pointer to in-kernel struct */ + ARG_PTR_TO_ALLOC_MEM, /* pointer to dynamically allocated memory */ + ARG_PTR_TO_ALLOC_MEM_OR_NULL, /* pointer to dynamically allocated memory or NULL */ + ARG_CONST_ALLOC_SIZE_OR_ZERO, /* number of allocated bytes requested */ }; /* type of values returned from helper functions */ @@ -255,6 +260,7 @@ enum bpf_return_type { RET_PTR_TO_SOCKET_OR_NULL, /* returns a pointer to a socket or NULL */ RET_PTR_TO_TCP_SOCK_OR_NULL, /* returns a pointer to a tcp_sock or NULL */ RET_PTR_TO_SOCK_COMMON_OR_NULL, /* returns a pointer to a sock_common or NULL */ + RET_PTR_TO_ALLOC_MEM_OR_NULL, /* returns a pointer to dynamically allocated memory or NULL */ }; /* eBPF function prototype used by verifier to allow BPF_CALLs from eBPF programs @@ -322,6 +328,8 @@ enum bpf_reg_type { PTR_TO_XDP_SOCK, /* reg points to struct xdp_sock */ PTR_TO_BTF_ID, /* reg points to kernel struct */ PTR_TO_BTF_ID_OR_NULL, /* reg points to kernel struct or NULL */ + PTR_TO_MEM, /* reg points to valid memory region */ + PTR_TO_MEM_OR_NULL, /* reg points to valid memory region or NULL */ }; /* The information passed from prog-specific *_is_valid_access @@ -1611,6 +1619,11 @@ extern const struct bpf_func_proto bpf_tcp_sock_proto; extern const struct bpf_func_proto bpf_jiffies64_proto; extern const struct bpf_func_proto bpf_get_ns_current_pid_tgid_proto; extern const struct bpf_func_proto bpf_event_output_data_proto; +extern const struct bpf_func_proto bpf_ringbuf_output_proto; +extern const struct bpf_func_proto bpf_ringbuf_reserve_proto; +extern const struct bpf_func_proto bpf_ringbuf_submit_proto; +extern const struct bpf_func_proto bpf_ringbuf_discard_proto; +extern const struct bpf_func_proto bpf_ringbuf_query_proto; const struct bpf_func_proto *bpf_tracing_func_proto( enum bpf_func_id func_id, const struct bpf_prog *prog); diff --git a/include/linux/bpf_types.h b/include/linux/bpf_types.h index 29d22752fc87..fa8e1b552acd 100644 --- a/include/linux/bpf_types.h +++ b/include/linux/bpf_types.h @@ -118,6 +118,7 @@ BPF_MAP_TYPE(BPF_MAP_TYPE_STACK, stack_map_ops) #if defined(CONFIG_BPF_JIT) BPF_MAP_TYPE(BPF_MAP_TYPE_STRUCT_OPS, bpf_struct_ops_map_ops) #endif +BPF_MAP_TYPE(BPF_MAP_TYPE_RINGBUF, ringbuf_map_ops) BPF_LINK_TYPE(BPF_LINK_TYPE_RAW_TRACEPOINT, raw_tracepoint) BPF_LINK_TYPE(BPF_LINK_TYPE_TRACING, tracing) diff --git a/include/linux/bpf_verifier.h b/include/linux/bpf_verifier.h index ea833087e853..ca08db4ffb5f 100644 --- a/include/linux/bpf_verifier.h +++ b/include/linux/bpf_verifier.h @@ -54,6 +54,8 @@ struct bpf_reg_state { u32 btf_id; /* for PTR_TO_BTF_ID */ + u32 mem_size; /* for PTR_TO_MEM | PTR_TO_MEM_OR_NULL */ + /* Max size from any of the above. */ unsigned long raw; }; @@ -63,6 +65,8 @@ struct bpf_reg_state { * offset, so they can share range knowledge. * For PTR_TO_MAP_VALUE_OR_NULL this is used to share which map value we * came from, when one is tested for != NULL. + * For PTR_TO_MEM_OR_NULL this is used to identify memory allocation + * for the purpose of tracking that it's freed. * For PTR_TO_SOCKET this is used to share which pointers retain the * same reference to the socket, to determine proper reference freeing. */ diff --git a/include/uapi/linux/bpf.h b/include/uapi/linux/bpf.h index 54b93f8b49b8..974ca6e948e3 100644 --- a/include/uapi/linux/bpf.h +++ b/include/uapi/linux/bpf.h @@ -147,6 +147,7 @@ enum bpf_map_type { BPF_MAP_TYPE_SK_STORAGE, BPF_MAP_TYPE_DEVMAP_HASH, BPF_MAP_TYPE_STRUCT_OPS, + BPF_MAP_TYPE_RINGBUF, }; /* Note that tracing related programs such as @@ -3157,6 +3158,59 @@ union bpf_attr { * **bpf_sk_cgroup_id**\ (). * Return * The id is returned or 0 in case the id could not be retrieved. + * + * void *bpf_ringbuf_output(void *ringbuf, void *data, u64 size, u64 flags) + * Description + * Copy *size* bytes from *data* into a ring buffer *ringbuf*. + * If BPF_RB_NO_WAKEUP is specified in *flags*, no notification of + * new data availability is sent. + * IF BPF_RB_FORCE_WAKEUP is specified in *flags*, notification of + * new data availability is sent unconditionally. + * Return + * 0, on success; + * < 0, on error. + * + * void *bpf_ringbuf_reserve(void *ringbuf, u64 size, u64 flags) + * Description + * Reserve *size* bytes of payload in a ring buffer *ringbuf*. + * Return + * Valid pointer with *size* bytes of memory available; NULL, + * otherwise. + * + * void bpf_ringbuf_submit(void *data, u64 flags) + * Description + * Submit reserved ring buffer sample, pointed to by *data*. + * If BPF_RB_NO_WAKEUP is specified in *flags*, no notification of + * new data availability is sent. + * IF BPF_RB_FORCE_WAKEUP is specified in *flags*, notification of + * new data availability is sent unconditionally. + * Return + * Nothing. Always succeeds. + * + * void bpf_ringbuf_discard(void *data, u64 flags) + * Description + * Discard reserved ring buffer sample, pointed to by *data*. + * If BPF_RB_NO_WAKEUP is specified in *flags*, no notification of + * new data availability is sent. + * IF BPF_RB_FORCE_WAKEUP is specified in *flags*, notification of + * new data availability is sent unconditionally. + * Return + * Nothing. Always succeeds. + * + * u64 bpf_ringbuf_query(void *ringbuf, u64 flags) + * Description + * Query various characteristics of provided ring buffer. What + * exactly is queries is determined by *flags*: + * - BPF_RB_AVAIL_DATA - amount of data not yet consumed; + * - BPF_RB_RING_SIZE - the size of ring buffer; + * - BPF_RB_CONS_POS - consumer position (can wrap around); + * - BPF_RB_PROD_POS - producer(s) position (can wrap around); + * Data returned is just a momentary snapshots of actual values + * and could be inaccurate, so this facility should be used to + * power heuristics and for reporting, not to make 100% correct + * calculation. + * Return + * Requested value, or 0, if flags are not recognized. */ #define __BPF_FUNC_MAPPER(FN) \ FN(unspec), \ @@ -3288,7 +3342,12 @@ union bpf_attr { FN(seq_printf), \ FN(seq_write), \ FN(sk_cgroup_id), \ - FN(sk_ancestor_cgroup_id), + FN(sk_ancestor_cgroup_id), \ + FN(ringbuf_output), \ + FN(ringbuf_reserve), \ + FN(ringbuf_submit), \ + FN(ringbuf_discard), \ + FN(ringbuf_query), /* integer value in 'imm' field of BPF_CALL instruction selects which helper * function eBPF program intends to call @@ -3398,6 +3457,29 @@ enum { BPF_F_GET_BRANCH_RECORDS_SIZE = (1ULL << 0), }; +/* BPF_FUNC_bpf_ringbuf_commit, BPF_FUNC_bpf_ringbuf_discard, and + * BPF_FUNC_bpf_ringbuf_output flags. + */ +enum { + BPF_RB_NO_WAKEUP = (1ULL << 0), + BPF_RB_FORCE_WAKEUP = (1ULL << 1), +}; + +/* BPF_FUNC_bpf_ringbuf_query flags */ +enum { + BPF_RB_AVAIL_DATA = 0, + BPF_RB_RING_SIZE = 1, + BPF_RB_CONS_POS = 2, + BPF_RB_PROD_POS = 3, +}; + +/* BPF ring buffer constants */ +enum { + BPF_RINGBUF_BUSY_BIT = (1U << 31), + BPF_RINGBUF_DISCARD_BIT = (1U << 30), + BPF_RINGBUF_HDR_SZ = 8, +}; + /* Mode for BPF_FUNC_skb_adjust_room helper. */ enum bpf_adj_room_mode { BPF_ADJ_ROOM_NET, -- cgit v1.2.3 From c3c16f2ea6d20159903cf93afbb1155f3d8348d5 Mon Sep 17 00:00:00 2001 From: Amritha Nambiar Date: Tue, 26 May 2020 17:34:36 -0700 Subject: bpf: Add rx_queue_mapping to bpf_sock Add "rx_queue_mapping" to bpf_sock. This gives read access for the existing field (sk_rx_queue_mapping) of struct sock from bpf_sock. Semantics for the bpf_sock rx_queue_mapping access are similar to sk_rx_queue_get(), i.e the value NO_QUEUE_MAPPING is not allowed and -1 is returned in that case. This is useful for transmit queue selection based on the received queue index which is cached in the socket in the receive path. v3: Addressed review comments to add usecase in patch description, and fixed default value for rx_queue_mapping. v2: fixed build error for CONFIG_XPS wrapping, reported by kbuild test robot Signed-off-by: Amritha Nambiar Signed-off-by: Alexei Starovoitov --- include/uapi/linux/bpf.h | 1 + 1 file changed, 1 insertion(+) (limited to 'include') diff --git a/include/uapi/linux/bpf.h b/include/uapi/linux/bpf.h index 974ca6e948e3..630432c5c292 100644 --- a/include/uapi/linux/bpf.h +++ b/include/uapi/linux/bpf.h @@ -3612,6 +3612,7 @@ struct bpf_sock { __u32 dst_ip4; __u32 dst_ip6[4]; __u32 state; + __s32 rx_queue_mapping; }; struct bpf_tcp_sock { -- cgit v1.2.3 From fbee97feed9b3e4acdf9590e1f6b4a2eefecfffe Mon Sep 17 00:00:00 2001 From: David Ahern Date: Fri, 29 May 2020 16:07:13 -0600 Subject: bpf: Add support to attach bpf program to a devmap entry MIME-Version: 1.0 Content-Type: text/plain; charset=UTF-8 Content-Transfer-Encoding: 8bit Add BPF_XDP_DEVMAP attach type for use with programs associated with a DEVMAP entry. Allow DEVMAPs to associate a program with a device entry by adding a bpf_prog.fd to 'struct bpf_devmap_val'. Values read show the program id, so the fd and id are a union. bpf programs can get access to the struct via vmlinux.h. The program associated with the fd must have type XDP with expected attach type BPF_XDP_DEVMAP. When a program is associated with a device index, the program is run on an XDP_REDIRECT and before the buffer is added to the per-cpu queue. At this point rxq data is still valid; the next patch adds tx device information allowing the prorgam to see both ingress and egress device indices. XDP generic is skb based and XDP programs do not work with skb's. Block the use case by walking maps used by a program that is to be attached via xdpgeneric and fail if any of them are DEVMAP / DEVMAP_HASH with Block attach of BPF_XDP_DEVMAP programs to devices. Signed-off-by: David Ahern Signed-off-by: Alexei Starovoitov Acked-by: Toke Høiland-Jørgensen Link: https://lore.kernel.org/bpf/20200529220716.75383-3-dsahern@kernel.org Signed-off-by: Alexei Starovoitov --- include/linux/bpf.h | 5 +++++ include/uapi/linux/bpf.h | 1 + 2 files changed, 6 insertions(+) (limited to 'include') diff --git a/include/linux/bpf.h b/include/linux/bpf.h index e5884f7f801c..e042311f991f 100644 --- a/include/linux/bpf.h +++ b/include/linux/bpf.h @@ -1250,6 +1250,7 @@ int dev_map_enqueue(struct bpf_dtab_netdev *dst, struct xdp_buff *xdp, struct net_device *dev_rx); int dev_map_generic_redirect(struct bpf_dtab_netdev *dst, struct sk_buff *skb, struct bpf_prog *xdp_prog); +bool dev_map_can_have_prog(struct bpf_map *map); struct bpf_cpu_map_entry *__cpu_map_lookup_elem(struct bpf_map *map, u32 key); void __cpu_map_flush(void); @@ -1363,6 +1364,10 @@ static inline struct net_device *__dev_map_hash_lookup_elem(struct bpf_map *map { return NULL; } +static inline bool dev_map_can_have_prog(struct bpf_map *map) +{ + return false; +} static inline void __dev_flush(void) { diff --git a/include/uapi/linux/bpf.h b/include/uapi/linux/bpf.h index 630432c5c292..f1e364d69007 100644 --- a/include/uapi/linux/bpf.h +++ b/include/uapi/linux/bpf.h @@ -225,6 +225,7 @@ enum bpf_attach_type { BPF_CGROUP_INET6_GETPEERNAME, BPF_CGROUP_INET4_GETSOCKNAME, BPF_CGROUP_INET6_GETSOCKNAME, + BPF_XDP_DEVMAP, __MAX_BPF_ATTACH_TYPE }; -- cgit v1.2.3 From 64b59025c15b244c0954cf52b24fbabfcf5ed8f6 Mon Sep 17 00:00:00 2001 From: David Ahern Date: Fri, 29 May 2020 16:07:14 -0600 Subject: xdp: Add xdp_txq_info to xdp_buff MIME-Version: 1.0 Content-Type: text/plain; charset=UTF-8 Content-Transfer-Encoding: 8bit Add xdp_txq_info as the Tx counterpart to xdp_rxq_info. At the moment only the device is added. Other fields (queue_index) can be added as use cases arise. >From a UAPI perspective, add egress_ifindex to xdp context for bpf programs to see the Tx device. Update the verifier to only allow accesses to egress_ifindex by XDP programs with BPF_XDP_DEVMAP expected attach type. Signed-off-by: David Ahern Signed-off-by: Alexei Starovoitov Acked-by: Toke Høiland-Jørgensen Link: https://lore.kernel.org/bpf/20200529220716.75383-4-dsahern@kernel.org Signed-off-by: Alexei Starovoitov --- include/net/xdp.h | 5 +++++ include/uapi/linux/bpf.h | 2 ++ 2 files changed, 7 insertions(+) (limited to 'include') diff --git a/include/net/xdp.h b/include/net/xdp.h index 90f11760bd12..d54022959491 100644 --- a/include/net/xdp.h +++ b/include/net/xdp.h @@ -61,12 +61,17 @@ struct xdp_rxq_info { struct xdp_mem_info mem; } ____cacheline_aligned; /* perf critical, avoid false-sharing */ +struct xdp_txq_info { + struct net_device *dev; +}; + struct xdp_buff { void *data; void *data_end; void *data_meta; void *data_hard_start; struct xdp_rxq_info *rxq; + struct xdp_txq_info *txq; u32 frame_sz; /* frame size to deduce data_hard_end/reserved tailroom*/ }; diff --git a/include/uapi/linux/bpf.h b/include/uapi/linux/bpf.h index f1e364d69007..f862a58fb567 100644 --- a/include/uapi/linux/bpf.h +++ b/include/uapi/linux/bpf.h @@ -3707,6 +3707,8 @@ struct xdp_md { /* Below access go through struct xdp_rxq_info */ __u32 ingress_ifindex; /* rxq->dev->ifindex */ __u32 rx_queue_index; /* rxq->queue_index */ + + __u32 egress_ifindex; /* txq->dev->ifindex */ }; enum sk_action { -- cgit v1.2.3 From e91de6afa81c10e9f855c5695eb9a53168d96b73 Mon Sep 17 00:00:00 2001 From: John Fastabend Date: Fri, 29 May 2020 16:06:59 -0700 Subject: bpf: Fix running sk_skb program types with ktls KTLS uses a stream parser to collect TLS messages and send them to the upper layer tls receive handler. This ensures the tls receiver has a full TLS header to parse when it is run. However, when a socket has BPF_SK_SKB_STREAM_VERDICT program attached before KTLS is enabled we end up with two stream parsers running on the same socket. The result is both try to run on the same socket. First the KTLS stream parser runs and calls read_sock() which will tcp_read_sock which in turn calls tcp_rcv_skb(). This dequeues the skb from the sk_receive_queue. When this is done KTLS code then data_ready() callback which because we stacked KTLS on top of the bpf stream verdict program has been replaced with sk_psock_start_strp(). This will in turn kick the stream parser again and eventually do the same thing KTLS did above calling into tcp_rcv_skb() and dequeuing a skb from the sk_receive_queue. At this point the data stream is broke. Part of the stream was handled by the KTLS side some other bytes may have been handled by the BPF side. Generally this results in either missing data or more likely a "Bad Message" complaint from the kTLS receive handler as the BPF program steals some bytes meant to be in a TLS header and/or the TLS header length is no longer correct. We've already broke the idealized model where we can stack ULPs in any order with generic callbacks on the TX side to handle this. So in this patch we do the same thing but for RX side. We add a sk_psock_strp_enabled() helper so TLS can learn a BPF verdict program is running and add a tls_sw_has_ctx_rx() helper so BPF side can learn there is a TLS ULP on the socket. Then on BPF side we omit calling our stream parser to avoid breaking the data stream for the KTLS receiver. Then on the KTLS side we call BPF_SK_SKB_STREAM_VERDICT once the KTLS receiver is done with the packet but before it posts the msg to userspace. This gives us symmetry between the TX and RX halfs and IMO makes it usable again. On the TX side we process packets in this order BPF -> TLS -> TCP and on the receive side in the reverse order TCP -> TLS -> BPF. Discovered while testing OpenSSL 3.0 Alpha2.0 release. Fixes: d829e9c4112b5 ("tls: convert to generic sk_msg interface") Signed-off-by: John Fastabend Signed-off-by: Alexei Starovoitov Link: https://lore.kernel.org/bpf/159079361946.5745.605854335665044485.stgit@john-Precision-5820-Tower Signed-off-by: Alexei Starovoitov --- include/linux/skmsg.h | 8 ++++++++ include/net/tls.h | 9 +++++++++ 2 files changed, 17 insertions(+) (limited to 'include') diff --git a/include/linux/skmsg.h b/include/linux/skmsg.h index ad31c9fb7158..08674cd14d5a 100644 --- a/include/linux/skmsg.h +++ b/include/linux/skmsg.h @@ -437,4 +437,12 @@ static inline void psock_progs_drop(struct sk_psock_progs *progs) psock_set_prog(&progs->skb_verdict, NULL); } +int sk_psock_tls_strp_read(struct sk_psock *psock, struct sk_buff *skb); + +static inline bool sk_psock_strp_enabled(struct sk_psock *psock) +{ + if (!psock) + return false; + return psock->parser.enabled; +} #endif /* _LINUX_SKMSG_H */ diff --git a/include/net/tls.h b/include/net/tls.h index 3e7b44cae0d9..3212d3c214a9 100644 --- a/include/net/tls.h +++ b/include/net/tls.h @@ -571,6 +571,15 @@ static inline bool tls_sw_has_ctx_tx(const struct sock *sk) return !!tls_sw_ctx_tx(ctx); } +static inline bool tls_sw_has_ctx_rx(const struct sock *sk) +{ + struct tls_context *ctx = tls_get_ctx(sk); + + if (!ctx) + return false; + return !!tls_sw_ctx_rx(ctx); +} + void tls_sw_write_space(struct sock *sk, struct tls_context *ctx); void tls_device_write_space(struct sock *sk, struct tls_context *ctx); -- cgit v1.2.3 From 8ea204c2b658eaef55b4716fde469fb66c589a3d Mon Sep 17 00:00:00 2001 From: Ferenc Fejes Date: Sat, 30 May 2020 23:09:00 +0200 Subject: net: Make locking in sock_bindtoindex optional The sock_bindtoindex intended for kernel wide usage however it will lock the socket regardless of the context. This modification relax this behavior optionally: locking the socket will be optional by calling the sock_bindtoindex with lock_sk = true. The modification applied to all users of the sock_bindtoindex. Signed-off-by: Ferenc Fejes Signed-off-by: Alexei Starovoitov Link: https://lore.kernel.org/bpf/bee6355da40d9e991b2f2d12b67d55ebb5f5b207.1590871065.git.fejes@inf.elte.hu --- include/net/sock.h | 2 +- 1 file changed, 1 insertion(+), 1 deletion(-) (limited to 'include') diff --git a/include/net/sock.h b/include/net/sock.h index 6e9f713a7860..c53cc42b5ab9 100644 --- a/include/net/sock.h +++ b/include/net/sock.h @@ -2690,7 +2690,7 @@ static inline bool sk_dev_equal_l3scope(struct sock *sk, int dif) void sock_def_readable(struct sock *sk); -int sock_bindtoindex(struct sock *sk, int ifindex); +int sock_bindtoindex(struct sock *sk, int ifindex, bool lock_sk); void sock_enable_timestamps(struct sock *sk); void sock_no_linger(struct sock *sk); void sock_set_keepalive(struct sock *sk); -- cgit v1.2.3 From fc37987265b5979129a72c672b20245119768fb8 Mon Sep 17 00:00:00 2001 From: Lorenzo Bianconi Date: Thu, 28 May 2020 22:47:28 +0200 Subject: xdp: Introduce xdp_convert_frame_to_buff utility routine Introduce xdp_convert_frame_to_buff utility routine to initialize xdp_buff fields from xdp_frames ones. Rely on xdp_convert_frame_to_buff in veth xdp code. Suggested-by: Jesper Dangaard Brouer Signed-off-by: Lorenzo Bianconi Signed-off-by: Alexei Starovoitov Acked-by: Jesper Dangaard Brouer Link: https://lore.kernel.org/bpf/87acf133073c4b2d4cbb8097e8c2480c0a0fac32.1590698295.git.lorenzo@kernel.org --- include/net/xdp.h | 10 ++++++++++ 1 file changed, 10 insertions(+) (limited to 'include') diff --git a/include/net/xdp.h b/include/net/xdp.h index d54022959491..db5c2c687f48 100644 --- a/include/net/xdp.h +++ b/include/net/xdp.h @@ -111,6 +111,16 @@ void xdp_warn(const char *msg, const char *func, const int line); struct xdp_frame *xdp_convert_zc_to_xdp_frame(struct xdp_buff *xdp); +static inline +void xdp_convert_frame_to_buff(struct xdp_frame *frame, struct xdp_buff *xdp) +{ + xdp->data_hard_start = frame->data - frame->headroom - sizeof(*frame); + xdp->data = frame->data; + xdp->data_end = frame->data + frame->len; + xdp->data_meta = frame->data - frame->metasize; + xdp->frame_sz = frame->frame_sz; +} + /* Convert xdp_buff to xdp_frame */ static inline struct xdp_frame *convert_to_xdp_frame(struct xdp_buff *xdp) -- cgit v1.2.3 From 1b698fa5d8ef958007c455e316aa44c37ab3c5fb Mon Sep 17 00:00:00 2001 From: Lorenzo Bianconi Date: Thu, 28 May 2020 22:47:29 +0200 Subject: xdp: Rename convert_to_xdp_frame in xdp_convert_buff_to_frame In order to use standard 'xdp' prefix, rename convert_to_xdp_frame utility routine in xdp_convert_buff_to_frame and replace all the occurrences Signed-off-by: Lorenzo Bianconi Signed-off-by: Alexei Starovoitov Acked-by: Jesper Dangaard Brouer Link: https://lore.kernel.org/bpf/6344f739be0d1a08ab2b9607584c4d5478c8c083.1590698295.git.lorenzo@kernel.org --- include/net/xdp.h | 2 +- 1 file changed, 1 insertion(+), 1 deletion(-) (limited to 'include') diff --git a/include/net/xdp.h b/include/net/xdp.h index db5c2c687f48..609f819ed08b 100644 --- a/include/net/xdp.h +++ b/include/net/xdp.h @@ -123,7 +123,7 @@ void xdp_convert_frame_to_buff(struct xdp_frame *frame, struct xdp_buff *xdp) /* Convert xdp_buff to xdp_frame */ static inline -struct xdp_frame *convert_to_xdp_frame(struct xdp_buff *xdp) +struct xdp_frame *xdp_convert_buff_to_frame(struct xdp_buff *xdp) { struct xdp_frame *xdp_frame; int metasize; -- cgit v1.2.3 From 958a3f2d2aff896ae2a622878e456114f4a4cd15 Mon Sep 17 00:00:00 2001 From: Jiri Olsa Date: Sun, 31 May 2020 17:42:55 +0200 Subject: bpf: Use tracing helpers for lsm programs Currenty lsm uses bpf_tracing_func_proto helpers which do not include stack trace or perf event output. It's useful to have those for bpftrace lsm support [1]. Using tracing_prog_func_proto helpers for lsm programs. [1] https://github.com/iovisor/bpftrace/pull/1347 Signed-off-by: Jiri Olsa Signed-off-by: Alexei Starovoitov Cc: KP Singh Link: https://lore.kernel.org/bpf/20200531154255.896551-1-jolsa@kernel.org --- include/linux/bpf.h | 3 +++ 1 file changed, 3 insertions(+) (limited to 'include') diff --git a/include/linux/bpf.h b/include/linux/bpf.h index e042311f991f..07052d44bca1 100644 --- a/include/linux/bpf.h +++ b/include/linux/bpf.h @@ -1633,6 +1633,9 @@ extern const struct bpf_func_proto bpf_ringbuf_query_proto; const struct bpf_func_proto *bpf_tracing_func_proto( enum bpf_func_id func_id, const struct bpf_prog *prog); +const struct bpf_func_proto *tracing_prog_func_proto( + enum bpf_func_id func_id, const struct bpf_prog *prog); + /* Shared helpers among cBPF and eBPF. */ void bpf_user_rnd_init_once(void); u64 bpf_user_rnd_u32(u64 r1, u64 r2, u64 r3, u64 r4, u64 r5); -- cgit v1.2.3 From a3fd7ceee05431d2c51ed86c6cae015d236a51f0 Mon Sep 17 00:00:00 2001 From: Jakub Sitnicki Date: Sun, 31 May 2020 10:28:36 +0200 Subject: net: Introduce netns_bpf for BPF programs attached to netns In order to: (1) attach more than one BPF program type to netns, or (2) support attaching BPF programs to netns with bpf_link, or (3) support multi-prog attach points for netns we will need to keep more state per netns than a single pointer like we have now for BPF flow dissector program. Prepare for the above by extracting netns_bpf that is part of struct net, for storing all state related to BPF programs attached to netns. Turn flow dissector callbacks for querying/attaching/detaching a program into generic ones that operate on netns_bpf. Next patch will move the generic callbacks into their own module. This is similar to how it is organized for cgroup with cgroup_bpf. Signed-off-by: Jakub Sitnicki Signed-off-by: Alexei Starovoitov Cc: Stanislav Fomichev Link: https://lore.kernel.org/bpf/20200531082846.2117903-3-jakub@cloudflare.com --- include/linux/bpf-netns.h | 56 +++++++++++++++++++++++++++++++++++++++++++++ include/linux/skbuff.h | 26 --------------------- include/net/net_namespace.h | 4 +++- include/net/netns/bpf.h | 17 ++++++++++++++ 4 files changed, 76 insertions(+), 27 deletions(-) create mode 100644 include/linux/bpf-netns.h create mode 100644 include/net/netns/bpf.h (limited to 'include') diff --git a/include/linux/bpf-netns.h b/include/linux/bpf-netns.h new file mode 100644 index 000000000000..f3aec3d79824 --- /dev/null +++ b/include/linux/bpf-netns.h @@ -0,0 +1,56 @@ +/* SPDX-License-Identifier: GPL-2.0 */ +#ifndef _BPF_NETNS_H +#define _BPF_NETNS_H + +#include +#include + +enum netns_bpf_attach_type { + NETNS_BPF_INVALID = -1, + NETNS_BPF_FLOW_DISSECTOR = 0, + MAX_NETNS_BPF_ATTACH_TYPE +}; + +static inline enum netns_bpf_attach_type +to_netns_bpf_attach_type(enum bpf_attach_type attach_type) +{ + switch (attach_type) { + case BPF_FLOW_DISSECTOR: + return NETNS_BPF_FLOW_DISSECTOR; + default: + return NETNS_BPF_INVALID; + } +} + +/* Protects updates to netns_bpf */ +extern struct mutex netns_bpf_mutex; + +union bpf_attr; +struct bpf_prog; + +#ifdef CONFIG_NET +int netns_bpf_prog_query(const union bpf_attr *attr, + union bpf_attr __user *uattr); +int netns_bpf_prog_attach(const union bpf_attr *attr, + struct bpf_prog *prog); +int netns_bpf_prog_detach(const union bpf_attr *attr); +#else +static inline int netns_bpf_prog_query(const union bpf_attr *attr, + union bpf_attr __user *uattr) +{ + return -EOPNOTSUPP; +} + +static inline int netns_bpf_prog_attach(const union bpf_attr *attr, + struct bpf_prog *prog) +{ + return -EOPNOTSUPP; +} + +static inline int netns_bpf_prog_detach(const union bpf_attr *attr) +{ + return -EOPNOTSUPP; +} +#endif + +#endif /* _BPF_NETNS_H */ diff --git a/include/linux/skbuff.h b/include/linux/skbuff.h index 531843952809..a0d5c2760103 100644 --- a/include/linux/skbuff.h +++ b/include/linux/skbuff.h @@ -1283,32 +1283,6 @@ void skb_flow_dissector_init(struct flow_dissector *flow_dissector, const struct flow_dissector_key *key, unsigned int key_count); -#ifdef CONFIG_NET -int skb_flow_dissector_prog_query(const union bpf_attr *attr, - union bpf_attr __user *uattr); -int skb_flow_dissector_bpf_prog_attach(const union bpf_attr *attr, - struct bpf_prog *prog); - -int skb_flow_dissector_bpf_prog_detach(const union bpf_attr *attr); -#else -static inline int skb_flow_dissector_prog_query(const union bpf_attr *attr, - union bpf_attr __user *uattr) -{ - return -EOPNOTSUPP; -} - -static inline int skb_flow_dissector_bpf_prog_attach(const union bpf_attr *attr, - struct bpf_prog *prog) -{ - return -EOPNOTSUPP; -} - -static inline int skb_flow_dissector_bpf_prog_detach(const union bpf_attr *attr) -{ - return -EOPNOTSUPP; -} -#endif - struct bpf_flow_dissector; bool bpf_flow_dissect(struct bpf_prog *prog, struct bpf_flow_dissector *ctx, __be16 proto, int nhoff, int hlen, unsigned int flags); diff --git a/include/net/net_namespace.h b/include/net/net_namespace.h index 8e001e049497..2ee5901bec7a 100644 --- a/include/net/net_namespace.h +++ b/include/net/net_namespace.h @@ -33,6 +33,7 @@ #include #include #include +#include #include #include #include @@ -162,7 +163,8 @@ struct net { #endif struct net_generic __rcu *gen; - struct bpf_prog __rcu *flow_dissector_prog; + /* Used to store attached BPF programs */ + struct netns_bpf bpf; /* Note : following structs are cache line aligned */ #ifdef CONFIG_XFRM diff --git a/include/net/netns/bpf.h b/include/net/netns/bpf.h new file mode 100644 index 000000000000..a858d1c5b166 --- /dev/null +++ b/include/net/netns/bpf.h @@ -0,0 +1,17 @@ +/* SPDX-License-Identifier: GPL-2.0 */ +/* + * BPF programs attached to network namespace + */ + +#ifndef __NETNS_BPF_H__ +#define __NETNS_BPF_H__ + +#include + +struct bpf_prog; + +struct netns_bpf { + struct bpf_prog __rcu *progs[MAX_NETNS_BPF_ATTACH_TYPE]; +}; + +#endif /* __NETNS_BPF_H__ */ -- cgit v1.2.3 From b27f7bb590ba835b32ef122389db158e44cfda1e Mon Sep 17 00:00:00 2001 From: Jakub Sitnicki Date: Sun, 31 May 2020 10:28:37 +0200 Subject: flow_dissector: Move out netns_bpf prog callbacks Move functions to manage BPF programs attached to netns that are not specific to flow dissector to a dedicated module named bpf/net_namespace.c. The set of functions will grow with the addition of bpf_link support for netns attached programs. This patch prepares ground by creating a place for it. This is a code move with no functional changes intended. Signed-off-by: Jakub Sitnicki Signed-off-by: Alexei Starovoitov Link: https://lore.kernel.org/bpf/20200531082846.2117903-4-jakub@cloudflare.com --- include/net/flow_dissector.h | 6 ++++++ 1 file changed, 6 insertions(+) (limited to 'include') diff --git a/include/net/flow_dissector.h b/include/net/flow_dissector.h index 4fb1a69c6ecf..a7eba43fe4e4 100644 --- a/include/net/flow_dissector.h +++ b/include/net/flow_dissector.h @@ -8,6 +8,8 @@ #include #include +struct bpf_prog; +struct net; struct sk_buff; /** @@ -369,4 +371,8 @@ flow_dissector_init_keys(struct flow_dissector_key_control *key_control, memset(key_basic, 0, sizeof(*key_basic)); } +#ifdef CONFIG_BPF_SYSCALL +int flow_dissector_bpf_prog_attach(struct net *net, struct bpf_prog *prog); +#endif /* CONFIG_BPF_SYSCALL */ + #endif -- cgit v1.2.3 From 7f045a49fee04b5662cbdeaf0838f9322ae8c63a Mon Sep 17 00:00:00 2001 From: Jakub Sitnicki Date: Sun, 31 May 2020 10:28:38 +0200 Subject: bpf: Add link-based BPF program attachment to network namespace Extend bpf() syscall subcommands that operate on bpf_link, that is LINK_CREATE, LINK_UPDATE, OBJ_GET_INFO, to accept attach types tied to network namespaces (only flow dissector at the moment). Link-based and prog-based attachment can be used interchangeably, but only one can exist at a time. Attempts to attach a link when a prog is already attached directly, and the other way around, will be met with -EEXIST. Attempts to detach a program when link exists result in -EINVAL. Attachment of multiple links of same attach type to one netns is not supported with the intention to lift the restriction when a use-case presents itself. Because of that link create returns -E2BIG when trying to create another netns link, when one already exists. Link-based attachments to netns don't keep a netns alive by holding a ref to it. Instead links get auto-detached from netns when the latter is being destroyed, using a pernet pre_exit callback. When auto-detached, link lives in defunct state as long there are open FDs for it. -ENOLINK is returned if a user tries to update a defunct link. Because bpf_link to netns doesn't hold a ref to struct net, special care is taken when releasing, updating, or filling link info. The netns might be getting torn down when any of these link operations are in progress. That is why auto-detach and update/release/fill_info are synchronized by the same mutex. Also, link ops have to always check if auto-detach has not happened yet and if netns is still alive (refcnt > 0). Signed-off-by: Jakub Sitnicki Signed-off-by: Alexei Starovoitov Link: https://lore.kernel.org/bpf/20200531082846.2117903-5-jakub@cloudflare.com --- include/linux/bpf-netns.h | 8 ++++++++ include/linux/bpf_types.h | 3 +++ include/net/netns/bpf.h | 1 + include/uapi/linux/bpf.h | 5 +++++ 4 files changed, 17 insertions(+) (limited to 'include') diff --git a/include/linux/bpf-netns.h b/include/linux/bpf-netns.h index f3aec3d79824..4052d649f36d 100644 --- a/include/linux/bpf-netns.h +++ b/include/linux/bpf-netns.h @@ -34,6 +34,8 @@ int netns_bpf_prog_query(const union bpf_attr *attr, int netns_bpf_prog_attach(const union bpf_attr *attr, struct bpf_prog *prog); int netns_bpf_prog_detach(const union bpf_attr *attr); +int netns_bpf_link_create(const union bpf_attr *attr, + struct bpf_prog *prog); #else static inline int netns_bpf_prog_query(const union bpf_attr *attr, union bpf_attr __user *uattr) @@ -51,6 +53,12 @@ static inline int netns_bpf_prog_detach(const union bpf_attr *attr) { return -EOPNOTSUPP; } + +static inline int netns_bpf_link_create(const union bpf_attr *attr, + struct bpf_prog *prog) +{ + return -EOPNOTSUPP; +} #endif #endif /* _BPF_NETNS_H */ diff --git a/include/linux/bpf_types.h b/include/linux/bpf_types.h index fa8e1b552acd..a18ae82a298a 100644 --- a/include/linux/bpf_types.h +++ b/include/linux/bpf_types.h @@ -126,3 +126,6 @@ BPF_LINK_TYPE(BPF_LINK_TYPE_TRACING, tracing) BPF_LINK_TYPE(BPF_LINK_TYPE_CGROUP, cgroup) #endif BPF_LINK_TYPE(BPF_LINK_TYPE_ITER, iter) +#ifdef CONFIG_NET +BPF_LINK_TYPE(BPF_LINK_TYPE_NETNS, netns) +#endif diff --git a/include/net/netns/bpf.h b/include/net/netns/bpf.h index a858d1c5b166..a8dce2a380c8 100644 --- a/include/net/netns/bpf.h +++ b/include/net/netns/bpf.h @@ -12,6 +12,7 @@ struct bpf_prog; struct netns_bpf { struct bpf_prog __rcu *progs[MAX_NETNS_BPF_ATTACH_TYPE]; + struct bpf_link *links[MAX_NETNS_BPF_ATTACH_TYPE]; }; #endif /* __NETNS_BPF_H__ */ diff --git a/include/uapi/linux/bpf.h b/include/uapi/linux/bpf.h index f862a58fb567..b9ed9f14f2a2 100644 --- a/include/uapi/linux/bpf.h +++ b/include/uapi/linux/bpf.h @@ -237,6 +237,7 @@ enum bpf_link_type { BPF_LINK_TYPE_TRACING = 2, BPF_LINK_TYPE_CGROUP = 3, BPF_LINK_TYPE_ITER = 4, + BPF_LINK_TYPE_NETNS = 5, MAX_BPF_LINK_TYPE, }; @@ -3839,6 +3840,10 @@ struct bpf_link_info { __u64 cgroup_id; __u32 attach_type; } cgroup; + struct { + __u32 netns_ino; + __u32 attach_type; + } netns; }; } __attribute__((aligned(8))); -- cgit v1.2.3